第3章临床药代动力学与给药方案
临床药理学03-2第三章临床药代动力学与给药方案
CV e0.693 / t1 / 2t d
CVd 2t / t1/ 2
例1:某镇痛药t1/2=2h,Vd=100L,血浓低于 0.1mg/L时痛觉恢复,为保持手术后6h不痛,求 给药剂量D?
方法1
C0=?
D C 0Vd CtektVd C V e t d 0.693/t1/ 2t CtVd 2t / t1/ 2
log C0 = log 100 +0.231*6/2.303 = 2.60 C0 = 398.11μ g/l 代入 所以 D = C0 Vd = 398.11×100 = 39.8≈40 mg
口服 C FDka (ekt ekat ) Vd (ka k)
D
CVd (ka k) Fka (ekt e kat
解:将Css =1.44 μg/l, Vd=6 × 50=300L , k=0.693/40 ,τ=24h代入公式得:
D CssVdkτ F
D= 1.44×300×0.693/40×24)/0.8=224.5 μg
≈0.25mg
临床每日维持量0.25mg
例 5 : 普 鲁 卡 因 酰 胺 胶 囊 F=0.85, Vd=2.0L/kg。
第三章 临床药代动力学与给药方案
温州医科大学药理教研室 周红宇
第二节 临床给药方案设计与调整
一、给药方案设计
(一)单剂量给药方案
镇痛药,催眠药,肌松药,诊断用药等通常一次性给 药,剂量如何计算???
根据药动学参数和有效浓度求剂量,公式如下:
静注
C
C0ekt
D Vd
ekt
D CVd ekt
K =Knr + Kr K :药物一级消除速率常数 Knr:非肾消除速率常数 Kr:肾消除速率常数 肾功能改变后, Knr保持不变:
药代动力学
2) 达到稳态某一分数所需要的时间长短取决于半衰期,
而与滴注速率无关。当时间相当于3.32t1/2,时,血药浓度 相当于稳态浓度的90%, 当时间相当于6.64t1/2时,血药 浓度相当于稳态浓度的99%。
3)已知期望血药浓度,可以确定静脉滴注速率k0
k0 Cssk.V
6
(二)开放式二室模型
药物
Ke(k10) 中央室
如预测安替比林的清除率仅为其他外展 数据的1/7
.
29
预测方法
前提条件 1,每个种属的PK均为一级动力学过程
2,蛋白结合率相似
3,有关浓度为线性
4,消除过程为物理性
5,有足够的数据回归
.
30
至少4种动物
将70kg体重代入方程 预测人
.
31
二、生理模型法
前提条件
假定药物的组织和血浆药物浓度的比(Kp)等在动 物间是不变的
CT ,ss C A,ss
消除性组织 2)面积法
Kp
CT,ss CA,ss(1 E)
非消除性组织
Kp
AUCT AUCA
消除性组织 药物的清除率
Kp
AUCT AUCA(1E)
Cli nt
Vmax,i K.m,i
体外肝微粒体酶促反
应求算酶活性参数
(Vmax,i,Km,i)
23
四、 种属间药物代谢的比例扩大 (动物种属间比放)
符合这种条件的药物被称为肝代谢活性限速药物(capacity -limited drug)或低摄取(l.ow extraction)药物,如华法林20
低摄取 华法林
高摄取 利多卡因
肝血流对肝清除率的影响
(实线代表正常时,虚线代表肝血流量减少时。
3-药物代谢动力学
第二节 药物的体内过程
药物从进入机体到离开机体的过程
吸收 分布
药物的转运 药物通过各种生物膜的过程
代谢 排泄
药物的转化 药物结构发生变化的过程
药物的消除 血药浓度下降的过程
一第二、节吸药收物(的a体bs内o过rp程tion)
(一)胃肠道给药
给药方式
吸收部位
口服(per os)
小肠粘膜
舌下(sublingual)
组织 细胞间液 细胞内
血浆蛋白 结合率
①不呈现药理活性 ②不能通过血脑障 ③不被肝脏代谢灭活
④不被肾排泄
2.体液pH
弱碱性药 碱性环境 解离度小 非解离型多 脂溶性高 易转运 弱酸性药 碱性环境 解离度大 非解离型少 脂溶性低 不易转运
酸 碱, 碱 酸。 酸酸碱碱促吸收,酸碱碱酸促排泄。
例1:弱酸性药物巴比妥类中毒解救---碳 酸氢钠碱化血液和尿液,促进弱酸性药 物巴比妥类由脑细胞向血浆中转移和从 尿排泄。
• 主要酶系:细胞色素P450酶系统, 为多 功能酶系,如CPY1A2、 CPY3A4、CPY2C9、CPY2C19、 CPY2D6、CPY2E1
• 药酶的特点:选择性低、变异性 大、易受药物的影响而出现增强 或减弱现象。 • ★★★临床意义:药物相互作用
肝药酶诱导剂凡能够增强药酶活性的药物(巴比 妥类、苯妥英钠、利福平等)。合用时,使其他药 效力下降,并可产生耐受性,应增加其他药的剂量。
多次用药的常用指标之一,对于指导临床用药 有实际意义。
l 表观分布容积(Vd):指药物在吸收达到平衡或 稳态时应占有的体液容积。为理论上的数值。Vd 值可推测该药在体液中的分布和组织摄取量。
l 血浆清除率(CL):单位时间多少容积血浆中药 物清除。
第三章 第三节 药物消除动力学
第三章第三节药物消除动力学从生理学看,体液被分为血浆、细胞间液及细胞内液几个部分。
为了说明药动学基本概念及规律现假定机体为一个整体,体液存在于单一空间,药物分布瞬时达到平衡(一室模型)。
问题虽然被简单化,但所得理论公式不失为临床应用提供了基本规律。
按此假设条件,药物在体内随时间变化可用下列基本通式表达:dC/dt=kCn.C为血药浓度,常用血浆药物浓度。
k 为常数,t为时间。
由于C为单位血浆容积中的药量(A),故C也可用A代替:dA/dt=kCn,式中n=0时为零级动力学(zero-order kinetics),n=1时为一级动力学(first-order kinetics),药物吸收时C(或A)为正值,消除时C(或A)为负值。
在临床应用中药物消除动力学公式比较常用,故以此为例如以推导和说明。
一、零级消除动力学当n=0时,-dC/dt=KC0=K(为了和一级动力学中消除速率常数区别,用K代k),将上式积分得:Ct=C0- Kt,C0为初始血药浓度,Ct为t时的血药浓度,以C为纵座标、t为横座标作图呈直线(图3-6),斜率为K,当Ct/C0=1/2时,即体内血浆浓度下降一半(或体内药量减少一半)时,t为药物消除半衰期(half-life time, t1/2)。
按公式1/2C0=C0-Kt1/2可见按零级动力学消除的药物血浆半衰期随C0下降而缩短,不是固定数值。
零级动力学公式与酶学中的Michaelis-Menten公式相似:,式中S为酶的底物,Vmax为催化速度,Km 为米氏常数。
当[S]>>Km时,Km可略去不计,ds/dt=Vmax,即酶以其速度催化。
零级动力学公式与此一致,说明当体内药物过多时,机体只能以能力将体内药物消除。
消除速度与C0高低无关,因此是恒速消除。
例如饮酒过量时,一般常人只能以每小时10ml乙醇恒速消除。
当血药浓度下降至消除能力以下时,则按一级动力学消除。
二、一级消除动力学当n=1时,-dC/dt=keC1=keC,式中k用ke表示消除速率常数(elimination rate constant)。
麻醉学-药物效应动力学(时效关系、量效关系)、药代动力学
要消耗能量,细胞内外K+、Na+浓度差的维持 顺浓度梯度的转运
必须依靠特异性的载体,且有饱和性,有竞争性抑制作用
三、药物的吸收
注射给药 呼吸道给药 皮肤黏膜给药 胃肠道给药
四、药物的分布
(一)表观分布容积 (apparent volume distribution Vd )
最小有效量或阈剂量(threshold dose) 能引起药理效应的最小剂量(浓度) 高于此量的依次称为治疗量(常用量)、极量、最小中毒量和最小致死量 极量(maximal dose)是药典规定的最大用量。 超过极量用药引起医疗事故者应负法律责任 半数有效量(median effective dose, ED50) 指药物引起半数实验动物发生阳性反应(质反应)的剂量 若以死亡作为阳性反应的指标,为半数致死量(median lethal dose, LD50) 因此,LD50可视为ED50的一个特例 ED50表示药物作用强度的大小,LD50表示药物毒性的大小,两者的测定原理、 计算方法相同 药物的治疗指数(therapeutic index, TI) 等于两者的比值, 即TI = LD50/ED50, 表示对半数动物有效的剂量增大多少倍可引起半数动物 死亡,是评价药物安全性的重要指标
4、麻醉用药的效能和效价强度
麻醉药的效能通常指它所能达到的最大麻醉深度 例如,乙醚、氟烷等挥发性全麻药,如果给予足够高的
浓度,均能使病人的麻醉达到三期四级、甚至延髓麻痹而 死亡,故都是高效能全麻药
而氧化亚氮,即使吸入浓度高达80%,也只能引起浅麻 醉,再加大浓度,则势必引起缺氧,甚至吸入100%氧化亚 氮(临床上不允许),也不能产生深麻醉,因此,氧化亚 氮是低效能全麻药。
第三章 药物代谢动力学
一、药物的跨膜转运
(一) 被动转运 (passive transport)
顺浓度梯度转运或下山转运(down-hill transport)
• 简单扩散(脂溶扩散) 脂溶性药物,大多数药物的转运方式。
• 膜孔转运(水溶扩散) 水溶性的药物,借助膜两侧流体静压
或渗透压而进行的跨膜转运。
如:尿素、乙醇、锂离子
血眼屏障 (blood-ocular barrier)
血-房水 血-视网膜 血-玻璃体
大部分治疗眼病的药物 采用局部给药
胎盘屏障 (placental barrier)
胎儿胎盘绒毛-孕妇子宫血窦
临床意义: 妊娠期禁止使用对胎儿生长发育有影响的药物
妊娠期尽量避免用药
四、代谢(metabolism)
横坐标围成的面积,与药物吸收总量成正比。
三、药动学模型
隔室模型(compartment model)
又称房室模型
把机体假设为一个系统,药物进入体内分 布于其中,根据转运速率的快慢可区分为若干 隔室。
房室被视为一个假设空间,只要体内某些 部位的转运速率相同,均视为同一室。
一室模型
机体
药物
吸收 中央室
解离度 非离子型(脂溶)—— 自由跨膜,容易吸收 离子型(脂不溶) —— 带电荷,不易转运
解离度 pKa
弱酸性或弱碱性有机化合物,在体液中的解离程度 取决于体液的pH值。
• 解离常数Ka的负对数值为pKa,表示药物的解离度。
• pKa指药物解离50%时所在体液的pH值。
• pKa与药物本身属于弱酸性或弱碱性无关 • 离子障:pKa < 3 和 pKa >10 的药物,几乎全部解
➢ 非专一性酶: 微粒体酶: 微粒体混合功能氧化酶系统
药理学 第3章 药物代谢动力学
(活化:药物经转化后,由无活性转 变为有活性的现象。 ) 3、药物经代谢后水溶性和极性增加。
药物转化的酶系统
1、专一性酶:专一性强,主要催化 水溶性较大的药物。如AchE、MAO。
2、肝药酶(非专一性酶)
是混合功能氧化酶系统。主要存 在于肝细胞内质网上,可促进多种脂 溶性药物的转化,其中CYP450酶系统是 促进药物转化的主要酶系统。
第三节 药动学基本概念,参数及意义
药物在体内的吸收、分布、生物转化和排泄, 是一个连续变化的动态过程,它与药物作用起始 的快慢、维持时间的长短、药物的治疗作用或毒 副反应密切相关。因此,研究血药浓度随着时间 变化的动态规律及测定一些药动学重要参数,对 指导临床合理用药有重要的意义。
第三节 药动学基本概念,参数及意义
其他因素
(1)组织器官的血流量
吸收的药物通过循环迅速向全身组 织输送,首先向血流量大的器官分布, 然后向血流量小的组织转移的现象,称 为再分布。
(2)药物与组织的亲和力
第二节 药物体内过程
三、药物的代谢 (一)药物代谢的意义 (二) 药物代谢的方式 (三)药物代谢的酶(药酶) (四)酶的诱导与抑制 1.药酶诱导剂 2.药酶抑制剂
经肾脏排泄
(1)肾小球滤过:绝大多数游离型药物和 其代谢产物均可滤过。血细胞、大分子物 质及结合型的药物不能滤过。
(2)肾小管被动重吸收:脂溶性高、
非解离型的药物和代谢产物又可经肾小管 重吸收入血。若改变尿液pH 值,则可影 响药物的解离度。
(3) 肾小管主动分泌:少数药物是 经肾小管主动分泌排泄 。如丙磺舒可 抑制青霉素的主动分泌。
当血液血浆蛋白过少(慢性肾炎、 肝硬化)或变质(尿毒症),使可与药 物结合的血浆蛋白下降,也容易发生药 物作用增强和中毒。
第03章药物代谢动力学-参考
血-------------脑 血---------脑脊液 脑脊液---------脑
由此三种屏障组成 血液,脑脊液,中枢神经组织
之间关系密切
37
脑脊液(CFS)主要由脉络丛生成,不断分泌并进入脑室, 经蛛网膜下腔及硬脑膜窦,回到静脉系统。
2
Definition
药物体内处置 (Disposition)
吸收 (Absorption) 分布 (Distribution) 代谢 (Metabolism) 排泄 (Excretion)
体内药物浓 度随时间变化的 动力学规律。
3
一.药物的跨膜转运
跨膜转运的方式主要有被动转运(简单扩散、 滤过、易化扩散)、主动转运和膜动转运。
多数药物是弱有机酸或碱,药物在体液中可部分 解离。 解离型:极性大,脂溶性小,难以扩散。 非解离型:极性小,脂溶性大,易扩散。
10
pH和pKa决定药物分子解离多少
酸性药 (Acidic drug): HA H+ + A
碱性药 (Basic drug): BH+ H+ + B (分子型)
20
二.药物的吸收和影响因素 (一)药物的吸收
吸收(Absorption):指药物自用药部位进入血液循 环的过程。
1 消化道吸收 (1)主要为被动吸收 (2)分子量越小,脂溶性越大,
越易吸收 (3)非解离型,比解离型易吸收
21
胃:主要被动转运。 pH值范围窄(0.9~1.5) 吸收面积小 药物滞留时间短 弱酸性药物可吸收
药物的储库。
例:硫喷妥钠
脑
临床药物代谢动力学:给药方案设计
1)根据半衰期设计:
T1/2
4-24h
<1h >24h
调整方案
每隔1个半衰期给药1次
安全性高:增加剂量;安全性低:长效制剂 总剂量分次给药,减少波动
第一节 给药方案的设计
常用的设计方法
2)根据有效血药浓度范围设计:
定 义
有效血药浓度范围(治疗窗,therapeutic Window,TW):最小有效浓度~最小中毒浓度
4)稳态时波动幅度
药物t1/2越长,波动程度越小;给
药间隔越大,波动程度越大
第三节 多剂量给药方案
1.稳态血药浓度(Css)
5)多剂量给药后,一个剂量间隔时间内血药浓度的曲线下面积等于单
剂量用药后血药浓度-时间曲线下的总面积
①达到Css的时间取决于t1/2,与剂量、间隔及给药途径无关;②增大剂量,能使Css提高,但不能
给药方案设计
教学要求
给药方案设计的基本方法、实施步 骤,以及调整流程
掌握
熟悉
单剂量、多剂量和静脉滴注给药方 案;稳态浓度、维持剂量、负荷剂 量等基本概念的定义及意义
了解
非线性动力学给药方案的设计方法
第一节 给药方案的设计
给药方案(dosage regimen) + 患者因素
=个体化治疗(individualizing therapy)
浓度降至20mg/L?(Km=4mg/L,Vm=7mg/kg,Vd=0.7L/kg)
第六节 个体化给药方案
一、个体化给药的定义和意义
个体化给药:针对不同患者选择合适的药物,使用恰当
的剂量、给药间隔、给药时间和疗程等,通过测定体液
中的药物浓度,计算药物的药物代谢动力学参数然后设 计出针对患者个人的给药方案 重要意义:使治疗方案科学、合理
临床药代动力学
(二)给药途径
✓ 静脉内给药无吸收过程 ✓ 其它给药途径按吸收速度排序:
气雾→腹腔注射→吸入→舌下→ 肌注→皮下注射→口服→直肠→皮肤
消化道内吸收
吸 收 途 径
非消化道内吸收
口服给药 舌下给药 直肠给药
皮肤黏膜 肌注或皮下 鼻黏膜、支气管、肺泡
1、口服给药
吸收部位在胃肠道,影响药物吸收的因素: 1)药物方面: 1、药物的理化性质
以利迅速排除体外。
称为生物转化。 ③有时生成不同活性的代谢物;
如硝酸甘油,首过灭活约95%。
药物被代谢后: 结合率低于,则药物与血浆蛋白结合低。
肝外组织如胃肠道、肾、肺、皮肤、脑、肾上腺、卵巢等也能代谢某些药物;
(酸性药物中毒时,用碳酸氢钠洗胃,苯巴比妥)
①多数可能转化为无活性物质; ①多数可能转化为无活性物质;
缺点:吸收面积小,给药量有限;
肝药酶诱导剂 分2个时相进行:
②也可能从原来无药理活性的物质转变为有活性
酸性药物载体、 碱性药物载体
的代谢物(环磷酰胺); 促进自身代谢,连续用药可因自身诱导而使药效降低;
管、直肠下静脉吸收进入直肠下静脉) 应。(直肠栓剂正确的给 药应塞入肛门2厘米左右)
缺点:吸收面积小、肠腔液体少 、左右;
二、分 布
药物吸收进入血液循环后,到达各脏器和组织的转 运的过程称为分布。
药物分布不仅与药物效应有关,而且与药物毒性有关 。如大环内酯类很难透过血脑屏障,不能治疗中枢神 经系统感染;氨基糖苷类浓集于肾小管,是造成肾毒 性的原因之一。
与血浆蛋白结合的药物分子量大,难以通过;
即研究某一时间人体内药物的存在位置、数量(浓度)。
2、解离度 非解离药物易吸收。
临床药物代谢动力学
P-糖蛋白的作用是将药物(包括其他化学物质)从细胞内转运到细胞外,降低细胞内的药物浓度。P-糖蛋白在药物吸收、分布、代谢等过程介导了重要的外排作用 。
药物转运体(举例)
P-糖蛋白在ADME过程介导的外排作用 引自:Lemahieu W, Maes B. Current Enzyme Inhibition, 2007; 3: 217-241.
t1/2的计算
一室模ቤተ መጻሕፍቲ ባይዱ 二室模型 当药物在体内符合一级动力学过程时,其消除半衰期与血药浓度水平无关。
指单位时间内机体清除药物的速率,其单位有:L/h,mL/min等 。
总清除率 CL总 = CL肾 +CL肾外
01
02
清除率(CL)
CL的计算
根据静注剂量与药-时曲线下面积的比值计算 静脉给药: 血管外给药:
多次静脉注射负荷剂量的确定
多次给药方案的确定
求D,τ
多次血管外给药
给药方案的调整
T为滴注持续时间
多次静脉滴注给药 维持剂量 滴注速率
多次静脉滴注给药
01
给药间隔时间
02
负荷剂量 如果负荷剂量不是首次给予,给予时的血药浓度为Cb,那么
03
给药方案的调整
当t1/2 > 24 h,一般每日给药一次,给药间隔时间小于t1/2,初始剂量高于2倍的维持剂量。
09
K12
10
K21
11
K代表消除速率常数
12
一室模型与二室模型的比较(静脉注射)
一室模型与二室模型的比较
一房室模型 (血管外给药)
二房室模型 (血管外给药)
C,V
X0
K
中央室 XC,VC
临床药代动力学
临床药代动力学临床药代动力学(Clinical Pharmacokinetics)是研究药物在人体内的吸收、分布、代谢和排泄等过程的科学。
它是现代药物治疗的重要基础,对于合理应用药物、制定个体化用药方案有着重要的指导意义。
药物的吸收是指药物从给药部位进入血液循环的过程。
常见的给药途径有口服、肌肉注射、静脉注射等。
吸收过程受多种因素影响,如药物的物化性质、给药途径、肠道功能状态等。
了解药物吸收过程有助于确定用药的合适时间和途径,提高用药效果。
药物的分布是指药物在体内组织和器官中的分布情况。
常用的描述参数有药物的体积分布(Vd)和药物的蛋白结合率。
药物在血浆中的蛋白结合率高,会导致药物在组织中的有效浓度降低,从而影响药物的疗效。
了解药物的分布情况可以帮助调整用药剂量、优化给药途径,提高药物的组织靶向性。
药物的代谢是指药物在体内发生化学变化的过程。
药物代谢通常发生在肝脏中,通过一系列酶的作用将药物转化成代谢产物,进而被排泄出体外。
药物代谢的速度和途径影响药物在体内的持续时间和药效。
了解药物的代谢途径和代谢酶的饱和情况,可以预测相互作用和药物副作用等潜在问题。
药物的排泄是指药物从体内被排除的过程,在体内主要由肾脏负责。
药物排泄受肾功能状态、药物的分子大小、药物的酸碱性等多种因素影响。
了解药物的排泄途径和排泄速率,有助于制定合理的给药剂量,避免药物在体内积蓄过多导致的毒性。
临床药代动力学的研究不仅可以澄清药物的药代学特性,还可以提供个体化用药方案的指导。
通过利用临床药代动力学参数,如清除率、半衰期等,可以根据患者的年龄、性别、肝肾功能等因素进行个体化用药的定量预测和调整,提高药物治疗的安全性和有效性。
总之,临床药代动力学是研究药物在人体内的吸收、分布、代谢和排泄等过程的科学,具有重要的指导意义。
通过了解药物在体内的药代动力学参数,可以制定个体化的用药方案,提高药物治疗的疗效和安全性。
未来,临床药代动力学的研究将更加深入,为合理用药提供更科学、个体化的指导并推动药物治疗的进一步发展。
药物代谢动力学药动学
第三章药物代谢动力学药物代谢动力学(pharmacokinetics,PK)简称药代动力学或药动学,是研究机体对药物的处置过程的科学,即研究药物在体内的吸收、分布、代谢及排泄的过程和血药浓度随时间变化规律的科学。
体内过程即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)的过程,又称ADME系统。
吸收、分布、排泄通称药物转运(tranportation of drug)。
代谢也称生物转化(biotransformation)。
代谢和排泄合称为消除(elimination)。
图3-1 药物体内过程示意图第一节药物的跨膜转运生物膜:生物膜是细胞膜和细胞内各种细胞器膜(如核膜、线粒体膜、内质网膜和溶酶体膜等)的总称。
一、转运方式(一)被动转运(passive transport)1.脂溶扩散(lipid diffusion;简单扩散,simple diffusion)2.水溶扩散(aqueous diffusion;滤过,filtration through pores)3.易化扩散(facilitated diffusion)(需转运体,有饱和、竞争抑制)特点:顺差(浓度、电位),不耗能;无饱和、竞争抑制。
(二)主动转运(active transport)1.膜泵转运(pump transport)特点:逆差(浓度、电位),耗能;需转运体,有饱和、竞争抑制。
2.膜动转运(cytopsis transport)(1)胞饮(pinocytosis)(2)胞吐(exocytosis)图3-2 药物转运方式示意图二、药物转运体易化扩散和膜泵转运均需要依赖生物膜上的载体介导,这些载体即药物转运体(drug transporter;药物转运蛋白)。
药物转运体分布广泛,影响药物体内过程的各个环节,进而影响药理活性。
药物转运是药物在体内跨越生物膜的过程。
药物代谢动力学
Drug Administration
Drug Concentration in Systemic Circulation
Drug in Tissues Of Distribution
Drug Metabolism or Excreted
Drug Concentration at Site of Action
药物代谢动力学(pharmacokinetics)
Pharmacokinetics简称药动学,主要研究药物的体内过程及体内药物浓度随时间变化的规律。
第 一 节
第二章
Drug Transport
药物分子的跨膜转运
一、药物通过细胞膜的方式
简单扩散
载体转运 主动转运 易化扩散
逆浓度梯度,耗能 特异性(选择性) 饱和性 竞争性
需依赖细胞膜内特异性载体转运
特点:
4.易化扩散 (Facilitated diffusion; Carrier-mediated diffusion)
需特异性载体 顺浓度梯度,不耗能
药物的体内过程 Absorption, Distribution, Metabolism and Excretion
能够增强CYP酶活性的药物称为酶诱导剂(enzyme inducer)。可产生两种临床后果:使治疗效果增强或减弱。 能够减弱CYP 酶活性的药物称为酶抑制剂(enzyme inhibiter) 。可产生两种临床后果:使治疗效果增强或减弱。
酶诱导和酶抑制
4. 排泄(Excretion)
(4)局部用药 经皮给药 (Transdermal) 脂溶性药物可通过皮肤进入血液。
分布 Distribution
药物吸收后通过血液循环到达机体各部位和组织的过程 影响因素: 血浆蛋白结合率 器官血流量 药物与组织亲和力 体液的pH和药物的解离度 体内屏障
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ds/dt=KC
时间曲线下面积(AUC) 二、血药浓度-时间曲线下面积 血药浓度 时间曲线下面积 以血浆药物浓度(简称血药浓度)为纵坐标,时间 为横坐标, 绘出的曲线称为血药浓度-时间曲线 (药-时曲线)。 坐标轴和药-时曲线之间所围成的面积称为血药 浓度-时间曲线下面积( area under the curve) 代表被吸收入血的总药量 是药物生物利用度的主要决定因素
C
logC
T
T
一房室模型的药时曲线(血管外给药)
logC
T
二室模型
静注时药-时半对数曲线由二段不同的直线构成的。 包括中央室和周边室 中央室 : 药物首先进入的区域,如血液、组织液和血 流丰富的组织。 周边室 : 指一般血液供应较少,药物不易进入的组织 。
二室模型
中央室 Ka D D1 k12 k21 Kel或k10 D
一、速率过程与速率常数 (rate proce) (rate constant)
用药 部位 吸收 血液循环 结合型 代谢 肝脏等 肾脏等 游离型 排泄 分???
1. 一级动力学过程(first order kinetics) 2. 零级动力学过程(zero order kinetics) 3.非线性动力学过程(nonlinear kinetics process) Michaelis-Menten公式
n ( t1/2 ) 1 2 3 4 5 6 7
体内剩余量 50 25 % %
消除总量 50 75 % %
多次给药累积 50 75 % %
12.5 % 6.25 % 3.125 % 1.56 % 0.78 %
87.5 % 93.8 % 96.9 % 98.4 % 99.2 %
87.5 % 93.8 % 96.9 % 98.4 % 99.2 %
V1
1
K 10
2
清除率和被清除药量图解
时间(min) 100ml 100mg C=1mg/ml 清除率(min-1) 单位时间内被清除药量(mg)
0~1
10ml
10
1~2
100ml 90mg C=0.9mg/ml
10ml
9
2~3
100ml 81mg C=0.81mg/ml 100ml 72.9mg C=0.729mg/ml
t ½ =0.693/Ke
2. 零级动力学过程(zero order kinetics) 药物的吸收、分布和消除都是以主动转 运或易化扩散的方式跨膜转运的,达到饱和 时药物的转运速率与生物膜两侧的浓度差无 关; 其微分式为:-dC/dt=KC0 积分得: Ct=C0-Kt ,
零级动力学特点 1. 单位时间内消除的药量是常数(与浓度的零次方成 正比,即消除速率与药量或浓度无关) 2.血药浓度与时间呈直线关系。 3. 恒量消除 4.半衰期不恒定,可随给药剂量或浓度而变化
积分法
∞ 0
∞ 0
∞
=-C0e
-K et
/Ke
0
=0-(-C0/Ke)= C0/Ke
AUC=A/α+B/ β
梯形法
1.将AUC划分成若干个小梯形 2.计算和相加每一个梯形面积 3.再加上 Cn/Ke ,Cn最末一次检测的血浆药物浓度 Ke 消除速率常数。 计算公式:AUC=∑n(Ci-1+Ci)(ti-t i-1)/2+Cn/Ke
室的划分
* 按动力学特点分为若干室。 * 只要体内某些部位接受药物及消除药物的速率 常数相似,而不管这些部位的解剖位置与生理 功能如何,都可归纳为一个单位,即一个室。 * 与器官、组织的血流量,膜的通透性,药物与 组织的亲和力等因素密切相关。
封闭系统与开放系统
封闭系统:
药物进入机体后,仅在各个室间运转,不再从机体排 出和代谢转化者,称为“封闭系统”。
返回
周边室 D2
二房室模型药时曲线
静脉给药
α logC β
血管外给药
logC
T
-αt+Be-βt Ct=A e
T
三室模型
K12 Ka V1 K21 K10 V2 K31 K13 V3
Ka K13 V3 K31 K10 V1 K21 K12 V2
四、表观分布容积(apparent volume of distribution,Vd) 表观分布容积 某一时刻体内药物总量与此刻血浆药物浓度的比值 。 Vd=Dt/Ct (单位: L/kg)
五、半衰期 (half-life time, t1/2,t0.5,t50%)
生物半衰期(biologic half-life) :药物效应下降一半所需 的时间 血浆半衰期(plasma half-life) : 药物的血浆浓度下降一半 所需的时间 药代动力学的计算,一般是指血浆半衰期 消除半衰期 : 消除相血浆药物浓度降低一半的时间, 可 以表示药物在体内消除(包括尿排出、代谢或其他途径 的消除) 一级动力学消除,t ½为常数 。 t 1/2=0.693/k ; t 1/2β=0.693/β
c3 C c2 c1 c4 c5 c6 cn T1 t2 t3 t4 t5 t6 tn T
三、房室模型(compartment model) 房室模型
模拟分析药物在体内转运的动态规律的较常用模型。 将身体视为一个系统,系统内部按动力学特点分为若 干室(compartment) 。 这些组成模型的基本单位是从实际数据中归纳出来的, 代表着从动力学上把机体区分为几个药物“储存库”。 只要体内某些部位接受药物及消除药物的速率常数相 似,不管其解剖位置与生理功能如何,都可归纳为一 个单位,即一个室 。
等量等间隔给药A, 等量等间隔给药 ,τ
第1次 次 第2次 次 第3次 次
D
τ D(1+e-keτ)
τ D*e-keτ τ τ D(1+e-keτ) *e-keτ
τ τ τ τ τ D(1+e-keτ+e-2keτ) D(1+e-keτ+e-2keτ) *e-keτ
开放系统:
药物以不同速度,不同途径不可逆的从机体排泄或转 化着,称为开放系统。
一室模型
最简单的药物代谢动力学模型 假设静脉给药后药物立即均匀地分布在可到达的体液 与组织中 机体组织内药量与血浆内药物分子瞬时取得平衡 实际上这种情况比较少
一房室模型示意图
Ka D
D D kel D
一房室模型药时曲线(静脉给药)
- ke dc/dt
c
t
一级动力学特点: 一级动力学特点: (1)消除速率与血药浓度成正比, ke为消除速率 )消除速率与血药浓度成正比, 为消除速率 常数。 常数。 (2)浓度与时间呈指数关系,浓度的对数与时间呈 )浓度与时间呈指数关系, 直线关系。 直线关系。 药-时曲线
C logC
对数药-时曲线
10ml
8.1
3~4
10ml
7.29
总清除率是药物在体内各途径消 除的清除率的总和。 CL总=CL肾+CL肾外
UV CLr = C 式中U为尿内药物浓度(mg/ml),V为每分钟尿量 (ml/min),C为血浆中药浓度(mg/ml)。
七、 稳态血浆浓度 (steady state plasma concentration Css)
第三章 临床药代动力学与给药方案
第一节临床药代动力学基本概念 (clinical pharmacokinetics)
是研究药物及其代谢物在人体内吸收、分布、代谢和 排泄过程的一门科学 药物的体内过程是随时间变化的动态过程 。 与数学紧密结合的新兴学科 是用数学的方法定量描述药物体内动态规律的学科。
非线性部分
logC 曲线的一级动力学部分 一级动力学
T 低浓度 高浓度
dC
VmC
Michaelis-Menten公式:
─── =──── dt Km+C
当 C >>Km时, Km 可忽略不计, ds/dt=Vmax ds/dt=K 例:酒
当 Km>>C时, C 可忽略不计, dC VmC
─── = ──── dt Km
六、总清除率(clearance,CL) 总清除率
单位时间内药物被从中清除的体液的容积 定义式:CL=RE/Cp(RE:单位时间清除的药量。Cp:瞬时浓度。) 一室模型 : CL=RE/Cp =Ke*A/ Cp =Ke*Vd AUC=C0/Ke=A/(Vd*Ke) AUC=A/CL 即 CL= A/AUC 二室模型 : CL=K10V1
70kg: : 血浆3L 血浆 细胞间液9L 细胞间液 细胞内液28L 细胞内液 血液以外的水分37L 血液以外的水分
Vd的生理意义及应用
估算血容量及体液量: 例如 :依文氏蓝算得总的血容量。 安替比林其分布容积应是体重的60/100。 反映药物分布的广泛性与组织结合的程度 酸性药物,如青霉素、 磺胺等,或因脂溶性小,或因与血浆蛋白结 合力高,不易进入组织,其Vd值常较小, 约为0.15~0.3L/kg; 碱性药物如苯丙胺、山茛菪碱等易被组织所摄取,血中浓度较 低,Vd值常超过体液总量(0.6L/kg) 。 地高辛的Vd达600L(10L/kg),在“深部”组织大量储存。 药物具有大的分布容积,排出就慢,其毒性比Vd小的药物大。 根据药物分布容积调整剂量 同一剂量分布容积不同而有不同的血药浓度,分布容积与体表 面积成正比,固用体表面积计算剂量最为合理,对小儿用药和某些 药物(如抗癌药物)尤为必要。
1. 一级动力学过程(first order kinetics)
药物的吸收、分布和消除是以被动扩散(简单扩散)的方 式跨膜转运的,转运速率与生物膜两侧的浓度差成正比,生物膜 两侧的浓度差越大,转运速率越快 . 微分方程:dC/dt=-KC 1 K:一级速率常数,单位:h-1 h 一级消除微分式: dC/dt= -KeC 式中Ke表示消除速率常数 将上式积分 : Ct=C0 e-ke t 取自然对数 : InCt=InC0-ket 换成常用对数 : LogCt=logC0-ke t/2.303 lnCt