函数单调性教学设计

合集下载

函数的单调性教学设计

函数的单调性教学设计

《1.3.1单调性与最大(小)值(第1课时)》教学设计课型:新授课一、教学内容解析函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都要经历直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.二、教学目标按照教学大纲的要求,根据教材和学情,确定如下教学目标:1.从实际问题出发,使学生通过观察、思考,直观感知函数的单调性.通过探究,讨论函数图像的变化趋势与y值随自变量x的变化情况之间的关系.让学生体验“任意”二字的含义,将图形语言与自然语言建立联系.在此过程中培养学生细心观察、认真分析、严谨论证的良好思维习惯.2.从具体的二次函数2xy=在区间),0(+∞上为增函数入手,通过学生对“y值随x的增大而增大”的逐层深入认识,将自然语言转化为数学符号语言,教师再加以合理引导,顺利突破本课第一个难点。

使学生从形与数两方面理解增、减函数的概念,掌握运用函数图像和单调性的定义判断函数单调性的方法.在此,让学生领会数形结合的数学思想方法,经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.3.通过对增、减函数概念的深入挖掘,初步掌握证明函数单调性的方法与步骤,培养学生归纳、概括、抽象的能力和语言表达能力,提高学生的推理论证能力.三、学生学情分析学生在初中学习了一次函数、二次函数、反比例函数的基础上对函数的增减性有一个初步的感性认识,已具备了一定的观察事物能力和抽象思维能力,但对于感性思维向理性思维的过渡仍有一定的障碍,对于自然语言向符号语言的转化,学生会觉得比较困难.另外,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.四、重、难点分析重点:增、减函数概念的形成及单调性的初步应用.难点:增、减函数的概念形成以及根据定义证明函数的单调性.五、教学策略分析本节课是函数单调性的起始课,根据新课改的教学理念,结合本节课的教学内容和学生的认知水平,主要采用让学生自主探究、独立思考、合作交流、探究成果展示及教师启发引导的教学方式进行教学.同时使用多媒体辅助教学,增强直观性,提高教学效果和教学质量.在学生的学法上我重视让学生利用图形直观启迪思维,完成从感性认识到理性思维的质的飞跃.让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.六、教学过程(一)创设情境引例某品牌电热水壶,烧开一壶水需要6分钟,水开后自动断电,50分钟后冷却至室温.(1)你能描述一下,水温随时间的变化时如何变化的吗?(2)你能用图像表示出这种变化关系吗?(3)你能将“图像的变化趋势”与“水温随着时间的增加而变化”相结合起来吗?这是一个实际问题,在描述上述变化关系时,把定义域分成了两个区间去研究.函数图像上升、下降的趋势反应的是函数的一个基本性质------函数的单调性.(通过朴素的实际问题,让学生把增、减函数的图形语言与自然语言对应起来,同时为理解函数的单调性是函数的局部性质打下伏笔.)(二)自主探究1. 个人独立完成或学习小组合作完成.任意写出一个函数的解析式及定义域,画出草图,任意列出一些自变量和相应的函数值,将“图像的上升、下降趋势”与“y 值随x 的变化”结合起来.2.展示探究成果. 探究成果预设:)(2R x x y ∈= }0{1≠=x x x yx y 0.5 2 1 1 2 0.5 3 0.33 4 0.25 50.2X<0 x>0)(2R x x y ∈=,在),(+∞-∞上,y 值随x 的增大而增大,图像是上升的.)0,(-∞∈x 时,y 值随x 的增大}0{1≠=x x xy 当而减小,图像是下降的;当),0(+∞∈x 时,y 值也随x 的增大而减小,图像也是下降的.教师追问:能不能说xy 1=的图像在整个定义域上是下降的?能不能说整个定义域上y 值随x 的增大而减小?3.教师用几何画板演示二次函数2x y =的函数值y 随x 的变化而变化的过程,并任意选取自变量给出相应的y 值,让学生再次感受图像上升与y 随x 的增大而增大相对应;图像下降与y 随x 的增大而减小相对应.(三)抽象出增、减函数的定义1.问题引导:究竟如何理解“y 随x 的增大而增大”呢?学生探讨,得出“y 随x 的增大而增大”可以用符号语言表示为“当21x x <时,都有)()(21x f x f <”.函数2x y =,在),0(+∞∈x 上满足,当21x x <时,)()(21x f x f <,则2x y =在),0(+∞上是增函数.2.一般的,对于函数x f y (=),在定义域的某个区间),(b a 上,如何说明它是增函数呢?让学生归纳出增函数的定义:一般地,设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 上的任意两个自变量21,x x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f 在区间D 上是增函数.用图像刻画增函数.3.对比增函数的定义,由学生归纳出减函数的定义. 一般地,设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 上的任意两个自变量21,x x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间D 上是减函数.用图像刻画减函数。

函数的单调性教案()

函数的单调性教案()

函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。

教学内容:(1) 引入函数单调性的概念。

(2) 讲解函数单调增和单调减的定义。

(3) 举例说明函数单调性的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。

(2) 采用提问法,引导学生思考函数单调性的含义和应用。

教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。

(2) 讲解函数单调增和单调减的定义,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。

(4) 总结函数单调性的应用,如解不等式、求最值等。

1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。

教学内容:(1) 讲解函数单调性的传递性。

(2) 讲解函数单调性的同增异减性质。

(3) 举例说明函数单调性性质的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的性质。

(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。

教学步骤:(1) 讲解函数单调性的传递性,举例说明。

(2) 讲解函数单调性的同增异减性质,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。

(4) 总结函数单调性性质的应用,如解不等式、求最值等。

第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。

教学内容:(1) 讲解导数与函数单调性的关系。

(2) 讲解利用导数判断函数单调性的方法。

(3) 举例说明利用导数判断函数单调性的应用。

教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。

(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。

教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。

(2) 讲解利用导数判断函数单调性的方法,举例说明。

《函数的单调性》教学设计

《函数的单调性》教学设计

《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。

2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。

3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。

二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。

2. 学会利用导数、图像以及定义法判断函数的单调性。

3. 能够运用单调性解决实际问题,提高解决问题的能力。

三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。

2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:笔记本、彩笔、函数图像绘制工具。

五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。

例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。

(2)利用图像:引导学生观察函数图像,判断函数的单调性。

(3)利用定义法:讲解如何利用定义法判断函数的单调性。

4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。

5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。

六、板书设计1. 函数单调性的定义。

2. 单调性的判断方法:导数法、图像法、定义法。

3. 单调性在实际问题中的应用。

七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。

求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。

函数单调性教学设计

函数单调性教学设计

函数的单调性教学设计一、教学内容解析1.教材内容及地位《函数单调性》是高中数学新教材必修一第三章第二节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。

如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用。

掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力. 因此,它是高中数学核心知识之一,是函数教学的战略要地。

2.教学重点函数单调性的概念,判断和证明简单函数的单调性。

3.教学难点归纳抽象函数单调性的定义以及根据定义证明函数的单调性.二、学生学情分析1.从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。

2.从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

3.从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心理是学生学好本节课的情感基础。

但是如何运用数学符号将自然语言的描述提升为形式化的定义,学生接受起来比较困难?在教学中要多引导,让学生真正的理解函数单调性的定义。

三、课堂教学目标1.知识目标:理解函数单调性的相关概念。

高中《数学》函数的单调性教学设计学情分析教材分析课后反思

高中《数学》函数的单调性教学设计学情分析教材分析课后反思

《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。

高一数学北师大版必修1教学教案第二章3函数的单调性

高一数学北师大版必修1教学教案第二章3函数的单调性

函数的单调性教学设计与反思一.教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标【教学目标】1.知识与技能理解函数单调性概念;掌握用定义判断和证明一些简单函数单调性的方法;了解函数单调区间。

2.过程与方法培养从概念出发,进一步研究其性质的意识及能力;体会感悟数形结合、分类讨论的思想.3.情感态度价值观由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣.【教学重难点】重点:函数单调性的概念,判断和证明一些简单函数单调性的方法.难点:关于函数单调性概念的符号语言的认知,应用定义证明单调性的代数推理论证【教学过程】一.导课要研究函数的单调性,我们先从熟知的函数入手,下面请同学们作出函数y=x+1 和y=x+1 的图像.1.思考: 从左到右看,图像的变化趋势如何?随着自变量的变化,函数值如何变化?2.观察动画回答:(1)由函数y=x2图像,观察图像的变化趋势。

(2)函数y=x2中y随x如何变化?那么,我们怎样用符号语言表达函数值的增减变化呢?〖设计意图〗从图像直观感知函数单调性在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.二.新知探究1.请同学们阅读课本37页(3分钟)2.老师强调相关概念:函数递增时,图像是_________函数递减时, 图像是________在函数y=f(x)的定义域内的一个区间内A上,如果对于任意两个数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),那么就称函数在区间A上是增加的,有时也称函数在区间A上是递增的。

函数的单调性教学设计 高中数学教案数学教案数学教案学案

函数的单调性教学设计  高中数学教案数学教案数学教案学案

函数的单调性教学目标:1.知识目标:理解函数单调性的概念;2.能力目标:〔1〕.能由函数图象判断某些函数的单调性;〔2〕.通过模仿学会证明函数单调性的方法;〔3〕.培养学生观察、比拟、分析的能力;掌握数形结合的方法.3.德育目标:熟悉从感性认识到理性认识,从抽象到具体的研究问题的方法。

教学重点:函数单调性的概念与判断教学难点:利用概念证明或判断函数的单调性教学用具:多媒体、实物投影仪教学过程:一.问题情境:日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从从阶梯教室后向前走,逐步下降。

1.观察以下图表,体会图形上升或下降的变化在实际生活中作用:洞庭湖沿不同观测站1954年洪水过程图春兰股份线性图在哪些时段内气温是升高的?2.很多函数也具有类似性质。

如〔电脑给出图象〕:y=3x+2 y=1x(x>0)这就是我们要研究的函数的重要性质之一:函数的单调性〔电脑给出课题〕二.学生活动问题1:观察以下函数的图象,指出函数从左向右是怎样变化的?函数y=x2、y=x3的图象〔电脑给出〕y yO O x这些说明某些函数在定义域内的某些区间上图象呈现上升趋势,在某些区间上呈现下降趋势。

问题2:你能用数学语言刻画“图象呈上升或下降的趋势〞吗?三.建构数学:问题3:如何用数学语言来准确地表述这种y值随着x的值增大而增大〔减小〕呢?进而抽象出单调性的定义〔电脑给出〕:一般地,设函数y=f(x)的定义域为A,区间I⊆A如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1 )<f(x2 ),那么就说y=f(x)在区间I上是增函数。

I称为y=f(x)的单调增区间。

如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1 )>f(x2 ),那么就说在这个区间I上是减函数。

I称为y=f(x)的单调减区间。

如果函数y=f(x)在区间I上是单调增函数或是单调减函数,那么就说函数y=f(x)在区间I上具有单调性.问题4:由函数单调性定义,你发现哪些特点?(1)自变量属于定义域(2)自变量的任意性(3)x1、x2的大小与f(x1 )、f(x2)的大小要对应.为了让学生更直观地看出单调函数定义的内涵,用电脑演示动画。

函数的单调性教学设计

函数的单调性教学设计

3.1.3函数的单调性【教学目标】1.理解增函数㊁减函数的定义及增函数㊁减函数的图象特征,初步掌握函数单调性的判定方法.2.能正确地使用符号语言刻画函数的单调性,提升数学表达和数学交流的能力.3.通过对函数单调性的判断和证明,提升直观想象和逻辑推理的核心素养.【教学重点】函数单调性的定义及判断.【教学难点】利用函数单调性的定义判断函数的单调性.【教学方法】本节课主要采用类比教学法和分组教学法.教师用问题引导学生从函数图象的变化趋势得出增函数㊁减函数的定义,然后对图象进行代数分析,得出证明函数单调性的步骤.本节课的主要思路是从形的直观感知到严密的代数分析,引导学生用数形结合的方法研究函数.最后,借助两个证明题,深化学生对函数单调性定义的理解.【教学过程】教学环节教学内容师生互动设计意图导入艾宾浩斯曲线.教师引导学生观察曲线的变化趋势,引入课题.联系实际,激发学生学习兴趣.续表教学环节教学内容师生互动设计意图新课例2证明函数f(x)=3x+2在区间(-ɕ,+ɕ)上是增函数.证明设x1,x2是任意两个不相等的实数,则Δx=x2-x1,Δy=f(x2)-f(x1)=(3x2+2)-(3x1+2)=3(x2-x1),ΔyΔx=3(x2-x1)x2-x1=3>0.因此,函数f(x)=3x+2在区间(-ɕ,+ɕ)上是增函数.总结由函数的解析式判断函数单调性的步骤:S1取Δx,计算Δy.S2计算k=ΔyΔx.当k>0时,函数在这个区间上是增函数;当k<0时,函数在这个区间上是减函数.例3证明函数f(x)=1x在区间(0,+ɕ)上是减函数.证明设x1,x2是任意两个不相等的正实数,则Δx=x2-x1,教师讲解例2,板书详细的解题过程.教师引导学生总结解题步骤,可简记为:一设㊁二求㊁三判定.学生讨论并试解例3.教师解答学生的困惑.通过例题解答,加深学生对函数单调性定义的理解.归纳证明步骤,从而突破难点.教师点拨,帮助学生判断ΔyΔx的正负.巩固用函数解析式来证明函数单调性的步骤.教学环节教学内容师生互动设计意图新课Δy=f(x2)-f(x1)=1x2-1x1=x1-x2x1x2=-x2-x1x1x2.又因为x1x2>0,所以ΔyΔx=-1x1x2<0.因此,函数f(x)=1x在区间(0,+ɕ)上是减函数.练习证明函数f(x)=3x在区间(-ɕ,0)上是减函数.学生练习.巩固函数单调性的证明方法.小结1.函数单调性的定义.2.判定函数单调性的方法.学生阅读本节教材,畅谈本节课的收获.教师引导学生总结本节课的知识点.通过梳理,加深学生对所学知识的理解.作业本节练习A组第2题.本节练习B组题目.学生课后完成.巩固本节内容.。

函数的单调性优秀教案(教学设计)(公开课比赛优秀教案)

函数的单调性优秀教案(教学设计)(公开课比赛优秀教案)

函数的单调性优秀教案(教学设计)(公开课比赛优秀教案)教学目标:知识目标:让学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法。

能力目标:通过探究函数单调性定义,培养学生观察、归纳、抽象的能力和语言表达能力;通过证明函数单调性,提高学生的推理论证能力。

德育目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维惯,让学生经历从具体到抽象、从特殊到一般、从感性到理性的认知过程。

教学重点:函数单调性的概念、判断及证明。

教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性。

教材分析:函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起。

本节课在教材中的作用如下:1)函数的单调性在初中数学中有广泛的应用。

它与前一节内容函数的概念和图像知识的延续有密切的联系,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。

2)函数的单调性是培养学生数学能力的良好题材。

本节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。

教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。

同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。

3)函数的单调性有着广泛的实际应用。

在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。

函数的单调性在中学数学中扮演着十分重要的角色,因为它反映了函数的变化趋势和特点。

在解决问题时,利用函数单调性的观点是十分重要的,这为培养创新意识和实践能力提供了重要的途径和方式。

函数的基本性质单调性教案

函数的基本性质单调性教案

函数的基本性质-单调性教案第一章:函数单调性的概念与定义1.1 引入:通过实际例子,让学生感受函数单调性的存在。

1.2 单调性的定义:函数单调递增和单调递减的定义。

1.3 单调性的表示:用符号表示函数的单调性。

1.4 单调性的性质:单调性的一些基本性质,如传递性、复合函数的单调性等。

第二章:函数单调性的判断与证明2.1 单调性的判断方法:通过导数或者图像来判断函数的单调性。

2.2 单调性的证明:利用导数或者定义来证明函数的单调性。

2.3 单调性的应用:利用单调性解决一些实际问题,如最值问题、不等式问题等。

第三章:函数单调性与极值的关系3.1 极值的概念:函数的极大值和极小值的定义。

3.2 极值与单调性的关系:函数在极值点附近的单调性变化。

3.3 利用单调性求极值:通过单调性来确定函数的极值点。

第四章:函数单调性与图像的关系4.1 图像的单调性:函数图像的单调递增和单调递减。

4.2 单调性与图像的交点:函数图像的交点与单调性的关系。

4.3 利用图像判断单调性:通过观察函数图像来判断函数的单调性。

第五章:函数单调性的应用5.1 函数的单调区间:确定函数的单调递增或单调递减区间。

5.2 单调性与函数值的关系:函数值的变化与单调性的关系。

5.3 应用实例:利用单调性解决实际问题,如最大值、最小值问题等。

第六章:单调性在实际问题中的应用6.1 引言:通过实际问题引入单调性的应用。

6.2 单调性在优化问题中的应用:如最短路径问题、最大收益问题等。

6.3 单调性在经济学中的应用:如市场需求、价格调整等。

第七章:函数单调性的进一步探讨7.1 函数的严格单调性:严格单调递增和严格单调递减的定义。

7.2 单调性的不变性:函数单调性在坐标变换下的性质。

7.3 单调性与连续性的关系:连续函数的单调性性质。

第八章:复合函数的单调性8.1 复合函数的定义:两个函数的组合。

8.2 复合函数的单调性:复合函数单调性的判定方法。

函数单调性教学设计

函数单调性教学设计

函数单调性教学设计学校:新邵职业中专教材版本:《数学基础模块》高教版教师周欣年级高一学生人数54授课时间2024.4教学内容3.3.1函数单调性课时安排一课时第1课时授课类型新授课一、学情分析从学生整体的学情方面来讲,本班学生整体学习基础及态度相对较好,学生态度参差不齐。

从学生知识掌握程度来说,学生在初中通过一次函数,二次函数,反比例函数已经初步接触了函数的增减情况。

只是未对函数增减情况又更加“抽象”“严格”的过程。

而本节课就是对函数图像从左到右上升(下降)转化为y随x的增大而增大(减小)进行刻画。

同时学生在完成函数的概念这一节内容后,已经初步具备了用集合语言来描述概念的能力。

从学生活动经验基础方面来讲,学生已经逐渐养成通过小组合作讨论探究得到概念的习惯,所以学生具备了一定的交流与合作能力。

二、教材分析本节课选自高等教育出版社《数学基础模块》第三章函数的性质,是学生学习了函数的概念后学习的函数第一个性质。

函数的单调性是函数学习中第一个用数学符号语言刻画的性质,相对于初中用自然语言来刻画函数的性质抽象许多。

在函数单调性的研究过程中,经历观察函数图像,结合图表用自然语言描述函数图像特征,用严谨的数学符号语言定义函数性质的过程。

既有从图像上观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法。

是函数研究的深化与提高,也为后阶段研究函数的其他性质提供了方法依据。

三、教学目标设计知识目标1.能够借助函数图像,会用符号表达函数的单调性,理解它们的作用和实际意义;2.会用定义证明简单函数的单调性;3.会根据问题的实际意义,求函数的单调性。

能力目标1.通过观察函数图像,培养数形结合的能力;2.在抽象函数单调性的过程中,感悟数学概念的抽象过程以及符号表示的作用。

素质目标通过生活中的实例,体会函数增减的变化,感受数学来源于生活的思想。

四、教学重点难点·教学重点1.能够借助函数图像,会用符号表达函数的单调性;2.会根据问题的实际意义,求函数的单调性。

函数单调性思政教学设计

函数单调性思政教学设计

函数单调性思政教学设计引言:在数学教学中,函数是一个核心概念,具备了很高的抽象性与普适性。

而在思想政治教育中,培养学生正确的人生观和价值观是十分重要的。

因此,结合函数单调性与思政教育,通过本文设计的教学方案,旨在通过学习数学中的函数单调性,引导学生树立正确的人生观和价值观,促使学生形成积极向上的人生态度。

一、教学目标:本节课的主要目标是让学生掌握函数单调性的概念、性质以及判断函数单调性的方法,同时通过思政教育引导学生思考人生的发展与成长过程中的单调性特点,培养学生正确的人生观和价值观。

二、教学内容和方法:1. 函数单调性的概念与性质:(1)引导学生回顾函数及其性质的基本概念,如定义域、值域、图像等;(2)引入函数单调性的概念,通过实例分析,解释什么是单调递增函数和单调递减函数,以及它们在图像上的表现特点;(3)介绍函数单调递增和单调递减的性质,包括定义域、值域、区间、极值等;2. 判断函数单调性的方法:(1)介绍函数单调性的判断方法,如导数判定法、一阶导数的正负性等;(2)通过具体的例题让学生运用判断单调性的方法,掌握单调性的判定技巧;3. 函数单调性与思政教育的联系:(1)引导学生思考人生的发展与成长过程中的单调性特点;(2)通过引导学生讨论,探索人生中带来积极变化的因素,如努力、奋斗、拼搏等;(3)通过引导学生分析,认识到人生道路上的一些负面因素,如消极情绪、懒惰、自卑等,对人生发展的不利影响;(4)通过学习函数单调性与人生单调性的对比,引导学生认识到培养正确的人生观和价值观的重要性;三、教学流程:1. 导入(5分钟):教师通过提问引入函数单调性的概念及其对人生的意义。

2. 讲授(20分钟):(1)介绍函数单调性的概念及性质;(2)讲解判断函数单调性的方法;(3)通过例题演示,让学生运用判断方法。

3. 拓展(15分钟):(1)引导学生思考人生的发展与成长过程中的单调性特点;(2)让学生分组讨论,分享个人认识和体验;(3)展示讨论结果,引导学生认识到培养正确的人生观和价值观的重要性。

函数单调性优秀教案

函数单调性优秀教案

函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。

为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。

在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

他是高中数学中相当重要的一个基础知识点。

是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。

函数的单调性教案

函数的单调性教案

函数的单调性教案教学目标:1. 理解函数的单调性的概念和判断方法;2. 能够判断二次函数和分式函数的单调性;3. 能够应用函数的单调性解决实际问题。

教学重点:理解函数的单调性的概念和判断方法。

教学难点:能够判断二次函数和分式函数的单调性。

教学准备:教师准备好教学课件、实例题。

教学过程:Step 1:导入新知识(5分钟)使用课件或板书,在黑板上画出$x$轴和$y$轴,复习函数的概念。

引入函数的单调性的概念,解释什么是函数的单调性。

Step 2:讲解函数的单调性的定义及判断方法(10分钟)1. 单调递增函数:若对于$x_1<x_2$,有$f(x_1)<f(x_2)$,则称函数为单调递增函数。

2. 单调递减函数:若对于$x_1<x_2$,有$f(x_1)>f(x_2)$,则称函数为单调递减函数。

3. 函数的单调性的判断方法:- 对于二次函数,判断其开口方向(正负)和零点位置,从而确定其单调性。

- 对于分式函数,分析分子函数和分母函数的单调性,确定其单调性。

Step 3:进行例题演练(15分钟)1. 案例一:判断函数$f(x)=2x^2+3$的单调性。

2. 案例二:判断函数$f(x)=\frac{x+2}{x-1}$的单调性。

Step 4:同步训练(15分钟)以小组为单位,布置几道函数单调性判断的题目,请学生进行讨论和解答。

推选几名学生上台演示解题过程。

Step 5:拓展应用(10分钟)给出一个实际问题,要求学生运用函数的单调性解决问题。

例如:某商品的销售量与售价之间的函数关系为$f(x)=\frac{2000}{x}$,求在售价为1000元时,该商品的最大销售量。

Step 6:课堂小结(5分钟)总结函数的单调性的概念和判断方法。

回顾课上讲解的例题和拓展应用。

Step 7:作业布置(5分钟)布置函数的单调性的练习题,要求学生独立完成并上交。

教学反思:通过引入实例、讲解概念、演示解题,并进行同步训练和拓展应用,使学生对函数的单调性有了初步的了解和认识。

函数单调性的教案

函数单调性的教案

函数单调性的教案教案:函数单调性的教学设计教学目标:1. 理解函数单调性的概念;2. 判断函数的单调性;3. 掌握函数单调性的判定方法;4. 运用函数的单调性解决问题。

教学步骤:Step 1:导入新知识引入函数单调性的概念,给出函数递增和递减的定义及图示例子,激发学生对函数单调性的兴趣。

Step 2:课堂讨论通过与学生讨论,引导他们发现函数单调性的规律和特点。

让学生自己找出关键点并得出结论,加深对函数单调性的理解。

Step 3:判定函数的单调性介绍判定函数单调性的方法:通过求导数和分析函数的表达式来判断函数的单调性。

讲解求导数的方法,如求导数的定义及一些常用的求导公式。

Step 4:练习训练给学生提供一些函数,让他们分别用导数和函数表达式来判断函数的单调性。

提醒学生注意特殊情况,如导数为0的点、断点等。

Step 5:应用拓展通过一些实际问题的拓展,让学生将函数单调性应用到实际中,并提高他们的问题解决能力。

Step 6:总结归纳对函数单调性的判定方法进行总结和归纳,梳理学生的知识点,巩固学生对函数单调性的掌握。

Step 7:课堂作业布置一些针对函数单调性的课后作业,让学生在复习巩固的同时,进一步加深对函数单调性的理解。

Step 8:课堂小结对本节课的重点内容进行小结,强调函数单调性的重要性和应用价值。

鼓励学生积极参与课堂讨论和思考,提高对函数单调性的理解能力。

教学资源:1. 函数单调性的概念和例子的PPT或黑板;2. 函数单调性判定方法的讲解材料;3. 练习题和作业。

补充说明:1. 教学过程中可以使用一些互动教学的方法,如提问、讨论、实例分析等,激发学生的学习兴趣和主动性。

2. 可以根据学生的实际情况和学习水平,调整教学内容的深度和难度,提供相应的辅导和帮助。

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。

《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。

把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。

从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。

【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。

教学设计 函数的单调性【全国一等奖】

教学设计 函数的单调性【全国一等奖】
着x的增大而________.
一、新课教学
(一)函数单调性定义
1.增函数
一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数(increasing function).
思考:仿照增函数的定义说出减函数的定义.(学生活动)
三、教学过程:
引入课题
1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
随x的增大,y的值有什么变化?
能否看出函数的最大、最小值?
函数图象是否具有某种对称性?
2.画出下列函数的图象,观察其变化规律:
1.f(x) = x
从左至右图象上升还是下降______?
在区间____________上,随着x的增
解:(略)
巩固练习:课本P38练习第1、2题
例2.(教材P34例2)根据函数单调性定义证明函数的单调性.
解:(略)
巩固练习:
课本P38练习第;
证明函数 在(1,+∞)上为增函数.
例3.借助计算机作出函数y =-x2+2 | x | + 3的图象并指出它的的单调区间.
解:(略)
思考:画出反比例函数 的图象.
这个函数的定义域是什么?
它在定义域I上的单调性怎样?证明你的结论.
说明:本例可利用几何画板、函数图象生成软件等作出函数图象.
二、归纳小结,强化思想
函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:
取值→作差→变形→定号→下结论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数单调性教学设计《函数的单调性》教学设计麟游县职业教育中心张敏鸽【教材依据】《函数的单调性》是高等教育出版社(修订版)基础模块上册。

是第三章《函数》中第二节《函数性质》里面的第一部分内容。

它是学生在了解了函数概念后学习的函数的第一个性质,也是第一个用符号语言刻画的概念。

一﹑设计思路函数的单调性为进一步学习其他性质提供了方法和依据。

它既是对学过的函数概念的延续和拓展,也为将来研究指数,对数函数打下了基础。

对于本节内容,学生的认知困难主要有以下方面⑴用准确的数学语言刻画图像的上升和下降,这种由形到数的翻译,从直观到抽象的转变对中职一年级学生比较困难。

⑵单调性的证明是学生在函数内容中首次接触到的代数论证内容,其中要综合运用一些知识(比如不等式,因式分解等)来判断符号,在此方面学生能力比较薄弱。

教学上采取了以下的措施:(1)在课题的引入上,通过学生熟悉的问题创设情境,激发学生的兴趣,引发进一步探求的好奇心。

(2)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对函数单调性定义的三次认识,使得学生对概念的认识不断深入。

(3)在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤。

二﹑教学目标的确定根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标.重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.三、教学准备本节课运用了教学电子白板及课件,为学生提供直观感性的材料,有助于学生对问题的理解和认识.四、教学过程的设计【教学目标】1.知识与能力理解增函数,减函数的概念,特别重视单调性概念的形成过程和对概念本质的认识,掌握判断单调性的方法。

2.方法与途径从实际出发,引导学生自主探索函数单调性概念。

让学生领会数形结合的思想方法。

培养学生发现问题,分析问题,解决问题的能力。

3.情感与评价培养学生主动探索,勇于发现科学的精神。

启示学生养成细心观察,认真分析,严谨论证的良好思维习惯,培养学生对数学美的艺术体验。

4.现代教学手段预先做好课件运用电子白板,为学生提供直观感性的材料,有助于学生对问题的理解和认识.利用几何画板做函数图像。

【教学重点】①函数单调性的概念。

②利用定义判断函数单调性。

【教学难点】①函数单调性定义如何由图形语言﹑文字语言向符号语言的转变。

②利用定义证明单调性。

【教学方法】教师启发讲授,学生探究学习.【教学准备】课件、电子白板。

【教学过程】(一)创设问题情境,引入课题观察某市气温一天的天气情况,数学兴趣小组研究近五年来这一天的天气情况,下图是某市今年一天24小时内气温随时间变化的曲线图。

引导学生识图,捕捉信息,启发学生思考【设计意图】由生活情境引入新课,激发兴趣,让学生有进一步探索的好奇心。

(二)知识探究,建构概念问题1:气温在哪一时段是逐渐升高或下降的?问题2:你能明确的说出“图象呈逐渐上升”时,时间t与温度T是如何相互影响的吗?问题1 学生很容易给出答案【设计意图】:函数图象的上升或下”降的规律就是函数单调性的表现形式,它是函数单调性的一种图形语言。

从图象直观感知函数单调性,完成对函数单调性的第一次认识。

问题2 同学们积极思考,进行交流讨论,让学生暴露出各种想法。

最终在教师的引导下同学们可得出:函数图象在指定区间上升可用文字语言描述为:t增大,T增大——单调增函数。

【设计意图】本环节完成了图形语言向文字语言的过渡,为抽象的符号语言奠定基础。

同时,培养学生观察、猜想、归纳的思维能力和创新意识。

问题3:你能否用相应的数学的符号语言来描述函数在指定区间上的单调增吗?预案:(让同学们充分讨论,拿出自己的思路)1、在给〔4,14〕内取两个值,比如取7和9,f(7) <f(9), 所以此函数在〔4,14〕是增函数。

2、仿(1)取多组值验证,均满足,所以此函数在〔4,14〕是增函数。

对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,孔子主张:不愤不启,此时,教师可作适时引导学生在给定区间内任取两个自变量1t,2t。

引导学生得出关键词“区间内”“任意”“当1x<2x,都有f(1x)<f(2x)”由学生出给出单调增函数的概念的数学表述。

问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述。

【设计意图】函数单调性定义产生是本节课的难点,难在:如何使学生从描述性语言过渡到严谨的数学语言.通过问题的分解,引导学生步步深入,直至找到最准确的数学语言来描述定义.这里体现以学生为主体,师生互动合作的教学新理念.(三)自我尝试,运用概念问题5 (1)你能说出气温图中的单调区间吗?(2)你能举出几个学过的在某区间具有单调性的函数的例子,并说出它的单调区间吗?对于(1)学生由图象很容易看出气温图中有两个单调减区间和一个单调增区间。

对于(2)学生根据已有的知识不难举出,例如:f(x)=3x+2 f(x)=x2 f(x)= 1 x并画出函数的图像,根据图像说出单调区间。

【设计意图】:(1)让学生从图象上观察函数单调性是一种常用而又简捷直观的方法,在此渗透数形结合思想。

(2)在学生已有的认知基础上,提出新的问题,反思学过的函数的特征,从而按单调性分类,建构起新的知识体系。

例1、小明从家里出发,去学校取书,顺路将自行车送还王伟同学。

小明骑了30min自行车,到王伟家送还自行车后,又步行了10min到学校取书,最后坐公交车经过20min回到家。

这段时间内,小明离开家的距离与时间的关系如图示,请指出这个函数的单调性。

问题6 通过图象,我们可以看出函数的单调性,能找出单调区间。

那么对于你举出的以上函数,你能否利用函数单调性的定义来证明呢?例2、证明函数在f(x)= 1x在(0,+ ∞)上是减函数。

证明:设任意x1,x2∈(0,+∞)且x1<x2取值则f ﹙x1﹚-f﹙x2﹚=11x-21x= 2112x xx x-作差变形由x1,x2∈(0,+∞)得x1x2>0 判号又x1<x2得x2﹣x1>0∴f(x1)-f(x2)>0即 f(x1)>f(x2)∴f(x)= 1x在(0,+∞)是减函数。

定论本例对于中职一年级学生来说,难点主要在:可能出现不知如何比较f(x1)与f(x2)的大小,不会正确表述,变形不到位,或根本不会变形等困难。

教师深入学生中,与学生交流,了解学生思考的进展过程,投影学生的证明过程,组织学生讨论,引导学生回顾单调性定义的形成过程,明确通过作差来比较﹑变形的的思路,规范书写的格式。

引导学生抽象、概括出利用定义证明函数单调性的方法及步骤:取值-----作差变形-----判号----定论。

,提示学生注意证明过程的规范性及严谨性。

使学生突破本节的难点,掌握重点。

【设计意图】:回归定义,从“数”的角度证明单调性,使学生认识到“形”可帮助我们探索解题思路,而定义是最终解决问题的基础.规范解题过程,引导学生总结解题步骤是对知识和方法的提炼,也是对学生学习的指导. (四)针对练习,深化概念1.(1)判断:定义在R上的函数y=f(x),若f(1) >f(3),则f(x)在R上是减函数。

(2) f(x)=x2-2x+2比较f(2005)与f(2006)的大小(3)判断:函数f(x)=1x在(- ∞,0)和(0,+ ∞)上都是减函数,所以f(x)=1x在(- ∞,0) ∪(0,+ ∞)上是减函数。

2. .判断并证明在y=﹣x2+2x(- ∞,0)上的单调性。

学生独立思考,互相讨论,探求问题的解答和解决过程。

【设计意图】:练习设置了一定梯度,通过练习加深学生对概念的理解,达到巩固,消化新知的目的,最终形成能力。

(五)回顾反思,归纳总结学生交流本节课的体会,收获,学习过程中的体验和感受,师生合作共同完成小结。

1. 小结①函数单调性的定义形成:图形语言----文字语言-----符号语言。

②函数单调性的证明方法:取值,作差,变形,判号,定论。

③数学思想方法:数形结合。

2. 作业①阅读:课本P50—P52②书面作业:习题3.2.1第1、2题,③课外探究:是否存在实数 a ,使函数f(x)= x2-ax+3 在 (-∞ , 1)上是减函数,若存在求出 a 的范围,若不存在说明理由.【设计意图】:通过三个方面的作业,使学生养成先看书,后做作业的习惯.课后尝试是对课堂知识的深化理解.对学有余力的同学留出自由发展的空间,培养学生创新意识和探索精神.四、教学反思本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,激情引趣,并注重数学科学研究方法的学习,是研究性教学的一次有益尝试。

教学经验:在课堂上重点训练了学生从函数图象上来判断函数单调区间,以及在每个单调区间上的单调性的能力,从学生的的课堂反应来看,学生能熟练的通过函数的图象来判断函数的单调性,然后用定义证明一个函数是增函数(减函数),整堂课下来,使学生会通过函数图象来判断函数单调性这一目标基本上达到,学生课堂反应积极、热情。

教学不足与失误:最大的问题就是学生探究时间太少,教师讲多了。

在以后的教学中多注意从学生的已有知识和生活经验出发,围绕知识目标展开新知识出现的情境,丰富学生的情感体验,在知识目标得到有效落实的同时,达成能力目标.突出基础知识的应用和基本技能的运用,强化知识目标,培养学生学习数学的情感,在知识应用方面,应强调数学走向生活,解决具有现实意义的生活问题,培养学生的数学建模能力.。

相关文档
最新文档