一元二次方程测试题(含答案)
一元二次方程单元测试题(含答案)
一元二次方程单元测试题(含答案)第二章一元二次方程测试题(1)一、选择题(每题3分,共30分)1.以下方程属于一元二次方程的是(A)(x-2)·x=x2 (B) ax+bx+c=0 (C) x+=5 (D) x2=02.方程x(x-1)=5(x-1)的解是(C)1或53.2a-1的值是(B)44.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为(B)(x-2)2=45.以下方程中,无实数根的是(D)2x2-x-1=06.今世数式x2+3x+5的值为7时,代数式3x2+9x-2的值是(A)47.方程(x+1)(x+2)=6的解是(D)x1=2,x2=38.若是关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是(C)x2+4x-3=09.某市计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增加率是20%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5,400cm2,设金色纸边的宽为xcm,那么x满足的方程是(A)x2+130x-1,400=0二、填空题(每题3分,共24分)11.方程2x2-x-2=0的二次项系数是2,一次项系数是-1,常数项是-2.1.若方程 $ax^2+bx+c=0$ 的一个根为 $-1$,则 $a-b+c=2a+a-b+c=2a-(-1)^2-b(-1)+c=2a-b+c+1=0$,所以 $2a-b+c=-1$。
2.已知 $x^2-2x-3=x+7$,移项得 $x^2-3x-10=0$,因此$(x-5)(x+2)=0$,所以 $x=5$ 或 $x=-2$。
3.设一元二次方程为 $ax^2+bx+c=0$,两根为 $-2$ 和 $3$,则可以列出方程组:begin{cases}a(-2)^2+b(-2)+c=0 \\a3^2+b3+c=0end{cases}化XXX:begin{cases}4a-2b+c=0 \\9a+3b+c=0end{cases}解得 $a=-1$,$b=2$,$c=-3$,因此所求方程为 $-x^2+2x-3=0$。
一元二次方程测试题(含答案)
一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x)(x+3)=2x2+1 化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:。
2.若m是方程x2+x-1=0的一个根,试求代数式m3+2m2+2013的值为。
3.方程是关于x的一元二次方程,则m的值为。
4.关于x的一元二次方程的一个根为0,则a的值为。
5.若代数式与的值互为相反数,则的值是。
6.已知的值为2,则的值为。
7.若方程是关于x的一元二次方程,则m的取值范围是。
8.已知关于x的一元二次方程的系数满足,则此方程必有一根为。
9.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是。
10.设x1,x2是方程x2﹣x﹣2013=0的两实数根,则= 。
11.已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是。
12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是。
13.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=。
14.一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a= 。
15.若关于x的方程x2+(a﹣1)x+a2=0的两根互为倒数,则a= 。
16.关于x的两个方程x2﹣x﹣2=0与有一个解相同,则a= 。
17.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是.(填上你认为正确结论的所有序号)18.a是二次项系数,b是一次项系数,c是常数项,且满足+(b-2)2+|a+b+c|=0,满足条件的一元二次方程是。
19.巳知a、b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于____.20.已知关于x的方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,则k的值为.21.已知分式,当x=2时,分式无意义,则a= ;当a<6时,使分式无意义的x的值共有个.22.设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a= 。
一元二次方程测试题(含答案)
一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。
3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。
完整版)一元二次方程100道计算题练习(附答案)
完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。
为了方便,我们可以将这些方程按照不同的方法分类。
一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。
根据不同的题目,我们可以选择不同的方法来解决问题。
例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。
将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。
将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。
(完整版)一元二次方程经典测试题(含答案)
一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是( )A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x 1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>"或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青"的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0。
(完整版)_一元二次方程单元测试题(含答案)
第二章一元二次方程测试题(1)姓名学号一、选择题(每题 3 分,共 30 分)1.以下方程属于一元二次方程的是().( A )( x2- 2)·x=x 2 (B ) ax2 +bx+c=01( D )x2=0 ( C)x+ =5x2.方程 x( x-1 ) =5( x-1 )的解是().(A)1 (B)5 (C)1或 5 ( D)无解3.已知 x=2 是对于 x 的方程 3 x2- 2a=0 的一个根,则2a-1 的值是().2(A)3(B)4(C)5(D)64.把方程 x2-4x-6=0 配方,化为( x+m )2=n 的形式应为().( A)( x-4 )2=6 ( B)( x-2 )2=4 ( C)( x-2 )2=0 (D)( x- 2)2=10 5.以下方程中,无实数根的是().( A) x2+2x+5=0 ( B) x2-x-2=0 ( C) 2x2+x-10 =0 ( D) 2x2-x-1=06.今世数式 x2+3x+5 的值为 7 时,代数式3x2+9x-2 的值是().(A)4 (B)0 (C)-2 (D)-47.方程( x+1)( x+2) =6 的解是().( A )x =- 1, x =- 2 ( B )x =1, x =- 4 ( C) x =- 1, x =4 ( D) x =2 , x =31 2 1 2 1 2 1 28.假如对于 x 的一元二次方程 2 的两根分别为 1 2 ,?那么这个一元二次x +px+q=0 x =3 ,x =1 方程是().( A )x2+3x+4=0 ( B) x2-4x+3= 0 ( C) x2+4x-3= 0 (D ) x2+3x -4=09.某市计划经过两年时间,绿地面积增添44% , ?这两年均匀每年绿地面积的增添率是().(A ) 19% ( B) 20% ( C)21% (D ) 22% 10.在一幅长80cm,宽 50cm 的矩形景色画的周围镶一条金色纸边, ?制成一幅矩形挂图,如下图.假如要使整个挂图的面积是 5 400cm2,设金色纸边的宽为 xcm, ?那么 x 知足的方程是().( A) x2+130x-1 40 0=0 ( B) x2+65x-350=0( C) x2-130x-1 400=0 ( D) x2-65x-350=0二、填空题(每题 3 分,共 24 分)11.方程 2x2-x-2=0 的二次项系数是 ________,一次项系数是 ________, ?常数项是 ________.12.若方程ax2+bx+c=0 的一个根为 -1 ,则 a-b+c=_ ______.13.已知 x2-2x-3与x+7的值相等,则x 的值是 ________.14.请写出两根分别为-2 , 3 的一个一元二次方程_________.15.假如( 2a+2b+1)( 2a+2b-1 ) =63,那么 a+b 的值是 ________.16.已知 x2+y2-4x+6y+13=0 , x, y 为实数,则x y=_________.17.已知三角形的两边分别是 1 和 2,第三边的数值是方程2x2 -5x+3=0 的根,则这个三角形的周长为 _______.18.若 -2 是对于 x 的一元二次方程(k2-1 ) x2+2kx+4=0 的一个根,则k=________ .三、解答题(共46 分)19.解方程:8x2=24x(x+2) 2=3x+6(7x-1) 2 =9x2(3x-1)2=10x2+6x=1-2x2+13x-15=0 .x2 2 2x 2 2 x21x 136 2 20.(此题 8 分)李先生计入银行 1 万元,先存一个一年按期,?一年后将本息自动转存另一个一年按期,两年后共得本息 1.045 5 万元.存款的年利率为多少?(?不考虑利息税)21.(此题 8 分)现将进货为 40 元的商品按 50 元售出时,就能卖出 500 件. ?已知这批商品每件涨价 1 元,其销售量将减少 10 个.问为了赚取 8 000 元收益,售价应定为多少?这时应进货多少件?第二章一元二次方程测试题(2)一、选择题(每题 3 分,共 30 分)1 .方程( y+8)2 =4y+(2y-1 )2 化成一般式后 a,b,c 的值是()A .a=3,b=-16 ,c=-63;B . a=1,b=4,c=(2y-1 )2C .a=2,b=-16 ,c=-63;D . a=3,b=4,c=(2y-1 )22 .方程 x2-4x+4=0 根的状况是()A .有两个不相等的实数根 ;B .有两个相等的实数根 ;C .有一个实数根 ;D .没有实数根3 .方程 y2+4y+4=0 的左侧配成完整平方后得()A .(y+4)2 =0B .(y-4 )2 =0C .(y+2)2=0D .( y-2 )2=04 .设方程 x2+x-2=0 的两个根为α,β,那么(α -1 )(β -1 )的值等于()A.-4B.-2 C .0 D .25 .以下各方程中,无解的方程是()A . x 2 =-1B . 3( x-2 )+1=0C .x2-1=0D .x=2 x 16 .已知方程 x x 3 =0,则方程的实数解为()A.3 B.0 C.0,1 D .0,37 .已知 2y 2+y-2 的值为 3,则 4y 2+2y+1 的值为( ) 8 A .10 B .11 C .10或 11 D .3或 11) .方程 x 2有两个不相等的实根,则 , 知足的关系式是( +2px+q=0 p q A .p 2-4q>0 B .p 2-q ≥0 C .p 2-4q ≥ 0 D . p 2-q>09 .已知对于 x 的一元二次方程( m-1)x 2+x+m 2+2m-3=0的一个根为 0,则 m 的值为( )A .1B .-3C .1 或-3D .不等于 1 的随意实数10 .已知 m 是整数,且知足2m1 0,则对于 x 的方程 m 2x 2-4x-2= ( m+2)5 2m 1x 2+3x+4 的解为( )6D .x 13 或 A .x 1 , 2=- 3 B .x 1 , 2 = 3 C . x=- , 2=-2 x 2 =2 x 2=-2x =27x=673 分,共 30 分)二、填空题(每题11.一元二次方程 x 2+2x+4=0的根的状况是 ________.12.方程 x 2( x-1 )( x-2 )=0 的解有 ________个. 13.假如( 2a+2b+1)( 2a+2b-2) =4,那么 a+b 的值为 ________.14.已知二次方程 3x 2-(2a-5 )x-3a-1=0 有一个根为 2,则另一个根为 ________. 15.对于 x 的一元二次方程 x 2 +bx+c=0的两根为 -1 ,3,则 x 2+bx+c?分解因式的结果为 _________.16.若方程 x 2-4x+m=0有两个相等的实数根,则 m 的值是 ________. 17.若 b (b ≠0)是方程 x 2+cx+b=0 的根,则 b+c 的值为 ________.18.一元二次方程( 1-k )x 2-2x-1=?0? 有两个不相等的实根数, ?则 k?的取值范围是 ______.19.若对于 x 的一元二次方程 x 2+bx+c=0 没有实数根,则切合条件的一组 b , c 的实数值能够是 b=______,c=_______.20.等腰三角形 ABC 中, BC=8,AB , AC 的长是对于 x 的方程 x 2-10x+m=0 的两根,则 m?的值是 ________. 三、解答题21.(12 分)采用适合的方法解以下方程:(1)(x+1)( 6x-5 ) =0; ( 2) 2x 2+ 3 x-9=0 ;(3)2(x+5)2=x ( x+5);(4) 2 x 2-4 3 x-2 2 =0.22.(5 分)不解方程,鉴别以下方程的根的状况:(1)2x 2+3x-4=0;(2)16y 2+9=24y ;(3) 3 x 2- 2 x+2=0;(4)3t 2-3 6 t+2=0 ;(5)5(x 2+1) -7x=0 .23.(4 分)已知一元二次方程 ax 2+bx+c=0(a ≠0)的一个根是 1,且 a ,b 满 足 b= a 2 + 2 a -3 ,?求对于 y 的方程 1y 2-c=0 的根.424.(4 分)已知方程 x 2+kx-6=0 的一个根是 2,求它的另一个根及 k 的值. 25.(4 分)某村的粮食年产量,在两年内从 60 万千克增添到 72.6 万千克,问 均匀每年增添的百分率是多少?26.(5 分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了 使用“峰谷电”的政策及收费标准(见表) .已知王老师家 4 月份使用“峰谷 电”95kMh ,缴电费 43.40 元,问王老师家 4 月份“峰电”和“谷电”各用了 多少 kMh ?峰电 08:00 —22:00 元 /kWh 谷电 22:00 —08:00元 /kWh27.(6 分)印刷一张矩形的张贴广告(如图) ,?它的印刷面积是 32dm 2,?上 下空白各 1dm ,两边空白各,设印刷部分从上到下的长是 xdm ,周围空白处的面积为 Sdm 2.( 1)求 S 与 x 的关系式;2( 2)当要求周围空白的面积为 18dm 时,求用来印刷这张广告的纸张的长和宽各是多少?。
一元二次方程100道计算题练习(附答案)
一元二次方程100 道计算题练习1、(x 4)2 5(x 4)2、(x 1)2 4x3、(x 3)2 (1 2x)24、2x2 10x 35、(x+5)2=166、2(2x-1)-x(1-2x)=07、x2 =64 8、5x2 - 25=0 9、8(3 -x)2 –72=010、3x(x+2)=5(x+2) 11、(1-3y)2+2(3y-1)=0 12、x 2 + 2x + 3=0 13、x 2 + 6x-5=0 14、x 2 -4x+ 3=0 15、x 2 -2x-1 =0 16、2x 2 +3x+1=0 17、3x 2 +2x-1 =0 18、5x 2 -3x+2 =0 19、7x 2 -4x-3 =0 20、-x 2 -x+12 =0 21、x 2 -6x+9 =0122、(3x2)2( 2x3) 223、x 2-3=4x2-2x-4=0 24、x25、3x 2+8 x-3=0(配方法)26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-1228、2(x-3) 2=x 2-9 29、-3x 2+22x-24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x+8=0 32、3(x-5)2=x(5-x) 33、(x+2) 2=8x34、(x-2) 2=(2x+3)2 35、7x 2 2x 0 36、4t 2 4t 1 04 x 3 x x 3 0 38、6x 2 31x 35 0 39、2x3121 0 37、 2240、2x 2 23x 65 02补充练习:一、利用因式分解法解下列方程(x-2) 2=(2x-3)2 x 2 4x 0 3x(x 1) 3x 3x2-2 3 x+3=0 58516 0x2 x二、利用开平方法解下列方程1 y 2(2 1) 2 154(x-3)2=25 (3x 2)224三、利用配方法解下列方程x x 3 2 6x 12 02 5 2 2 0 x x 2 7x 10 0四、利用公式法解下列方程-3x 2+22x-24=0 2x(x-3)=x-3.3x2+5(2x+1)=0五、选用适当的方法解下列方程3(x+1) 2-3 (x +1)+2=0 (2x 1)2 9(x 3)2 x 2 2x 302 3 1 0 x x2 x1) ( 1)((x xx13 42)(3x 11)(x 2) 2 x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利 40 元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售 2 件,若商场平均每天盈利 1250 元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的 2 倍少 32 平方厘米,求大小两个正方形的边长.43、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E 在AB 上,F 在BC 上,G 在AD 上,若矩形铁板的面积为 5 m2,则矩形的一边EF 长为多少?4、如右图,某小在长 32 米,区规划宽 20 米的矩形场地ABCD 上修建三条同样宽的 3 条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为 566 米2,问小路应为多宽?5、某商店经销一种销售成本为每千克 40 元的水产品,据市场分析,若按每千克 50 元销售一个月能售出 500 千克;销售单价每涨 1 元,月销售量就减少 10 千克,商店想在月销售成本不超过 1 万元的情况下,使得月销售利润达到 8000 元,销售单价应定为多少?6.某工厂1998 年初投资100 万元生产某种新产品,1998 年底将获得的利润与年初的投资的和作为1999 年初的投资,到 1999 年底,两年共获利润 56 万元,已知 1999 年的年获利率比 1998 年的年获利率多 10 个百分点,求 1998 年和 1999 年的年获利率各是多少?5思考:1、关于x的一元二次方程2 4 0a 的一个根为0,则a的值为。
一元二次方程经典测试题(含答案)
一元二次方程经典测试题(含答案)一元二次方程经典测试题(含答案)1. 解下列一元二次方程:(1)x^2 - 5x + 6 = 0(2)2x^2 - 7x + 3 = 0(3)3x^2 + 4x - 1 = 0(4)4x^2 + 4x + 1 = 0解答:(1)x^2 - 5x + 6 = 0(x - 2)(x - 3) = 0x = 2 或 x = 3(2)2x^2 - 7x + 3 = 0(2x - 1)(x - 3) = 0x = 1/2 或 x = 3(3)3x^2 + 4x - 1 = 0(3x - 1)(x + 1) = 0x = 1/3 或 x = -1(4)4x^2 + 4x + 1 = 0(2x + 1)(2x + 1) = 0x = -1/22. 解下列一元二次方程并给出其图像是否与x轴正向相交:(1)x^2 - 4x + 3 = 0(2)2x^2 + 3x + 2 = 0(3)3x^2 - 6x + 3 = 0(4)4x^2 - 5x + 1 = 0解答:(1)x^2 - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 或 x = 3图像与x轴正向相交。
(2)2x^2 + 3x + 2 = 0该方程无实数解,图像不与x轴正向相交。
(3)3x^2 - 6x + 3 = 0x^2 - 2x + 1 = 0(x - 1)(x - 1) = 0x = 1图像与x轴正向相交。
(4)4x^2 - 5x + 1 = 0(2x - 1)(2x - 1) = 0x = 1/2图像与x轴正向相交。
3. 求解下列一元二次方程的根的范围:(1)x^2 - 6x + 5 > 0(2)2x^2 + 3x + 2 ≤ 0(3)3x^2 - 6x - 9 < 0(4)4x^2 - 5x + 1 ≥ 0解答:(1)x^2 - 6x + 5 > 0(x - 5)(x - 1) > 0x < 1 或 x > 5(2)2x^2 + 3x + 2 ≤ 0该方程无实数解,根的范围为空集。
一元二次方程经典练习题(6套)附带详细答案
练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y 2+1=; (3)(x-a)2=1-2a+a 2(a 是常数) 18.(7分)已知关于x 的一元二次方程x 2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x 的解,你能求出m 和n 的值吗? 19.(10分)已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根. (2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值. 四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率. 答案一、DAABC,DBD 二、 9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2)3;(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k = 四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
一元二次方程100道计算题练习(附答案)
一元二次方程100道计算题练习(附答案)(1)x^2+17x+72=0答案:x1=-8x2=-9(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(21)x^2+13x-140=0答案:x1=7x2=-20(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(43)x^2+28x+180=0答案:x1=-10x2=-18(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(87)x^2+13x+12=0答案:x1=-1x2=-12(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6。
一元二次方程经典测试题(含答案及解析)
WORD格式可编辑专业知识整理分享一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育第Ⅰ卷(选择题)一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m +2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A. B.C.D.第Ⅱ卷(非选择题)二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.219.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 米.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ 0(填:“>”或“=”或“<”).三.解答题(共8小题) 21.(6分)解下列方程.(1)x 2﹣14x=8(配方法) (2)x 2﹣7x ﹣18=0(公式法)(3)(2x +3)2=4(2x +3)(因式分解法)22.(6分)关于x 的一元二次方程(m ﹣1)x 2﹣x ﹣2=0 (1)若x=﹣1是方程的一个根,求m 的值及另一个根. (2)当m 为何值时方程有两个不同的实数根.23.(6分)关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实根. (1)求a 的最大整数值;(2)当a 取最大整数值时,①求出该方程的根;②求2x 2﹣的值.24.(6分)关于x 的方程x 2﹣(2k ﹣3)x +k 2+1=0有两个不相等的实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1x 2+|x 1|+|x 2|=7,求k 的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.WORD 格式 可编辑专业知识整理分享26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米. (1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x 的一元二次方程x 2﹣(m +6)x +3m +9=0的两个实数根分别为x 1,x 2. (1)求证:该一元二次方程总有两个实数根;(2)若n=4(x 1+x 2)﹣x 1x 2,判断动点P (m ,n )所形成的函数图象是否经过点A (1,16),并说明理由.一元二次方程测试题参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选B.2.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P 的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根4WORD 格式 可编辑专业知识整理分享B .有一正根一负根且正根的绝对值大C .有两个负根D .有一正根一负根且负根的绝对值大 【解答】解:x 2+bx ﹣2=0, △=b 2﹣4×1×(﹣2)=b 2+8, 即方程有两个不相等的实数根, 设方程x 2+bx ﹣2=0的两个根为c 、d , 则c +d=﹣b ,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c +d=﹣b 和b <0得出方程的两个根中,正数的绝对值大于负数的绝对值, 故选B .8.x 1,x 2是方程x 2+x +k=0的两个实根,若恰x 12+x 1x 2+x 22=2k 2成立,k 的值为( ) A .﹣1 B .或﹣1 C . D .﹣或1【解答】解:根据根与系数的关系,得x 1+x 2=﹣1,x 1x 2=k . 又x 12+x 1x 2+x 22=2k 2, 则(x 1+x 2)2﹣x 1x 2=2k 2, 即1﹣k=2k 2, 解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去. ∴取k=﹣1. 故本题选A .9.一元二次方程ax 2+bx +c=0中,若a >0,b <0,c <0,则这个方程根的情况是( ) A .有两个正根 B .有两个负根C .有一正根一负根且正根绝对值大D .有一正根一负根且负根绝对值大 【解答】解:∵a >0,b <0,c <0, ∴△=b 2﹣4ac >0,<0,﹣>0,∴一元二次方程ax 2+bx +c=0有两个不相等的实数根,且两根异号,正根的绝对值较大. 故选:C .10.有两个一元二次方程:M :ax 2+bx +c=0;N :cx 2+bx +a=0,其中a ﹣c ≠0,以下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么是方程N 的一个根D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=1【解答】解:A 、在方程ax 2+bx +c=0中△=b 2﹣4ac ,在方程cx 2+bx +a=0中△=b 2﹣4ac , ∴如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根,正确; B 、∵“和符号相同,和符号也相同,∴如果方程M 有两根符号相同,那么方程N 的两根符号也相同,正确; C 、∵5是方程M 的一个根, ∴25a +5b +c=0, ∴a +b +c=0,∴是方程N 的一个根,正确;D 、M ﹣N 得:(a ﹣c )x 2+c ﹣a=0,即(a ﹣c )x 2=a ﹣c , ∵a ﹣c ≠1,∴x 2=1,解得:x=±1,错误. 故选D .11.已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( ) A .7B .11C .12D .16【解答】解:∵m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根, ∴m +n=2t ,mn=t 2﹣2t +4,∴(m +2)(n +2)=mn +2(m +n )+4=t 2+2t +8=(t +1)2+7. ∵方程有两个实数根,∴△=(﹣2t )2﹣4(t 2﹣2t +4)=8t ﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A .B .C .D .【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a <,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a 的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a >﹣,∴﹣<a<0,故选D.二.填空题(共8小题)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=±4.【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=8.【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.6WORD 格式 可编辑专业知识整理分享17.已知关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根,且关于x 的不等式组的解集是x <﹣1,则所有符合条件的整数m 的个数是 4 .【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根, ∴m ﹣1≠0且△=(﹣3)2﹣4(m ﹣1)>0,解得m <且m ≠1,,∵解不等式组得,而此不等式组的解集是x <﹣1, ∴m ≥﹣1, ∴﹣1≤m<且m ≠1,∴符合条件的整数m 为﹣1、0、2、3. 故答案为4.18.关于x 的方程(m ﹣2)x 2+2x +1=0有实数根,则偶数m 的最大值为 2 . 【解答】解:由已知得:△=b 2﹣4ac=22﹣4(m ﹣2)≥0, 即12﹣4m ≥0, 解得:m ≤3,∴偶数m 的最大值为2. 故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 1 米.【解答】解:设人行道的宽度为x 米(0<x <3),根据题意得: (18﹣3x )(6﹣2x )=60, 整理得,(x ﹣1)(x ﹣8)=0.解得:x 1=1,x 2=8(不合题意,舍去).即:人行通道的宽度是1米. 故答案是:1.20.如图是一次函数y=kx +b 的图象的大致位置,试判断关于x 的一元二次方程x 2﹣2x +kb +1=0的根的判别式△ > 0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx +b 的图象经过第一、三、四象限,∴k >0,b <0,∴△=(﹣2)2﹣4(kb +1)=﹣4kb >0. 故答案为>.三.解答题(共8小题) 21.解下列方程.(1)x 2﹣14x=8(配方法) (2)x 2﹣7x ﹣18=0(公式法)(3)(2x +3)2=4(2x +3)(因式分解法) (4)2(x ﹣3)2=x 2﹣9.【解答】解:(1)x 2﹣14x +49=57, (x ﹣7)2=57, x ﹣7=±,所以x 1=7+,x 2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121, x=,所以x 1=9,x 2=﹣2;(3)(2x +3)2﹣4(2x +3)=0, (2x +3)(2x +3﹣4)=0, 2x +3=0或2x +3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m >且m≠1,∴当m >且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x +=2(x2﹣8x)+=2×(﹣9)+=﹣.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k <;(2)∵k <,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k <,∴k=﹣1.8WORD 格式 可编辑专业知识整理分享25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y (千克)与销售单价x (元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x 为多少元.【解答】解:(1)设一次函数解析式为y=kx +b , 把(90,100),(100,80)代入y=kx +b 得,,解得,,y 与销售单价x 之间的函数关系式为y=﹣2x +280.(2)根据题意得:w=(x ﹣80)(﹣2x +280)=﹣2x 2+440x ﹣22400=1350; 解得(x ﹣110)2=225, 解得x 1=95,x 2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米. (1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x 米. 由题意(60﹣2x )(40﹣2x )=1500, 解得x=5或45(舍弃), 答:通道的宽度为5米.(2)设种植“四季青”的面积为y 平方米. 由题意:y (30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m (m >0)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元? 【解答】22.(1)假设甲种商品的进货单价为x 元、乙种商品的进货单价为y 元, 根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m )(500+×100)+500=1000即2m 2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.10。
一元二次方程测试题及答案
一元二次方程测试题及答案一、选择题(每题3分,共30分)1. 下列哪个方程是一元二次方程?A. x^2 + 2x + 1 = 0B. 2x + 3 = 0C. 3y^2 - 5 = 0D. x^3 - 4 = 0答案:A2. 一元二次方程 ax^2 + bx + c = 0 中,a的取值范围是:A. a ≠ 0B. a > 0C. a < 0D. a ≥ 0答案:A3. 解一元二次方程 x^2 - 5x + 6 = 0 的判别式Δ的值为:A. 1B. 4C. 16D. 25答案:B4. 如果一元二次方程的两个根为x1和x2,那么x1 * x2的值为:A. c/aC. b/aD. a/c答案:A5. 对于方程 x^2 - 4x + 4 = 0,以下哪个说法是正确的?A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断答案:B6. 一元二次方程 2x^2 - 6x + 4 = 0 的根为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B7. 方程 x^2 - 2ax + a^2 - a = 0 的根必定是:A. 0B. 1C. aD. -1答案:B8. 方程 3x^2 - 4x + 1 = 0 的判别式Δ等于:B. -12C. 12D. 20答案:C9. 如果一元二次方程的系数a、b、c都是整数,那么这个方程必有:A. 两个实数根B. 两个共轭复数根C. 两个有理数根D. 两个整数根答案:A10. 方程 x^2 + 3x + 2 = 0 的根的和为:A. -3B. -2C. 3D. 2答案:A二、填空题(每题4分,共20分)11. 一元二次方程的一般形式是____________________。
答案:ax^2 + bx + c = 0(a ≠ 0)12. 如果一元二次方程的判别式Δ < 0,那么该方程____________________。
一元二次方程复习(测试)题(含答案)
一元二次方程复习(测试)题1.要使分式2541x x x -+-的值为零,x 应当是 ()A. 4B. 4或1C. 1D. –4或-12.[]2210=+x x x ++( )( ); []22( )=-( )x bx x -+3.如果42++ax x 是一个完全平方式,那么a= .4.若n (n ≠0)是关于x 的二次方程x 2+mx +n =0的一个根,则m +n 的值是_______.5. ①方程的根是 。
②方程 0)2)(1(=-+x x 的根是 ;方程x 2=3x 的根是 ;6. 关于x 的方程0142=++x mx 有两个不相等的实数根,则m 的取值范围是 。
7.根据下列表格中代数式ax 2+bx+c 与x 的对应值,判断方程ax 2+bx+c=1(a ≠0)的一个根x 的大致范围为 。
8.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。
9.若m 是一元二次方程2y 2+y-3=0的根,则①4m 2+2m+1的值为 ;②2m ²-33m 的值为。
10.某小化肥厂一月份生产化肥500吨,后来由于改进操作技术,使得第一季度共生产化肥1750吨,若设二、三月份平均每月的增产率为x ,则可列方程为 .11.原价a 元的某商品经过两次降价后,现售价b 元,如果每次降价的百分比都为x ,那么下列各式中正确的是( )()()b x a A =-21; ()()b x a B =-21; ()()a x b C =+21; ()()a x b D =+21。
12.某厂计划在两年内把产量提高44%,如果每年与上一年的增长率相同,那么这增长率是_ 。
13.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,若设每个支干长出x 个小分支,则可列方程为 。
14.解下列方程:⑴26302x x -+=(用配方法) ⑵910402x x +-=(用公式法)⑶2502x x -=(因式分解法) ⑷⑸⑹16)1(22=-x ⑺0222=--x x15. 列方程解应用题:⑴某林场第一年造林100亩,以后造林面积逐年增长,第二年、第三年共造林375亩,后两年平均每年的增长率是多少?⑵现有一块底边BC 长为10cm ,高AD 为8cm 的纸片三角形ABC ,如图所示,在△ABC 中剪下一个矩形,当EF 长为多少时,矩形EFGH 的面积为845 cm 2?⑶某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为25元,则可卖出100件,每涨价1元,就可少卖出10件,同时物价局限定每件商品加价不能超过进价的30%,商店计划要赚480元,需要卖出多少件商品?每件商品应售价多少元?(要求:用两种设法,用其中一种设法完整做出来)⑷要在长32m,宽20m的长方形绿地上修建宽度相同的道路,六块绿地面积共570m2,问道路宽应为多宽?⑸某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?⑹如图所示,利用22米长的墙为一边,用篱笆围成一个长方形养鸡场,中间用篱笆分割出两个小长方形,总共用去篱笆36米,为了使这个长方形ABCD的面积为96平方米,问AB和BC边各应是多少?⑺某水果批发商场经销一种高档水果如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?⑻.读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数; 十位恰小个位三,个位平方与寿符;哪位学生算得快,多少年华属周瑜?16.若规定两数a, b 通过“※”运算, 得到4ab, 即 a ※b = 4ab , 例如 2※6 = 4×2×6 = 48. ⑴.求 3※5的值.⑵.求x ※x + 2 ※x -2※4 = 0 中x 的值.17.阅读下列材料, 解答问题: 阅读材料:为解方程 (x 2 -1 )2 - 5(x 2 -1 ) + 4 = 0, 我们可以将x 2 -1视为一个整体, 然后设 x 2 -1 = y , 则 (x 2 -1 )2 = y 2, 原方程化为 y 2 - 5y + 4 = 0 . ① 解得 y 1 = 1, y 2 = 4.当 y = 1 时, x 2 -1 = 1 , ∴ x 2= 2, ∴x =当 y = 4 时, x 2 -1 = 4 , ∴ x 2= 5, ∴x =∴原方程的解为 1234x x x x ===解答问题 :(1)填空:在由原方程得到①的过程中, 利用______________达到了降次的目的, 体现了_____________的数学思想.(4分) (2)解方程x 4 -x 2 -6 = 0. (5分)一元二次方程复习(测试)题答案1.A2.25 5 14 b 2 12 b 3.±4 4.-1 5. ①x 1=2, x 2=3 ②x 1=0, x 2=36.m <4且m ≠07. 6.18<x <6.198. x 1=1, x 2=- 239. ①7 ②- 1310.500+500(1+x)+500(1+x)2=1750 11.B 12.20% 13. 1+(1+x)+ (1+x)2=91 14. ⑴x=12 (3± 3 ) ⑵x=19 (-5±61 ) ⑶x 1=0, x 2= 52 ⑷x 1=3, x 2=4⑸x 1=8, x 2= 45 ⑹x=1±2 2 ⑺x=14(1±17 )15. ⑴设增长率为x,依题意可列方程为:100(1+x)+100(1+x)2=375 解得x 1=12 =50%, x 2=- 72 (不合题意,舍去) 答:略⑵设EF=x,依题意可列方程得:x (8-45 x )=845解得:x 1=3, x 2=7 答:略⑶设涨价为x 元,依题意可列方程得:(x+4)(100-10x )=480,解得:x 1=2, x 2=4(舍去) 设售价为x 元,依题意可列方程为:(x-21)[100-10(x-25)]=480,解得x 1=27, x 2=29(舍去) ⑷设宽为x 米,依题意可列方程为:(32-2x )(20-x )=570,解得x 1=1, x 2=35(舍去) ⑸设传染x 台,依题意可列方程为:(1+x )2=81,解得x 1=8, x 2=-10(舍去) (1+8)³=729>700⑹设AB=x,依题意可列方程为:x (36-3x )=96,解得x 1=4(舍去), x 2=8 ⑺设涨价x 元,依题意可列方程为:(10+x )(500-20x )=6000, 解得:x 1=5, x 2=10(舍去)⑻设十位数为x,依题意可列方程为:(x+3)2=10x+x+3,解得:x 1=2, x 2=3 当x=2时,(x+3)2=25<30(舍去);当x=3时,(x+3)2=36>30 16. ⑴60 ⑵x 1=2, x 2=-4 17.⑴换元 转化 ⑵x 1,2=± 3。
(完整版)一元二次方程全章测试及答案
一元二次方程全章测试及答案一、填空题1.一元二次方程x 2-2x +1=0的解是______.2.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.3.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是x =______.4.当a ______时,方程(x -b )2=-a 有实数解,实数解为______.5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =______.6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =______.7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =______.8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化简结果是______.二、选择题9.方程x 2-3x +2=0的解是( ).A .1和2B .-1和-2C .1和-2D .-1和210.关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ).A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定11.已知a ,b ,c 分别是三角形的三边,则方程(a +b )x 2+2cx +(a +b )=0的根的情况是( ).A .没有实数根B .可能有且只有一个实数根C .有两个不相等的实数根D .有两个不相等的实数根12.如果关于x 的一元二次方程0222=+-k x x 没有实数根,那么k 的最小整数值是( ).A .0B .1C .2D .313.关于x 的方程x 2+m (1-x )-2(1-x )=0,下面结论正确的是( ).A .m 不能为0,否则方程无解B .m 为任何实数时,方程都有实数解C .当2<m <6时,方程无实数解D .当m 取某些实数时,方程有无穷多个解三、解答题14.选择最佳方法解下列关于x 的方程:(1)(x +1)2=(1-2x )2.(2)x 2-6x +8=0.(3).02222=+-x x (4)x (x +4)=21.(5)-2x 2+2x +1=0.(6)x 2-(2a -b )x +a 2-ab =0.15.应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取任何实数值,二次三项式的值都是正数.16.关于x 的方程x 2-2x +k -1=0有两个不等的实数根.(1)求k 的取值范围;(2)若k +1是方程x 2-2x +k -1=4的一个解,求k 的值.17.已知关于x 的两个一元二次方程:方程:02132)12(22=+-+-+k k x k x ①方程:0492)2(2=+++-k x k x ②(1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.18.已知a ,b ,c 分别是△ABC 的三边长,当m >0时,关于x 的一元二次方程+2(x c 02)()2=--+ax m m x b m 有两个相等的实数根,试说明△ABC 一定是直角三角形.19.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m ,BD =6m ,动点M 从A 出发沿AC方向以2m/s 匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,ΔMON 的面积为?m 412答案与提示一元二次方程全章测试1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤5.4. 6.⋅-49 7.2. 8.3.9.A. 10.A. 11.A. 12.D. 13.C.14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x (4)x 1=-7,x 2=3; (5);31,3121-=+=x x (6)x 1=a ,x 2=a -b .15.变为2(x -1)2+4,证略.16.(1)k <2;(2)k =-3.17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆2>0> ∆ 1;(3)k =5时,方程②的根为;2721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x 18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2.19.设出发后x 秒时,⋅=∆41MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--41)3)(24(21x x 解得);s (225,2)s (225,21-=∴<±=x x x x (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(21x x --⋅=41解得);s (2521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(21x x ⋅41解得).s (225+=x 综上所述,出发后s,225+或s 25时,△MON 的面积为.m 412。
一元二次方程测试题含答案
一元二次方程测试题含答案一、选择题1. 解一元二次方程 \( ax^2 + bx + c = 0 \) 的判别式是:A. \( b^2 - 4ac \)B. \( 4b^2 - 4ac \)C. \( b^2 + 4ac \)D. \( 4a^2 - 4ac \)答案:A2. 方程 \( x^2 - 5x + 6 = 0 \) 的根是:A. \( x = 2 \) 或 \( x = 3 \)B. \( x = 1 \) 或 \( x = 6 \)C. \( x = -2 \) 或 \( x = -3 \)D. 无实数解答案:A3. 一元二次方程 \( 2x^2 - 3x + 1 = 0 \) 的判别式 \( \Delta \) 等于:A. 5B. 1C. -1D. 0答案:C二、填空题4. 方程 \( 3x^2 - 4x + 1 = 0 \) 的判别式 \( \Delta \) 为______ 。
答案:75. 方程 \( x^2 + 4x + 4 = 0 \) 的根是 ______ 。
答案:\( x = -2 \)(重根)三、解答题6. 解方程 \( 2x^2 - 7x + 3 = 0 \) 并给出根。
解:首先计算判别式 \( \Delta = b^2 - 4ac = (-7)^2 - 4\times 2 \times 3 = 49 - 24 = 25 \)。
由于 \( \Delta > 0 \),方程有两个不相等的实数根。
使用求根公式 \( x = \frac{-b \pm \sqrt{\Delta}}{2a} \) 得到:\( x_1 = \frac{7 + 5}{4} = 3 \),\( x_2 = \frac{7 - 5}{4} = 0.5 \)。
7. 已知方程 \( ax^2 + bx + c = 0 \) 的两个根为 \( x_1 \) 和\( x_2 \),求 \( x_1 + x_2 \) 和 \( x_1 \cdot x_2 \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程测试题一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。
3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。
6.已知322-+y y 的值为2,则1242++y y的值为 。
7.若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。
10.设x 1,x 2是方程x2﹣x ﹣2013=0的两实数根,则= 。
11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。
12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是 。
13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。
14.一元二次方程(a+1)x 2-ax+a 2-1=0的一个根为0,则a= 。
15.若关于x 的方程x2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。
16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。
17.已知关于x 的方程x2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。
19.巳知a 、b 是一元二次方程x2-2x -1=0的两个实数根,则代数式(a -b )(a+b -2)+ab 的值等于____.20.已知关于x 的方程x 2+(2k +1)x +k 2-2=0的两实根的平方和等于11,则k 的值为 .21.已知分式2-3-5+x x x a,当x =2时,分式无意义,则a = ;当a <6时,使分式无意义的x 的值共有 个.22.设x 1、x 2是一元二次方程x 2+5x ﹣3=0的两个实根,且,则a= 。
23. 方程()012000199819992=-⨯-x x 的较大根为r ,方程01200820072=+-x x 的较小根为s ,则s-r 的值为 。
24. 若=•=-+yx则y x 324,0352 。
25. 已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。
二、选择题:(每题3分共42分)1、关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( )A .1B .1-C .1或1-D .122、关于x 2=-2的说法,正确的是 ( )A.由于x 2≥0,故x2不可能等于-2,因此这不是一个方程B.x2=-2是一个方程,但它没有一次项,因此不是一元二次方程 C .x 2=-2是一个一元二次方程D.x2=-2是一个一元二次方程,但不能解3、若2530ax x -+=是关于x 的一元二次方程,则不等式360a +>的解集是( )A .2a >-B .2a <-C .2a >-且0a ≠D .12a >4、关于x 的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( )A 、1B 、-1C 、1或-1D 、2 5、下列方程是一元二次方程的是_______。
(1)x 2+x 1-5=0(2)x 2-3xy+7=0 (3)x+12-x =4 (4)m 3-2m+3=0(5)22x 2-5=0(6)ax 2-bx=46、已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A 、3或﹣1B 、3C 、1D 、﹣3或17、若一元二次方程式x2-2x-3599=0的两根为a 、b ,且a >b ,则2a-b 之值为()A .-57B .63C .179D .1818、若x 1,x 2(x 1<x 2)是方程(x -a )(x -b )=1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( )A 、x 1<x 2<a <bB 、x 1<a <x 2<bC 、x 1<a <b <x 2D 、a <x 1<b <x 2. 9、关于x 的方程:①,②,③;④中,一元二次方程的个数是( ) A.1 B.2 C.3 D.410、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=111、已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)=﹣6,则a 的值为( )A.-10B.4C.-4D.1012、若m 是关于x 的一元二次方程02=++m nx x的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.2113、关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条件正确的是( )A.0,0==n mB.0,0≠=n mC.0,0=≠n mD.0,0≠≠n m14、若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )A.1,0B.-1,0C.1,-1D.无法确定三、计算题:(1.2.3.4.5.6每题5分,.7.8.9.10每题7分,共58分)1、证明:关于x 的方程(m 2-8m+17)x 2+2mx+1=0,不论m 取何值,该方程都是一元二次方程.2、已知关于x 的方程x 2+x+n=0有两个实数根﹣2,m .求m ,n 的值.3、已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根 (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值。
4、已知m 是方程x 2﹣x ﹣2=0的一个实数根,求代数式的值.5、已知,关于x 的方程x m mx x 2222+-=-的两个实数根1x 、2x 满足12x x =,求实数m 的值.6、当x 满足条件时,求出方程x 2﹣2x ﹣4=0的根..7、关于的一元二次方程x 2+2x+k+1=0的实数解是x 1和x 2. (1)求k 的取值范围;(2)如果x 1+x 2﹣x 1x 2<﹣1且k 为整数,求k 的值.8、关于x 的一元二次方程x 2+3x +m-1=0的两个实数根分别为x 1,x 2. (1)求m 的取值范围.(2)若2(x 1+x 2)+ x 1x 2+10=0.求m 的值.9、已知关于x 的一元二次方程x 2+(m+3)x+m+1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根:10、当m 为何值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。
附加题(15分):已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.一元二次方程测试题参考答案:一、填空题:1、5x 2+8x -2=0 5 8 -2 2、2014 3、2 4、-2 5、1或32; 6、11 7、m ≥0 且m ≠1 8、-1 9、2 10、2014 11、3 12、k≤4且k≠0 13、4 14、1 15、-1 16、4 17、①② 18、x 2+2x -3=019、解:∵a 、b 是一元二次方程x2-2x -1=0的两个实数根, ∴ab=-1,a+b=2,∴(a -b )(a+b -2)+ab=(a -b )(2-2)+ab=0+ab=-1,故答案为:-1.20、解:设方程方程x 2+(2k +1)x +k 2-2=0设其两根为x 1,x 2,得x 1+x 2=-(2k+1),x 1•x 2=k 2-2, △=(2k+1)2-4×(k 2-2)=4k+9>0,∴k >-49, ∵x 12+x 22=11,∴(x 1+x 2)2-2 x 1•x 2=11,∴(2k+1)2-2(k 2-2)=11,解得k =1或-3;∵k >-49,故答案为k =1.21、解:由题意,知当x=2时,分式无意义,∴分母=x 2-5x +a =22-5×2+a =-6+a =0,∴a =6; 当x 2-5x +a =0时,△=52-4a =25-4a , ∵a <6,∴△>0,∴方程x 2-5x +a =0有两个不相等的实数根,即x 有两个不同的值使分式2-3-5+x x x a无意义. 故当a <6时,使分式无意义的x 的值共有2个.故答案为6,2.22、解:∵x 1、x 2是一元二次方程x 2+5x ﹣3=0的两个实根, ∴x 1+x 2=﹣5,x 1x 2=﹣3,x 22+5x 2=3,又∵2x 1(x 22+6x 2﹣3)+a=2x 1(x 22+5x 2+x 2﹣3)+a=2x 1(3+x 2﹣3)+a=2x 1x 2+a=4, ∴﹣10+a=4, 解得:a=14. 23、 24、 25、 二、选择题:1、B2、D3、C4、B5、(5)6、B7、D8、解:∵x 1和x 2为方程的两根,∴(x 1-a )(x 1-b )=1且(x 2-a )(x 2-b )=1,∴(x 1-a )和(x 1-b )同号且(x 2-a )和(x 2-b )同号;∵x 1<x 2,∴(x 1-a )和(x 1-b )同为负号而(x 2-a )和(x 2-b )同为正号,可得:x 1-a <0且x 1-b <0,x 1<a 且x 1<b , ∴x 1<a ,∴x 2-a >0且x 2-b >0, ∴x 2>a 且x 2>b ,∴x 2>b , ∴综上可知a ,b ,x 1,x 2的大小关系为:x 1<a <b <x 2.故选C . 9、A 10、 11、C 12、A 13、B 14、C 三、计算题:1、∵m ²-8m+17= m ²-8m+16+1=(m-4)²+1∵(m-4)²≥0 ∴(m-4)²+1²>0即m ²-8m+17>0∴不论m 取何值,该方程都是一元二次方程。