成考专科数学模拟试题一及答案
成人大专模拟考试数学试题
成人大专模拟考试数学试题
一、已知函数f在区间[0, 10]上单调递增,且f(3) = 5,f(7) = 9,则f(5)的值可能是:
A. 3
B. 6
C. 10
D. 12
(答案)B
二、某商店进行打折促销,原价为100元的商品打八折后,再使用满50减10的优惠券,最终需支付:
A. 80元
B. 70元
C. 60元
D. 50元
(答案)B
三、若集合A = {x | x是偶数且x < 10},则集合A中元素的个数为:
A. 3
B. 4
C. 5
D. 6
(答案)C
四、设等差数列的第一项为a1,公差为d,若a3 = 7,a7 = 15,则a10的值为:
A. 19
B. 21
C. 23
D. 25
(答案)C
五、一个直角三角形的两条直角边长度分别为3和4,则其斜边长度为:
A. 5
B. 6
C. 7
D. 8
(答案)A
六、某公司去年总销售额为1000万元,今年增长了20%,则今年总销售额为:
A. 1100万元
B. 1200万元
C. 1300万元
D. 1400万元
(答案)B
七、若圆的半径为r,则其面积A与r的关系是:
A. A = πr
B. A = 2πr
C. A = πr2
D. A = 2πr2
(答案)C
八、一组数据2, 4, 6, 8, 10的中位数是:
A. 4
B. 5
C. 6
D. 8
(答案)C。
成人高考专升本高等数学(一)全真模拟试题及答案解析⑥
成人高考专升本高等数学(一)-----------------------全真模拟试题及答案解析⑥1(单选题)函数f(x)在点xo处有定义是存在的()(本题4分)A 充分条件B 必要条件C 充要条件D 以上都不对标准答案: D解析:【考情点拨】本题考查了判断函数极限的存在性的知识点。
【应试指导】极限是否存在与函数在该点有无定义无关。
2(单选题)设函数在x=0连续,则k等于( )(本题4分)ABC 1D 0标准答案: A解析:【考情点拨】本题考查了函数在一点处的连续性的知识点。
【应试指导】由又因f(0)=k,f(x)在x=0处连续,故k=e^2。
3(单选题)若则()(本题4分)A a=-9,b=14B a=1,b=-6C a=-2,b=0D a=-2,b=-5标准答案: B解析:【考情点拨】本题考查了洛必达法则的知识点。
【应试指导】因4(单选题)曲线()(本题4分)A 有一个拐点B 有两个拐点C 有三个拐点D 无拐点标准答案: D解析:【考情点拨】本题考查了曲线的拐点的知识点。
【应试指导】因则在定义域内恒不等于0,所以无拐点。
5(单选题)()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了不定积分的知识点。
【应试指导】6(单选题)已知则k=()(本题4分)A 0或1B 0或-1C 0或2D 1或-1标准答案: B解析:【考情点拨】本题考查了定积分的知识点。
【应试指导】7(单选题)由曲线直线y=x,x=2所围面积为()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了曲线所围成的面积的知识点。
【应试指导】曲线与直线y=x,x=2所围成的区域D如下图所示,则8(单选题)设z=x3—3x—y,则它在点(1,0)处()(本题4分)A 取得极大值B 取得极小值C 无极值D 无法判定标准答案: C解析:【考情点拨】本题考查了函数在一点处的极值的知识点。
【应试指导】显然点(1,0)不是驻点,故其处无极值。
成人高考数学模拟试卷
成人高考数学模拟试卷(一)1、设集合{}M=1012-,,,,{}N=123,,,则集合M N=(A ){}01, (B ){}012,, (C ){}101-,, (D ){}10123-,,,, 2、设甲:1x =;乙:20x x -=.(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件;(C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
3、不等式2|1|<+x 的解集为( )(A )}13|{>-<x x x 或 ( B )}13|{<<-x x (C )}3|{-<x x (D )}1|{>x x 4、021log 4()=3-(A )9 (B )3 (C )2 (D )102221log 4()=log 21=21=13⎡⎤---⎢⎥⎣⎦5、下列函数中为偶函数的是(A )2xy = (B )2y x = (C )2log y x = (D )2cos y x = 6、函数23()log (3)f x x x =-的定义域是(A )(,0)(3,+)-∞∞ (B )(,3)(0,+)-∞-∞ (C )(0,3) (D )(3,0)-71,1)和(-2,0),则该函数的解析式为(B )1233y x =- (C )21y x =- (D )2y x =+ 8、在等比数列n a 中, 2=6a ,4=24a ,6=a(A )8 (B )24 (C )96 (D )384 9、若平面向量(3,)x =a ,(4,3)=-b ,⊥a b ,则x 的值等于(A )1 (B )2 (C )3 (D )4[]34(3)0, 4x x ⨯+-== 10、设1sin =2α,α为第二象限角,则cos =α(B )2- (C )12(D )211、sincos=1212ππ(A )12 11sin 264π⎤==⎥⎦原式 (C 12、函数1sin 3y x =的最小正周期为 (A )3π(B )2π (C )6π (D )8π 13、点P(3,2)关于y 轴的对称点的坐标为( )(A ))2,3(- (B )(3,2)- (C ))2,0( (D ))2,3(--ABC14、设椭圆的标准方程为2211612x y +=,则该椭圆的离心率为12c e a ⎫===⎪⎪⎭(B)3 (C)2 (D)2 15、袋中装有3只黑球,2只白球,一次取出2) (A )51 (B )103 (C )52 (D16、函数(1)y x x =+在2x =处的导数值为 22(21)5x x y x =='⎡=+=⎤⎣⎦17、点P(12),到直线21y x =+的距离为5d ⎡===⎢⎢⎥⎣⎦18、经验表明,某种药物的固定剂量会使人心率增加,现有8个病人服用同一剂量的这种药物,心率增加的次数分别为1315 14 10 812 13 1119、过点21(,)且与直线1y x=+20、 已知锐角ABC ∆的边长AB=10,BC=8,面积留小数点后两位)2222211 S=AB BC sin B=108sin B=322243sin B=553AC =AB BC 2AB BCcosB=1082108=6858.25••⨯⨯ +-•+-⨯⨯⨯≈得:,,解21、已知数列{}n a 的前n 项和为(21)n S n n =+,(Ⅰ)求该数列的通项公式; (Ⅱ)判断39n a =是该数列的第几项.解(Ⅰ) 当2n ≥时,[]-1(21)(1)2(1)141n n n a S S n n n n n =-=+---+=-当1n =时,111(211)3a S ==⨯⨯+=,满足41n a n =-, 所以,41n a n =-(Ⅱ) 4139n a n =-=,得10n =.22、已知函数425f x x mx =++(),且224f '=() (Ⅰ)求m 的值(Ⅱ)求f x ()在区间[]22-,上的最大值和最小值解(Ⅰ)342f x x mx '=+(),32422224f m '=⨯+⨯=(),2m =-(Ⅱ)令3342=440f x x mx x x '=+-=(),得:10x =,21x =-,31x = =5f (0),1=125=4f --+(),=125=4f -+(1),=1685=13f -+(-2),=1685=13f -+(2)所以,f x ()在区间[]22-,上的最大值为13,最小值为4.23、已知双曲线的中心在原点,焦点在x 轴上,离心率等于3,并且过点38-(,),求: (Ⅰ)双曲线的标准方程(Ⅱ)双曲线焦点坐标和准线方程解(Ⅰ)由已知得双曲线的标准方程为22221x y a b-=,33c c a a ==,,故22222238b c a a a a =-=-=(),222218x y a a-= 将点38-(,)代入222218x y a a-=, 得:22183a b c ===,,故双曲线的标准方程为2218y x -=(Ⅱ)双曲线焦点坐标:30-(,),30(,)双曲线准线方程:213a x c =±=±成人高考数学模拟试卷(二)1、设集合M=}5,3,1{,}4,3,,2,1{=N ,}6,5,4,3,,2,1{=U ,则=⋂N M C U ( B ) A 、}6,4,2{ B 、}4,2{ C 、}3,1{ D 、U2、函数x x y cos 4sin 3+=的最小值是 ( A )A 、5B 、5C 、-1D 、-53、已知α=(4,2),b =(6,Y ),且α∥b ,则Y 是 (C )A 、1B 、2C 、3D 、64.不等式062>--x x 的解集是 ( D ) A 、}32|{<<-x x B 、 3|{-<x x 或}2>x C 、}23|{<<-x x D 、 2|{-<x x 或}3>x5、已知等差数列{}n a 中,17,962==a a ,则1a = ( B ) A 、5 B 、7 C 、3 D 、16、椭圆方程 4 X 2 + 9 Y 2 = 3 6 中 ,它的离心率是 ( A ) (A )35 (B )25 (C )37 (D )217、二次函数142++=x x y 的最小值是 ( B ) (A ) 1 (B )-3 (C ) 3 (D )-4 8、函数)34sin(2π+=x y 的周期是 ( D )A 、π2B 、 π4C 、4πD 、2π9、已知准线方程为 x = 3 的抛物线方程是 ( C ) (A )x 2 =12y (B )y 2 = -12x (C )x 2 =-12y (D )x 2 =-6y 10.已知圆的方程为9)4()1(22=-++y x ,过)0,2(P 作该圆的一条切线,切点为A ,则PA 的长度为( A )A .4B .5C .10D .1211. 到两定点A (-1,1)和B (3,5)距离相等的点的轨迹方程为 ( A ) A. x+y-4=0 B .x+y-5=0 C .x+y+5=0 D. x-y+2=0 12、.掷两枚硬币,两枚的币值面都朝上的概率是 ( B )A. 12B. 14C. 13D. 18 13. 函数31y ax bx =++(a ,b 为常数),f (2)=3,则f (-2)的值为( B ) A.-3 B.-1 C.3 D.114、两条直线012=++y x 和02=++m y x 的位置关系是( D ) A .平行 B .相交 C .垂直 D .根据m 的值确定15、求抛物线22x y =在点A (1,-2)的切线方程 ( D ) (A )0642=-+y x (B )064=-+y x (C )0642=+-y x (D )064=--y x16、已知α=(3,2),b=(―3,―1),则3α- b= (12,7)17、求函数xy ⎪⎭⎫⎝⎛-=211的定义域是 {}0|≥x x18、在ABC ∆中,若AB=1,AC=3,0120=A ,求BC = 13。
2024年成人高考数学模拟试题
2024年成人高考数学模拟试题2024年成人高考数学模拟试题一、选择题1、以下哪个数是素数?() A. 10 B. 3 C. 4 D. 5 答案:D. 52、已知一个正方形的边长为2,那么它的面积为() A. 4 B. 6 C.8 D. 16 答案:A. 43、在下列年份中,哪一个是闰年?() A. 2020年 B. 2021年 C. 2022年 D. 2023年答案:A. 2020年4、若x,y为实数,且|x-1|+|y+3|=0,则x-y的值为() A. -4 B. -2 C. 2 D. 4 答案:C. 25、等差数列{an}的前n项和为Sn,已知a3=10,S6=72,则公差d为() A. 1 B. 2 C. 3 D. 4 答案:B. 2二、填空题6、已知圆心为点C的圆:x²+y²-8x-64=0,则该圆的半径r为____。
答案:1061、在三角形ABC中,若sin(A+B)=2sinAcos(A+B),则该三角形是____三角形。
答案:直角611、若函数f(x)在定义域内满足f(x+1)=f(x-1),且f(0)=2,则f(x)的表达式为____。
答案:f(x)=2cos(2x)6111、若log₂(x-1)有意义,则x的取值范围是____。
答案:(1, +∞)61111、若向量a=(1,2),b=(3,4),则a*b=____。
答案:11三、解答题11、求函数y=√x²+4x+3 的值域。
答案:∵x²+4x+3=(x+2)²-1≥-1,∴函数y的值域为[0, +∞)。
111、求sin75°的值。
答案:∵sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=(1/2)(√2/2)+(√3/2)(√2/2)=(√2+√6)/4,∴sin75°的值为(√2+√6)/4。
成考数学(文科)成人高考(高起专)试题及解答参考(2025年)
2025年成人高考成考数学(文科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数f(x)=x2−4x+5在x=2处取得极值,则该极值为:()A.−1B.0C.1D.32、若函数f(x) = x^3 - 3x^2 + 4x在区间[1,2]上连续,且f’(x) = 3x^2 - 6x + 4,则f(x)在区间[1,2]上的极值点为:A. 1B. 1.5C. 2D. 无极值点3、在下列各数中,既是质数又是合数的是()A、4B、6C、9D、154、在下列各数中,最小的负整数是()A、-1.5B、-3C、-2D、-2.35、若函数(f(x)=x2−4x+3)的图像与(x)轴交于点(A)和(B),则(AB)的长度是:A. 2B. 3C. 4D. 56、在下列各数中,绝对值最小的是:A、-2B、0C、2D、-37、下列函数中,在其定义域内连续的函数是())A.(f(x)=xxB.(g(x)=√x2)C.(ℎ(x)=|x|))D.(k(x)=1x8、在下列各数中,既是整数又是无理数的是()A、√4B、πC、0.25D、-1/29、下列各数中,有理数是:A、√2B、πC、−3√5D、3210、已知函数(f(x)=2x3−3x2+4),求函数的极值点。
A.(x=−1)B.(x=1)C.(x=0)D.(x=2)11、若函数f(x)=lnx的图像上一点A(x0,lnx0),那么该点的切线斜率为:A.1B.1x0C.1x0−1D.1x0+112、在下列各数中,哪个数是无限循环小数?A、0.333…B、0.444…C、0.666…D、0.777…二、填空题(本大题有3小题,每小题7分,共21分)1、若函数(f(x)=√2x+3−x)的定义域为(A),则(A)的取值范围是______ 。
2、若函数(f(x)=2x3−3x2+2)在(x=1)处的切线斜率为 4,则(f′(1))的值为______ 。
成考数学模拟试题
成考数学模拟试题一、选择题(本题共10分,每小题1分)1. 函数f(x)=x^2-2x+1的图像是:A. 一个开口向上的抛物线B. 一个开口向下的抛物线C. 一个正弦曲线D. 一个余弦曲线2. 若a > 0,b > 0,且a + b = 1,则ab的最大值是:A. 0B. 1/4C. 1/2D. 13. 已知等差数列的前三项分别为3,5,7,则该数列的通项公式为:A. a_n = 2n - 1B. a_n = 2n + 1C. a_n = n + 2D. a_n = n4. 以下哪个不等式是正确的:A. |-3| < |-2|B. |-3| > |-2|C. |-3| = |-2|D. |-3| = |3|5. 圆的方程为(x-2)^2 + (y-3)^2 = 25,圆心坐标为:A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)6. 函数y = sin(x)的图像在区间[0, π/2]上是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增7. 已知三角形的两边长分别为3和4,第三边长x满足:A. 1 < x < 7B. 1 < x < 4C. 4 < x < 7D. 0 < x < 78. 以下哪个是二项式定理展开式中的项:A. (a+b)^n = a^n + b^nB. (a+b)^2 = a^2 + 2ab + b^2C. (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3D. (a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^49. 函数f(x)=x^3-3x^2+2在x=1处的导数为:A. -2B. 0C. 4D. 210. 以下哪个是微分方程dy/dx + 2y = x的通解:A. y = (1/3)e^(-2x) + (1/3)x + CB. y = e^(-2x) + x + CC. y = (1/3)e^(-2x) + x^2 + CD. y = e^(-2x) + C二、填空题(本题共20分,每空2分)11. 已知函数f(x) = 2x - 3,当x = 2时,f(x)的值为________。
成人高考数学试题(历年成考数学试题答案与解答提示)
成人高考数学试题第一部分:试题答案与解答提示1. 简单计算题请计算下列各式的结果:(1)3 + 5 × 2 8 ÷ 4 = ?(2)(9 3)² + 4 × 6 ÷ 2 = ?(3)√(16 × 25) = ?解答提示:对于简单计算题,我们需要掌握基本的算术运算规则,如加减乘除、乘方、开方等。
在解题过程中,要注意运算顺序,遵循先乘除后加减的原则。
2. 代数式计算题请计算下列各式的结果:(1)若 a = 3,b = 4,求 2a 3b 的值。
(2)若 x = 2,y = 3,求(x² y²) ÷ (x + y) 的值。
(3)若 a = 2,b = 1,求(a + b)² 2ab 的值。
解答提示:对于代数式计算题,我们需要熟练掌握代数式的运算规则,如合并同类项、分配律、平方差公式等。
在解题过程中,要注意代入给定的数值,并按照运算顺序进行计算。
3. 解方程题请解下列方程:(1)2x 5 = 7(2)3x + 4 = 11 2x(3)2x² 5x + 3 = 0解答提示:对于解方程题,我们需要掌握一元一次方程、一元二次方程的求解方法。
在解题过程中,要注意方程的化简、移项、合并同类项等步骤,以及使用求根公式求解一元二次方程。
4. 几何题请计算下列几何问题的答案:(1)若一个正方形的边长为 5 厘米,求其面积。
(2)若一个圆的半径为 4 厘米,求其周长。
(3)若一个三角形的底边长为 6 厘米,高为 8 厘米,求其面积。
解答提示:对于几何题,我们需要掌握基本的几何知识,如正方形、圆、三角形的面积和周长公式。
在解题过程中,要注意代入给定的数值,并按照公式进行计算。
5. 应用题请解决下列应用问题:(1)小华有 10 元钱,购买一支铅笔和一本笔记本后,还剩 2 元。
铅笔的价格是 3 元,笔记本的价格是多少?(2)一辆汽车以每小时 60 公里的速度行驶,从甲地到乙地需要2 小时。
2024年成人高考成考(高起专)数学(文科)试题及答案指导
2024年成人高考成考数学(文科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、已知函数f(x)=2x2−3x+1,则该函数的导数f′(x)为:A.4x−3B.2x−3C.4x+1D.2x+12、在下列各数中,绝对值最小的是()A、-3/2B、-1/2C、3/2D、1/23、若一个正方形的边长增加其原长的25%,则新正方形的面积比原来增加了多少百分比?A、50%B、56.25%C、75%D、100%4、在下列各数中,不是有理数的是:A、-5.25B、√16C、πD、0.35、已知直线(l)的方程为(2x−3y+6=0),则直线(l)的斜率是多少?)A、(23)B、(32)C、(−23)D、(−326、下列函数中,定义域为全体实数的是()A、f(x) = √(x+1)B、f(x) = √(x^2 - 4)C、f(x) = 1 / (x-2)D、f(x) = 1 / (x^2 + 1)7、设函数f(x)=2x2−3x+1,则该函数的最小值为()。
A.−18B.18C.−1D.1),则下列说法正确的是:8、若函数(f(x)=3x2−2x+1)的图像的对称轴为(x=13A.(f (0)=f (1))B.(f (0)=f (−13))C.(f (13)=f (−13))D.(f (0)+f (1)=2f (13))9、若直线(l )的方向向量为((3,−4)),则直线(l )的斜率为:A.(34)B.(−34)C.(43)D.(−43)10、在下列各数中,有理数是( )A.√2B.πC.13D.ln211、一个等差数列的前三项分别是2、5、8,那么该数列的公差是多少?A 、3B 、4C 、5D 、612、已知函数f (x )=2x−1x 2−2x+1,下列说法正确的是:A. 函数的定义域为(−∞,1)∪(1,+∞)B. 函数的值域为(−∞,0)∪(0,+∞)C. 函数的增减性在x=1处发生改变D. 函数的图像关于直线x=1对称二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=12x2−3x+4在x=1处取得极值,则该极值为_______ 。
(完整版)成人高考高升专数学模拟试题及答案
2016年成人高考高升专数学模拟题本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本市卷和答题卡一并交回。
第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合,则{|52},{|33}A x x B x x =-<<=-<<A B =(A )(B ){|32}x x -<<{|52}x x -<<(C )(D ){|33}x x -<<{|53}x x -<<(2)圆心为(1,1)且过原点的圆的方程是(A )(B )22(1)(1)1x y -+-=22(1)(1)1x y +++=(C )(D )22(1)(1)2x y +++=22(1)(1)2x y -+-=(3)下列函数中为偶函数的是(A )(B )2sin y x x =2cos y x x =(C )(D )|ln |y x =2xy -=(4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为(A )90(B )100(C )180 (D )300(5)执行如果所示的程序框图,输出的k 值为(A )3(B )4(C)5(D)6(6)设是非零向量,“”是“”的,a b ||||a b a b =A //ab(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(A )1(B (C(D )2(8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为(A )6升(B )8升(C )10升(D )12升第二部分(非选择题共110分)二、填空题(共6小题,每小题5分,共30分)(9)复数的实部为________________(1)i i +(10)三个数中最大数的是________________13222,3,log 5-(11)在△ABC 中,,则________________23,3a b A π==∠=B ∠=(12)已知(2,0)是双曲线的一个焦点,则________________2221(0)y x b b-=>b =(13)如图,及其内部的点组成的集合记为,为ABC ∆D (,)P x y 中任意一点,则的最大值为D 23z x y =+________________(14)高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生。
成人高考数学试题及参考答案(成考数学题)
成人高考数学试题及参考答案(成考数学题)成人高考数学试题及答案一、选择题:共10小题,每小题4分,共40分1、在空间直角坐标系中,方程2+3y2+3×2=1表示的曲面是( ).A.球面B.柱面C.锥面D.椭球面2.设函数f(x)=2sinx,则f′(x)等于( ).A.2sinxB.2cosxC.-2sinxD.-2cosx3.设y=lnx,则y″等于( ).A.1/xB.1/x2C.-1/xD.-1/x24.方程z=x2+y2表示的二次曲面是( ).A.球面B.柱面C.圆锥面D.抛物面5.设y=2×3,则dy=( ).A.2x2dxB.6x2dxC.3x2dxD.x2dx6.微分方程(y′)2=x的阶数为( ).A.1B.2C.3D.47.过点(1,0,0),(0,1,0),(0,0,1)的平面方程为( ).A.x+y+z=1B.2x+y+z=1C.x+2y+z=1D.x+y+2z=18.曲线y=x3+1在点(1,2)处的切线的斜率为( ).A.1B.2C.3D.49.设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)在(a,b)( ).A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点10.设Y=e-3x,则dy等于( ).A.e-3xdxB.-e-3xdxC.-3e-3xdxD.3e-3xdx二、填空题:共10小题,每小题4分,共40分。
11、将ex展开为x的幂级数,则展开式中含x3项的系数为_____.12、设y=3+cosx,则y′_____.13、设y=f(x)可导,点a0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.14、设函数z=ln(x+y2),则全微分dz=_______.15、过M设y=f(x)在点x=0处可导,且x=0为f(x)的极值点,则f′(0)=_____.16、 (1,-l,2)且垂直于平面2x-y+3z-1=0的直线方程为_____.17、微分方程y′=0的通解为_____.18、过M(1,-l,2)且垂直于平面2x-y+3z-1=0的直线方程为_____.19、设y=2×2+ax+3在点x=1取得极小值,则a=_____.20、微分方程xyy′=1-x2的通解是_____. 三、解答题:共8小题,共70分。
成人教育数学考试及答案
成人高考高起点数学内部押题密卷(一)一、选择题(本大题共15小题, 每小题5分, 共75分。
在每小题给出的四个选项中, 只有一项是符合题目要求的)1.已知集合, 则下列关系中正确的是()A. B. C. D.2. 下列函数为偶函数的是()3. A. B. C. D.条件甲: , 条件乙: , 则条件甲是条件乙的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分又不必要条件4. 复数的辐角主值是()A. B. C. D.5. 两条平行直线与之间的距离是()A. 2B. 3C.D.6. 函数的定义域是()A. RB.C.D.7. 为第二象限角, , 则的值为()A. B. C. D.8. 下列命题中, 正确的是()A. 空间中, 垂直于同一条直线的两直线平行B. 空间中, 垂直于同一平面的两直线平行C. 空间中, 垂直于同一平面的两平面平行D. 空间中, 与同一平面所成角相等的两直线平行9.下列等式中, 成立的是()A. B. C. D.10. 抛物线的准线方程为()A. B. C. D.11.由0, 1, 2, 3, 4五个数字组成没有重复数字的五位偶数的个数为()A. 120个B. 60个C. 36个D. 24个12. 参数方程表示的图形是()A. 垂直于轴的直线B. 平行于轴的直线C. 以原点为圆心的圆D. 过原点的圆13.若从一批有8件正品, 2件次品组成的产品中接连抽取2件产品(第一次抽出的产品不放回去), 则第一次取得次品且第二次取得正品的概率是()A. B. C. D.14. 已知在上是的减函数, 则的取值范围是()A. (0, 1)B. (1, 2)C. (0, 2)D. (2, )15.设是上的奇函数, , 当时, , 则的值为()A. 0.5B. -0.5C. 1.5D. -1.5二、填空题(本大题共4个小题, 每小题4分, 共16分。
把答案填在题中横线上)16.则ξ的期望值)(ξE = 。
成人高考成考(高起专)数学(理科)试卷及解答参考
成人高考成考数学(理科)(高起专)模拟试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数(f(x)=x3−3x2+4)的导数(f′(x))等于0,则(f(x))的极值点为:A、(x=0)B、(x=1)C、(x=2)D、(x=−1)2、已知函数f(x)=x 2−4x−2,则函数的定义域为()A.x≠2B.x≠0C.x≠2且x≠0D.x≠0且x≠−23、若函数(f(x)=1x−2+√x+1)在区间([−1,2))上有定义,则函数(f(x))的定义域为:A.([−1,2))B.([−1,2])C.((−1,2))D.((−1,2])4、在下列各数中,正实数 a、b、c 的大小关系是:a = 2^(3/2),b = 3^(2/3),c = 5^(1/4)。
A、a < b < cB、b < a < cC、c < b < aD、a = b = c5、已知函数f(x)=2x3−9x2+12x+1,若函数的图像在(−∞,+∞)上恒过点(a,b),则a和b的值分别为:A.a=2,b=9B.a=3,b=10C.a=1,b=2D.a=0,b=1+2x)在(x=1)处有极值,则此极值点处的导数值为:6、若函数(f(x)=3xA. 1B. -1C. 0D. 3在点x=1处的导数等于多少?7、若函数f(x)=2x−3x+1A、2B、−1C、1D、08、已知函数f(x)=x 3−3x2+4xx2−2x+1,则f(x)的奇偶性为:A. 奇函数B. 偶函数C. 非奇非偶函数D. 无法确定9、在下列数列中,属于等差数列的是()A、1, 2, 3, 4, 5B、1, 3, 6, 10, 15C、2, 4, 8, 16, 32D、1, 3, 6, 9, 1210、已知函数(f(x)=1x+x2)在区间((−∞,+∞))上的定义域为(D),且函数的值域为(R),则(D)和(R)分别是:A.(D=(−∞,0)∪(0,+∞),R=(−∞,0)∪(0,+∞))B.(D=(−∞,0)∪(0,+∞),R=[0,+∞))C.(D=(−∞,+∞),R=(−∞,+∞))D.(D=(−∞,+∞),R=[0,+∞))11、若函数f(x)=x3−3x2+4x,则函数的对称中心为:A.(1,2)B.(1,1)C.(0,0)D.(−1,−1)12、若函数(f(x)=√x2−4)的定义域为(D f),则(D f)为:A.(x≥2)B.(x≤−2)或(x≥2)C.(x≤−2)或(x≥2)D.(x≥2)或(x≤−2)二、填空题(本大题有3小题,每小题7分,共21分)1、在△ABC中,若sinA=√55,cosB=−√1010,则sinC=____.2、已知直线(l)的方程为(3x−4y+10=0),求直线(l)在 y 轴上的截距。
成人高考专升本高等数学(一)全真模拟试题及答案解析③
成人高考专升本高等数学(一)------------------------全真模拟试题及答案解析③1(单选题)若则是( )(本题4分)A 2B -2C -1D 1标准答案: A解析:【考情点拨】本题考查了一元函数的导数及其极限的知识点。
【应试指导】因为2(单选题)若则等于()(本题4分)A 2x+2B x(x+1)C x(x-1)D 2x-1标准答案: A解析:【考情点拨】本题考查了一元函数的一阶导数的知识点。
【应试指导】因为故则3(单选题)设函数f(x)满足且f(0)=0,则f(x)=()。
(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了已知导函数求原函数的知识点。
【应试指导】由4(单选题)函数是()(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了函数的极值的知识点。
【应试指导】因于是令得驻点(-4,1)。
又因故对于点(-4,1),A=2,B=-1,C=2,B^2-AC=-3<0,且A>0,因此z=f(x,y)在点(-4,1)处取得极小值,且极小值为f(-4,1)=-1。
5(单选题)当x→0时,与x等价的无穷小量是( )。
(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了等价无穷小量的知识点。
【应试指导】对于选项A,故是在x→0时的比x低价的无穷小;对于选项B,故ln(1+x)是x→0时与x等价的无穷小;对于选项C,故是x→0时与x同阶非等价的无穷小;对于选项D,故是x→0时的比x高阶的无穷小。
6(单选题)使成立的f(x)为()。
(本题4分)A 绝对收敛B 条件收敛C 发散D 无法确定敛散性标准答案: A解析:【考情点拨】本题考查了反常积分的敛散性的知识点。
【应试指导】对于选项A,故此积分收敛,且收敛于1;对于选项B,不存在;对于选项C,故此积分收敛,但收敛于;对于选项D,故此积分收敛,但收敛于故选A。
7(单选题)级数是()。
(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了级数的绝对收敛的知识点。
成人高考专升本高等数学(一)全真模拟试题及答案解析①
成人高考专升本高等数学(一)--------------------------------全真模拟试题①一、单选题,共10题,每题4分,共40分:1(单选题)当x→0时,下列变量中为无穷小的是_________ (本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了无穷小量的知识点.【应试指导】2(单选题)下列等式成立的是__________(本题4分)ABCD标准答案: C解析:【考情点拨】本题考查了函数的极限的知识点.【应试指导】3(单选题)设函数则等于_____(本题4分)A eB 1CD ln2标准答案: C解析:【考情点拨】本题考查了函数在一点的导数的知识点.【应试指导】4(单选题)设函数则函数f(X)______(本题4分)A 有极小值B 有极大值C 即有极小值又有极大值D 无极值标准答案: A解析:【考情点拨】本题考查了函数极值的知识点【应试指导】5(单选题)( )(本题4分)A 2/5B 0C -2/5D 1/2标准答案: A解析:【考情点拨】本题考查了定积分的知识点.【应试指导】6(单选题)下列各式中正确的是( )(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了定积分的性质的知识点.【应试指导】7(单选题)下列反常积分收敛的是________(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了反常积分的敛散性的知识点.【应试指导】8(单选题)方程表示的二次曲面是(本题4分)A 球面B 旋转抛物面C 圆柱面D 圆锥面标准答案: D解析:【考情点拨】本题考查了二次曲面(圓锥面)的知识点.【应试指导】由方程可知它表示的是圓锥面.9(单选题)函数在(-3,3)内展开成x的幂级数是()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了函数展开为幂级数的知识点.【应试指导】10(单选题)微分方程________(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了二阶线性微分方程的特解形式的知识点.【应试指导】二、填空题,共10题,每题4分,共40分:11(填空题)函数在x=0连续此时α=________(本题4分)标准答案: 0解析:【考情点拨】本题考查了函数在一点处的连续性的知识点.【应试指导】12(填空题)若则_______(本题4分)标准答案: -1解析:【考情点拨】本题考查了利用导数定义求极限的知识点.【应试指导】13(填空题)设则y'=_______(本题4分)标准答案:解析:【考情点拨】本题考查了函数的一阶导数的知识点.【应试指导】14(填空题)函数上满足罗尔定理,则ε=_________(本题4分)标准答案:π解析:【考情点拨】本题考查了罗尔定理的知识点.【应试指导】15(填空题)_______(本题4分)标准答案:解析:【考情点拨】本题考查了不定积分的知识点.【应试指导】16(填空题)_________(本题4分)标准答案:解析:【考情点拨】本题考查了利用换元法求定积分的知识点.【应试指导】17(填空题)将积分改变积分顺序,则I=__________(本题4分)标准答案:解析:【考情点拨】本题考查了改变积分顺序的知识点.【应试指导】18(填空题)幂级数的收敛半径为______(本题4分)标准答案: 3解析:【考情点拨】本题考查了幂级数的收敛半径的知识点.【应试指导】19(填空题)微分方程的通解是______(本题4分)标准答案:解析:【考情点拨】本题考查了二阶线性微分方程的通解的知识点.【应试指导】微分方程的特征方程是微分方程的特征方程是20(填空题)若则_______(本题4分)标准答案:解析:【考情点拨】本题考查了二元函数的全微分的知识点.【应试指导】一、问答题8题,前5题每题8分,后3题每题10分,共70分:21(问答题)求函数的二阶导数(本题8分)标准答案及解析:22(问答题)求(本题8分)标准答案及解析:23(问答题)求(本题8分)标准答案及解析:24(问答题)求函数的极值. (本题8分)标准答案及解析:25(问答题)设求(本题8分)标准答案及解析:26(问答题)计算其中D是由:y=x,y=2x,x=2与x=4围成(本题10分)标准答案: 9解析:积分区域D如下图所示. 被积函数 H:为二次积分时对哪个变量皆易于积分;但是区域D易于用X —型不等式表示,因此选择先对:y积分,后对x积分的二次积分次序.27(问答题)求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.(本题10分)标准答案及解析:28(问答题)已知证明: (本题10分)标准答案及解析:。
成人高考模拟数学试卷
一、选择题(每题2分,共20分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -1/22. 已知二次函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(1, 2),则下列说法正确的是()A. a > 0,b < 0,c > 0B. a > 0,b > 0,c > 0C. a < 0,b < 0,c > 0D. a < 0,b > 0,c > 03. 若等差数列{an}的公差为d,且a1 = 3,a3 = 7,则d的值为()A. 2B. 3C. 4D. 54. 已知函数f(x) = x^3 - 3x^2 + 4x - 6在区间(1, 2)上单调递增,则下列说法正确的是()A. f(1) > f(2)B. f(1) < f(2)C. f(1) = f(2)D. 无法确定5. 下列各对数式中,相等的是()A. log2(8) = log8(2)B. log3(27) = log9(3)C. log5(25) = log10(5)D. log6(36) = log12(6)6. 若sinα = 1/2,则α的取值范围是()A. 0° < α < 30°B. 30° < α < 60°C. 60° < α < 90°D. 90° < α < 120°7. 若复数z满足|z - 2i| = 3,则z的实部可能的取值范围是()A. -1 ≤ Re(z) ≤ 5B. -3 ≤ Re(z) ≤ 1C. -1 ≤ Re(z) ≤ 3D. -3 ≤ Re(z) ≤ 58. 若a、b是实数,且a^2 + b^2 = 1,则下列说法正确的是()A. a + b = 0B. a - b = 0C. ab = 0D. a^2 - b^2 = 09. 已知三角形ABC的边长分别为a、b、c,若a^2 + b^2 = c^2,则三角形ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 无法确定10. 下列函数中,在定义域内单调递减的是()A. y = x^2B. y = -x^2C. y = 2xD. y = -2x二、填空题(每题2分,共20分)11. 已知等差数列{an}的公差为d,若a1 = 2,a5 = 12,则d = ________。
成人高考成考(高起专)数学(理科)试题及解答参考
成人高考成考数学(理科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列函数中,是奇函数的是()。
A.y=x2B.y=arctanxC.y=e xD.y=x 3−1x−1,x≠12、若分子是正数的分数与负数相乘,则结果一定()A、是正数B、是负数C、可能为正数,也可能为负数D、不确定3.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 414、已知向量a⃗=(2,−3),b⃗⃗=(5,1), 则2a⃗−b⃗⃗的大小为A.√29B.√13C.√37D.√265.题目:已知圆的方程为 x^2 + y^2 = 9,点 A(-3, 0),则点 A 与圆的位置关系是()A. 在圆内B. 在圆上C. 在圆外D. 无法确定6、若函数f(x)=x2−4x+3,则不等式f(x)<0的解集为A.(1,3)B.(−∞,1)∪(3,+∞)C.(−∞,1]∪[3,+∞)D.(1,+∞)7、若函数y=x^2的图像向上平移2个单位,向右平移1个单位,则平移后的函数解析式为()A、y=x^2+2x+3B、y=x^2+2x+1C、y=x^2+2D、y=(x-1)^2+28、在甲、乙两队拔河比赛中,甲队最大能拉动横绳中间的白带的水平距离为6米。
已知绳的轻质、不可伸长,横绳的重量忽略不计,两队发力使对方过界并保持不动撤力后,白带即回到恰好在界线的不动平衡位置。
问两队发力过界时,白带向哪边过界?最多能拉动白带的最大水平距离是多少米?已知甲队最大拉力为F1=600N,乙队最大拉力F2=320N。
A. 乙队方向,12米B. 甲队方向,5米C. 乙队方向,5米D. 甲队方向,12米9、若一元二次方程ax² + bx + c = 0 的两个根互为倒数,则下列式子一定成立的是()A. a + b + c = 0B. b² = 4acC. a = bD. c = 010、一个正整数,它的各位数字之和为9,这个数可能是( )。
成人高考大专数学试卷
一、选择题(每题2分,共20分)1. 下列各数中,绝对值最小的是:A. -3B. -2C. 0D. 22. 如果函数f(x) = x^2 - 4x + 3,那么f(2)的值为:A. 1B. 3C. 5D. 73. 已知等差数列{an}的第一项a1=3,公差d=2,那么第10项an的值为:A. 21B. 23C. 25D. 274. 如果一个等比数列的首项为2,公比为1/2,那么它的第5项为:A. 1/16B. 1/8C. 1/4D. 25. 下列各函数中,在其定义域内是奇函数的是:A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = x^46. 如果一个等差数列的前三项分别是a,b,c,且b=5,那么a+c的值为:A. 10B. 15C. 20D. 257. 下列各数中,有理数是:A. √2B. πC. √3D. 2.58. 如果a和b是实数,且a^2 + b^2 = 25,那么a和b的最大值是:A. 5B. 10C. 15D. 209. 下列各数中,无理数是:A. √9B. √16C. √25D. √3610. 如果函数f(x) = 2x - 1在x=3时取得最小值,那么这个最小值是:A. 5B. 6C. 7D. 8二、填空题(每题2分,共20分)11. 若a=2,b=3,则a^2 + b^2 - 2ab = ________.12. 已知等差数列{an}的第一项a1=1,公差d=3,那么第7项an = ________.13. 一个等比数列的前三项分别是1,2,4,那么它的公比q = ________.14. 函数f(x) = 3x - 2在x=1时取得最大值,那么这个最大值是 ________.15. 如果a和b是实数,且|a| + |b| = 5,那么a和b的值可以是 ________(写出任意一组).16. 已知直角三角形的两条直角边分别为3和4,那么斜边的长度是 ________.17. 如果a,b,c是三角形的三边,且a+b>c,b+c>a,a+c>b,那么这个三角形是________三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成考专科数学模拟试题一及答案
一、 选择题(每小题5分,共85分)
1.设集合M={-1,0,1},集合N={0,1,2},则集合M ⋃N 为( D )。
A. {0,1}
B. {0,1,2}
C. {-1,0,0,1,1,2}
D.{-1,0,1,2}
2. 不等式12x -≥的解集为( B )。
A. {13}x x -≤≤ B. {31}x x x ≥≤-或 C. {33}x x -≤≤ D.
{3,3}x x x ≥≤- 3. 设 甲:ABC ∆是等腰三角形。
乙:ABC ∆是等边三角形。
则以下说法正确的是( B )
A. 甲是乙的充分条件,但不是必要条件
B. 甲是乙的必要条件,但不是充分条件
C. 甲是乙的充要条件
D. 甲不是乙的充分条件也不是乙的必要条件
4.设命题 甲:k=1.
命题 乙:直线y=kx 与直线y=x+1.
则( C )
A. 甲是乙的充分条件,但不是必要条件
B. 甲是乙的必要条件,但不是充分条件
C. 甲是乙的充要条件
D. 甲不是乙的充分条件也不是乙的必要条件
5.设tan α=1,且cos α<0,则sin α=( A )
A. B. 12- C. 1
2 D.
6.下列各函数中,为偶函数的是( D )
A. 2x y =
B. 2x y -=
C. cos y x x =+
D. 2
2x y =
7. 函数y =( B ) A.{2}x x ≤ B. {2}x x < C. {2}x x ≠ D. {2}x x >
8. 下列函数在区间(0,)+∞上为增函数的是( B )
A. cos y x =
B. 2x y =
C. 22y x =-
D. 13
log y x =
9.设a=(2,1),b=(-1,0),则3a -2b 为( A )
A.( 8,3)
B.( -8,-3)
C.( 4,6)
D.( 14,-4)
10.已知曲线kx=xy+4k 过点P(2,1),则k 的值为( C )
A. 1
B. 2
C. -1
D. -2
11. 过(1,-1)与直线3x+y-6=0平行的直线方程是( B )
A. 3x-y+5=0
B. 3x+y-2=0
C. x+3y+5=0
D. 3x+y-1=0
12.已知ABC ∆中,AB=AC=3,1
cos 2
A =,则BC 长为( A ) A. 3 B. 4 C. 5 D. 6
13.双曲线221169
x y -=的渐近线方程为( D ) A. 169y x =± B. 916y x =± C. 034x y ±= D. 043
x y ±= 14.椭圆221169
x y +=的焦距为( A ) A. 10 B. 8 C. 9 D. 11
15. 袋子里有3个黑球和5个白球。
任意从袋子中取出一个小球,那么取出黑球的概率等于( D )
A. 13
B. 15
C. 58
D. 38
16.设,a b R ∈,且a b <,则下列各式成立的是( D )
A. 22a b <
B. ac bc <
C. 11a b <
D. 0a b -<
17.已知P 为曲线32y x =上一点,且P 点的横坐标为1,则该曲线在点P 处的切线方程是( A )
A. 6x+y-4=0
B. 6x+y-2=0
C. 6x-y-2=0
D. 6x-y-4=0
二、 选择题(每小题4分,共16分)
18.函数y=2sin2x 的最小正周期是________。
19.1
22log 1616--=____________。
20.函数y=2x(x+1)在x=2处的导数值为_________。
21.某灯泡厂从当天生产的一批100瓦灯泡中抽取10只做寿命试验,
得到样本的数据(单位:h)如下:
1050 1100 1080 1120 1200
1250 1040 1130 1300 1200
则该样本的方差为______。
三、 解答题(本大题共小题4,共49分)
22.(本小题满分12分)
已知等差数列{}n a 的第四项是10,第八项是22。
(1): 求此数列的通项公式。
(2):求它的第十项。
23.(本小题满分12分)
在ABC ∆中,已知a =b =。
045A =。
求,.B C
所以13(1)n a n =+-。
因此 1013(101)28a =+⨯-=。
23.
解:sin sin b A B a =
== 因为a b <,所以0060120B =或。
当060B =时,075C =,当0120B =时,015C =
24. 解:设切线的斜率为k ,那么切线方程为3(2)y k x -=-,将y 的值代
入圆的方程,得
22(1)[(2)2]1x k x -+-+=。
整理得2222(1)(244)4840k x k k x k k +--++-+=。
因为直线与圆相切时,方程有两个相等的实根,判别式等于零。
所以2222(244)4(1)(484)0k k k k k -+-+-+=。
解得:34k =。
所以圆的切线方程为:33(2)4
y x -=-。
25. 解:因为(0)0f =,所以图像过原点。
'2()612f x x x =+,所以'(0)0f =,'(1)61218f =+=。
由于'2()612f x x x =+,令'()0f x =,解得驻点为121,0x x =-=。
(1) 当[2,1)x ∈--时,'()0f x >。
所以()f x 单调递增。
(2) 当(1,0)x ∈-时,'()0f x <。
所以()f x 单调递减。
(3) 当(0,2]x ∈时,'()0f x >。
所以()f x 单调递增。
由于(1)4f -=,(0)0f =,(2)8f -=,(2)40f =
因此此函数在区间[-2,2]上的最大值为40,最小值为0。