第十一章 期权定价模型
《期权定价模型》课件
03
投资组合绩效评估
通过期权定价模型计算投资组合 的绩效指标,评估投资组合表现
。
02
投资组合调整
根据市场走势和投资者需求,调 整投资组合中的期权和其他资产
。
04
投资组合再平衡
定期或不定期地重新调整投资组 合,以保持其与投资者风险偏好
和投资目标的匹配。
THANKS FOR WATCHING
感谢您的观看
02
期权定价模型简介
几种常见的期权定价模型
Black-Scholes模型
二叉树模型
基于一系列假设条件,通过随机微分方程 来描述期权价格的运动过程,并给出了欧 式期权价格的解析解。
一种离散时间模型,通过模拟标的资产价 格的上升和下降来计算期权价格,适用于 美式期权和欧式期权。
三叉树模型
有限差分模型
市场中不存在可以通过买 卖标的资产和衍生品来获 得无风险利润的策略。
市场中存在足够的标的资 产供买卖,且交易成本为 零。
即投资者可以以一个固定 的无风险利率无限借贷。
即标的资产价格的波动率 在整个期权存续期内保持 不变。
定价模型的适用范围
欧式期权:适用于只能在到期 日行权的期权。
美式期权:适用于在到期日之 前任何时间都可以行权的期权
。
股票期权、期货期权、利率期 权等:适用于各种类型的金融 衍生品。
长期期权、短期期权:适用于 不同存续期的期权。
03
Black-Scholes模型
模型的基本假设
假设1
股票价格变动符合几何布朗运 动,即股票价格连续变动,并
且其收益率服从正态分布。
假设2
市场无摩擦,即没有交易费用 和税收,所有证券都可以无限 分割。
期权定价模型
期权定价模型期权定价模型是金融衍生品定价领域的重要模型之一,它通过考虑期权的各项特性,将期权的价值与其相关的标的资产、行权价格、到期时间、波动率、无风险利率等一系列因素联系起来,从而确定期权的公平价格。
在期权定价模型中,常用的模型有布莱克-斯科尔斯模型(Black-Scholes Model)和它的改进模型,如布莱克-斯科尔斯-默顿模型(Black-Scholes-Merton Model)。
这些模型基于一些假设,包括市场无摩擦、无风险利率不变、标的资产价格服从几何布朗运动等。
布莱克-斯科尔斯模型是最早的期权定价模型之一,它将期权价格视为标的资产价格的函数,通过假设标的资产价格服从几何布朗运动,并应用风险中性估计,推导出了一个偏微分方程,即著名的布莱克-斯科尔斯方程。
利用该方程可以计算出欧式看涨/看跌期权的价格。
然而,布莱克-斯科尔斯模型在实际应用中存在一些限制,例如假设市场无摩擦和无风险利率不变的条件,并且假设标的资产价格服从几何布朗运动,这些假设在现实市场中并不总是成立。
因此,为了更准确地定价期权,学者们提出了一系列改进的模型。
其中,布莱克-斯科尔斯-默顿模型是对布莱克-斯科尔斯模型的一个重要改进。
该模型引入了对标的资产价格波动率的估计,通过蒙特卡洛模拟或数值方法,可以计算出更加准确的欧式期权价格。
此外,还有许多其他的改进模型,如跳跃扩散模型、随机波动率模型等,针对不同的市场和期权特性提供了更加精确的定价方法。
总之,期权定价模型是金融衍生品定价领域的重要工具,它通过考虑期权的各项特性和相关因素,计算出期权的公平价格。
布莱克-斯科尔斯模型和其改进模型是常用的期权定价模型,但也存在一些假设和限制。
为了更精确地定价期权,学者们提出了一系列改进模型,以适应不同市场和期权特性的需求。
在期权定价领域,除了布莱克-斯科尔斯模型和其改进模型外,还有许多其他的期权定价模型被广泛应用。
这些模型包括跳跃扩散模型、随机波动率模型、二叉树模型等等,它们分别在不同的金融市场和期权类型中发挥着重要的作用。
第11章 期权定价模型
第11章 布莱克-舒尔茨-默顿期权定价模型一、基本思路1. 基本思路我们为了给股票期权定价,必须先了解股票本身的走势。
因为股票期权是其标的资产(即股票)的衍生工具,在已知执行价格、期权有效期、无风险利率和标的资产收益的情况下,期权价格变化的唯一来源就是股票价格的变化,股票价格是影响期权价格的最根本因素。
用几何布朗运动表示股票价格的变化过程,具体形式如下:dS dt dz Sμσ=+ 或者表示为dS Sdt Sdz μσ=+伊藤引理表明,当股票价格服从上述随机过程时,作为衍生品的期权价格f 将服从22221()2f f f f df S S dt Sdz S t SS μσσ∂∂∂∂=+++∂∂∂∂ 两式表明:股票价格及其衍生品——期权价格都只受到同一种不确定性的影响,只是两者对随机因素变化的反应程度不同而已。
从数学上看,将两式联立,解方程组可消掉随机项。
其金融含义可看作:买入股票、卖空期权构造一个短期内没有不确定性的投资组合。
在一个无套利市场中,该投资组合必然只能获得无风险利率收益。
由此可得到一个期权价格满足的微分方程,此即为BSM 期权定价模型的微分形式,具体为222212f f f rS S rf t S S σ∂∂∂++=∂∂∂ 由于该公式中不包含反映投资者风险偏好的参数——预期收益,因此可以在风险中性世界里求解该微分方程。
求解该方程可得到期权定价公式。
无股利欧式看涨期权的价格为 ()12()()r T t c SN d Xe N d --=-其中,21221d d d ===- 根据无股利欧式看涨期权和看跌期权平价公式()21()()r T t p Xe N d SN d --=--- 可求出无股利欧式看跌期权定价公式()21()()r T t p Xe N d SN d --=---无收益美式看涨期权是不会提前执行的,因此无收益美式看涨期权定价公式和欧式看涨期权定价公式相同,()12()()r T t C SN d Xe N d --=-对于有收益欧式期权,需要在股票价格中抛去收益的现值,对有收益的美式看涨期权,需要考虑其提前执行的情况,由于不存在美式期权之间的平价公式,因此无法给出美式看跌期权的确切公式。
第十一章Black-Scholes-Merton期权定价模型
在一个小的时间间隔△t中,f的变化值△f满足:
f f 1 2 f 2 2 f f ( S ) t S z S S t 2 S 2 S
精选ppt第一节bsm期权定价模型的基本思路精选ppt本章涉及到随机过程等较为复杂的概念为了便于理解我们首先对bsm模型的整体思路做一个简要的归纳以便大家更好的掌握期权定价的内由于最终目标是为股票期权定价而期权是其标的资产即股票的衍生工具在已知执行价格期权有效期无风险利率和标的资产收益的情况下期权价格变化的唯一来源就是股票价格的变化股票价格是影响期权价格的最根本因素
8
根据伊藤引理(ItôLemma,1961),当股票价格 符合几何布朗运动时,作为股票衍生品的期权价 格f将服从:
f f 1 2 f 2 2 f df ( S )dt Sdz 2 S S t 2 S S
(11.2)
可以发现,影响期权价格的随机因素也体现在等式 右边的第二项的dz上,所以,股票价格及其衍生产品— —期权价格都只受到同一种不确定性的影响,其区别在 于随机因素dz前面的系数不同,也就是随机因素变化的 反应程度不同。
5
第一节 B-S-M期权定价模型的基本思路
6
本章涉及到随机过程等较为复杂的概念,为了便 于理解,我们首先对B-S-M模型的整体思路做一个 简要的归纳,以便大家更好的掌握期权定价的内 容。
由于最终目标是为股票期权定价,而期权是其标 的资产(即股票)的衍生工具,在已知执行价格、 期权有效期、无风险利率和标的资产收益的情况 下,期权价格变化的唯一来源就是股票价格的变 化,股票价格是影响期权价格的最根本因素。
《金融衍生品》课件_第11章_期权定价数值方法
美式看跌期权协议价格为 50 元,求该期权
的价值。
20
美式看跌期权的二叉树定价 (cont.)
• 为了构造二叉树,我们把期权有效期分为
五段,每段一个月(等于 0.0833 年)。可
u e t 1.1224
以算出
d e
t
0.8909
4、资产价格随机路径模拟(风险中
性概率测度)
(1)常数波动率模型的离散化和模拟
• 在风险中性世界中,为了模拟路径
dS r q Sdt Sdz
(11.4)
我们把期权的有效期分为 N 个长度为 ∆t 的
时间段,则上式的离散的近似方程为:
(11.5)
6
(2)GARCH模型模拟
模型的离散化形式:
2、欧式期权蒙特卡罗模拟定价
假设标的资长价格服从波动率为常数的几
何布朗运动。对于欧式期权,只需要模拟出
标的资产到期的分布。如欧式看涨期权,第i
条路径下的支付:
()
为标准正态分布的一个随机抽样,
(11.3)=.源自3、蒙特卡罗模拟方法的适用性
• (1)普通的蒙特卡罗模拟方法不适用于美式
(10.23)
(10.24)
其中,
定义为:
(10.25)
3、Heston模型的离散化和模拟
模型的离散化和模拟
5、GARCH模型下的蒙特卡洛模拟定价
二、二叉树模型
1、二叉树模型原理
假设股票当前价格是S,下一期价格有两种可能 (= u)
和 =(Sd),风险中性下上升概率是p,下跌概率是1-p。
e r q t d
p
ud
期权定价模型和数值方法
期权及其有关概念
3. 期权旳内在价值 买入期权在执行日旳价值CT为 CT=max(ST -E,0)
式中:E表达行权价;ST表达标旳资产旳市场价。 卖出期权在执行日旳价值PT为 PT=max(E- ST,0) 根据期权旳行权价与标旳资产市场价之间旳关系,期权可分为价内期权(in the
money)(S > E)、平价期权(at the money)(S = E)和价外期权(out of the money)(S < E)。
4. 珞(Rho)ρ ρ为期权旳价值随利率波动旳敏感度,利率增长,使期权价值变大。
5. 伽玛(Gamma)Γ Γ 表达δ与标旳资产价格变动旳关系。
10.3 B-S公式隐含波动率计算
隐含波动率概念
BlackScholes期权定价公式,欧式期权理论价格旳体现式:
式中:
隐含波动率是将市场上旳期权交易价格代入权证理论价格BlackScholes模型反 推出来旳波动率数值。因为期权定价BS模型给出了期权价格与五个基本参数之间旳 定量关系,只要将其中前4个基本参数及期权旳实际市场价格作为已知量代入定价 公式,就能够从中解出惟一旳未知量,其大小就是隐含波动率。
10.3. 3 隐含波动率计算程序
环节3: 函数求解。 M文件TestImpliedVolatility.M代码如下:
%TestImpliedVolatility %市场价格 Price=100; %执行价格 Strike=95; %无风险利率 Rate=0.10; %时间(年) Time=0.25; CallPrice=15.0;%看涨期权交易价格 PutPrice=7.0; %看跌期权交易价格 %调用ImpliedVolatility函数 [Vc,Vp,Cfval,Pfval]=ImpliedVolatility(Price,Strike,Rate,Time,CallPrice,PutPrice)
Black-Scholes模型
例1
假设当前英镑的即期汇率为$1.5000,美 国的无风险连续复利年利率为7%,英国 的无风险连续复利年利率为10%,英镑 汇率遵循几何布朗运动,其波动率为10 %,求6个月期协议价格为$1.5000的英镑 欧式看涨期权价格。
由于英镑会产生无风险收益,现在的1英镑 等于6个月后的e0.1×0.5英镑,而现在的 e0.1×0.5英镑等于6个月后的1英镑,因此可 令S=1.5000×e-0.1×0.5 ,并代入式(10)可 求出期权价格:
美式看跌期权可以用蒙特卡罗模拟、二 叉树和有限差分三种数值方法以及解析 近似方法求出。
三、有收益资产的期权定价公式
到现在为止,我们一直假设期权的标的 资产没有现金收益。
那么,对于有收益资产,其期权定价公 式是什么呢?
实际上,如果收益可以准确地预测到, 或者说是已知的,那么有收益资产的期 权定价并不复杂。
(ft 12S2f22S2)t r(f Sf S)t
f t
rSSf 122S2
2f S2
rf7
6、注意(1)组合的风险性
当S和t变化时,
f S
的值也会变化,因此上
述投资组合的价值并不是永远无风险的,
金融建模课件11章布莱克-斯科尔斯期权定价模型.pptx
න
1
2
− 2 Τ2
−
= න
−∞
1
2
2 Τ2
−
• 上面的积分是标准正态变量的分布函数,因此
2 =
− − 2 Τ2
1
−
−
2 −∞
= − − −
2024/10/8
BS公式推导
• 现在我们再对第一个积分进行整理
1
∞
1
∞
1
∞
2
2
+
+
− = 0
2
2
• 可以写成如下形式
1 2 2
+ + =
2
2024/10/8
Delta(希腊字母Δ)
• 定义
• 是期权价值相对于基础资产价格的变动率
• 相当于衡量债券价格利率敏感性的久期
• 公式
=
= 1
• 为BS公式(Black –Scholes Formula)
= 0 1 − − 2
= − −2 − 0 −1
• 其中
2024/10/8
0 = 即期股票价格
= 期权执行价
= 无风险利率
= 股价波动性
= 期权到期时间( − )
2024/10/8
布莱克-斯科尔斯偏微分方程
• 为了导出BS偏微分方程
• 我们构造一个投资组合
• 该组合包括
• Δ 份的股票
• 金额为 Lt 的无风险银行借款
2024/10/8
布莱克-斯科尔斯偏微分方程
• 我们使该组合与一个看涨期权 等值:
郑振龙《金融工程》笔记和课后习题详解-布莱克-舒尔斯-默顿期权定价模型【圣才出品】
第十一章布莱克-舒尔斯-默顿期权定价模型11.1复习笔记一、布莱克-舒尔斯-默顿期权定价模型的基本思路以下对B-S-M模型的整体思路作一个简要的归纳:要研究期权的价格,首先必须研究股票价格的变化规律。
通过观察市场中的股票价格可知,股票价格的变化过程是一个随机过程——几何布朗运动,其具体形式如下:(11.1)当股票价格服从式(11.1)时,作为股票衍生产品的期权价格,将服从(11.2)将式(11.1)和(11.2)联立方程组,就可以解出一个期权价格所满足的微分方程,求解这一方程,就得到了期权价格的最终公式。
二、股票价格的变化过程通常用形如的几何布朗运动来描绘股票价格的变化过程,几何布朗运动中最重要的是dz项,它代表影响股票价格变化的随机因素,通常称之为标准布朗运动或维纳过程。
1.标准布朗运动设△£代表一个小的时间间隔长度,Δz代表变量z在△t时间内的变化,如果变量z遵循标准布朗运动,则Δz具有以下两种特征:特征l:Δz和△t的关系满足(11.3)其中,ε~φ[0,1]。
特征2:对于任何两个不同时间间隔Δt,Δz的值相互独立。
用z(T)-z(t)表示变量z在T-t中的变化量,它可被看做是在N个长度为△t的小时间间隔中z的变化总量,其中N=(T—t)/Δt,因此,其中εi(i=1,2,…,N)是标准正态分布的随机抽样值。
由此可见:①在任意长度的时间间隔T-t中,遵循标准布朗运动的变量的变化值服从均值为0、标准差为根号下T-t的正态分布;②在任意长度的时间间隔T-t中,方差具有可加性,总是等于时间长度,不受△t如何划分的影响,但标准差就不具有可加性。
当△t→0时,就可以得到极限的或者说连续的标准布朗运动(11.4)下面直接引用维纳过程的一些数学性质来大致解释其在股价建模中应用的原因:首先,维纳过程中用ε即标准正态分布的随机变量来反映变量变化的随机特征。
其次,数学上可以证明,具备特征1和特征2的维纳过程是一个马尔可夫随机过程,这一点与金融学中的弱式效率市场假说不谋而合。
期权与期货课件第11章 BSM连续时间期权定价模型——动态复制方法
2
©中央财经大学期权与期货
第十一章 B-S-M期权定价模型——动态复制方法
学习要点
➢ B-S-M期权定价模型的假设; ➢ B-S-M期权定价模型的推导; ➢ B-S-M期权定价方程的求解过程。
©©中中央央财财经经大大学学期期权权与与期期货货
第十一章 B-S-M期权定价模型——动态复制方法
本 章 知 识 结 构 图
©©中中央央财财经经大大学学期期权权与与期期货货
©©中中央央财财经经大大学学期期权权与与期期货货
第十一章 B-S-M期权定价模型——动态复制方法
第〇节 导言
©中央财经大学期权与期货
第〇节 导言
期权定价的发展
➢ 1942-1943年,伊藤清定义随机积分 ➢ 1969年,默顿指出几何布朗运动比起布朗运动更适合作为股票价格的模型 ➢ 1973年,布莱克、斯科尔斯、默顿期权定价理论利用了伊藤的随机积分理论和伊藤公式,并在实际市
5、不存在无风险套利机会。
6、证券交易在时间上是连续的。
7、所有资产可以无限细分。
©中央财经大学期权与期货
第一节 B-S-M期权定价模型的假设
模型的假设
➢B-S-M模型假设的数学表达
假设债券的无风险利率为r,则其价格 S0(t) = S0(0)ert 满足dS0(t) = rS0(0)dt
基础资产股票的价格S(t)服从几何布朗运动,
©中央财经大学期权与期货
第十一章 B-S-M期权定价模型——动态复制方法
第二节 用动态复制方法推导 B-S-M期权定价偏微分方程
©中央财经大学期权与期货
第二节 用动态复制方法推导B-S-M期权定价偏微分方程
动态复制方法
➢构造一个投资策略,使得在到期日时刻的资产价值等于期权的到期收益。
第十一章期权定价模型
第十一章期权定价模型第十一章期权定价模型【学习目标】本章是期权部分的重点内容之一。
本章主要介绍了著名的Black-Scholes 期权定价模型和由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型,并对其经济理解和应用进行了进一步的讲解。
学习完本章,读者应能掌握Black-Scholes 期权定价公式及其基本运用,掌握运用二叉树模型为期权进行定价的基本方法。
自从期权交易产生以来,尤其是股票期权交易产生以来,学者们即一直致力于对期权定价问题的探讨。
1973年,美国芝加哥大学教授Fischer Black 和Myron Scholes 发表《期权定价与公司负债》1一文,提出了著名的Black-Scholes 期权定价模型,在学术界和实务界引起强烈的反响,Scholes 并由此获得1997年的诺贝尔经济学奖。
在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型。
在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨2。
第一节 Black-Scholes 期权定价模型一、Black-Scholes 期权定价模型的假设条件 Black-Scholes 期权定价模型的七个假设条件如下:1. 期权标的资产为一风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。
S 遵循几何布朗运动3,即dz dt SdS σμ+= 其中,dS 为股票价格瞬时变化值,dt 为极短瞬间的时间变化值,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率(以连续复利表示),σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。
期权定价模型
期权定价模型期权定价模型是金融学中一种重要的定价工具,用于估计期权的合理价值。
期权是金融衍生品的一种,它为买方提供了在未来某个时间以特定价格购买或出售标的资产的权利,而无需承担义务。
期权定价模型的主要目的是通过考虑不同的因素,如标的资产价格、行权价格、到期时间、无风险利率、波动率等,来计算期权的合理价格。
传统上,期权定价模型主要分为两类:基于风险中性定价(Risk-neutral pricing)的模型和基于实物资产价格和风险度量的模型。
其中,最著名的模型包括布莱克-斯科尔斯(Black-Scholes)期权定价模型和它的变体。
布莱克-斯科尔斯期权定价模型是由费希尔·布莱克、默顿·米勒和罗伯特·斯科尔斯于20世纪70年代提出的。
该模型基于以下几个假设:1)市场是完全的,不存在交易费用和税收;2)资产的价格满足几何布朗运动;3)没有风险套利机会;4)无风险利率和波动率是已知且恒定的。
根据布莱克-斯科尔斯模型,期权的定价公式如下:C = S(t)e^(-qt)N(d1) - Xe^(-rt)N(d2)P = Xe^(-rt)N(-d2) - S(t)e^(-qt)N(-d1)其中,C表示买方购买的看涨期权的价格,P表示买方购买的看跌期权的价格,S(t)为资产在当前时间的价格,X为行权价格,r为无风险利率,t为到期时间,q为股息率,N(d1)和N(d2)为标准正态分布的累积分布函数,d1和d2的计算公式如下:d1 = (ln(S(t)/X) + (r - q + σ^2/2)t) / (σsqrt(t))d2 = d1 - σsqrt(t)其中,σ为资产的波动率。
布莱克-斯科尔斯模型的优点是计算简单,结果直观易懂。
然而,该模型的假设有时不符合实际情况,特别是在市场不完全时。
因此,研究人员开发了各种变体模型,以修正或扩展布莱克-斯科尔斯模型的假设。
此外,还有其他的期权定价模型,如二叉树模型、蒙特卡洛模拟、期权隐含波动率等。
期权定价模型
期权定价模型期权定价模型是用于计算期权价格的数学模型。
它的目的是通过考虑不同的因素和变量来估计期权价格,以便投资者可以在进行期权交易时做出明智的决策。
期权是一种金融工具,给予购买者在特定期限内以约定价格购买或出售某种资产的权利。
期权分为两种类型:看涨期权和看跌期权。
看涨期权授予购买者在未来某个时间点以约定价格购买资产的权利,而看跌期权则授予购买者在未来某个时间点以约定价格出售资产的权利。
期权定价模型最为被广泛接受和使用的是布莱克-斯科尔斯期权定价模型(Black-Scholes Option Pricing Model)。
该模型于1973年由弗ィ舍尔·布莱克和迈伦·斯科尔斯开发。
这个模型基于了以下假设:市场是完全有效的,不存在无风险套利机会,资产价格服从几何布朗运动等。
布莱克-斯科尔斯期权定价模型利用了几个变量来计算期权价格,包括资产价格、行权价格、无风险利率、到期日和资产价格的波动率。
这些变量被组合成一个数学方程,可以通过计算得出期权的理论价格。
除了布莱克-斯科尔斯模型,还有其他的期权定价模型,如考虑了股利支付的扩展布莱克-斯科尔斯模型(Extended Black-Scholes Model)、考虑了远期价格的黑-92模型(Black-92 Model)、实践中广泛使用的哥莫兹模型(Geske Model)等等。
这些模型的应用范围涵盖了各种期权交易策略,包括常见的看涨看跌期权交易、套利交易策略等。
然而,期权定价模型并不是完美的,它们基于了一系列的假设和简化,因此并不能完全准确地预测期权价格。
此外,市场条件的变化和实际操作中的问题也可能导致期权定价与实际价格之间存在差距。
因此,投资者在使用期权定价模型计算期权价格时,应考虑到这些局限性并结合其他因素做出决策。
综上所述,期权定价模型是计算期权价格的数学模型。
它的应用范围广泛,并且可以帮助投资者做出明智的决策。
然而,使用期权定价模型时需要考虑到模型的假设和简化,同时结合其他因素进行综合分析。
第十一章 期权定价模型
第十一章 期权定价模型【学习目标】本章是期权部分的重点内容之一。
本章主要介绍了著名的Black-Scholes 期权定价模型和由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型,并对其经济理解和应用进行了进一步的讲解。
学习完本章,读者应能掌握Black-Scholes 期权定价公式及其基本运用,掌握运用二叉树模型为期权进行定价的基本方法。
自从期权交易产生以来,尤其是股票期权交易产生以来,学者们即一直致力于对期权定价问题的探讨。
1973年,美国芝加哥大学教授 Fischer Black 和Myron Scholes 发表《期权定价与公司负债》1一文,提出了著名的Black-Scholes 期权定价模型,在学术界和实务界引起强烈的反响,Scholes 并由此获得1997年的诺贝尔经济学奖。
在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型。
在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨2。
第一节 Black-Scholes 期权定价模型一、Black-Scholes 期权定价模型的假设条件Black-Scholes 期权定价模型的七个假设条件如下:1. 期权标的资产为一风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。
S 遵循几何布朗运动3,即 dz dt SdS σμ+= 其中,dS 为股票价格瞬时变化值,dt 为极短瞬间的时间变化值,dz 为均值为零,方 1 Black, F., and Scholes (1973) “The Pricing of Options and Corporate Liabilities ”, Journal of Political Economy , 81( May-June), p. 637-6592 从本书难度的设定出发,本章只介绍期权定价模型的基本内容及其理解,而不具体推导模型,更深入的内容可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 第六章3 有关股票价格及其衍生证券所遵循的随机过程的详细信息,可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 115页-121页差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率(以连续复利表示),σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 期权定价模型【学习目标】本章是期权部分的重点内容之一。
本章主要介绍了著名的Black-Scholes 期权定价模型和由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型,并对其经济理解和应用进行了进一步的讲解。
学习完本章,读者应能掌握Black-Scholes 期权定价公式及其基本运用,掌握运用二叉树模型为期权进行定价的基本方法。
自从期权交易产生以来,尤其是股票期权交易产生以来,学者们即一直致力于对期权定价问题的探讨。
1973年,美国芝加哥大学教授 Fischer Black 和Myron Scholes 发表《期权定价与公司负债》1一文,提出了著名的Black-Scholes 期权定价模型,在学术界和实务界引起强烈的反响,Scholes 并由此获得1997年的诺贝尔经济学奖。
在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型。
在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨2。
第一节 Black-Scholes 期权定价模型一、Black-Scholes 期权定价模型的假设条件 Black-Scholes 期权定价模型的七个假设条件如下:1. 期权标的资产为一风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。
S 遵循几何布朗运动3,即dz dt SdS σμ+= 其中,dS 为股票价格瞬时变化值,dt 为极短瞬间的时间变化值,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率(以连续复利表示),σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。
μ和σ都是已知的。
简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一是单位时间内已知的一个收益率变化μ,被称为漂移率,可以被看成一个总体的变 1 Black, F., and Scholes (1973) “The Pricing of Options and Corporate Liabilities ”, Journal of Political Economy , 81( May-June), p. 637-6592 从本书难度的设定出发,本章只介绍期权定价模型的基本内容及其理解,而不具体推导模型,更深入的内容可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 第六章3 有关股票价格及其衍生证券所遵循的随机过程的详细信息,可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 115页-121页化趋势;二是随机波动项,即dz σ,可以看作随机波动使得股票价格变动偏离总体趋势的部分。
2.在期权有效期内,标的资产没有现金收益支付。
综合1和2,意味着标的资产价格的变动是连续而均匀的,不存在突然的跳跃。
3. 没有交易费用和税收,不考虑保证金问题,即不存在影响收益的任何外部因素。
综合2和3,意味着投资者的收益仅来源于价格的变动,而没有其他影响因素。
4. 该标的资产可以被自由地买卖,即允许卖空,且所有证券都是完全可分的。
5. 在期权有效期内,无风险利率r 为常数,投资者可以此利率无限制地进行借贷。
6.期权为欧式看涨期权,其执行价格为X ,当前时刻为t ,到期时刻为T 。
7.不存在无风险套利机会。
二、Black-Scholes 期权定价模型(一)Black-Scholes 期权定价公式在上述假设条件的基础上,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的一个微分方程:rf Sf S S f rS t f =∂∂+∂∂+∂∂222221σ (11.1) 其中f 为期权价格,其他参数符号的意义同前。
通过解这个微分方程,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的定价公式:)()(2)(1d N Xe d SN c t T r ---= (11.2)其中,t T d tT t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln())(2/()/ln(c 为无收益资产欧式看涨期权价格;N (x )为标准正态分布变量的累计概率分布函数(即这个变量小于x 的概率),根据标准正态分布函数特性,我们有)(1)(x N x N -=-。
(二)Black-Scholes 期权定价公式的理解1.期权价格的影响因素首先,让我们将Black-Scholes 期权定价公式与第十章中分析的期权价格的影响因素联系起来。
在第十章中,我们已经得知期权价格的影响因素包括:标的资产市场价格、执行价格、波动率、无风险利率、到期时间和现金收益。
在式(11.2)中,除了由于我们假设标的资产无现金收益之外,其他几个参数都包括在内,且影响方向与前文分析的一致。
2.风险中性定价原理其次我们要谈到一个对于衍生产品定价非常重要的原理:风险中性定价原理。
观察式(11.2),以及第十章中的期权价格影响因素分析,我们可以注意到期权价格是与标的资产的预期收益率无关的。
即在第一节我们描述标的资产价格所遵循的几何布朗运动时曾经出现过的预期收益率μ在期权定价公式中消失了。
这对于寻求期权定价的人们来说无疑是一个很大的好消息。
因为迄今为止,人们仍然没有找到计算证券预期收益率的确定方法。
期权价格与μ的无关性,显然大大降低了期权定价的难度和不确定性。
进一步考虑,受制于主观风险收益偏好的标的证券预期收益率μ并未包括在期权的价值决定公式中,公式中出现的变量为标的证券当前市价(S )、执行价格(X )、时间(t )、证券价格的波动率(σ)和无风险利率r ,它们全都是客观变量,独立于主观变量——风险收益偏好。
既然主观风险偏好对期权价格没有影响,这使得我们可以利用Black-Scholes 期权定价模型所揭示的期权价格的这一特性,作出一个可以大大简化我们工作的简单假设:在对衍生证券定价时,所有投资者都是风险中性的。
在所有投资者都是风险中性的条件下(有时我们称之为进入了一个“风险中性世界”),所有证券的预期收益率都可以等于无风险利率r ,这是因为风险中性的投资者并不需要额外的收益来吸引他们承担风险。
同样,在风险中性条件下,所有现金流量都可以通过无风险利率进行贴现求得现值。
这就是风险中性定价原理。
应该注意的是,风险中性假定仅仅是一个人为假定,但通过这种假定所获得的结论不仅适用于投资者风险中性情况,也适用于投资者厌恶风险的所有情况。
为了更好地理解风险中性定价原理,我们可以举一个简单的例子来说明。
假设一种不支付红利股票目前的市价为10元,我们知道在3个月后,该股票价格要么是11元,要么是9元。
现在我们要找出一份3个月期协议价格为10.5元的该股票欧式看涨期权的价值。
由于欧式期权不会提前执行,其价值取决于3个月后股票的市价。
若3个月后该股票价格等于11元,则该期权价值为0.5元;若3个月后该股票价格等于9元,则该期权价值为0。
为了找出该期权的价值,我们可构建一个由一单位看涨期权空头和∆单位的标的股票多头组成的组合。
若3个月后该股票价格等于11元时,该组合价值等于(11∆-0.5)元;若3个月后该股票价格等于9元时,该组合价值等于9∆元。
为了使该组合价值处于无风险状态,我们应选择适当的∆值,使3个月后该组合的价值不变,这意味着:11∆-0.5=9∆∆=0.25因此,一个无风险组合应包括一份看涨期权空头和0.25股标的股票。
无论3个月后股票价格等于11元还是9元,该组合价值都将等于2.25元。
在没有套利机会情况下,无风险组合只能获得无风险利率。
假设现在的无风险年利率等于10%,则该组合的现值应为:元19.225.225.01.0=⨯-e由于该组合中有一单位看涨期权空头和0.25单位股票多头,而目前股票市场为10元,因此:元31.019.225.010==-⨯f f 这就是说,该看涨期权的价值应为0.31元,否则就会存在无风险套利机会。
从该例子可以看出,在确定期权价值时,我们并不需要知道股票价格上涨到11元的概率和下降到9元的概率。
但这并不意味着概率可以随心所欲地给定。
事实上,只要股票的预期收益率给定,股票上升和下降的概率也就确定了。
例如,在风险中性世界中,无风险利率为10%,则股票上升的概率P 可以通过下式来求:0.10.2510[119(1)]e P P -⨯=⨯+-P=62.66%。
又如,如果在现实世界中股票的预期收益率为15%,则股票的上升概率可以通过下式来求:0.150.2510[119(1)]e P P -⨯=⨯+-P=69.11%。
可见,投资者厌恶风险程度决定了股票的预期收益率,而股票的预期收益率决定了股票升跌的概率。
然而,无论投资者厌恶风险程度如何,从而无论该股票上升或下降的概率如何,该期权的价值都等于0.31元。
3. 对期权定价公式的经济理解。
首先,从Black-Scholes 期权定价模型自身的求解过程来看1,N(d 2)实际上是在风险中性世界中S T 大于X 的概率,或者说是欧式看涨期权被执行的概率,因此,e -r(T-t)XN(d 2)是X 的风险中性期望值的现值,更朴素地说,可以看成期权可能带来的收入现值。
SN(d 1)= e -r(T-t)S T N(d 1)是S T 的风险中性期望值的现值,可以看成期权持有者将来可能支付的价格的现值。
因此整个欧式看涨期权公式就可以被看作期权未来期望回报的现值。
其次,1)df N d dS∆==(,显然反映了标的资产变动一个很小的单位时,期权价格的变化量;或者说,如果要避免标的资产价格变化给期权价格带来的影响,一个单位的看涨期权多头,就需要∆单位的标的资产空头加以保值。
事实上,我们在第十二章中将看到,1)N d ∆=(是复制交易策略中股票的数量,SN (d 1)就是股票的市值, -e -r(T-t)XN(d 2)则是复制交易策略中负债的价值。
最后,从金融工程的角度来看,欧式看涨期权可以分拆成资产或无价值看涨期权(Asset-or-noting call option )多头和现金或无价值看涨期权(cash-or-nothing option )空头,SN(d 1)是资产或无价值看涨期权的价值,-e -r(T-t)XN(d 2)是X 份现金或无价值看涨期权空头的价值。
这是因为,对于一个资产或无价值看涨期权来说,如果标的资产价格在到期时低于执行价格,该期权没有价值;如果高于执行价格,则该期权支付一个等于资产价格本身的金额,根据前文对N(d 2)和SN(d 1)的分析,可以得出该期权的价值为e -r(T-t)S T N(d 1)= SN(d 1)的结论;同样,对于(标准)现金或无价值看涨期权,如果标的资产价格在到期时低于执行价格,该期权没有价值;如果高于执行价格,则该期权支付1元, 由于期权到期时价格超过执行价格的概率为N(d 2),则1份现金或无价值看涨期权的现值为-e -r(T-t) N(d 2)。