误差和分析数据处理.
数据处理与误差分析报告

数据处理与误差分析报告1. 简介数据处理是科学研究和实验中不可或缺的一部分。
在进行实验和收集数据后,常常需要对数据进行处理和分析,从而揭示数据背后的规律和意义。
本报告将对数据处理的方法进行介绍,并分析误差来源和处理。
2. 数据处理方法2.1 数据清洗数据清洗是数据处理的第一步,用于去除无效数据、异常数据和重复数据。
通过筛选和校对,确保数据的准确性和一致性。
2.2 数据转换数据转换是将数据转化为适合分析的形式,通常包括数据的格式转换、单位转换和数据归一化等。
这样可以方便进行后续的分析和比较。
2.3 数据归约数据归约是对数据进行压缩和简化,以便于聚类、分类和预测分析。
常见的数据归约方法包括维度约简和特征选择等。
2.4 数据统计数据统计是对数据进行整体分析和总结,通常采用统计学的方法,包括均值、方差、标准差、相关系数等。
通过统计分析,可以从整体上了解和描述数据的特征和分布情况。
3. 误差来源和分析3.1 观测误差观测误差是由于测量和观测过程中的不确定性引起的误差。
观测误差可以分为系统误差和随机误差两种类型。
系统误差是由于仪器偏差、人为因素等引起的,通常具有一定的规律性;随机误差是由于种种不可预测的因素引起的,通常呈现为无规律的波动。
3.2 数据采集误差数据采集误差包括采样误差和非采样误差。
采样误差是由于采样过程中的抽样方法和样本大小等因素引起的误差;非采样误差是由于调查对象的选择、问卷设计的不合理等因素引起的误差。
采取合理的抽样策略和数据校正方法,可以减小这些误差。
3.3 数据处理误差数据处理误差是由于处理方法和算法的选择、参数设置的不合理等因素引起的误差。
不同的处理方法和算法可能会导致不同的结果,因此需要进行误差分析和对比,选择最合适的方法。
3.4 模型误差如果使用数学模型对数据进行分析和预测,模型误差是不可避免的。
模型误差主要是由于模型的简化、假设条件的不严谨等因素引起的。
通过对模型进行误差分析和验证,可以评估模型的可靠性和精度。
实验误差分析及数据处理

u + Δu = f (x + Δx, y + Δy,z + Δz)
由泰勒公式,并略去误差的高次项,得
115
地球物理实验
u + Δu = f (x, y,z) + ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
或
Δu = ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
该式即为误差传递公式。 例如我们通过直接测量圆柱形试件的直径D及高H来计算试件的体积V。
前面提到测量值=真值+误差,这里误差包含了系统误差和偶然误差,则测量值=真值+
系统误差+偶然误差,当系统误差修正后,误差主要即是偶然误差。在多次测量中,偶然误
差是一随机的变量,那么测量值也就是一随机变量,我们则可用算术平均值和标准误差来
描述它。
算术平均值 X :
X
=
1 n
n
∑
i =1
xi
式中xi为第i次测量的测量值,n为测量次数,当n→∞时, X →xt(真值),但是当n增加到 一定程度时, X 的精度的提高就不显着了,所以一般测量中n只要大于10就可以了。
明误差在 ± 1.96s 以外的值都要舍去,这里
1.96s=1.96×1.12=2.19
我们以算术平均值代表真值,表中第4个测量值的偏差 di 为2.4,在 ± 2.19 以外,应当舍
去,再计算其余9个数据的算术平均值和标准误差,有
m = ∑ mi = 416.0 = 46.2
n
9
∑ s =
d
2 i
偶然误差是一种不规则的随机的误差,无法予测它的大小,其误差没有固定的大小和 偏向。
分 析 化 学第三章 误差和分析数据处理

(二)已知样本标准偏差(s) 对于有限次测定,须根据t分布进行统计处理 1. 使用单次测定值
μ = x t p,f s
2. 使用样本平均值
μ = x t p,f s x = x t p,f
t值可通过p90表4-3查得
s n
t分布的意义 真值虽然不知,但可以通过由有限次
测定值计算出一个范围,它将以一定的置
x-μ u= σ
y = Φ(u) = 1 e 2π
u2 2
标准正态分布曲线
【特点】曲线的形状与µ 和σ的大小无关。
三、随机误差的区间概率
正态分布曲线与横坐标之间所包围的总面积,
表示来自同一总体的全部测定值或随机误差在上
述区间出现的概率总和为100%。
+
-
1 + Φ(u)du = e du = 1 2π -
正态分布曲线
(二)正态分布曲线的讨论
1.测定值的正态分布(x分布)
(1)x = μ时,其概率密度最大,曲线以x=μ
这一点的垂线为对称轴分布。 (2)精密度不同的两组测定值的正态分布曲 线,σ 值较小的相应的曲线陡峭,σ 值较大的曲 线较平坦。(☆)
(3)µ 和σ是正态分布的基本参数,一旦µ和
σ确定后,正态分布曲线的位置和形状就确了,这
二、正态分布
(一)正态分布曲线的数学表达式 测定次数无限增加,其测定值服从正态分布 的规律,其数学表达式为:
1 y = f(x) = e σ 2π (x-μ)2 2σ 2
σ-总体标准偏差,µ -总体平均值,在无系统 误差存在时,µ 就是真值T。y为测定次数无限时,
测定值xi出现的概率密度。 以x横坐标,y纵坐标 作图,得测定值的正态分布曲线。
数据处理及误差分析

数据处理及误差分析1. 引言数据处理及误差分析是科学研究和工程实践中一个至关重要的领域。
在收集和处理数据的过程中,往往会受到各种因素的干扰和误差的影响。
因此,正确地处理这些数据并进行误差分析,对于准确得出结论和进行科学决策至关重要。
2. 数据处理数据处理是指对收集到的数据进行整理、分析和解释的过程。
它包括了数据清洗、数据转换、数据提取和数据集成等步骤。
2.1 数据清洗数据清洗是指对原始数据进行筛选、剔除异常值和填充缺失值等处理。
清洗后的数据更加可靠和准确,能够更好地反映实际情况。
2.2 数据转换数据转换主要是将原始数据转化为符合分析需求的形式。
比如,将连续型数据离散化、进行数据标准化等。
2.3 数据提取数据提取是指从庞大的数据集中挑选出有意义和相关的数据进行分析。
通过合理选择变量和提取特征,可以提高数据分析的效率和准确性。
2.4 数据集成数据集成是指将来自不同数据源的数据进行整合和合并,以满足分析需求。
通过数据集成,可以获得更全面、更综合的数据集,提高分析结果的可信度。
3. 误差分析误差分析是对数据处理过程中产生的误差进行评估和分析。
误差可以分为系统误差和随机误差两种类型。
3.1 系统误差系统误差是由于数据收集和处理过程中的系统性偏差导致的。
它们可能是由于仪器精度不高、实验环境变化等原因引起的。
系统误差一般是可纠正的,但要确保误差产生的原因被消除或减小。
3.2 随机误差随机误差是由于抽样误差、观察误差等随机因素导致的。
它们是不可预测和不可消除的,只能通过多次重复实验和统计方法进行分析和控制。
4. 误差分析方法误差分析通常采用统计学和数学方法进行。
其中,常用的方法有误差传递法、误差平均法、误差椭圆法等。
4.1 误差传递法误差传递法是将各个步骤中产生的误差逐步传递,最终计算出整个数据处理过程中的总误差。
它能够帮助我们了解每个步骤对最终结果的影响程度,并找出影响结果准确性的关键因素。
4.2 误差平均法误差平均法是通过多次实验重复测量,并计算平均值来减小随机误差的影响。
物理实验中的数据处理与误差分析

物理实验中的数据处理与误差分析在物理实验中,数据处理与误差分析是非常重要的环节。
准确地处理实验数据并分析误差,可以提高实验结果的可靠性和准确性。
本文将介绍一些常见的数据处理方法和误差分析技巧,帮助读者更好地理解和应用这些知识。
一、数据处理方法1.平均值的计算在实验中,经常需要多次测量同一物理量,然后将测量结果求平均值。
计算平均值可以减小测量误差的影响,提高结果的准确性。
求平均值的方法很简单,只需要将所有测量结果相加,然后除以测量次数即可。
2.误差的传递在物理实验中,往往需要通过测量一些基本物理量来计算其他物理量。
当存在多个物理量的测量误差时,需要对误差进行传递计算。
常见的误差传递公式有乘法、除法和幂函数的误差传递公式。
3.直线拟合与斜率的计算在一些实验中,我们需要通过实验数据拟合一条直线来获得一些重要信息,如斜率、截距等。
直线拟合可以通过最小二乘法来完成,根据实验数据点与拟合直线的最小距离来确定直线的参数。
而斜率的计算可以通过拟合得到的直线参数来得出。
二、误差分析技巧1.随机误差与系统误差在物理实验中,误差通常分为随机误差和系统误差。
随机误差是由实验条件不完全相同或测量仪器精度的限制造成的,它的值在一定范围内变化。
系统误差是由于实验条件的固有缺陷或仪器的固有误差造成的,它的值通常是恒定的。
在误差分析中,需要分别考虑和处理这两种误差。
2.误差的类型与来源误差可以分为绝对误差和相对误差。
绝对误差是指测量结果与真实值之间的差值,而相对误差是指绝对误差与测量结果之间的比值。
误差的来源主要有仪器误差、人为误差和环境误差等。
3.误差的评估与控制误差的评估是确定测量结果可靠性和准确性的重要步骤。
通常可以采用标准差、百分误差和置信区间等方法来评估误差。
同时,通过合理地控制实验条件、使用精密的仪器和注意操作技巧等措施,可以降低误差的产生。
三、实例分析为了更好地理解数据处理与误差分析的应用,我们以一次重力实验为例进行分析。
分析数据时常见的误差与处理方法

分析数据时常见的误差与处理方法数据分析在现代社会中起着至关重要的作用,它帮助人们更好地理解和解释现象,从而指导决策和行动。
然而,在数据分析过程中,常常会出现各种误差,对结果的准确性和可靠性产生负面影响。
本文将从以下六个方面展开详细论述常见的数据分析误差及其处理方法。
一、采样误差采样误差是由于抽样方法不当或样本代表性不足而引起的误差。
例如,在进行社会调查时,如果采样方法不具备随机性,会导致调查结果的偏差。
处理采样误差的方法可以是增加样本的大小,提高样本的代表性以及采用更合理的抽样方法,如随机抽样或分层抽样。
二、测量误差测量误差指的是由于测量仪器的不准确性或被测对象的个体差异而导致的误差。
在进行实验研究或数据收集时,使用的测量工具和方法可能存在不确定性,从而引入测量误差。
要处理这种误差,可以提高测量仪器的精确度和可靠性,对被测对象进行多次测量并取平均值,或者通过使用标准化方法来校正测量结果。
三、数据处理误差数据处理误差是在数据输入、转换和存储过程中产生的误差。
常见的数据处理误差包括数据录入错误、数据丢失和数据转换错误等。
为了减少这种误差,可以使用自动化的数据采集和处理工具,加强对数据的质量控制,以及定期进行数据的核对和修正。
四、样本偏倚误差样本偏倚误差指的是样本在统计特征上与总体存在显著差异所引起的误差。
当样本不具备代表性时,会导致研究结果的偏离真实情况。
为了纠正样本偏倚误差,可以使用加权抽样法或启发式抽样法,以确保样本更接近总体的特征。
五、缺失数据误差缺失数据误差是由于数据的丢失或缺失引起的误差。
在进行数据分析时,常常会遇到数据缺失的情况,如果不处理好这些缺失数据,会导致结果的不准确性。
处理缺失数据误差的方法可以是使用插补法,将缺失数据进行估计和补全,或者通过合理的数据筛选和清洗来剔除缺失数据影响。
六、模型假设误差模型假设误差指的是在建模过程中所做出的假设与真实情况之间存在偏差。
在进行数据分析时,所使用的模型和方法都基于一定的假设前提,如果这些假设与真实情况不符,结果可能会产生误差。
定量分析中误差及数据处理

CLICK HERE TO ADD A TITLE
学习目的
原始测量数据如:m、V……
有效数字
测量误差 客观存在
测量结果:x1、x2、x3……
应记录几位数字?
计算公式
应保留几位数字?
误差的分类、特点及消除或减小
如何用测量值x1、x2、x3科学的表达样品真值
置信区间
可疑数值判断
=真值
和分别决定了正态曲线的位置与形状
描述了测量值x出现在某一位置的概率密度或出现在某一区域内的概率(如:出现在+内的概率为1)
反映数据集中趋势
反映数据分散趋势
3-4 随机误差的分布规律(2)
测量平均值 的分布规律
即一系列测定的平均值 (m)的分布规律(其中任一平均值均是n(有限)次测定平均结果)
01
系统误差(Systematic Error)
02
具有单向性、重现性、为可测误差,理论上可消除
03
随机误差(Random Error),亦称偶然误差
04
由不确定因素引起—服从统计规律(见3-4)
05
过失误差(mistake)
06
由粗心大意引起,可以避免,通常不算入误差范畴
误差的分类
3-1 误差的基本概念(4)
0.01 mL
0.02 mL
解:
常量滴定分析时,通常要求由滴定管读数引起的误差在0.1%以内,同时要求节约试剂,因此滴定体积一般应控制在2030 mL范围内(25 mL)
例5:滴定分析中称样质量的控制 万分之一分析天平的精度? 称取一份试样的绝对误差? 计算称样质量分别为20.0和200.0 mg时相对误差。
0.1 mg
物理实验中的数据处理和误差分析方法

物理实验中的数据处理和误差分析方法在物理实验中,数据处理和误差分析是非常重要的环节。
准确地处理实验数据和分析误差有助于提高实验结果的可靠性和准确性,进而为科学研究提供可靠的依据。
本文将介绍一些常用的数据处理和误差分析方法。
一、数据处理方法1. 数据整理在开始数据处理之前,首先需要整理实验数据。
将实验数据按照一定的规则进行排列,比如按照实验的不同条件进行分类、按照时间顺序排列等。
这样有助于我们对数据进行更加有效的处理。
2. 数据可视化将实验数据进行可视化处理是数据处理中常用的方法之一。
通过绘制图表,可以直观地展示数据的分布和趋势。
常用的图表包括折线图、柱状图、散点图等。
通过观察图表可以更好地理解数据,找出其中的规律。
3. 数据拟合数据拟合是将实验数据与某种数学模型相拟合的过程。
通过拟合可以得到更加精确的结果。
常用的拟合方法包括线性拟合、最小二乘法拟合等。
通过拟合得到的模型参数可以更好地描述实验数据,并用于预测未知数据。
二、误差分析方法1. 绝对误差与相对误差绝对误差是指实际测量值与真实值之间的差别,可以通过多次测量取平均值来减小。
相对误差是绝对误差与测量值的比值,可以用来评估测量结果的精度。
在误差分析中,我们通常关注相对误差。
2. 系统误差与随机误差系统误差是由于实验装置、测量仪器等固有原因导致的误差,可以通过校正来减小。
随机误差是由于实验中不可预测的因素引起的误差,可以通过多次测量取平均值来减小。
3. 方差分析方差分析是一种常用的误差分析方法。
通过对不同因素引起的误差进行方差分析,可以确定各个因素对误差的贡献程度,进而找出影响实验结果的主要因素。
4. 不确定度分析不确定度是描述测量结果的范围的指标,用来表示测量结果的可靠程度。
不确定度分析是通过对测量过程中各种因素进行综合考虑,计算实验结果的不确定度。
常用的不确定度分析方法包括合成不确定度法、最小二乘法不确定度分析等。
5. 能力指标分析能力指标分析是对实验结果质量进行评估的方法。
实验数据误差分析和数据处理

实验数据误差分析和数据处理数据误差分析是首要的步骤,它通常包括以下几个方面:1.随机误差:随机误差是指在重复实验的过程中,由于个体差异等原因引起的测量结果的离散性。
随机误差是不可避免的,并且符合一定的统计规律。
通过进行多次重复测量,并计算平均值和标准差等统计指标,可以评估随机误差的大小。
2.系统误差:系统误差是由于仪器、测量方法或实验条件所引起的,使得测量结果与真实值的偏离。
系统误差可能是由于仪器刻度的不准确、环境温度的变化等原因导致的。
通过合理校准仪器、控制环境条件等方式可以减小系统误差。
在数据误差分析的基础上,进行数据处理是必不可少的步骤。
数据处理的目的是通过对实验结果的合理处理,得到更为准确的结论。
1.统计处理:统计方法是最常用的数据处理方法之一、通过使用统计学中的概率分布、假设检验、方差分析等方法,可以对实验数据进行科学、客观的分析和处理。
2.回归分析:回归分析是一种通过建立数学模型来研究变量之间关系的方法。
通过对实验数据进行回归分析,可以确定变量之间的数学关系,并预测未知数据。
3.误差传递与不确定度评定:在实验中,不同参数之间的误差如何相互影响,以及这些误差如何传递到最终结果中,是一个重要的问题。
通过不确定度评定方法,可以定量评估各个参数的不确定度,并估计最终结果的不确定度。
4.数据可视化和图表展示:通过绘制合适的图表,可以更直观地展示实验数据的分布规律、趋势以及变化情况。
例如,折线图、散点图、柱状图等可以有效地展示数据的分布和相关关系。
综上所述,实验数据误差分析和数据处理是进行科学研究的重要环节。
准确评估和处理数据误差可以提高实验结果的可靠性和准确性,为研究结果的正确性提供基础。
通过合理选择和应用适当的数据处理方法,可以从实验数据中得出有意义的结论,并为进一步研究提供指导。
分析化学第二章误差与分析数据处理

根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性
。
1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。
误差分析与数据处理

误差分析与数据处理在我们的日常生活和各种科学研究、工程实践中,数据的获取和处理是至关重要的环节。
然而,由于各种因素的影响,我们所获得的数据往往存在一定的误差。
这些误差可能会对我们的分析结果产生误导,甚至导致错误的决策。
因此,误差分析与数据处理就成为了确保数据质量和可靠性的关键步骤。
首先,我们需要了解误差的来源。
误差大致可以分为两类:系统误差和随机误差。
系统误差是由于测量仪器的不准确、测量方法的不完善或者环境因素的恒定影响等原因导致的,其特点是误差的大小和方向具有一定的规律性。
例如,使用未经校准的温度计测量温度,每次测量结果都会偏高或偏低一个固定的值,这就是系统误差。
随机误差则是由一些不可预测的偶然因素引起的,其特点是误差的大小和方向没有明显的规律。
比如,在测量物体的长度时,由于人的读数瞬间的差异,每次测量结果可能会有所不同,这就是随机误差。
在进行误差分析时,我们需要对误差的大小和性质进行评估。
常用的误差衡量指标包括绝对误差、相对误差和标准误差等。
绝对误差是测量值与真实值之间的差值,它直接反映了误差的大小。
相对误差则是绝对误差与真实值的比值,能够更直观地反映测量的准确度。
标准误差则用于衡量多次测量结果的离散程度。
为了减小误差,我们可以采取多种措施。
在测量前,要对测量仪器进行校准和调试,选择合适的测量方法,并控制好测量环境。
在测量过程中,要严格按照操作规程进行操作,多次测量取平均值可以有效地减小随机误差。
此外,还可以采用更先进的测量技术和设备来提高测量的精度。
数据处理是对测量得到的数据进行整理、分析和计算的过程。
在数据处理中,我们需要对异常数据进行识别和处理。
异常数据是指与其他数据明显不符的数据点,可能是由于测量错误或者特殊情况导致的。
对于异常数据,我们不能简单地将其舍去,而需要进行仔细的分析和判断。
如果确定是由于测量错误导致的异常数据,应该予以剔除;如果异常数据是真实存在的,我们需要对其原因进行研究,并在后续的分析中给予适当的考虑。
第二章 误差和分析数据的处理(改)

记录的数字不仅表示数量的大小,而且要正 记录的数字不仅表示数量的大小, 确地反映测量的精确程度。 确地反映测量的精确程度。
结果 绝对误差 相对误差 ±0.002% ±0.02% ±0.2% 有效数字位数 5 4 3
0.51800 ±0.00001 0.5180 0.518 ±0.0001 ±0.001
E
绝对误差与相对误差的计算
仪器的绝对误差通常是一个定值,我们可以 仪器的绝对误差通常是一个定值, 相对误差 测量值(x) 真值 真值(µ) 绝对误差 绝对误差(δ) 物品 测量值 (RE%) 用称( 取较大质量(体积)的试样, 用称(量)取较大质量(体积)的试样,使 0.0002g A 0.2175g 0.2173g 0.1% 测量的相对误差较少, 测量的相对误差较少,在实际工作中意义较 0.0002g B 1% 大。 0.0217g 0.0215g
δ A = xA − µA = 0.2175− 0.2173 = 0.0002 当测量值的绝对 误差恒定时, δB = xB − µB = 0.0217 − 0.0215 = 0.0002 误差恒定时,被
测定的量越大, 测定的量越大, 0.0002 δA RE (A) = % ×100%= ×100%= 0.1% 相对误差越小, 相对误差越小, 0.2173 µA 测定的准确性也 0.0002 δB 就越高。 就越高。 RE (B) = ×100%= % ×100%= 1%
n
i
d=
∑x −x
i =1 i
n
n
=
37.40 + 37.20 + 37.30 + 37.50 + 37.30 = 37.34 5
n
=
0.06 + 0.14 + 0.04 + 0.16 + 0.04 = 0.088 5
误差分析与数据处理ppt课件.ppt

老化、机械零件内应力变化引起的。由于它有不平稳随机 过程的特点,误差值在单调缓慢变化,因此不能象对系统 误差那样引进一次修正量即能校正,又不能象对一般随机 误差那样按平稳随机过程的特点来处理,因而常需不断进 行校正,测量准确度与对仪器仪表的校正周期有关。
1) 直间接测量:从一个或几个直接测
或量具就可直接得到被测量 量结果按一定的函数关系计算出来
值的测量;
的过程,称为间接测量。
➢例如:用直尺测量长度;
以表计时间;
天平称质量;
M
安培表测电流。
d
V hd 2
h
4
M V
4M
d 2h
1
2)等精度测量和非等精度测量
2
1.2真值、代表值与误差
1.2.1真值
指在某一时刻和某一位置的某个物理量客观存在的真实值。严 格地讲,真值是无法测得的,只能测得真值的近似值。实际应 用中真值是指测量次数无限多时的平均值作为真值。
➢理论真值:理论上证明过的某些已知的固定量值,如三角 形之和为180º。
➢约定真值:国际计量组织通过决议规定的某些计量单位的 量值,如规定铂铱合金的国际千克原器为1kg的质量单位。 光在真空中1s时间内传播距离的1/299792485为1米。
仪器
天平不等臂
6
➢系统误差的分类
1)按系统误差产生的原因分 ➢设备误差:由于测量仪器、工具的不准确或安装不正确造成的,如 仪器的零位不准,空行程、不水平、不垂直、导线的影响等。 ➢环境误差:由于测量环境条件变化的影响,如温度、压力、外电磁 场的影响。 ➢人员误差:由测量人员自身造成的,如读数的偏大、偏小、测量的 超前或滞后等。 ➢方法误差:由于测量方法不完善,计算公式的近似简化引起的。
误差分析与数据处理

产生原因-人操作上的粗心大意,外界的强大干扰。
消除方法-当发现粗大误差时,应予以剔除。 结论:在进行误差分析时,粗差剔除,系统误差和随机误 差要用适当的方法进行处理和估算。
课堂提问:
1.请举出生话中的系统误差、随机误差、粗大误差的 实例。 2.第1章讲过一些仪表性能指标,其中就涉及哪个误 差概念?
系统误差: 与真值之差。 随机误差:某一测量值与 的差值。 2.对称性:xi大致地分布于 两侧。 剩余误差(残差)Vi= xi - 残差基本互相抵消。残差总和:
3.有界性:在一定的条件下, xi有一定的分布范围,超过这个范围的可能性很 小,一般作为粗大误差处理。
当n→∞时,测量列xi的算术平均值 可认为是测量值的最可信值,但无 法表达出测量值的误差范围和精度高低。一般用下式表示存在随机误差时的 测量结果:
解: 1.按照测量读数的顺序列成表格。 2.计算测量列xi的算术平均值: =(633.97/16)=39.623 mm。 3.算出每个测量读数的残差Vi ,填写在xi的右边。并验证了 。 4.在每个残差旁算出 和 必须的中间过程值 , 然后求出 =2.140mm2 5.计算出方均根误差 =0.378mm
2.2.1随机误差的统计特性
单次测量具有随机性,但多次测量其总体误差具有规律性特征。 测量列:保持测量条件不变,对同一测量对象进行多次重复测量得到一系列包含 随机误差的读数x1、x2、…,xn。 统计直方图:以测得的数据为横坐标,出现的次数为纵坐标。 正态分布曲线(随机误差的概率密度,高斯误差):当测量次数n→∞ 时,则无 限多的直方图的顶点中线的连线就形成一条光滑的连续曲线。有如下规律: 1.集中性:大量的测量值集中分布于算术平均值 附近。
2.随机误差-在同一条件下,多次测量同一被测量,有时 会发现测量值时大时小,机误差。随机误差反映了测 量值离散性的大小。 产生原因(随机效应)-随机误差是测量过程中许多独立 的、微小的、偶然的因素引起的综合结果。 消除方法-单个测量值误差是随机的,难以消除或修正; 但误差的整体服从正态分布统计规律,因此可以增加测量 次数,并对测量结果进行数据统计处理。 3.粗大误差-明显偏离真值的误差称为粗大误差(过失误 差)。
第二章 误差和分析数据处理

2位
2位
2位
(6) 数据的第一位数大于等于 8, 有效数字可多算一 位: 9.55 4位 ; 8.2 3位
37
1.0008 0.1000 0.0382
43181 10.98%
五 位有效数字 四 位有效数字 二 位有效数字 一 位有效数字 位数模糊
1.98×10-10 三 位有效数字
54
0.05
0.0040
度)是精密度常见的别名。
一般例行分析精密度用相对平均偏差表示就
够了,但在科研中要用标准偏差或相对标准偏差
来表示。
18
3、准确度和精密度的关系
x1
x2
x3
x4
19
一般情况下,精密度高,准确度不 一定高。 精密度不高,准确度不可靠。 在消除系统误差的前提下,精密度 好,准确度就高。 精密度高是保证准确度好的前提 精密度好不一定准确度高
答:不可以。 3、系统误差和偶然误差在起因及出现规律方面,有什 么不同? 答:系统误差是由确定原因引起的,可重复出现,偶然 误差是由不确定原因引起的,遵循一定的统计规律。
7
4、分析测定中系统误差的特点是: A、由一些原因引起的 B、重复测定会重复出现 C、增加测定次数可减小系统误差 D、系统误差无法消除
☆移液管:25.00mL(4);
☆量筒(量至1mL或0.1mL):25mL(2), 4.0mL(2)
34
有效数字的位数与计算相对误差有关
0.5180g
相对误差=± 0.0001/ 0.5180 ×100%=±0.02%
0.518g
相对误差=± 0.001/0.518 ×100%=±0.2%
35
判断有效数字的位数:
第二章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、判断题
1. 按系统误差传递规律,和、差的绝对误差等于
各测量值绝对误差的和、差。 √
2. 按系统误差传递规律,积、商的相对误差等于
各测量数椐相对误差的积、商。 × 3. ⑴某数椐写作1200时具有四位有效数字, ×
⑵写作1.2×103时具有二位有效数字。
√
4. 用分析天平以减量法称量试样或试剂时,
9. pH=6.83,若取相同的有效数字位数,[H+]=
1.5 ×107 ________mol/L 。
10. 醋酸的pKa=4.75,若取相同的有效数字 位数,其Ka=__________ 1.8×105 。 11. 减量法称得某试剂质量为0.2347g,可估
计称量值的绝对误差为± _________ 0.0002g 。称量
C 天平室内气流的方向、强弱的变化
D 操作者判断终点颜色总是偏深
2.确定一组测量值是否存在系统误差应进行
的统计学检验为
A G检验
C t检验
B F检验
D F检验+t检验
D
3. 下述原因中仅产生系统误差的是
C
A 称量时天平台发生震动
B 室温及湿度的波动 C 容量瓶标示的容积比实际容积偏小 D 滴定管读数时习惯性的视线偏低 4. 下列方法中,用来减小偶然误差的方法是 C A 纯化试剂 B 校正天平砝码 C 增加平行测定次数 D 做空白对照试验
C
7. 下列产生误差的原因导至偶然误差的是 C
A 滴定管刻度不匀 D 指示剂选择不当
B 天平两臂不等长
C 天平室气压风向变化
8. 下列产生误差的原因导至方法误差 的是 A 容量吸管未校准 B 常量组分分析采用分光光度法 C 入射光波长与仪器示数不符 D 电压不稳定
重复性,故 出现,并在平行测定中具有_______
可用加校正值 _________的方法予以消除,但不能
增加平行测定次数 的方法予以减免。 用___________________
18. 测定纯明矾后报出结果:
μ =10.79±0.04(%)(Р为95%),
真值μ包括在10.75~10.83 此结果的含义是_______________________
0.0002/0.2347, 值的相对误差计算式为 ± _____________ 0.085 % 。 相对误差为± ________
标准试样 按被测物相同方法 12.对照试验是将________
测定,由对比确定校正值,消除系统误差。
16. 具有相对真值 ________的物质称为标准参考物质。 稳定 性 标准参考物质必须具有良好的_______ 均匀 性。 与______ 大小 方向 和______ 17. 由于系统误差是以固定的______
之间的把握有 95% 。 _________________ 19. 进行数据统计处理的基本步骤是,首先进
Q 检验或G 检验 ,而后进行 _________ F 检验 , 行________________ t 检验 。 最后进行_______
三、单选题 1.下列原因产生系统误差并伴有偶然误差的是 A 天平砝码未经校正 B 试剂不够纯 D
5. 计算式 8.6×166.2/5.7934的运算中,若用
安全数字法修约应 A 先运算,结果取2位有效数字 B 先运算,结果取1位小数 C 先修约至2位有效数字再运算,结果取2位 有效数 D 先修约至3位有效数字再运算,结果取2位 有效数
D
6. 下列措施中减小系统误差的是
A 稳定测量仪器电源电压 B 天平室放置吸湿机 C 作与标准物对照试验 D 增加平行测定次数
的,故其偶然误差服从 t 分布的规律。
二、填充题
1. 计算式(2.5/30.78)×5.9863的运算中,按有效
数字运算法则,采用安全数字法修约,应分为
3 位有效数字再 两步:① 先将各数修约至______
2 位有效数字。 进行乘除。② 计算结果应取____
多次平行测定结果互相 接近的程度, 2. 精密度表示_____________________
±0.0002/0.2613 , 7. 上题称量中的相对误差计算式为____________
算得其相对误差(取2位有效数)为_________% ±0.077 。
8. 标定出某NaOH溶液浓度为0.1568mol/L,若溶 液的实际浓度为0.1566mol/L, 该标定的相对误 (0.0002/0.1566)×100% , 算得其 差计算式为 _____________________ 0.13 。 相对误差为_____%
用偏差的大小来表示。 (平均)值与真值相互 接近的程度, 3. 准确度表示测定 ______________________ 用误差大小来衡量。
4. 25000的有效数字位数不确定,若写作_________ 2.500×104 ,
则为4位有效数字。
5. 计算式2.54+9.8653-0.34782运算时,按有效数字 运算法则,若采用安全数字修约法,修约步骤 小数 再加减。 为:①先将各数修约至____ 3 位_______ 小数 。 ②运算结果取____ 2 位_______ 6. 用万分之一分析天平以减量法称得试样0.2613g。 试样的实际质量为_______g 0.2611 至_______g 0.2615 范围内。
要原因。 9. NaOH标准液久置后吸收了空气中的 CO2用来滴定弱酸,会产生偶然误差。× 10.置信区间愈大,则置信度(置信水平)
×
愈大,t,f值也愈大。
√
11. 当真值未知且校正了系统误差,可用 √
偏差代替误差(即偏差小准确度高)。 12. 若真值 μ 被包括在样本均值的置信区 √ 间内,即可作出: x 与 μ 之间不存在 显著系统误差的结论。 13. 由于在实际测量中的测量次数是有限 √
绝对误差为±0.0002g,欲使相对误差不
超过±0.1%,最小称量量应为0.2克。 √ 5. 数据 0.36465001 修约为 4 位有效数字时 应为0.3646。 很靠近真值。
×
6. 一组精密度好的测量数椐其平均值一定
×
7. 一组平均值的准确度很低的测量数据, 其精差的主