2020-2021初二数学上期末试题(带答案)
北京市朝阳区2020-2021学年八年级上学期期末数学试题(含答案解析)
北京市朝阳区2020-2021学年八年级上学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.新版《北京市生活垃圾管理条例》于2020年5月1日实施,条例规定生活垃圾应按照厨余垃圾、可回收物、有害垃圾、其他垃圾的分类,分别投入相应标识的收集容器.下图为某小区分类垃圾桶上的标识,其图标部分可以看作轴对称图形的有( )A .1个B .2个C .3个D .4个 2.下列计算正确的是( )A .235a a a ⋅=B .325()a a =C .2336(2)6ab a b =D .223344a a a ÷= 3.一个多边形的内角和等于外角和的两倍,那么这个多边形是( )A .三边形B .四边形C .五边形D .六边形 4.下列因式分解变形正确的是( )A .22242(2)a a a a -=-B .2221(1)a a a -+=-C .24(2)(2)a a a -+=+-D .256(2)(3)a a a a --=-- 5.把分式方程11122x x x--=--化为整式方程正确的是( ) A .1(1)1x --= B .1(1)1x +-=C .1(1)2x x --=-D .1(1)2x x +-=- 6.如图,要测量池塘两岸相对的两点A ,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C ,D ,使BC =CD ,再画出BF 的垂线DE ,使E 与A ,C 在一条直线上,可得△ABC ≌△EDC ,这时测得DE 的长就是AB 的长.判定△ABC ≌△EDC 最直接的依据是( )A .HLB .SASC .ASAD .SSS7.如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC 为格点三角形,在图中最多能画出( )个格点三角形与△ABC 成轴对称.A .6个B .5个C .4个D .3个8.n m ,1m n +,1n 都有意义,下列等式①22n n m m=;②111m n m n =++;③22n n m m =;④22n n m m +=+中一定不成立.....的是( ) A .②④B .①④C .①②③④D .②二、填空题9.分解因式:328x x -=______.10.若分式21x +有意义,则x 的取值范围是_________. 11.若20a b -=,且0b ≠,则分式a b a b +-的值为______. 12.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.13.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE,点D 、E 可在槽中滑动.若∠BDE=75°,则∠CDE 的度数是__________14.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.15.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.16.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.三、解答题17.计算:3232()a a a a ⋅+-÷.18.解分式方程:22111x x x =--. 19.解分式方程:31(1)(2)1x x x x +=-+-. 20.已知2277x x -=,求代数式2(23)(3)(21)x x x ---+的值.21.如图,在△ABC 中,AB >AC >BC ,P 为BC 上一点(不与B ,C 重合).在AB 上找一点M ,在AC 上找一点N ,使得△AMN 与△PMN 全等,以下是甲、乙两位同学的作法.甲:连接AP ,作线段AP 的垂直平分线,分别交AB ,AC 于M ,N 两点,则M ,N 两点即为所求;乙:过点P 作PM ∥AC ,交AB 于点M ,过点P 作PN ∥AB ,交AC 于点N ,则M ,N 两点即为所求.(1)对于甲、乙两人的作法,下列判断正确的是 ;A .两人都正确B .甲正确,乙错误C .甲错误,乙正确(2)选择一种你认为正确的作法,补全图形并证明.22.如图,在△ABC 中,AD 平分∠BAC ,BD ⊥AD 于点D ,过点D 作DE ∥AC 交AB 于点E .求证:E 为AB 的中点.23.2020年12月17日,中国研制的嫦娥五号返回器成功携带月球样品着陆地球,在接近大气层时,它的飞行速度接近第二宇宙速度,约为某列高铁全速行驶速度的112倍.如果以第二宇宙速度飞行560千米所用时间比该列高铁全速行驶10千米所用时间少50秒,那么第二宇宙速度是每秒多少千米?24.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.25.在△ABC 中,∠C =90°,AC =BC =2,直线BC 上有一点P ,M ,N 分别为点P 关于直线AB ,AC 的对称点,连接AM ,AN ,BM .(1)如图1,当点P 在线段BC 上时,求∠MAN 和∠MBC 的度数;(2)如图2,当点P 在线段BC 的延长线上时,①依题意补全图2;②探究是否存在点P ,使得3BM BN=,若存在,直接写出满足条件时CP 的长度;若不26.在学习了“等边对等角”定理后,某数学兴趣小组的同学继续探究了同一个三角形中边与角的数量关系,得到了一个正确的结论:“在同一个三角形中,较长的边所对的角较大”,简称:“在同一个三角形中,大边对大角”.即,如图:当AB>AC时,∠C >∠B.该兴趣小组的同学在此基础上对等腰三角形“三线合一”性质的一般情况,继续进行了深入的探究,请你补充完整:(1)在△ABC中,AD是BC边上的高线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图2,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:∵AD是BC边上的高线,∴∠ADB=∠ADC=90°.∴∠BAD=90°-∠B,∠CAD=90°-∠C.∵AB>AC,∴(在同一个三角形中,大边对大角).∴∠BAD∠CAD.(2)在△ABC中,AD是BC边上的中线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图3,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:参考答案1.B【分析】根据轴对称图形的概念判断即可.【详解】解:厨余垃圾是轴对称图形;可回收物不是轴对称图形,注意箭头;有害垃圾是轴对称图形;其他垃圾不是轴对称图形,注意箭头.所以是轴对称图形的有2个.故选:B .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.A【分析】根据幂的运算法则和整式的除法法则对各选项进行计算,即可作出判断.【详解】A 、232+35=a a a a ⋅=,故本选项正确;B 、32236=()a a a ⨯=,故本选项错误;C 、23336368()2=2ab a b a b =,故本选项错误;D 、223344a a ÷=,故本选项错误; 故选:A【点睛】本题主要考查了同底数幂的乘法,幂的乘方,积的乘方,整式的除法,正确掌握相关运算法则是解题关键.3.D【分析】根据多边形的外角和为360°得到内角和的度数,再利用多边形内角和公式求解即可.【详解】解:设多边形的边数为x ,∵多边形的内角和等于外角和的两倍,∴多边形的内角和为360°×2=720°,∴180°(n ﹣2)=720°,解得n=6.故选D.【点睛】本题主要考查多边形的内角和与外角和,n 边形的内角的和等于: (n - 2)×180°(n 大于等于3且n 为整数);多边形的外角和为360°.4.B【分析】根据提公因式分解因式可得出A 错误;根据完全平方公式可得B 正确;根据平方差公式可得C 错误;根据十字相乘法可判断D 错误.【详解】A 、2242(2)a a a a -=-,故此选项错误;B 、2221(1)a a a -+=-,故此选项正确;C 、24(2)(2)a a a -+=+-,故此选项错误;D 、256(6)(+1)a a a a --=-,故此选项错误.故选:B【点睛】本题主要考查了因式分解,要灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要提取公因式,再考虑运用公式法分解.5.D【分析】两边同时乘以最简公分母2x -即可化为整式方程,再依次判断即可.【详解】解:两边同时乘以2x -得1(1)2+-=-,x x故选:D.【点睛】本题考查解分式方程.注意去分母两边同时乘以最简公分母时两边都要乘,每一项都要乘.6.C【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,再根据已知选择判断方法.【详解】解:根据题意,∠ABC=∠EDC,BC=CD,∠ACB=∠ECD,∴能证明△ABC≌△EDC最直接的依据是ASA.故选:C.【点睛】本题考查证明三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.A【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.【详解】解:如图,可以画6个.【点睛】本题考查了轴对称变换,能确定对称轴的位置是解题关键.8.D【分析】根据题意,判断出0m ≠,0n ≠,+0m n ≠,根据分式的性质逐个判断即可.【详解】解:∵ n m ,1m n +,1n都有意义, ∴ 0m ≠,0n ≠,+0m n ≠, ①222=n n n m mm ⎛⎫= ⎪⎝⎭,仅需10n n m m ⎛⎫-= ⎪⎝⎭,即=1n m 时成立; ②111=m n m n++,不成立; ③22n n m m=,(右侧分子分母同时除以2),因此成立; ④22n n m m +=+,()()2=2n m m n ++即2=2n m ,当=n m 时成立; 故仅有②一定不成立,故选D【点睛】本题综合考查了分式的基本性质,解题关键是根据题意得出m 、n 和+m n 的范围. 9.()()222+-x x x【分析】原式提取2x ,再利用平方差公式分解即可.【详解】解:328x x -22(4)x x =-2(2)(2)x x x =+-,故答案为:()()222+-x x x .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.【解析】 ∵分式21x +有意义, ∴10x +≠,解得1x ≠-.故答案为1x ≠-.11.3-【分析】由已知2a−b =0,可知b =2a ;将所得结果代入所求的式子中,经过约分、化简即可得到所求的值.【详解】解:∵2a−b =0,∴b =2a ; ∴23=32a b a a a a b a a a++==----. 故答案为−3.【点睛】正确对式子进行变形,化简求值是解决本题的关键.在解题过程中要注意思考已知条件的作用.12.(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积.13.80°【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.14.1【分析】过A 作AC ⊥OB ,首先证明△AOB 是等边三角形,再求出OC 的长即可.【详解】解,过A 作AC ⊥OB 于点C ,∵AB=OB ,∠A=60°∴∠AOB=60°且△AOB 是等边三角形,∵点B 的坐标为(2,0)∴OB=2∵AC ⊥OB∴112122OC OB ==⨯= 故答案为:1.【点睛】此题主要考查了坐标与图形的性质,掌握等边三角形的性质是解答此题的关键.15.④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.16.5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h ===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.17.0.【分析】原式先计算积的乘方,再计算同底数幂的乘除法即可.【详解】解:3232()a a a a ⋅+-÷=462a a a -÷=44a a -=0.【点睛】此题主要考查了积的乘方和同底数幂的乘除法,熟练掌握运算法则是解答此题的关键. 18.方程无解.【分析】先两边同乘以(1)(1)x x +-将分式方程化为整式方程,再按照移项、合并同类项、系数化为1的步骤解方程即可得.【详解】 22111x x x =--,即211(1)(1)x x x x =-+-, 方程两边同乘以(1)(1)x x +-化成整式方程,得12x x +=,移项,得21x x -=-,合并同类项,得1x -=-,系数化为1,得1x =,经检验,1x =时,原分式方程的分母等于0,即1x =不是原方程的解,故方程无解.【点睛】本题考查了解分式方程,熟练掌握分式方程的解法是解题关键.19.方程无解【分析】去分母将分式方程化为整式方程,求解并验证根即可.【详解】解:去分母得:3(1)(2)(2)x x x x +-+=+,去括号得:22322x x x x ++-=+,移项合并得:1x -=-,解得:1x =.经检验1x =是该方程的增根,即方程无解.【点睛】本题考查解分式方程.解分式方程的思路就是去分母两边乘以最简公分母,将分式方程化为整式方程求解.解分式方程一定不要忘了验根.20.19【分析】先通过整式的运算法则将代数式化简成22712x x -+,再整体代入求值.【详解】解:原式()()224129263x x x x x =-+-+-- 224129253x x x x =-+-++22712x x =-+∵2277x x -=,∴2277x x -=,∴原式71219=+=.【点睛】本题考查整式的化简求值,解题的关键是掌握整体代入的思想求值.21.A .【分析】(1)如图1,根据线段垂直平分线的性质得到MA=MP,NA=NP,则根据“SSS”可判断△AMN≌△PMN,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形AMPN为平行四边形,则根据平行四边形的性质得到MA=PN,MP=AN,则根据“SSS”可判断△AMN≌△PNM,则可对乙进行判断.(2)根据(1)即可得出证明过程【详解】(1)解:如图1,∵MN垂直平分AP,∴MA=MP,NA=NP,而MN=MN,∴△AMN≌△PMN(SSS),所以甲正确;如图2,∵MN∥AN,PN∥AM,∴四边形AMPN为平行四边形,∴MA=PN,MP=AN,而MN=MN,∴△AMN≌△PNM(SSS),所以乙正确.故选:A.(2)正确做法的证明同(1)【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.22.见解析【分析】证明AE=DE,EB=DE即可解决问题【详解】证明:∵AD平分∠BAC∴∠CAD=∠EAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠EAD=∠ADE,∴DE=AE,∵BD⊥AD,∴∠ADB=90°,∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,∵∠EAD=∠ADE,∴∠BDE=∠ABD,∴BE=DE,∴AE=BE,∴E是AB的中点.【点睛】本题考查等腰三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题.23.第二宇宙速度是每秒11.2千米.【分析】设第二宇宙速度是每秒xkm,则高铁全速行驶的速度是每秒1112x km,根据第二宇宙速度飞行560千米所用时间+50=该列高铁全速行驶10千米所用时间,列出方程求解即可.【详解】解:设第二宇宙速度是每秒xkm ,则高铁全速行驶的速度是每秒1112x km , 根据题意, 11125601050x x+=, 解得11.2x =,经检验11.2x =是该方程的解.所以,第二宇宙速度是每秒11.2千米.【点睛】本题考查分式方程的应用.能结合题意找出等量关系列出方程是解题关键.不要忘记验根哦. 24.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a 、b 、c 为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在. 25.(1)∠MAN =90°,∠MBC =90°;(2)补全图形见解析;(3)存在,CP=1.【分析】(1)连接CN ,AP ,MP ,根据轴对称的性质和等腰三角形三线合一可得∠NAC=∠CAP ,∠PAB=∠MAB ,∠ABC=∠ABM ,再根据等腰直角三角形的性质即可求得∠MAN 和∠MBC ;(2)①依据轴对称图形对应点的连线被对称轴垂直平分补全图即可;②根据垂直平分线的性质可得PB=BM ,PC=CN ,再设BN 长为x ,利用3BM BN和线段的和差列出方程求解即可.【详解】解:(1)如图,连接CN ,AP ,MP ,∵N 、P 关于AC 对称,∴C 为PN 的中点,且AC 为NP 的中垂线,∴AN=AP ,∴△ANP 为等腰三角形,∴∠NAC=∠CAP (三线合一),同理可证∠PAB=∠MAB ,∠ABC=∠ABM ,∵AC=BC=2,∠ACB=90°,∴∠CAB=∠ABC=45°,∴∠MAN=∠NAC+∠CAP+∠PAB+∠BAM=2∠CAB=90°,∠MBC=∠ABC+∠ABM=2∠ABC=90°;(2)①补全图2如下,②由(1)知B 在PM 的中垂线上,A 在PN 的中垂线上,∴PB=BM ,PC=CN ,设BN 长为x ,则BM 的长为3x ,CN 长为2-x ,∴PC=CN=2-x ,∵PB=BM=PC+BC,∴322x x =-+,解得x=1,∴满足条件的P 点存在,且CP=2-1=1.【点睛】本题考查轴对称的性质,作轴对称图形,等腰三角形三线合一,垂直平分线的性质等.理解轴对称图形对应点连线被对称轴垂直平分是解题关键.26.(1)①见解析,②∠B<∠C ,>;(2)①见解析;②<【分析】(1)①由HL 证明Rt △ABD ≌Rt △ACD 可得结论;②由AB >AC 得∠C >∠B 即可得出结论;(2)①由SSS 证明△ABD ≌△ACD 可得结论;②作辅助线证明△BDE CDA ≅∆,得BE CA =,∠BED CAD =∠,证得∠BAD BED <∠,即可得到结论.【详解】解:(1)①证明:∵AD 是BC 边上的高线∴∠ADB=∠ADC=90°,在Rt △ADB 和Rt △ADC 中AB AC AD AD =⎧⎨=⎩∴Rt △ABD ≌Rt △ACD∴∠BAD =∠CAD ;②证明:∵ AD 是BC 边上的高线,∴∠ADB =∠ADC =90°.∴ ∠BAD =90°-∠B ,∠CAD =90°-∠C . ∵AB >AC ,∴ ∠B<∠C (在同一个三角形中,大边对大角).∴∠BAD > ∠CAD .故答案为:∠B<∠C ,>;(2)①证明:∵AD 是BC 边上的中线∴BD=CD在△ABD 和△ACD 中AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD∴∠BAD=∠CAD②如图,延长AD 至点E ,使AD=ED ,连接BE ,∵AD 是△ABC 的BC 边上的中线,∴BD CD =在△BDE 和△CDA 中,BD CD BDE CDA ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE CDA ≅∆∴BE CA =,∠BED CAD =∠,又AB AC >,则AB BE >∴∠BAD BED <∠∴∠BAD CAD <∠.故答案为:<.【点睛】此题主要考查了全等三角形的判定与性质,作出辅助线构造全等三角形是解答此题的关键.。
人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。
2020-2021学年山西省太原市八年级(上)期末数学试卷及参考答案
2020-2021学年山西省太原市八年级(上)期末数学试卷一、选择题(本大题含10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置.1.(3分)有理数14的算术平方根是()A.7B.14C.D.﹣2.(3分)如图,将两个完全相同的三角板的斜边重合放在同一平面内,可以画出两条互相平行的直线.这样画的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等3.(3分)已知y是x的正比例函数,当x=3时,y=﹣6,则y与x的函数关系式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x 4.(3分)两个直角三角形拼成如图所示的图形,则x2的值为()A.B.3C.D.55.(3分)下列运算正确的是()A.÷=2B.(2)2=10C.=﹣5D.=﹣5 6.(3分)“烟头不落地,城市更美丽”,志愿者王大爷坚持每天在小区内捡拾烟头.上周一到周日王大爷每天捡拾烟头的数量(单位:个)依次为:22,28,36,24,22,36,36.这组数据的中位数、众数分别为()A.24,36B.28,22C.24,22D.28,367.(3分)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上(点A在点B左侧),点C在y轴正半轴上.若AB=13,AC=12,则点C的坐标为()A.(0,5)B.(0,12)C.(0,)D.(0,)8.(3分)已知点P(2,﹣4)与点Q(6,﹣4)关于某条直线对称,则这条直线是()A.x轴B.y轴C.过点(4,0)且垂直于x轴的直线D.过点(0,﹣4)且平行于x轴的直线9.(3分)以二元一次方程2x+y=﹣1的解为坐标的点组成的图象画在坐标系中可能是()A.B.C.D.10.(3分)春节将至,某超市准备用价格分别是36元/kg和20元/kg的两种糖果混合成100kg 的什锦糖出售,混合后什锦糖的价格是28元/kg.若设需要36元/kg的糖果xkg,20元/kg 的糖果ykg,则下列方程组中能刻画这一问题中数量关系的是()A.B.C.D.二、填空题(本大题含5个小题,每小题2分,共10分)将答案写在题中横线上. 11.(2分)如图,△ABC中,∠A=45°,∠C=75°,点D,E分别在边AB,AC上,若DE∥BC,则∠ADE的度数为.12.(2分)用代入消元法解二元一次方程组,将②代入①后得到的方程为.13.(2分)校运会上,七、八、九年级同学分别组建了红、黄、蓝三支仪仗队,各队队员身高(cm)的平均数()与方差(s2)如表所示,则三支仪仗队中身高最整齐的.红队黄队蓝队165168170s212.758.810.4514.(2分)已知直线y=2x与y=﹣x+n交于点(1,m),则方程组的解为.15.(2分)已知△ABC中,AB=AC=10,BC=12.请从下面A,B两题中任选一题作答.我选择题.A.如图1,若点D在AC边上,且BD⊥AC,则BD的长为.B.如图2,若点E在BC边上,且AE=CE,则AE的长为.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.(8分)计算下列各题:(1)+﹣;(2)()2﹣×.17.(6分)下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:.解:①×4,得8x﹣4y=16.③……第一步②﹣③,得﹣y=4.……第二步y=﹣4;……第三步将y=﹣4代入①,得x=0;……第四步所以,原方程组的解为.……第五步填空:(1)这种求解二元一次方程组的方法叫做法;以上求解步骤中,第一步的依据是.(2)第步开始出现错误,具体错误是;(3)直接写出该方程组的正确解:.18.(5分)在证明“三角形内角和等于180”这一命题时,小彬的思路如下.请写出“求证”部分,补充第一步推理的依据并按他的思路完成后续证明.已知:如图,△ABC.求证:.证明:如图,在BC边上取点D,过点D作DE∥AB交AC于点E,过点D作DF∥AC交AB于点F.∵DE∥AB,∴∠A=∠1,∠B=∠2(依据:).∵DF∥AC,∴∠1=∠3.19.(6分)列二元一次方程组解决问题:随着地铁2号线一期的开通,太原正式进入地铁时代.已知2号线一期采用按里程分段计价的票制,其中全程最高票价为6元,学生可享受半价.周日,八年级某班师生共36人从始发站“西桥”乘地铁至终点站“尖草坪”,感受“地铁速度”,其中学生均购半价票,单程共付车票费用126元.求他们购买全价票与半价票各多少张?20.(6分)2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目知识竞赛演讲比赛版面创作班次甲859188乙90848721.(9分)某经销商销售一种燃气加热器.如图,射线OA反映了该加热器的销售收入y1(元)与销售量x(台)的关系;射线BC反映了该加热器的销售成本y2(元)与销售量x(台)之间的关系,其中x≥0,根据图象解答下列问题:(1)射线OA对应的函数表达式为;射线BC对应的函数表达式为;(2)图象中射线OA与射线BC的交点P的坐标为,点P坐标表示的实际意义是;(3)设该经销商销售此加热器所获利润为w(元)(利润=销售收入﹣销售成本,且w >0).①求w(元)与销售量x(台)之间的函数关系式,并写出自变量x的取值范围;②若该经销商销售此种加热器获得了5000元的利润,则共销售了多少台加热器?22.(8分)综合与实践:问题情境:如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,CD为△ABC的角平分线.作射线DP,DQ,使DQ平分∠ADP且交线段AC于点E,设∠ADP=α.初步分析:(1)求∠ADC的度数;特例探究:(2)当α=30°时,求证:CD⊥DQ;拓展延伸:(3)当α>60°时,射线DP交射线BC于点F.请从下列A、B两题中任选一题作答,我选择题.A.当点F在线段BC上(不与点B,C重合)时,请在图2中画出符合题意的图形,并直接写出∠AED+∠DFB的度数(用含α的式子表示).B.当点F在线段BC的延长线上时,请在图2中画出符合题意的图形,并直接写出∠AED+∠DFB的度数(用含α的式子表示).23.(12分)综合与探究:如图,平面直角坐标系中,一次函数y=﹣x+5的图象与x轴、y轴分别交于点A,B.点F是线段AB上的一个动点(不与A,B重合),连接OF.设点F的横坐标为x.(1)求A,B两点的坐标;(2)求△OAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)请从下列A、B两题中任选一题作答,我选择题.A.当△OAF的面积S=S△OAB时.①判断此时线段OF与AB的数量关系并说明理由;②第一象限内存在一点P,使△APF是以AF为直角边的等腰直角三角形,直接写出点P 的坐标.B.当△OAF的面积S=S△OAB时.①判断此时线段OF与AB的位置关系并说明理由;②在坐标平面内存在一点Q,使△AQF是以AF为斜边的等腰直角三角形,直接写出点Q的坐标.2020-2021学年山西省太原市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题含10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置.1.【分析】直接利用算术平方根的定义得出答案.【解答】解:有理数14的算术平方根是:.故选:C.【点评】此题主要考查了算术平方根,正确掌握相关定义是解题关键.2.【分析】利用三角形板的特征可确定∠1=∠2,然后根据内错角相等,两直线平行可判断a∥b.【解答】解:如图,由题意得∠1=∠2,根据内错角相等,两直线平行可得a∥b.故选:A.【点评】此题考查了平行线的判定与性质,熟练掌握内错角相等,两直线平行是解题的关键.3.【分析】设y与x之间的函数关系式是y=kx,把x=3,y=﹣6代入求出k即可.【解答】解:设y与x之间的函数关系式是y=kx,把x=3,y=﹣6代入得:﹣6=3k,解得:k=﹣2,∴y与x的函数关系式为y=﹣2x,故选:B.【点评】本题主要考查对用待定系数法求正比例函数的解析式,解一元一次方程等知识点的理解和掌握,能根据题意求出正比例函数的解析式是解此题的关键.4.【分析】由勾股定理先求出a=,再次运用勾股定理即可得出答案.【解答】解:由勾股定理得a=,∴x2=a2+12=2+1=3.故选:B.【点评】本题主要考查了勾股定理,两次运用定理解决问题是关键.5.【分析】直接根据二次根式的运算法则及立方根的概念计算即可得到答案.【解答】解:A、,故不正确;B、(2)2=20,故不正确;C、=5,故不正确;D、=﹣5,正确.故选:D.【点评】此题考查的是二次根式的化简,掌握其运算法则是解决此题关键.6.【分析】先将这组数据重新排列,再根据中位数和众数的概念求解即可.【解答】解:将这组数据重新排列为22,22,24,28,36,36,36,∴这组数据的中位数为28,众数为36,故选:D.【点评】本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】在Rt△ABC中,由勾股定理得:BC=5,再根据等积法求出OC的长即可.【解答】解:在Rt△ABC中,由勾股定理得:BC=,=,∴S△ABC∴13×OC=5×12,∴OC=,∴C(0,),故选:C.【点评】本题主要考查了坐标与图形的性质、勾股定理等知识,运用等积法求出OC的长是解题的关键.8.【分析】根据轴对称的性质解决问题即可.【解答】解:点P(2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=4对称,故选:C.【点评】本题考查轴对称,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.【分析】先解出方程x﹣2y=0的三个解,再在平面直角坐标系中利用描点法解答.【解答】解:二元一次方程2x+y=﹣1的解可以为:、、,所以,以方程2x+y=﹣1的解为坐标的点分别为:(1,﹣3)、(﹣1,1)、(0,﹣1),它们在平面直角坐标系中的图象如下图所示:,故选:D.【点评】本题主要考查的是二元一次方程的解及其直线方程的图象,表示出方程的解是解题的关键.10.【分析】设需要36元/kg的糖果xkg,20元/kg的糖果ykg,由题意得等量关系:两种糖果混合成100kg的什锦糖;36元/kg的糖果xkg的费用+20元/kg的糖果ykg的费用=100kg ×28,然后再列出方程组即可.【解答】解:设需要36元/kg的糖果xkg,20元/kg的糖果ykg,由题意得:,故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.二、填空题(本大题含5个小题,每小题2分,共10分)将答案写在题中横线上. 11.【分析】利用三角形的内角和定理先求出∠B的度数,再利用DE∥BC得结论.【解答】解:∵在△ABC中,∠A=45°,∠C=75°,∴∠B=180°﹣∠A﹣∠C=180°﹣45°﹣75°=60°.∵DE∥BC,∴∠ADE=∠B=60°.故答案为:60°.【点评】本题考查了三角形的内角和定理、平行线的性质,掌握平行线的性质与三角形的内角和定理是解决本题的关键.12.【分析】利用代入消元法化简得到结果,即可作出判断.【解答】解:用代入消元法解二元一次方程组,将②代入①后得到的方程为3(y+3)+2y=14.故答案为:3(y+3)+2y=14.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.【分析】根据方差的意义求解即可.【解答】解:由表知黄队身高的方差最小,所以三支仪仗队中身高最整齐的黄队,故答案为:黄队.【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14.【分析】方程组的解是一次函数的交点坐标即可.【解答】解:∵直线y=2x经过(1,m)∴m=2,∴两直线的交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故答案为.【点评】本题考查一次函数与方程组的关系,解题的关键是理解方程组的解就是两个一次函数的交点坐标.15.【分析】若选A:过点A作AE⊥BC于E,得BE=6,在Rt△ABE中,由勾股定理得AE =8,再根据等积法求出高BD即可;若选B:过点A作AH⊥BC于H,得BH=6,在Rt△ABH中,由勾股定理得:AH=8,设AE=x,则EH=x﹣6,在Rt△AEH中,由勾股定理列出方程即可.【解答】解:若选择A题,如图1,过点A作AE⊥BC于E,∵AB=AC,AE⊥BC,∴BE=,在Rt△ABE中,由勾股定理得:AE=,=,∴S△ABC∴12×8=10×BD,∴BD=,若选择B题,如图2,过点A作AH⊥BC于H,∵AB=AC,AH⊥BC,∴BH=,在Rt△ABH中,由勾股定理得:AH=,设AE=x,则EH=x﹣6,在Rt△AEH中,由勾股定理得:(x﹣6)2+82=x2,解得x=,∴AE=.【点评】本题主要考查了等腰三角形的性质、勾股定理等知识,作出辅助线,构造直角三角形运用勾股定理是解题的关键.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和二次根式的乘法法则运算.【解答】解:(1)原式=3+2﹣5=0;(2)原式=3﹣4+4﹣=7﹣4﹣3=4﹣4.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.【分析】(1)根据加减消元法,解二元一次方程组的步骤进行解答;(2)根据整式的加减法则进行解答;(3)根据加减消元法,解二元一次方程组求解.【解答】解:(1)这种求解二元一次方程组的方法叫做加减消元法;以上求解步骤中,第一步的依据是等式的基本性质.(2)第二步开始出现错误,具体错误是合并同类项计算错误;解方程组:.解:①×4,得8x﹣4y=16.③……第一步②﹣③,得y=4.……第二步将y=4代入①,得x=4;……第三步(3)所以,原方程组的解.……第四步.故答案为:(1)加减消元,等式的基本性质;(2)二,合并同类项计算错误;(3).【点评】此题考查了解二元一次方程组,二元一次方程组的解.利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】利用平行线的性质,把∠A、∠B、∠C搬到平角BDC上.【解答】解:已知:如图,△ABC.求证:∠A+∠B+∠C=180°.证明:如图,在BC边上取点D,过点D作DE∥AB交AC于点E,过点D作DF∥AC交AB于点F.∵DE∥AB,∴∠A=∠1,∠B=∠2(依据:两直线平行,同位角相等).∵DF∥AC,∴∠1=∠3.∴∠3=∠A.∵DF∥AC,∴∠4=∠C.∵∠4+∠3+∠2=180°,∴∠A+∠B+∠C=180°.故答案为:∠A+∠B+∠C=180°,两直线平行,同位角相等.【点评】本题考查了平行线的性质、平角等知识点,掌握平行线的性质是解决本题的关键.19.【分析】设他们购买全价票x张,半价票y张,根据他们共购买36张票且共花费126元,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设他们购买全价票x张,半价票y张,依题意得:,解得:.答:他们购买全价票6张,半价票30张.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【分析】(1)根据加权平均数的计算公式列出算式,再进行计算即可得出答案.(2)将甲、乙两人的总成绩按比例求出最后成绩,再进行比较,即可得出结果.【解答】解:(1)甲班的平均成绩是:(85+91+88)=88(分),乙班的平均成绩是:(90+84+87)=87(分),∵87<88,∴甲班将获胜.(2)甲班的平均成绩是=87.4(分),乙班的平均成绩是=87.6(分),∵87.6>87.4,∴乙班将获胜.【点评】本题考查了平均数和加权成绩的计算.平均数等于所有数据的和除以数据的个数.21.【分析】(1)直接利用待定系数法求函数解析式;(2)联立方程组即可求出两直线的交点坐标,结合图象说明交点的实际意义;(3)①根据利润=销售收入﹣销售成本列出函数关系式,利用w>0确定x的取值范围;②根据“该经销商销售此种加热器获得了5000元的利润”令w=5000,求出x的值.【解答】解:(1)设射线OA对应的函数表达式为y1=k1x(k1≠0),将(20,12000)代入得:12000=20k1,解得k1=600,∴y1=600x,设射线BC对应的函数表达式为y2=k2x+b(k2≠0),将(0,2000)、(20,10000)代入得:,解得,∴y2=400x+2000,故答案为:y1=600x,y2=400x+2000;(2)联立方程组,解得,∴图象中射线OA与射线BC的交点P的坐标为(10,6000),此时点P坐标表示的实际意义是当销售量为10台时,销售成本与销售收入相等,均为6000元;(3)①根据题意得:w=y1﹣y2=600x﹣(400x+2000)=200x﹣2000,∵w>0,∴200x﹣2000>0,解得x>10,∴w(元)与销售量x(台)之间的函数关系式为w=200x﹣2000,自变量x的取值范围为x>10;②当w=5000时,200x﹣2000=5000,解得x=35,∴共销售了35台加热器.【点评】本题考查一次函数的应用,解题的关键是能够利用待定系数法求出函数解析式.22.【分析】(1)由角平分线的定义求出∠BCD=45°,由三角形外角的性质得出∠ADC=∠B+∠BCD,则可求出答案;(2)由角平分线的定义求出∠ADQ=15°,求出∠CDQ=90°,则可得出结论;(3)由题意画出图形,根据三角形外角的性质可得出结论.【解答】(1)解:∵∠ACB=90°,CD为△ABC的角平分线,∴∠BCD=∠ACB=∠ACB=90°=45°,∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠BCD,∵∠B=60°,∴∠ADC=60°+45°=105°;(2)证明:∵DQ平分∠ADP,∴∠ADQ=∠ADP,∵∠ADP=α=30°,∴∠ADQ=15°,由(1)得,∠ADC=105°,∴∠CDQ=∠ADC﹣∠ADQ=105°﹣15°=90°,∴CD⊥DQ;(3)A:如图1,∠AED+∠DFB=90°+α.理由:∵∠AED=∠ACD+∠EDC,∠ACD=45°,∴∠AED=45°+∠EDC,同理∠BFD=45°+∠CDF,∴∠AED+∠BFD=90°+∠EDC+∠CDF=90°+∠EDF=90°+α.B:如图2,∠AED+∠DFB=90°+α.理由:∵∠AED=∠ECD+∠EDC=45°+∠EDC,∠BFD=∠BCD﹣∠FDC=45°﹣∠FDC,∴∠AED+∠BFD=90°+∠EDC﹣∠FDC=90°+∠EDF=90°+α.故答案为:A.【点评】本题考查作图,平行线的性质、平行四边形的判定和性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【分析】(1)分别令x=0和y=0代入解析式求解;从而得到A点和B点坐标;(2)写出F点的坐标,然后根据三角形面积公式列函数关系式;(3)A.①根据三角形面积列方程求点F的坐标,然后利用勾股定理求得OF与AB的长,从而求解;②根据全等三角形的判定和性质求解;B.①根据三角形面积关系确定同底三角形中,OF与AB的位置关系;②由题意点Q在AF的垂直平分线上,然后结合等腰直角三角形的性质和线段中点坐标公式以及勾股定理列方程组求解.【解答】解:(1)当x=0时,y=5,当y=0时,﹣x+5=0,解得:x=10,∴A点坐标为(10,0),B点坐标为(0,5),(2)点F是线段AB上的一个动点(不与A,B重合),设点F的横坐标为x,过点F作FE⊥x轴,∴F点坐标为(x,﹣x+5),∴△OAF的面积S=OA•FE=,即S=﹣x+25(0<x<10);时,(3)A.①当△OAF的面积S=S△AOB﹣x+25=,解得:x=5,∴F点坐标为(5,),在Rt△OEF中,OF=,在Rt△AOB中,AB=,∴OF=AB;②过点F作NG⊥x轴,过点P1作P1N⊥NE,过点P2作P2M⊥x轴,∵△AF1P是等腰直角三角形,∴AF=P1F,∠P1FA=∠P1NF=∠AEF=90°,∴∠NFP1+∠NP1F=∠NFP1+∠AFE=90°,∴∠NP1F=∠AFE,在△AEF和△NFP1中,∴△AEF≌△NFP1(AAS),∴P1N=EF=,NF=AE=10﹣5=5,∴NE=EF+NF=,∴P1(5+,+5),即P1(,),同理,AM=EF=,P2M=AE=10﹣5=5,∴OM=OA+AM=,∴P2(,5),综上,P1(,),P2(,5).B.①OF⊥AB,理由如下:时,当△AOF的面积等于S△AOB设F点坐标为(x,﹣x+5),∴BF=AB,﹣x+25=,解得:x=2,∴F点坐标为(2,4),∴OF==2,∵A点坐标为(10,0),B点坐标为(0,5),∴AB==5,∴BF=,∴BF2+BF2=OB2,∴△OBF为直角三角形,即OF⊥AB;②当△AOF的面积等于S△AOB时,﹣x+25=,解得:x=2,∴F点坐标为(2,4),作AF的垂直平分线NG交AF于点M,∴M点坐标为(,),即M点坐标为(6,2),在Rt△AEF中,AF=,∵△AQ1F是以AF为斜边的等腰直角三角形,∴Q1M=AF=2,Q1A=2,设Q1的坐标为(a,b),由题意可得:,解得或,∴Q点坐标为(4,﹣2)或(8,6).【点评】本题考查一次函数的应用以及勾股定理,综合性较强,掌握相关性质定理并利用分类讨论思想解题是关键.。
安徽省宣城市2020-2021学年八年级上学期期末考试数学试题(word版含答案)
宣城市2020—2021学年度第一学期期末素质调研测试八年级数学试题考试时间:100分钟,试卷满分100分一、选择题(本题共10小题,每小题3分,共计30分)1.点P(-2,-5)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限2.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中,其中轴对称图形的是A B C D3.函数y x的取值范围是A.x ≥-7B.x>-7且x ≠ 0C.x ≠ 0D.x≥-7且x ≠ 04.如图,△ABC的三边的中线AD,BE,CF相交于点G,且AG:GD=2:1,若S△ABC =18,则图中阴影部分的面积是第4题图第5题图第7题图A.6B.7C.8D.95.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点,过点P分别作两坐标轴的垂线段PC,PD,且PC+PD=5,则直线AB的函数表达式为A.y=x+5B.y=-x+5C.y=x-5D.y=-x-56.一次函数y=(3n-15)x+2n-8的图象不经过第三象限,则n的取值范围是A.4≤n<5B.4<n<5C.n<5D.n>47.如图,点C,F在AD上,AB=DE,AF=DC,要使△ABC△△DEF,可以添加的一个条件是A.AB△DE B.EF△BC C.△B=△E D.△ACB=△DFE8.如图,在Rt△ACB中,△C=90°,△A=36°,线段AB的垂直平分线分别交线段AB、线段AC于D、E两点,则△CBE的度数为A.10°B.12°C.18°D.20°第8题图第10题图9.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为A.45°B.135°C.45°或67.5°D.45°或135°10.如图,△ABC是边长为8的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,点Q同时以相同的速度由B向CB的延长线方向运动(Q与B不重合),过P作PE△AB于E,连接PQ交AB于D,运动过程中线段DE 的长A.3B.4C.5D.不能确定二、填空题(本题共6小题,每题3分,共18分)11.若点P(2x,3x+5)在第二象限,且点P到两坐标轴的距离相等,则点P的坐标是________。
2020-2021学年北京市东城区八年级(上)期末数学试卷及参考答案
2020-2021学年北京市东城区八年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个1.(3分)如果有意义,那么x的取值范围是()A.x>2B.x≥2C.x≤2D.x<22.(3分)下列各式是最简二次根式的是()A.B.C.D.3.(3分)若分式,则x的值是()A.x=1B.x=﹣1C.x=0D.x≠﹣14.(3分)下列各式中,运算正确的是()A.a3•a3=2a3B.(a2)3=a6C.(2a2)3=2a6D.a6÷a2=a35.(3分)2020年突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,取得了抗击疫情的巨大成就.科学研究表明,某种新型冠状病毒颗粒的直径约为125纳米,1纳米=1.0×10﹣9米,若用科学记数法表示125纳米,则正确的结果是()A.1.25×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米6.(3分)下列各式由左到右是分解因式的是()A.x2+6x﹣9=(x+3)(x﹣3)+6xB.(x+2)(x﹣2)=x2﹣4C.x2﹣2xy﹣y2=(x﹣y)2D.x2﹣8x+16=(x﹣4)27.(3分)一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形8.(3分)如图所示,点O是△ABC内一点,BO平分∠ABC,OD⊥BC于点D,连接OA,若OD=5,AB=20,则△AOB的面积是()A.20B.30C.50D.1009.(3分)如图,已知∠AOB=60°,点P在边OA上,OP=10,点M、N在边OB上,PM =PN,若MN=2,则OM=()A.3B.4C.5D.610.(3分)剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.二、填空题(本题共16分,每小题2分)11.(2分)因式分解:x2y﹣4y=.12.(2分)如果x2﹣10x+m是一个完全平方式,那么m的值是.13.(2分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是.14.(2分)如图所示,已知P是AD上的一点,∠ABP=∠ACP,请再添加一个条件:,使得△ABP≌△ACP.15.(2分)小明同学用一根铁丝恰好围成一个等腰三角形,若其中两条边的长分别为15cm 和20cm,则这根铁丝的长为cm.16.(2分)如图,在△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠B =°.17.(2分)如图,等腰直角△ABC中,∠ACB=90°,AC=BC=4,D为BC的中点,AD =2,若P为AB上一个动点,则PC+PD的最小值为.18.(2分)如图,∠MON=30°,点A1,A2,A3,A4,…在射线ON上,点B1,B2,B3,…在射线OM上,且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,以此类推,若OA1=1,则△A2021B2021A2022的边长为.三、解答题(本题共54分)解答应写出文字说明,证明过程或演算步骤.19.(5分)计算:|﹣|+﹣(π﹣2)0+()﹣1.20.(5分)如图,点B,C,D,F在一条直线上,AB=EF,AC=ED,∠CAB=∠DEF,求证:AC∥DE.21.(5分)已知x2﹣x+1=0,求代数式(x+1)2﹣(x+1)(2x﹣1)的值.22.(4分)尺规作图:如图所示,在一次军事演习中,红方侦察员发现:蓝方指挥部点P在A区内,且到铁路FG和公路CE的距离相等,到两通讯站C和D的距离也相等,如果你是红方的指挥员,请你在图中标出蓝方指挥部点P的位置(保留作图痕迹,不必写作法).23.(5分)解方程:+=1.24.(5分)化简求值:()÷,其中x=2+.25.(5分)列分式方程解应用题:截止到2020年11月23日,全国832个国家级贫困县全部脱贫摘帽.某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.26.(6分)已知△ABC是等边三角形,点D是AC的中点,点P在射线BC上,点Q在线段AB上,∠PDQ=120°.(1)如图1,若点Q与点B重合,求证:DB=DP;(2)如图2,若点P在线段BC上,AC=8,求AQ+PC的值.27.(7分)如图,在△ABC中,∠C=90°,AC>BC,D为AB的中点,E为CA延长线上一点,连接DE,过点D作DF⊥DE,交BC的延长线于点F,连接EF.作点B关于直线DF的对称点G,连接DG.(1)依题意补全图形;(2)若∠ADF=α;①求∠EDG的度数(用含α的式子表示);②请判断以线段AE,BF,EF为边的三角形的形状,并说明理由.28.(7分)如图,在平面直角坐标系xOy中,直线l经过点M(3,0),且平行于y轴.给出如下定义:点P(x,y)先关于y轴对称得点P1,再将点P1关于直线l对称得点P′,则称点P′是点P关于y轴和直线l的二次反射点.(1)已知A(﹣4,0),B(﹣2,0),C(﹣3,1),则它们关于y轴和直线l的二次反射点A′,B′,C′的坐标分别是;(2)若点D的坐标是(a,0),其中a<0,点D关于y轴和直线l的二次反射点是点D′,求线段DD′的长;(3)已知点E(4,0),点F(6,0),以线段EF为边在x轴上方作正方形EFGH,若点P(a,1),Q(a+1,1)关于y轴和直线l的二次反射点分别为P′,Q′,且线段P′Q′与正方形EFGH的边有公共点,求a的取值范围.2020-2021学年北京市东城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.【分析】根据最简二次根式的概念判断即可.【解答】解:A、是最简二次根式;B、==2,不是最简二次根式;C、=|a|,不是最简二次根式;D、,被开方数的分母中含有字母,不是最简二次根式;故选:A.【点评】本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.3.【分析】分式的值为零:分子等于零,分母不等于零.【解答】解:依题意得,x﹣1=0,且x+1≠0,解得x=1.故选:A.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A、a3•a3=a6,故本选项不合题意;B、(a2)3=a6,故本选项符合题意;C、(2a2)3=8a6,故本选项不合题意;D、a6÷a2=a4,故本选项不合题意;故选:B.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.5.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:125纳米=0.000000125米=1.25×10﹣7米.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.【分析】根据分解因式的定义逐个判断即可.【解答】解:A.等式由左到右的变形不属于分解因式,故本选项不符合题意;B.等式由左到右的变形属于整式乘法,不属于分解因式,故本选项不符合题意;C.等式两边不相等,即等式由左到右的变形不属于分解因式,故本选项不符合题意;D.等式由左到右的变形属于分解因式,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解,也叫分解因式.7.【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n 的方程组,就可以求出边数n.【解答】解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选:C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.8.【分析】根据角平分线的性质求出OE,最后用三角形的面积公式即可解答.【解答】解:过O作OE⊥AB于点E,∵BO平分∠ABC,OD⊥BC于点D,∴OE=OD=5,∴△AOB的面积=,故选:C.【点评】此题考查角平分线的性质,关键是根据角平分线的性质得出OE=OD解答.9.【分析】作PH⊥MN于H,根据等腰三角形的性质求出MH,根据直角三角形的性质求出OH,计算即可.【解答】解:作PH⊥MN于H,∵PM=PN,∴MH=NH=MN=1,∵∠AOB=60°,∴∠OPH=30°,∴OH=OP=5,∴OM=OH﹣MH=4,故选:B.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.10.【分析】对于此类问题,只要依据翻折变换,将图(4)中的纸片按顺序打开铺平,即可得到一个图案.【解答】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.【点评】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确地找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.二、填空题(本题共16分,每小题2分)11.【分析】首先提取公因式y,再利用平方差公式分解因式即可.【解答】解:x2y﹣4y=y(x2﹣4)=y(x﹣2)(x+2).故答案为:y(x﹣2)(x+2).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式分解因式是解题关键.12.【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵x2﹣10x+m是一个完全平方式,∴m=25.故答案为:25.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.14.【分析】利用全等三角形的判定定理解决问题即可.【解答】解:若添加∠BAP=∠CAP,且∠ABP=∠ACP,AP=AP,由“AAS”可证△ABP ≌△ACP;若添加∠APB=∠APC,且∠ABP=∠ACP,AP=AP,由“AAS”可证△ABP≌△ACP;若添加∠BPD=∠CPD,可得∠APB=∠APC,且∠ABP=∠ACP,AP=AP,由“AAS”可证△ABP≌△ACP;故答案为∠BAP=∠CAP或∠APB=∠APC或∠BPD=∠CPD.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法是本题的关键.15.【分析】等腰三角形中两条边的长分别为15cm和20cm时,第三边的长可能为15cm或20cm,分别求得三角形的周长,即为铁丝的长.【解答】解:∵等腰三角形中两条边的长分别为15cm和20cm,∴当第三条边的长为15cm时,这根铁丝的长为15+15+20=50(cm),此时15+15>20,符合三角形的三边关系;当第三条边的长为20cm时,这根铁丝的长为15+20+20=55(cm).故答案为:50或55.【点评】本题考查了等腰三角形的判定及三角形的三边关系,熟练掌握相关性质及定理并分类讨论是解题的关键.16.【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=105°,表示出∠B和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC的度数,进而求得∠B的度数即可.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=105°,∴∠DAC=105°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+105°﹣=180°,解得:α=50°,∴∠B=∠BAD==25°,故答案为:25.【点评】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.17.【分析】作点D关于AB的对称点E,连接PE,BE,依据轴对称的性质,即可得到DB =EB,DP=EP,∠ABC=∠ABE=45°,根据PC+PD=PC+PE,可得当C,P,E在同一直线上时,PC+PE的最小值等于CE的长,根据勾股定理进行计算,即可得出PC+PD的最小值为2.【解答】解:如图所示,作点D关于AB的对称点E,连接PE,BE,则DB=EB,DP=EP,∠ABC=∠ABE=45°,∵D是BC的中点,∴BD=BC=2,∴BE=2,∵PC+PD=PC+PE,∴当C,P,E在同一直线上时,PC+PE的最小值等于CE的长,此时,PC+PD最小,在Rt△BCE中,CE===2,∴PC+PD的最小值为2.故答案为:2.【点评】此题考查了轴对称﹣线路最短的问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.18.【分析】根据等边三角形的性质得到∠B1A1A2=60°,根据三角形的外角性质求出∠OB1A1,得到∠OB1A1=∠MON,根据等腰三角形的判定定理得到A1B1=OA1=1,总结规律,根据规律解答.【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠MON=30°,∴∠OB1A1=∠B1A1A2﹣∠MON=30°,∴∠OB1A1=∠MON,∴A1B1=OA1=1,同理可得,A2B2=OA2=2,A3B3=OA3=4=22,……,∴△A2021B2021A2022的边长=22020,故答案为:22020.【点评】本题考查的是图形的变化规律、等边三角形的性质、三角形的外角性质,根据等边三角形的性质总结出规律是解题的关键.三、解答题(本题共54分)解答应写出文字说明,证明过程或演算步骤.19.【分析】根据绝对值,零指数幂、负整数指数幂的性质进行计算即可.【解答】解:原式=+﹣1+2=+2+1=3+1.【点评】本题考查绝对值,零指数幂、负整数指数幂,掌握绝对值,另指数幂、负整数指数幂的性质的性质是正确计算的前提.20.【分析】先证△ABC≌△EFD(SAS),得出∠ACB=∠EDF,则∠ACD=∠EDC,再由平行线的判定即可得出结论.【解答】证明:在△ABC和△EFD中,,∴△ABC≌△EFD(SAS),∴∠ACB=∠EDF,∴∠ACD=∠EDC,∴AC∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定等知识;证明△ABC≌△EFD是解题的关键.21.【分析】根据多项式乘多项式进行化简,然后整体代入即可求值.【解答】解:原式=x2+2x+1﹣2x2+x﹣2x+1=﹣x2+x+2,当x2﹣x+1=0,即﹣x2+x=1时,原式=1+2=3.【点评】本题考查了多项式乘多项式,解决本题的关键是掌握多项式乘多项式.22.【分析】作线段CD的垂直平分线MN,作∠CBF的角平分线BE交MN于点P,点P即为所求作.【解答】解:如图,点P即为所求作.【点评】本题考查作图﹣应用与设计,角平分线的性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【分析】首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.【解答】解:方程两边乘以(x+1)(x﹣1)得:(x+1)2+4=(x+1)(x﹣1),解这个方程得:x=﹣3,检验:当x=﹣3时,(x+1)(x﹣1)≠0,x=﹣3是原方程的解;∴原方程的解是:x=﹣3.【点评】本题考查了分式方程的解法、一元一次方程方程的解法;熟练掌握分式方程的解法,方程两边乘以最简公分母,把分式方程化成整式方程是解决问题的关键.24.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:()÷=(﹣)•=•=,当x=2+时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.【分析】可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可【解答】解:设甲种树苗价格是x元/棵,则乙种树苗价格是(x+10)元/棵,依题意得:=,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40(元),答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【分析】(1)由等边三角形和等腰三角形的性质得出∠DBC=∠E,即可得出DB=DE;(2)如图2,过点D作DH∥BC交AB于H,可证△ADH是等边三角形,由“ASA”可证△QDH≌△PDC,可得HQ=PC,即可求解.【解答】证明:(1)∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵D为AC的中点,∴DB平分∠ABC,∴∠DBC=30°,∵∠EDB=120°∴∠P=180°﹣120°﹣30°=30°∴∠DBC=∠P,∴DB=DP;(2)解:如图2,过点D作DH∥BC交AB于H,∵△ABC是等边三角形,AC=8,点D是AC的中点,∴AD=CD=4,∠ABC=∠ACB=∠A=60°,BC=AC=8,∵DH∥BC,∴∠ADH=∠AHD=60°,∴△ADH是等边三角形,∠HDC=120°,∴AD=HD=AH=4,∴HD=CD=4=BH,∵∠QDP=∠HDP=120°,∴∠QDH=∠PDC,在△QDH和△PDC中,,∴△QDH≌△PDC(ASA)∴HQ=PC,∴AQ+PC=AQ+QH=AH=4.【点评】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,熟练掌握等边三角形的性质和等腰三角形的性质,证明三角形全等是解题的关键.27.【分析】(1)根据题意画出图形解答即可;(2)①根据轴对称的性质解答即可;②根据轴对称的性质和全等三角形的判定和性质得出AE=GE,进而解答即可.【解答】解:(1)补全图形,如图所示:(2)①∵∠ADF=α,∴∠BDF=180°﹣α,由轴对称性质可知,∠GDF=∠BDF=180°﹣α,∵DF⊥DE,∴∠EDF=90°,∴∠EDG=∠GDF﹣∠EDF=180°﹣α﹣90°=90°﹣α;②以线段AE,BF,EF为边的三角形是直角三角形,连接GF,GE,由轴对称性质可知,GF=BF,∠DGF=∠B,∵D是AB的中点,∴AD=BD,∵GD=BD,∴AD=GD,∵∠GDE=∠EDA=90°﹣α,DE=DE,在△GDE与△ADE中,,∴△GDE≌△ADE(SAS),∴∠EGD=∠EAD,AE=GE,∵∠EAD=90°+∠B,∴∠EGD=90°+∠B,∴∠EGF=∠EGD﹣∠DGF=90°+∠B﹣∠B=90°,∴以线段GE,GF,EF为边的三角形是直角三角形,∴以线段AE,BF,EF为边的三角形是直角三角形.【点评】此题考查全等三角形的判定和性质,关键是根据轴对称的性质和全等三角形的判定和性质解答.28.【分析】(1)根据二次反射点的定义直接得出答案;(2)根据二次反射点的定义得出D′(6+a,0),则可得出答案(3)根据二次反射点的定义得出P′(6+a,1),Q′(7+a,1),由题意分两种情况列出不等式组,解不等式组可得出答案.【解答】解:(1)∵A(﹣4,0),∴点A关于y轴点的对称的坐标为(4,0),∵(4,0)关于直线l对称得点A′(2,0),∴点A(﹣4,0)关于y轴和直线l的二次反射点A′(2,0);∵B(﹣2,0),∴点B关于y轴点的对称的坐标为(2,0),∵(2,0)关于直线l对称得点B′(4,0),∴点B(﹣2,0)关于y轴和直线l的二次反射点B′(4,0);∵C(﹣3,1),∴点C关于y轴点的对称的坐标为(3,1),∵(3,1)关于直线l对称得点C′(3,1),∴点C(﹣3,1)关于y轴和直线l的二次反射点C′(3,1);故答案为:A′(2,0),B′(4,0),C′(3,1);(2)∵点D的坐标是(a,0),a<0,∴点D关于y轴对称的点的坐标为(﹣a,0),∴(﹣a,0)关于直线l对称得点D′(6+a,0),∴DD'=6+a﹣a=6.(3)∵点P(a,1),∴点P(a,1)关于y轴和直线l的二次反射点为P′(6+a,1),∵Q(a+1,1),∴Q(a+1,1)关于y轴和直线l的二次反射点为Q′(7+a,1),当P'Q'与EH有公共点时,,∴﹣3≤a≤﹣2,当P'Q'与FG有公共点时,,∴﹣1≤a≤0,∴﹣3≤a≤﹣2或﹣1≤a≤0,【点评】本题考查了正方形的性质,轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.。
2020年-2021年八年级数学上册期末试题(含答案)
一、选择题(每小题3分,共24分)1.4的算术平方根是()A .4 B .2C .2D .22.在给出的一组数0,,5,3.14,39,722中,无理数有()A .1个B .2个C .3个D .5个3. 某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是()A .42x yB .13x yC .13x y D .42x y 4.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为()A.180B.225C.270D.3155.下列各式中,正确的是A .16=±4B .±16=4C .327= -3D .2(4)= - 46.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A .将原图向左平移两个单位B .关于原点对称C .将原图向右平移两个单位D .关于y 轴对称7.对于一次函数y= x+6,下列结论错误的是 A .函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)8.如图,点O 是矩形ABCD 的对称中心,E 是AB 边上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE=A .2 3B .332C .3D .6二、填空题(每小题3分,共24分)9.在ABC 中,,13,15AC AB高,12AD 则ABC 的周长为.10.已知a 的平方根是8,则它的立方根是.11.如图,已知直线y=ax+b 和直线y=kx 交于点P (-4,-2),则关于x ,y 的二元一次方程组,.y ax b ykx 的解是________.12..四根小木棒的长分别为 5 cm,8 cm,12 cm ,13 cm ,任选三根组成三角形,其中有________个直角三角形.13.已知O (0, 0),A (-3, 0),B (-1, -2),则△AOB 的面积为______.14.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有_____种.15.若一次函数0k b kx y 与函数121x y的图象关于X 轴对称,且交点在X 轴上,则这个函数的表达式为: . h16.如图,已知b ax y 和kx y 的图象交于点P ,根据图象可得关于X 、Y 的二元一次方程组0ykxb y ax 的解是 .三、解答题17.化简(本题10分每题5分)ABCDEO(第8题图)(第11题图)2020年-2021学年八年级数学上册期末测试卷(含答案)①21631526②(2+3)(23)+ 21218.解下列方程组(本题10分每题5分)①1553yxy x ②)5(3)1(55)1(3xy y x 19.本题10分)折叠矩形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB=8cm ,BC=10cm ,求EC 的长.20.(本题9分)某校为了公正的评价学生的学习情况.规定:学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?21.(本题12分)如图,直线PA 是一次函数1y x 的图象,直线PB 是一次函数22y x 的图象.(1)求A 、B 、P 三点的坐标;(6分)(2)求四边形PQOB 的面积;(6分)平时成绩期中成绩期末成绩小明96]9490小亮909693小红90909622.(本题9分)甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?X|k|b|1.c|o|m23.(本题10分)某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为x km,通过铁路运输和通过公路运输需交总运费y1元和y2元,(1)求y1和y2关于x的表达式.(6分)(2)若A地到B地的路程为120km,哪种运输可以节省总运费?(4分)24.(本题12分)某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50 100 500双人间70 150 800单人间100 200 1500(1)三人间、双人间普通客房各住了多少间?(5分)(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(5分)(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?(2分)数学试卷答案一、选择题1C 2C 3D 4C 5C 6A 7D 8A 二、填空题9.42或32 10、411.2-y -4x ;12. 1;13.3;14.3;15、121x y16、24yx 三、计算题[来源:学|科17. ①56②134 18.①223225yx②75yx 19在RtECF 中,根据勾股定理得:222EFFCEC即222)8(4x x解得3x …………………9分∴EC=3cm ………………………………………………………………………………10分20、解:根据题意,3人的数学总评成绩如下:小明的数学总评成绩为:4.92532590394296(分)…………………3分小亮的数学总评成绩为:3.93532593396290(分)…………………6分小红的数学总评成绩为:93532596390290(分)……………………8分因此,这学期中小亮的数学总评成绩最高…………………………………………9分21、(1)解:在1x y中,当y=0时,则有:x+1=0 解得:1x ∴)0,1(A …2分在22x y中,当y=0时,则有:022x解得:1x∴)0,1(B …4分由221xyx y 得3431yx∴)34,31(P ……………………………………6分(2)解:过点P 作PC ⊥x 轴于点C ,由)34,31(P 得:3434PC…………………8分由)0,1(A ,)0,1(B 可得:11,11OBOA∴AB=OA+OB=2 ∴3434221.21PCAB SABP22、解:设甲服装的成本价是x 元,乙服装的成本价是y 元,根据题意得:157500%)401(9.0%)501(9.0500yx y x ………………………………4分解得:200300yx ……………………………………………………………………8分因此,甲服装的成本是300元,乙服装的成本是200元.…………………………9分23、(1)解:根据题意得:200400151x y 即600151x y wW w .X k b 1. c O m100252x y ………………………………………………6分(2)当x=120时,2400600120151y 3100100120252y ∵21y y ∴铁路运输节省总运费……………………………………………………………10分24、(1)解:设三人间普通客房住了x 间,双人间普通客房住了y 间.根据题意得:15102%50703%50505023yxy x……………………………………………2分解得:138yx ……………………………………………………………………………4分因此,三人间普通客房住了8间,双人间普通客房住了13间.…………………………5分(2)x 50…………………………………………………………………………………7分根据题意得:xxy503525即175010x y………………………10分(3)不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元.………………………………………………………………12分。
2020-2021学年辽宁省沈阳市铁西区八年级(上)期末数学试卷(北师大版 含答案)
2020-2021学年辽宁省沈阳市铁西区八年级(上)期末数学试卷一、选择题(下列各题的四个选项中,只有一个是正确的,请将正确答案写在答题卡上,每小题3分,共24分)1.(3分)下列各数中,是无理数的是()A.B.C.D.2.(3分)某校八年级进行了三次数学测试,甲、乙、丙、丁4名同学三次数学成绩的平均分都是109分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学三次数学成绩最稳定的是()A.甲B.乙C.丙D.丁3.(3分)若点P是平面直角坐标系中第二象限内的点,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是()A.(﹣2,3)B.(2,﹣3)C.(﹣3,2)D.(3,﹣2)4.(3分)如图,AB⊥AE于点A,AB∥CD,∠CAE=42°,则∠ACD=()A.112°B.122°C.132°D.142°5.(3分)某手表厂抽查了10只手表的日走时误差,数据如下表所示:则这10只手表的平均日走时误差(单位:秒)是()日走时误差(秒)0123只数(只)3421 A.0B.0.6C.0.8D.1.16.(3分)已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.7.(3分)对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)8.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.二、填空题(每小题4分,共20分)9.(4分)16的算术平方根是.10.(4分)如图,在四边形ABDC中,CD∥AB,AC⊥BC于点C,若∠A=40°,则∠DCB 的度数为°.11.(4分)祖冲之是我国著名的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.随着科技的不断发展,人们开始使用计算机来计算圆周率的小数位.数学杨老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式3a﹣b+1的值等于.13.(4分)如图,等边△ABC中,AB=BC=AC=5,点M是BC边上的高AD所在直线上的点,以BM为边作等边△BMN,连接DN,则DN的最小值为.三.(本题10分)14.(10分)如图,直线AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,求∠AED 的度数.四、(本题10分)15.(10分)从地面竖直向上抛射一个小球,在落地之前,物体向上的速度v(m/s)是运动时间t(s)的一次函数.经测量,该物体的初始速度(t=0时物体的速度)为25m/s,经过2s物体的速度为5m/s.(1)请你求出v与t之间的函数关系式;(2)经过多长时间,物体将达到最高点?(此时物体的速度为0)五、(本题10分)16.(10分)列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?六、(本题12分)17.(12分)为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛,并随机抽取了50名学生的竞赛成绩(竞赛成绩为百分制,本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含左端点值,不含右端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)第二组的学生人数是人;(2)第三组竞赛成绩的众数是分,抽取的50名学生竞赛成绩的中位数是分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的有多少人?七、(本题14分)18.(14分)在Rt△ABC中,∠ACB=90°,CB=CA=2,点D是射线AB上一点,连接CD,在CD右侧作∠DCE=90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.2020-2021学年辽宁省沈阳市铁西区八年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的四个选项中,只有一个是正确的,请将正确答案写在答题卡上,每小题3分,共24分)1.(3分)下列各数中,是无理数的是()A.B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.【解答】解:A、=2,2是整数,属于有理数,故此选项不符合题意;B、=2,2是整数,属于有理数,故此选项不符合题意;C、是分数,属于有理数,故此选项不符合题意;D、属于无理数,故此选项符合题意.故选:D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.(3分)某校八年级进行了三次数学测试,甲、乙、丙、丁4名同学三次数学成绩的平均分都是109分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学三次数学成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】利用方差的意义求解即可.【解答】解:∵s甲2=3.6,s乙2=46,s丙2=6.3,s丁2=7.3,∴s甲2<s丙2<s丁2<s乙2,∴这4名同学三次数学成绩最稳定的是甲,故选:A.【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.(3分)若点P是平面直角坐标系中第二象限内的点,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是()A.(﹣2,3)B.(2,﹣3)C.(﹣3,2)D.(3,﹣2)【分析】根据第二象限内点的特点及点到坐标轴的距离定义,即可判断出点P的坐标.【解答】解:点P到x轴的距离是2,则点P的纵坐标为±2,点P到y轴的距离是3,则点P的横坐标为±3,由于点P在第二象限,故P坐标为(﹣3,2),故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)如图,AB⊥AE于点A,AB∥CD,∠CAE=42°,则∠ACD=()A.112°B.122°C.132°D.142°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数.【解答】解:∵AB⊥AE,∠CAE=42°,∴∠BAC=90°﹣42°=48°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=132°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAC度数是解题关键.5.(3分)某手表厂抽查了10只手表的日走时误差,数据如下表所示:则这10只手表的平均日走时误差(单位:秒)是()日走时误差(秒)0123只数(只)3421 A.0B.0.6C.0.8D.1.1【分析】利用加权平均数的定义求解即可.【解答】解:这10只手表的平均日走时误差是=1.1(秒),故选:D.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.6.(3分)已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.【分析】方程组的解是一次函数的交点坐标即可.【解答】解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A.【点评】本题考查一次函数与方程组的关系,解题的关键是理解方程组的解就是一次函数的交点坐标.7.(3分)对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【解答】解:A、因为一次函数y=﹣2x+4中k=﹣2<0,因此函数值随x的增大而减小,故A选项正确;B、因为一次函数y=﹣2x+4中k=﹣2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故B选项正确;C、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=﹣2x的图象,故C选项正确;D、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.8.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.【点评】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.二、填空题(每小题4分,共20分)9.(4分)16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.10.(4分)如图,在四边形ABDC中,CD∥AB,AC⊥BC于点C,若∠A=40°,则∠DCB 的度数为50°.【分析】根据平行线的性质定理,垂线的定义,三角形的内角和定理即可得到结论.【解答】解:∵AC⊥BC,∴∠ACB=90°,∵CD∥AB,∴∠ACD+∠A=180°,即∠ACB+∠DCB+∠A=180°,∵∠A=40°,∴∠DCB=180°﹣∠ACB﹣∠A=180°﹣90°﹣40°=50°.故答案为:50.【点评】本题考查了三角形的内角和,平行线的性质,垂线的定义,熟练掌握平行线的性质定理,三角形的内角和定理是解题的关键.11.(4分)祖冲之是我国著名的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.随着科技的不断发展,人们开始使用计算机来计算圆周率的小数位.数学杨老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.【分析】直接根据众数的定义可得答案.【解答】解:圆周率的小数点后100位数字的众数为9.故答案为:9.【点评】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.12.(4分)点P(a,b)在函数y=3x+2的图象上,则代数式3a﹣b+1的值等于﹣1.【分析】把P(a,b)代入一次函数解析式得到b=3a+2,然后把b=3a+2代入3a﹣b+1后进行整式的加减运算即可.【解答】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,∴3a﹣b+1=3a﹣(3a+2)+1=3a﹣3a﹣2+1=﹣1.故答案为﹣1.【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.13.(4分)如图,等边△ABC中,AB=BC=AC=5,点M是BC边上的高AD所在直线上的点,以BM为边作等边△BMN,连接DN,则DN的最小值为.【分析】连接CN,由“SAS”可证△ABM≌△CBN,可得AM=CN,∠BAD=∠BCN=30°,则点N在与BC成30度的射线CN上运动,当DN⊥CN时,DN有最小值,由直角三角形的性质可求解.【解答】解:如图,连接CN,∵△ABC和△BMN是等边三角形,∴AB=BC,BM=BN,∠ABC=∠MBN=60°,∴∠ABM=∠CBN,∵AD⊥BC,∴∠BAD=∠CAD=30°,BD=CD=,在△ABM和△CBN中,,∴△ABM≌△CBN(SAS),∴AM=CN,∠BAD=∠BCN=30°,∴点N在与BC成30度的射线CN上运动,∴当DN⊥CN时,DN有最小值,∵DN⊥CN,∠BCN=30°,∴DN=CD=,故答案为.【点评】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质等知识,确定点N的运动轨迹是本题的关键.三.(本题10分)14.(10分)如图,直线AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,求∠AED 的度数.【分析】根据平行线的性质得出∠BAE+∠AED=180°,∠BAC+∠C=180°,求出∠BAC,根据角平分线的定义求出∠BAE,再求出答案即可.【解答】解:∵AB∥CD,∴∠BAE+∠AED=180°,∠BAC+∠C=180°,∵∠C=50°,∴∠BAC=130°,∵AE平分∠BAC,∴∠BAE=BAC=65°,∴∠AED=180°﹣∠BAE=115°.【点评】本题考查了平行线的性质和角平分线的定义,注意:两直线平行,同旁内角互补.四、(本题10分)15.(10分)从地面竖直向上抛射一个小球,在落地之前,物体向上的速度v(m/s)是运动时间t(s)的一次函数.经测量,该物体的初始速度(t=0时物体的速度)为25m/s,经过2s物体的速度为5m/s.(1)请你求出v与t之间的函数关系式;(2)经过多长时间,物体将达到最高点?(此时物体的速度为0)【分析】(1)设v与t之间的函数关系式为v=kt+b,由待定系数法求出其解就可以得出结论;(2)根据(1)的一次函数的解析式的性质就可以求出结论.【解答】解:(1)设v与t之间的函数关系式为v=kt+b,由题意,得,解得:.故v与t之间的函数关系式为v=﹣10t+25.(2)物体达到最高点,说明物体向上的速度为0,则0=﹣10t+25,解得t=2.5.答:经过2.5秒,物体将达到最高点.【点评】本题是一次函数的应用,考查了待定系数法求一次函数的解析式的运用,一次函数的性质的运用,解答时求出一次函数的解析式是关键.五、(本题10分)16.(10分)列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?【分析】设小颖上坡用了x分钟,下坡用了y分钟,根据“小颖家离学校1880米,且去学校共用了16分钟”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设小颖上坡用了x分钟,下坡用了y分钟,依题意得:,解得:.答:小颖上坡用了11分钟,下坡用了5分钟.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.六、(本题12分)17.(12分)为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛,并随机抽取了50名学生的竞赛成绩(竞赛成绩为百分制,本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含左端点值,不含右端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)第二组的学生人数是10人;(2)第三组竞赛成绩的众数是76分,抽取的50名学生竞赛成绩的中位数是78分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的有多少人?【分析】(1)根据各组数据的和为50可求出第二组的学生数;(2)根据众数、中位数的意义求解即可;(3)样本中成绩不低于80分的占调查人数的,因此估计总体1500人的是成绩不低于80分的人数.【解答】解:(1)50﹣4﹣12﹣20﹣4=10(人),故答案为:10;(2)第三组学生竞赛成绩出现次数最多的是76,因此众数是76,将50名学生的竞赛成绩从小到大排列后,处在中间位置的两个数的平均数为=78,因此中位数是78,故答案为:76,78;(3)1500×=720(人),答:该校1500名参赛学生成绩不低于80分的大约有720人.【点评】本题考查频数分布直方图、中位数、众数的意义,掌握中位数、众数的意义是求出答案的前提,理解频数分布直方图的意义是解决问题的关键.七、(本题14分)18.(14分)在Rt△ABC中,∠ACB=90°,CB=CA=2,点D是射线AB上一点,连接CD,在CD右侧作∠DCE=90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.【分析】(1)①证明△BCD≌△ACE得∠CAF=∠B,再根据等腰直角三角形的性质便可得结果;②连接DE,证明∠DAE=90°,由勾股定理求得DE,再解Rt△CDE得CD的长度;(2)证明△BCD≌△ACE得∠CAF=∠CBD,再根据等腰直角三角形的性质和勾股定理便可得结果.【解答】解:(1)①∵∠ACB=90°,∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠B=∠CAE,∵∠ACB=90°,AC=BC,∴∠B=45°,∴∠CAE=45°;②连接DE,如图1,∵∠ACB=90°,AC=BC,CB=CA=2,∴∠B=∠BAC=45°,AB=,∵△BCD≌△ACE,∴∠B=∠CAE=45°,BD=AE=1,∴∠DAE=90°,AD=AB﹣BD=3,∴DE=,∵∠DCE=90°,且CE=CD,∴∠CDE=45°,∴CD=DE=;(2)∠CAE=135°,CD=.根据题意作出图形,连接DE,如图2,∵∠ACB=90°,∠DCE=90°,∴∠ACB﹣∠BCE=∠DCE﹣∠BCE,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠CBD=∠CAE,BD=AE=1,∵∠ACB=90°,CB=CA=2,∴AB=,∠ABC=∠BAC=45°,∴∠CAE=∠CBD=180°﹣∠ABC=135°,AD=AB+BD=4+1=5,∴∠DAE=∠CAE﹣∠CAB=135°﹣45°=90°,∴DE=,∵∠DCE=90°,且CE=CD,∴∠CDE=45°,∴CD=DE=.【点评】本题主要考查了等腰直角三角形的性质,全等三角形的性质与判定,勾股定理,关键是证明三角形的全等.。
2020-2021学年度第一学期期末八年级数学试题含答案共二套
2020-2021学年第一学期期末八年级数学试题一、选择题(本题共10小题,每小题3分,共计30分)1. 下列各式运算正确的是( )A .235a a a +=B .235a a a ⋅=C .()326ab ab =D .1025a a a ÷=2. 在平面直角坐标系中,有点 1(2)A -,,点A 关于y 轴的对称点是( )A.()21-,-B.(21)-,C.()2, 1D. (1)2-,3.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若ABC ∆与DEF ∆成轴对称,则ABC DEF ∆≌D.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO BO =,则点A 与点B 关于直线L 对称4. 下列分解因式正确的是( )A .()321x x x x -=- B .()()2339a a a +-=- C.()()2933a a a -=+- D .()()22x y x y x y +=+- 5.()22 ( ) x a x ax a -++的计算结果是( )A .3232x ax a +-B .33x a -C.3232x a x a +- D .222322x ax a a ++-6. 若6, 3a b ab +==, 则2233a b ab +的值是( ) A .9 B .27 C.19 D .547. 如图,阴影部分的面积是( )A .72xyB .92xy C.4xy D .2xy8. 等腰三角形一腰上的高与另一腰的夹角为60︒,则这个等腰三角形的顶角为( )A .30B .150 C.30或 150 D .129. 已知点()1,P a 与(),2Q b 关于x 轴成轴对称,又有点(),2Q b 与点(),M m n 关于y 轴成轴对称,则m n -的值为( )A .3B .3- C. 1 D .1-10. 已知30AOB ∠=︒,点P 在AOB ∠的内部,点1P 和点P 关于OA 对称,点2P 和点P 关于OB 对称,则12P O P 、、三点构成的三角形是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形二、填空题(本题共8小题,每小题3分,共计24分)11.等边三角形是轴对称图形,它有______ 条对称轴.12.()3511m a a a ⋅=,则m 的值为 . 13.计算()22133x y xy ⎛⎫-⋅= ⎪⎝⎭. 14. 等腰ABC 中,10 30AB AC A ==∠=︒,, 则腰AB 上的高等于 .15. 如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,35,30A BCO ∠=︒∠=︒,那么AOB ∠=_ .16. 若22210a b b -+-+=,则a = ,b = .17. 已知如图,3 BC ABC =∠,和ACB ∠的平分线相交于点//, //O OE AB OF AC ,, 则三角形OEF 的周长为 .18.利用利用一个a a ⨯的正方形,1个b b ⨯的正方形和2个a b ⨯的长方形可拼成一个正方形(如图),从而可得到因式分解的公式 .三、解答题 (本题共7小题,共46分)19. 计算:(1)()()23342a bab ÷ (2)()32222322x y x y xy xy --+÷20. 因式分解:(1)22327a b - (2)()282x x --21. 已知:如图,已知ABC ,(1)分别画出与ABC 关于x 轴、对称的图形111A B C ;(2)写出111A B C 各顶点坐标:(3)求ABC 的面积.22. 如图, ABD AEC ∆、都是等边三角形,求证:BE DC =.23. 先化简,再求值:()()()2[2]x y x y x y x -++-÷,其中3, 1x y ==24. 已知:如图ABC 中, 30, , 4AB AC C AB AD AD cm =∠=︒⊥=,, 求BC 的长.25.下面是某同学对多项式()()2242464x x x x -+-++进行因式分解的过程,解:设24x x y -= 原式()() 2 6 4y y =+++ (第一步)2 816y y =++ (第二步)()24y =+ (第三步) ()2244x x =-+ (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的 .A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(3)请你模仿以上方法尝试对多项式()()222221x xx x --++进行因式分解.参考答案一、选择题1-5:BACCB 6-10:DACBD二、填空题11.3 12. 2 13. 33x y - 14. 515. 130 16.21、(对一个空给2分,两个空都对给3分) 17.3 18.()2222a ab b a b ++=+ 三、解答题(19) (每题3分)解:(1)32a b (积的乘方对的给2分) (2) 2312x y xy --+ (20) (每题3分)(1)23223273(9)3(3)(3)a b a b a b a b -=-=+-; (2)2228(2)816(4)x x x x x --=-+=-. (做对第一步的给2分)(21) (8分) (1)作图2分(2)()()()1110,2?4,1 2,4A B C (一空一分) (3分)111341423225222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯= (3分) (22) (6分)证明: ABD AEC ∆、都是等边三角形, ,60AD AB AC AE DAB CAE ∴==∠=∠=︒,(2 分)DAC BAE ∴∠=∠DAC BAE ∴≌(2 分)BE DC ∴=(2分)(23) (6分)x y - (去括号合并对了给2分)2 (前面计算对了,答案错了扣1分)(24) (6分)30AB AC C =∠=︒,30,120B C BAC ∴∠=∠=︒∠=︒(2分),30AB AD DAC ⊥∴∠=︒30,DAC C AD DC ∴∠=∠=︒∴=(2分)8BC BD CD AD DC cm =+=+= (2 分)(25).(8分)(1) C ; (2分)(2)分解不彻底: (1分) ()42x -(2分)(3) 设22x x y -= (1分)原式() 2 1y y =++ 221y y =++()21y =+ ()2221x x =-+ ()41x =-(2分)2020-2021年八年级数学上册期末模拟试卷一、选择题:1.下列运算正确的是( )A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=12.以下图形中对称轴的数量小于3的是()3.下列式子中,与分式的值相等的是( )A.B.C.D.4.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°5.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b26.将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A.145°B.135°C.120°D.115°7.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处8.如图,把一副三角尺叠放在一起,若AB∥CD,则∠1的度数是()A.75°B.60°C.45°D.30°9.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()11.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()12.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014 B.2015 C.D.二、填空题13.点P(﹣1,3)关于y轴的对称点的坐标是.14.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.15.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.16.若4x2+2(k-3)x+9是完全平方式,则k=______.17.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.18.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.三、解答题19.化简:(x+y)2﹣(x+y)(x﹣y) 20. (x2+y2)2﹣4x2y2.21.化简:22.解分式方程:23.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.25.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?26.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.a2-b2=(a+b)(a-b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;②计算:27.如图,已知△ABC是等边三角形,D为AC边上的一点,DG∥AB,延长AB到E,使BE=GD,连接DE交BC于F.(1)求证:GF=BF;(2)若△ABC的边长为a,BE的长为b,且a,b满足(a﹣7)2+b2﹣6b+9=0,求BF的长.参考答案1.B.2.D3.A4.B5.C6.B7.C8.A.9.A10.B11.B.12.D13.答案为:(1,3).14.答案为:第1,利用SAS得出全等三角形,即可配成与原来同样大小的一块.15.答案为:20°.16.答案为:9或﹣3 .17.答案为:或.18.答案为:15.19.原式=x2+2xy+y2﹣x2+y2=2xy+2y2.20.(x2+y2)2﹣4x2y2=(x2+y2﹣2xy)(x2+y2+2xy)=(x﹣y)2(x+y)2.21.原式====.22.去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;23.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.24.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.25.26. (1)B;(2)①,4;②;27.⑴证明:△DGF≌△EBF,GF=BF;⑵∵(a-7)2+b2-6b+9=0,∴a=7,b=3, BF=2.。
2020-2021初二数学上期末试题含答案
2020-2021初二数学上期末试题含答案一、选择题1.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 2.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 3.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A .8个B .7个C .6个D .5个4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 5.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是( ) A .3B .4C .5D .6 6.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠1 7.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 8.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11 9.下列计算中,结果正确的是( )A .236a a a ⋅=B .(2)(3)6a a a ⋅=C .236()a a =D .623a a a ÷= 10.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④11.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A .10B .6C .3D .212.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A .5B .6C .7D .10二、填空题13.如图所示,请将12A ∠∠∠、、用“>”排列__________________.14.把0.0036这个数用科学记数法表示,应该记作_____.15.若分式221x x -+的值为零,则x 的值等于_____. 16.已知等腰三角形的两边长分别为4和6,则它的周长等于_______17.因式分解:3a 2﹣27b 2=_____.18.正六边形的每个内角等于______________°.19.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.20.分式293x x --当x __________时,分式的值为零. 三、解答题21.化简:2221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭,并从﹣1,0,1,2中选择一个合适的数求代数式的值.22.如图,已知点B ,F ,E ,C 在同一条直线上,//AB CD ,且AB CD =,A D ∠=∠.求证:BE CF =.23.如图,在△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边的中线,过点C 作CF ⊥AE ,垂足为点F ,过点B 作BD ⊥BC 交CF 的延长线于点D .(1)试说明AE =CD ;(2)若AC =10cm ,求BD 的长.24.先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y ﹣3x)]÷4x的值.25.先化简,再求值:211()22aaa a-+÷++,其中21a=【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE是AOB∠的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=111222OE CM OE DM CD OE+=g g g,但不能得出OCD ECD∠=∠,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.解析:D【解析】【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a-+,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故11+423a a-+=0,解得:a=1 3 .故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.3.A解析:A【解析】【分析】分AB为腰和为底两种情况考虑,画出图形,即可找出点C的个数.【详解】解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故选:A.【点睛】本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.4.B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.5.C解析:C【解析】【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.6.D解析:D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.7.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF≌△ADE,即可判断①②;利用SSS即可证明△BDE≅△ADF,故可判断③;利用等量代换证得+=,从而可以判断④.BE CF AB【详解】∵△ABC为等腰直角三角形,且点在D为BC的中点,∴CD=AD=DB,AD⊥BC,∠DCF=∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF +∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF =∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF n 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中,BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.8.C解析:C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a 、b 、c 都是正方形,所以AC=CD ,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE ,在△ABC 和△CED 中,,∴△ACB ≌△CDE (AAS ),∴AB=CE ,BC=DE ;在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =1+9=10,∴b 的面积为10,故选C .考点:全等三角形的判定与性质;勾股定理;正方形的性质.9.C解析:C【解析】选项A ,235a a a ⋅=,选项A 错误;选项B ,()()2236a a a ⋅= ,选项B 错误;选项C ,()326a a =,选项C 正确;选项D ,624a a a ÷=,选项D 错误.故选C.10.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案.【详解】 解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111x x x -=++. 又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②. 故选B .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.11.C解析:C【解析】【分析】由等边三角形有三条对称轴可得答案.【详解】如图所示,n 的最小值为3.故选C.【点睛】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.12.C解析:C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C二、填空题13.【解析】【分析】根据三角形的外角的性质判断即可【详解】解:根据三角形的外角的性质得∠2>∠1∠1>∠A∴∠2>∠1>∠A故答案为:∠2>∠1>∠A【点睛】本题考查了三角形的外角的性质掌握三角形的一个解析:21A>>∠∠∠【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A,故答案为:∠2>∠1>∠A.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.14.6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解析:6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】15.2【解析】根据题意得:x﹣2=0解得:x=2此时2x+1=5符合题意故答案为2解析:2【解析】根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案为2.16.14或16【解析】当4是底时三边为466能构成三角形周长为4+6+6=16;当6是底时三边为446能构成三角形周长为4+4+6=14故周长为16或14故答案为:16或14 解析:14或16【解析】当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.17.3(a+3b)(a﹣3b)【解析】【分析】先提取公因式3然后再利用平方差公式进一步分解因式【详解】3a2-27b2=3(a2-9b2)=3(a+3b)(a-3b)【点睛】本题考查了提公因式法和公式法解析:3(a+3b)(a﹣3b).【解析】【分析】先提取公因式3,然后再利用平方差公式进一步分解因式.【详解】3a2-27b2,=3(a2-9b2),=3(a+3b)(a-3b).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角解析:120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角. 19.28【解析】设这种电子产品的标价为x 元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x 元,由题意得:0.9x −21=21×20%, 解得:x=28,所以这种电子产品的标价为28元.故答案为28.20.=-3【解析】【分析】根据分子为0分母不为0时分式的值为0来解答【详解】根据题意得:且x-30解得:x=-3故答案为:=-3【点睛】本题考查的是分式值为0的条件易错点是只考虑了分子为0而没有考虑同时解析:= -3【解析】【分析】根据分子为0,分母不为0时分式的值为0来解答.【详解】根据题意得:290x -= 且x-3≠ 0解得:x= -3故答案为:= -3.【点睛】本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.三、解答题21.1x x +,x=2时,原式=23. 【解析】【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=2代入计算即可求出值.【详解】解:2221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭=2221(1)(1)(1)x x x x x x x ⎡⎤+-÷⎢⎥--⎣⎦=21(1)x x x --•22(1)x x + =(1)(1)(1)x x x x +--•22(1)x x + =1x x + 由题意可知,x ≠0,±1 ∴当x=2时,原式=23. 【点睛】本题考查分式的化简求值及分式成立的条件.22.证明见解析【解析】【分析】根据ASA 可判定ABF DCE ∆≅∆,可得BF CE =,即可得BE CF =.【详解】证明://AB CD Q ,B C ∴∠=∠,在ABF ∆和DCE ∆中,B C AB CD A D ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABF DCE ASA ∴∆≅∆BF CE ∴=,BF EF CE EF ∴+=+,即BE CF =.【点睛】本题考查了三角形的全等的判定和性质,掌握三角形的全等的判定是解题的关键.23.(1)见解析;(2)5cm【解析】【详解】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC .又∵∠DBC=∠ECA=90°,且BC=CA ,∴△DBC ≌△ECA (AAS ).∴AE=CD .(2)解:由(1)得AE=CD ,AC=BC ,∴Rt △CDB ≌Rt △AEC (HL )∴BD=EC=12BC=12AC ,且AC=10cm . ∴BD=5cm .【点睛】 熟悉证明三角形全等的条件,并且能够灵活运用,具有多方面看问题的数学思维. 24.【解析】【分析】先利用非负性求出,x y 的值,根式整式的混合运算法则对所求式子进行化简,把,x y 的值代入运算即可.【详解】 解:()2210x y -++=Q ,∴2010x y -=+=,, 解得,21x y ==-,, ∴()()()()[3232223]4,x y x y y x y x x +-++-÷()22229446234,x y y xy xy x x =-+-+-÷ ()2644,x xy x =-÷ 1.5.x y =-当21x y ==-,时,1.5x y -()1.521,=⨯--31=+=4.25.11a a +- 1+ 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】211()22a a a a -+÷++=2221221 a a aa a++++-g=11 aa+ -当1a=时原式1【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算是解题的关键.。
2020-2021初二数学上期末试题附答案
2020-2021初二数学上期末试题附答案一、选择题1.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 2.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的一半长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A .①②③④B .④③①②C .②④③①D .④③②① 3.下列因式分解正确的是( ) A .()2211x x +=+ B .()22211x x x +-=-C .()()22x 22x 1x 1=-+-D .()2212x x x x -+=-+ 4.下列计算正确的是( )A .2236a a b b ⎛⎫= ⎪⎝⎭B .1a b a b b a -=--C .112a b a b +=+D .1x y x y--=-+ 5.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥- 6.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x --= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 7.下列判定直角三角形全等的方法,不正确的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个面积相等的直角三角形 8.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A .3B .1C .﹣1D .﹣3 9.下列计算正确的是( ) A .235+= B .a a a +=222 C .(1)x y x xy +=+ D .236()mn mn =10.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .2011.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .1812.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度二、填空题13.如图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是__________.14.3(5)2(5)x x x -+-分解因式的结果为__________.15.如图,小新从A 点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A 点时,一共走了__米.16.若2x+5y ﹣3=0,则4x •32y 的值为________.17.如图,在△ABC 中,AB = AC,BC = 10,AD 是∠BAC 平分线,则BD = ________.18.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.19.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .20.若分式的值为零,则x 的值为________.三、解答题21.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.22.如图,已知点B ,F ,E ,C 在同一条直线上,//AB CD ,且AB CD =,A D ∠=∠.求证:BE CF =.23.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE =18°,求∠C的度数.24.先化简,再求值:224(2)24xxx x--÷+-,其中x=5.25.先化简,再求值:222221422x x xx x x x x⎛⎫-+-+÷⎪-+⎝⎭,且x为满足22x-≤<的整数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE是AOB∠的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=111222OE CM OE DM CD OE+=,但不能得出OCD ECD∠=∠,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.2.B解析:B【解析】【分析】根据直线外一点作已知直线的垂线的方法作BH⊥AC即可.【详解】用尺规作图作△ABC边AC上的高BH,做法如下:④取一点K使K和B在AC的两侧;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;①分别以点D、E为圆心,大于DE的长为半径作弧两弧交于F;②作射线BF,交边AC于点H;故选B.【点睛】考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.3.C解析:C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.4.D解析:D【解析】【分析】根据分式的乘方、分式的加减运算法则及分式的性质逐一判断即可得答案.【详解】A.22222()3(3)9a a a b b b==,故该选项计算错误,不符合题意, B.a b a b a b a b b a a b a b a b +-=+=-----,故该选项计算错误,不符合题意, C.11b a a b a b ab ab ab ++=+=,故该选项计算错误,不符合题意, D.()1x y x y x y x y---+==-++,故该选项计算正确,符合题意, 故选:D.【点睛】本题考查分式的运算,分式的乘方,要把分式的分子、分母分别乘方;同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减;熟练掌握分式的运算法则是解题关键.5.A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【详解】213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-, 分式方程213x m x -=-的解是非正数,30x -≠, 30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值6.C解析:C【解析】【分析】根据“走高速用的时间比走国道少花1.5小时”列出方程即可得出答案.根据题意可得,走高速所用时间150202.5x-小时,走国道所用时间150x小时即150150201.52.5x x--=故答案选择C.【点睛】本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列出等式是解决本题的关键.7.D解析:D【解析】【分析】【详解】解:A、正确,利用SAS来判定全等;B、正确,利用AAS来判定全等;C、正确,利用HL来判定全等;D、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选D.【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS、SAS、AAS、HL等.8.D解析:D【解析】【分析】由11m n-=1利用分式的加减运算法则得出m-n=-mn,代入原式=222m mn nm mn n--+-计算可得.【详解】∵11m n-=1,∴n mmn mn-=1,则n mmn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.9.C解析:C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .10.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC 中,以点A 和点B 为圆心,大于二分之一AB 的长为半径画弧,两弧相交与点M,N ,则直线MN 为AB 的垂直平分线,则DA=DB,△ADC 的周长由线段AC,AD,DC 组成,△ABC 的周长由线段AB,BC,CA 组成而DA=DB,因此△ABC 的周长为10+7=17. 故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.11.B解析:B【解析】设多边形的边数为n ,则有(n-2)×180°=n×150°,解得:n=12, 故选B.12.C解析:C【解析】【分析】看是否符合所学的全等的公理或定理即可.【详解】A 、符合全等三角形的判定SAS ,能作出唯一三角形;B 、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA 判定全等,因而所作三角形是唯一的;C、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.二、填空题13.【解析】【分析】从已知条件结合图形认真思考通过构造全等三角形利用三角形的三边的关系确定线段和的最小值【详解】如图在AC上截取AE=AN连接BE∵∠BAC的平分线交BC于点D∴∠EAM=∠NAM∵AM解析:22【解析】【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC上截取AE=AN,连接BE∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=2即BE取最小值为22∴BM+MN的最小值是22【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.14.(x-5)(3x-2)【解析】【分析】先把代数式进行整理然后提公因式即可得到答案【详解】解:==;故答案为:【点睛】本题考查了提公因式法分解因式解题的关键是熟练掌握分解因式的几种方法解析:(x-5)(3x-2)【解析】【分析】先把代数式进行整理,然后提公因式(5)x -,即可得到答案.【详解】解:3(5)2(5)x x x -+-=3(5)2(5)x x x ---=(5)(32)x x --;故答案为:(5)(32)x x --.【点睛】本题考查了提公因式法分解因式,解题的关键是熟练掌握分解因式的几种方法. 15.600【解析】【分析】【详解】解:根据题意可知:小新从A 点出发沿直线前进50米后向左转30º再沿直线前进50米又向左转30º……照这样下去小新第一次回到出发地A 点时小新走的路线围成一个正多边形且这个解析:600【解析】【分析】【详解】解:根据题意可知:小新从A 点出发,沿直线前进50米后向左转30º,再沿直线前进50米,又向左转30º,……照这样下去,小新第一次回到出发地A 点时,小新走的路线围成一个正多边形,且这个多边形的外角等于30º,所以这个正多边形的边数是12,小新一共走了12×50=600米,故答案为:600.16.8【解析】∵2x+5y﹣3=0∴2x+5y=3∴4x•32y=(22)x·(25)y=22x·25y=22x+5y=23=8故答案为:8【点睛】本题主要考查了幂的乘方的性质同底数幂的乘法转化为以2为解析:8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.17.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD是∠BAC平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性解析:5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BC,BD=CD=12BC=5.【详解】解:∵AB=AC,AD是∠BAC平分线,∴AD⊥BC,BD=CD=12BC=5.故答案为:5.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键.18.130°或90°【解析】分析:根据题意可以求得∠B和∠C的度数然后根据分类讨论的数学思想即可求得∠ADC的度数详解:∵在△ABC中AB=AC∠BAC=100°∴∠B=∠C=40°∵点D在BC边上△A解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.19.85°【解析】试题分析:令A→南的方向为线段AEB→北的方向为线段BD 根据题意可知AEDB是正南正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°考点:1方向角2三角解析:85°.【解析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.20.1【解析】试题分析:根据题意得|x|-1=0且x-1≠0解得x=-1考点:分式的值为零的条件解析:1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.三、解答题21.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.22.证明见解析【解析】【分析】根据ASA 可判定ABF DCE ∆≅∆,可得BF CE =,即可得BE CF =.【详解】证明://AB CD ,B C ∴∠=∠, 在ABF ∆和DCE ∆中,B C AB CD A D ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABF DCE ASA ∴∆≅∆BF CE ∴=,BF EF CE EF ∴+=+,即BE CF =.【点睛】本题考查了三角形的全等的判定和性质,掌握三角形的全等的判定是解题的关键.23.∠C =78°. 【解析】【分析】由AD 是BC 边上的高,∠B=42°,可得∠BAD=48°,在由∠DAE=18°,可得∠BAE=∠BAD-∠DAE=30°,然后根据AE 是∠BAC 的平分线,可得∠BAC=2∠BAE=60°,最后根据三角形内角和定理即可推出∠C 的度数.【详解】解:∵AD 是BC 边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD-∠DAE=30°,∵AE 是∠BAC 的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°-∠B-∠BAC=78°.考点:1.三角形内角和定理;2.三角形的角平分线、3.中线和高.24.-x+2,3.【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】原式=22x 4x •x 2--+ ()()x 2x 2x 2x 24+-=--=-+(), 当x 5=时,原式=523-+=.25.232x -,52- 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【详解】 解:原式2(1)(2)(2)2(1)(2)x x x x x x x x ⎡⎤-+-=+÷⎢⎥-+⎣⎦ 122x x xx x --⎛⎫=+÷ ⎪⎝⎭ 232x x x -=⋅ 232x -=, 0x ≠且1x ≠,2x ≠-∴在22x -<范围内符合分式的整数有1x =-, 则原式23522--==-. 【点睛】 本题考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.。
2020-2021学年度第一学期期末八年级数学试题含答案共二套
2020-2021学年第一学期期末八年级数学试题一、选择题(本题共10小题,每小题3分,共计30分)1. 下列各式运算正确的是( )A .235a a a +=B .235a a a ⋅=C .()326ab ab =D .1025a a a ÷=2. 在平面直角坐标系中,有点 1(2)A -,,点A 关于y 轴的对称点是( )A.()21-,-B.(21)-,C.()2, 1D. (1)2-,3.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若ABC ∆与DEF ∆成轴对称,则ABC DEF ∆≌D.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO BO =,则点A 与点B 关于直线L 对称4. 下列分解因式正确的是( )A .()321x x x x -=- B .()()2339a a a +-=- C.()()2933a a a -=+- D .()()22x y x y x y +=+- 5.()22 ( ) x a x ax a -++的计算结果是( )A .3232x ax a +-B .33x a -C.3232x a x a +- D .222322x ax a a ++-6. 若6, 3a b ab +==, 则2233a b ab +的值是( ) A .9 B .27 C.19 D .547. 如图,阴影部分的面积是( )A .72xyB .92xy C.4xy D .2xy8. 等腰三角形一腰上的高与另一腰的夹角为60︒,则这个等腰三角形的顶角为( )A .30B .150 C.30或 150 D .129. 已知点()1,P a 与(),2Q b 关于x 轴成轴对称,又有点(),2Q b 与点(),M m n 关于y 轴成轴对称,则m n -的值为( )A .3B .3- C. 1 D .1-10. 已知30AOB ∠=︒,点P 在AOB ∠的内部,点1P 和点P 关于OA 对称,点2P 和点P 关于OB 对称,则12P O P 、、三点构成的三角形是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形二、填空题(本题共8小题,每小题3分,共计24分)11.等边三角形是轴对称图形,它有______ 条对称轴.12.()3511m a a a ⋅=,则m 的值为 . 13.计算()22133x y xy ⎛⎫-⋅= ⎪⎝⎭. 14. 等腰ABC 中,10 30AB AC A ==∠=︒,, 则腰AB 上的高等于 .15. 如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,35,30A BCO ∠=︒∠=︒,那么AOB ∠=_ .16. 若22210a b b -+-+=,则a = ,b = .17. 已知如图,3 BC ABC =∠,和ACB ∠的平分线相交于点//, //O OE AB OF AC ,, 则三角形OEF 的周长为 .18.利用利用一个a a ⨯的正方形,1个b b ⨯的正方形和2个a b ⨯的长方形可拼成一个正方形(如图),从而可得到因式分解的公式 .三、解答题 (本题共7小题,共46分)19. 计算:(1)()()23342a bab ÷ (2)()32222322x y x y xy xy --+÷20. 因式分解:(1)22327a b - (2)()282x x --21. 已知:如图,已知ABC ,(1)分别画出与ABC 关于x 轴、对称的图形111A B C ;(2)写出111A B C 各顶点坐标:(3)求ABC 的面积.22. 如图, ABD AEC ∆、都是等边三角形,求证:BE DC =.23. 先化简,再求值:()()()2[2]x y x y x y x -++-÷,其中3, 1x y ==24. 已知:如图ABC 中, 30, , 4AB AC C AB AD AD cm =∠=︒⊥=,, 求BC 的长.25.下面是某同学对多项式()()2242464x x x x -+-++进行因式分解的过程,解:设24x x y -= 原式()() 2 6 4y y =+++ (第一步)2 816y y =++ (第二步)()24y =+ (第三步) ()2244x x =-+ (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的 .A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(3)请你模仿以上方法尝试对多项式()()222221x xx x --++进行因式分解.参考答案一、选择题1-5:BACCB 6-10:DACBD二、填空题11.3 12. 2 13. 33x y - 14. 515. 130 16.21、(对一个空给2分,两个空都对给3分) 17.3 18.()2222a ab b a b ++=+ 三、解答题(19) (每题3分)解:(1)32a b (积的乘方对的给2分) (2) 2312x y xy --+ (20) (每题3分)(1)23223273(9)3(3)(3)a b a b a b a b -=-=+-; (2)2228(2)816(4)x x x x x --=-+=-. (做对第一步的给2分)(21) (8分) (1)作图2分(2)()()()1110,2?4,1 2,4A B C (一空一分) (3分)111341423225222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯= (3分) (22) (6分)证明: ABD AEC ∆、都是等边三角形, ,60AD AB AC AE DAB CAE ∴==∠=∠=︒,(2 分)DAC BAE ∴∠=∠DAC BAE ∴≌(2 分)BE DC ∴=(2分)(23) (6分)x y - (去括号合并对了给2分)2 (前面计算对了,答案错了扣1分)(24) (6分)30AB AC C =∠=︒,30,120B C BAC ∴∠=∠=︒∠=︒(2分),30AB AD DAC ⊥∴∠=︒30,DAC C AD DC ∴∠=∠=︒∴=(2分)8BC BD CD AD DC cm =+=+= (2 分)(25).(8分)(1) C ; (2分)(2)分解不彻底: (1分) ()42x -(2分)(3) 设22x x y -= (1分)原式() 2 1y y =++ 221y y =++()21y =+ ()2221x x =-+ ()41x =-(2分)2020-2021年八年级数学上册期末模拟试卷一、选择题:1.下列运算正确的是( )A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=12.以下图形中对称轴的数量小于3的是()3.下列式子中,与分式的值相等的是( )A.B.C.D.4.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°5.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b26.将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A.145°B.135°C.120°D.115°7.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处8.如图,把一副三角尺叠放在一起,若AB∥CD,则∠1的度数是()A.75°B.60°C.45°D.30°9.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()11.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()12.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014 B.2015 C.D.二、填空题13.点P(﹣1,3)关于y轴的对称点的坐标是.14.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.15.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.16.若4x2+2(k-3)x+9是完全平方式,则k=______.17.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.18.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.三、解答题19.化简:(x+y)2﹣(x+y)(x﹣y) 20. (x2+y2)2﹣4x2y2.21.化简:22.解分式方程:23.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.25.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?26.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.a2-b2=(a+b)(a-b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;②计算:27.如图,已知△ABC是等边三角形,D为AC边上的一点,DG∥AB,延长AB到E,使BE=GD,连接DE交BC于F.(1)求证:GF=BF;(2)若△ABC的边长为a,BE的长为b,且a,b满足(a﹣7)2+b2﹣6b+9=0,求BF的长.参考答案1.B.2.D3.A4.B5.C6.B7.C8.A.9.A10.B11.B.12.D13.答案为:(1,3).14.答案为:第1,利用SAS得出全等三角形,即可配成与原来同样大小的一块.15.答案为:20°.16.答案为:9或﹣3 .17.答案为:或.18.答案为:15.19.原式=x2+2xy+y2﹣x2+y2=2xy+2y2.20.(x2+y2)2﹣4x2y2=(x2+y2﹣2xy)(x2+y2+2xy)=(x﹣y)2(x+y)2.21.原式====.22.去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;23.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.24.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.25.26. (1)B;(2)①,4;②;27.⑴证明:△DGF≌△EBF,GF=BF;⑵∵(a-7)2+b2-6b+9=0,∴a=7,b=3, BF=2.。
人教版2020-2021学年八年级数学上册期末试卷及答案
2020-2021学年八年级数学上册期末试卷一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±22.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣13.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.144.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.55.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.87.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个二.填空题(共6小题)9.若代数式的值为零,则x的取值应为.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是分.11.如果x+=3,则的值等于12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=度.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.18.解分式方程(1)(2)19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.参考答案与试题解析一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±2【分析】根据分式有意义的条件即可求出答案.【解答】解:x+2≠0,∴x≠﹣2故选:A.2.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣1【分析】根据完全平方公式:a2±2ab+b2=(a±b)2可得答案.【解答】解:A、x2﹣x+1不能用完全平方公式分解,故此选项错误;B、1﹣2x+x2能用完全平方公式分解,故此选项正确;C、﹣a2+b2﹣2ab不能用完全平方公式分解,故此选项错误;D、4x2+4x﹣1不能用完全平方公式分解,故此选项错误;故选:B.3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.14【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:B.4.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.5.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选:C.6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.8【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE 的长即为BQ+QE的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE==5,∴△BEQ周长的最小值=DE+BE=5+1=6.故选:B.7.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD =∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故②正确,∵EF=FM=CF,∴∠ECM=90°,∵AB∥CD,∴∠BEC=∠ECM=90°,∴CE⊥AB,故③④正确,故选:D.二.填空题(共6小题)9.若代数式的值为零,则x的取值应为2.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.【解答】解:若代数式的值为零,则(x﹣2)=0或(x﹣1)=0,即x=2或1,∵|x|﹣1≠0,x≠1,∴x的取值应为2,故代数式的值为零,则x的取值应为2.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是89.3分.【分析】因为数学期末成绩由课堂、作业和考试三部分组成,并按1:3:6的比例确定,所以利用加权平均数的公式即可求出答案.【解答】解:小明的数学期末成绩是=89.3(分),故答案为:89.3.11.如果x+=3,则的值等于【分析】由x+=3得x2+2+=9,即x2+=7,整体代入原式==,计算可得.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,则x2+=7,∵x≠0,∴原式====,故答案为:.12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=50度.【分析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【解答】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=50°,∴∠θ=50°,故答案为:50.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为96【分析】可设菱形ABCD的边长为x,则AC=32﹣2x,根据菱形可得AO=16﹣x,BO =8,根据勾股定理可求x,进一步得到AC,再根据菱形的面积公式即可求解.【解答】解:如图,设菱形ABCD的边长为x,则AC=32﹣2x,AO=16﹣x,BO=8,依题意有(16﹣x)2+82=x2,解得x=10,AC=32﹣2x=12,则菱形ABCD的面积为16×12÷2=96.故答案为:96.14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为6.【分析】根据题意,可求得D为A′B′的中点,则可知△C′DC的面积为△ABC的面积的一半.【解答】解:∵将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,∴AB∥A′B′,∵BC=CC′,∴D为A′B′的中点,∴△C′DC的面积为△ABC的面积的一半,即为6.故答案为:6.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.【分析】(1)连接AA,BB 1,作线段AA1,BB1的垂直平分线交于点O,点O即为所求.(2)分别作出A,B,C的对应点A2,B2,C2即可.【解答】解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a【分析】(1)首先提公因式a,再利用平方差进行分解即可;(2)首先提公因式﹣2a,再利用完全平方公式进行分解即可.【解答】解:(1)原式=a(a2﹣16)=a(a+4)(a﹣4);(2)原式=﹣2a(4a2﹣4a+1)=﹣2a(2a﹣1)2.17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.【分析】(1)先计算乘法,再计算加法即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=﹣=﹣=;(2)原式=•=•=﹣,当x=﹣5时,原式=﹣=﹣.18.解分式方程(1)(2)【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x﹣1=﹣1﹣2x+4,移项合并得:3x=4,解得:x=,经检验x=是分式方程的解;(2)去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校858585B校8580100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出A校、B校的方差即可.【解答】解:(1)A校平均数为:×(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.【分析】先根据平行四边形的性质和三角形的内角和定理求出∠ABC与∠ABE度数,据此得出∠CBG度数,再证△BCG≌△EAF得出∠AEF=∠CBG,继而由三角形外角性质可得答案.【解答】解:∵四边形ABCD是平行四边形,∠C=50°,∴∠A=∠C=50°,∠ABC=180°﹣∠C=130°,AE=BC,∵∠E=30°,∴∠ABE=180°﹣∠A﹣∠E=100°,∴∠CBG=30°,在△BCG和△EAF中,∵,∴△BCG≌△EAF(SAS),∴∠CBG=∠AEF=30°,则∠BFD=∠A+∠AEF=80°.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)由AB⊥AC,AD是BC边上的中线,可得AD=CD=BC,然后由四边形ADCF 是平行四边形,证得四边形ADCF是菱形.【解答】(1)解:四边形CDAF是平行四边形,理由如下:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)四边形ADCF是菱形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∵四边形ADCF是平行四边形,∴平行四边形ADCF是菱形.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?【分析】设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x本练习本,根据单价=总价÷数量结合元旦这天的单价比元旦前便宜0.2元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x 本练习本,根据题意得:﹣=0.2,解得:x=6,经检验,x=6是原方程的解,且符合题意.答:小明元旦前在该超市买了6本练习本.23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;②由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;③由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD 为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.【分析】(1)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可;(2)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可.【解答】解:(1)连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠AMP=180°﹣∠ADP=90°,∴AM=PM,AM⊥PM.(2)成立,理由如下:连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠DAM=∠MPC,∵∠PND=∠ANM∴∠AMP=∠ADP=90°∴AM=PM,AM⊥PM.1、三人行,必有我师。
2020-2021初二数学上期末试题带答案
2020-2021初二数学上期末试题带答案一、选择题1.下列运算正确的是( )A .a 2+2a =3a 3B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 22.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()A .2-B .1-C .2D .3 3.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 4.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 5.如图,在△ABC 中,∠ACB=90°,分别以点A 和B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,下列结论错误的是( )A .AD=BDB .BD=CDC .∠A=∠BED D .∠ECD=∠EDC6.等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为( )A .30B .30或150C .60或150D .60或120 7.下列计算正确的是( ) A .235+= B .a a a +=222 C .(1)x y x xy +=+ D .236()mn mn =8.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( ) A .段① B .段② C .段③ D .段④9.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .AB .BC .CD .D 10.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°11.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等的三角形的对数是( )A .3B .4C .5D .6 12.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .32二、填空题13.已知x m =6,x n =3,则x 2m ﹣n 的值为_____.14.三角形三边长分别为 3,1﹣2a ,8,则 a 的取值范围是 _______.15.若分式242x x --的值为0,则x 的值是_______. 16.分解因式:2288a a -+=_______17.A 、B 两种型号的机器加工同一种零件,已知A 型机器比B 型机器每小时多加工20个零件,A 型机器加工400个零件所用时间与B 型机器加工300个零件所用时间相同.A 型机器每小时加工零件的个数_____.18.已知9y 2+my+1是完全平方式,则常数m 的值是_______.19.如图,030A B ∠=︒,点P 为AOB ∠内一点,8OP =.点M 、N 分别在OA OB 、上,则PMN 周长的最小值为________.20.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.三、解答题21.龙人文教用品商店欲购进A 、B 两种笔记本,用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同,每本B 种笔记本的进价比每本A 种笔记本的进价贵10元.(1)求A 、B 两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A 、B 两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A 种笔记本多少本?22.如图,ABC 是等腰三角形,AB AC =,点D 是AB 上一点,过点D 作DE BC ⊥交BC 于点E ,交CA 延长线于点F .(1)证明:ADF 是等腰三角形;(2)若60B ∠=︒,4BD =,2AD =,求EC 的长.23.先化简,再求值:222221422x x x x xx x x ⎛⎫-+-+÷ ⎪-+⎝⎭,且x 为满足22x -≤<的整数. 24.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg ,甲型机器人分类800kg 垃圾所用的时间与乙型机器人分类600kg 垃圾所用的时间相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初二数学上期末试题(带答案)5. 2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了 20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为xkm/h ,则根据题意可列方程为( )个梯形(如图②),利用这两个图形的面积,可以验证的等式是()A. a 2 + b 2= (a + b)(a - b) B. (a — b)2= a 2-2ab + b 2C. (a + b)2= a 2+ 2ab + b 2D. a 2- b 2= (a + b)(a - b) 7.如图,AE 丄AB 且AE = AB , BC 丄CD 且BC = CD ,请按图中所标注的数据,计算图中 实线所围成的面积 S 是()1. 、选择题下列边长相等的正多边形能完成镶嵌的是( A . C. 2. B . 3个正方形和2个正三角形1个正五边形和1个正十边形 D . 2个正六边形和2个正三角形 把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是(2个正八边形和1个正三角形 A . a=2, b=3 B . a=-2, b=-3 C. a=-2, b=3 D . a=2, b=-33. 已知关于x 的分式方程2x m1的解是非正数, m 的取值范围是(C. m AB=AD=DC 3D . m,/ B=80,则/ C 的度数为(C. 45D . 60 °150 20150A .1.5x 2.5xB . 150 150 20 1.52.5x xD . 150 20 1501.52.5x x6.如图①,在边长为 a 的正方形中剪去一个边长为 b (b<a )的小正方形,把剩下部分拼成一A .B .A. 50 B. 62 C. 65 D .68& 如果X 3y 0,那么代数式2x y 2 2x y的值为()x 2xy y2 2 7 7A. —B.C. D —7 7 2 29. 如图,已知/ ACB=/ DBC , 添加以下条件,不能判定△ ABC DCB的是()A./ ABC =Z DCBB.Z ABD = Z DCAC. AC = DBD. AB = DC10.如图,在ABC中,ABC和ACB的平分线相交于点O,过点O作EF//BC交AB于点E ,交AC于点F ,过点O作OD AC于点D,某班学生在一次数学活动课中,探索出如下结论,其中错误的是()A.射线OE是/ AOB的平分线B.△COD是等腰三角形BOC 90° A D.设OD1AEF 2mn适当长为半径画弧, 交OA于点C,交OB于点1D •再分别以点C、D为圆心,大于—CD的长为半径画弧,两弧在/ AOB内部交于点E,2ABC各边的距离相等B.点O到过点E作射线OE,连接CD .则下列说法错误的是c. c、D两点关于OE所在直线对称D. O、E两点关于CD所在直线对称12.如果一个多边形的每个内角的度数都是108°那么这个多边形的边数是( )A. 3B. 4C. 5D. 6二、填空题13.如果x2kx 4是一个完全平方式,那么k的值是.14. _____________________________________________________________________ 等腰三角形的一个内角是100,则这个三角形的另外两个内角的度数是 ____________________________________ .2x a 115.若关于x的分式方程___________________________ 丄的解为非负数,贝y a的取值范围是.x 2 2x2 416.若分式-------- 的值为0,则x的值是_______________ .x 217.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同. A型机器每小时加工零件的个数 .18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%则这种电子产品的标价为_______________ 元.19.计算:(x-1)( x+3) = _________ .20. _________________________________________________________ 如图,AC=DC , BC=EC,请你添加一个适当的条件: _________________________________________________ ,使得21.在四边形ABCD中,AD//BC , AD BC , BD是对角线,AE BD于点E ,CF BD于点F(1)如图1,求证:AE CF⑵如图2,当BAD 3 BAE 90时,连接AF、CE ,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形的面积都等于四边形ABCD面1 积的一.8AD=AC ,(1)求证:△ABE ◎△ ACF ;(2)若/ BAE=30,则/ ADC=24.如图,点 B 、E 、C 、F 在同一条直线上,AB = DE, AC = DF , BE = CF,求证:AB // DE.25.用A 、B 两种机器人搬运大米, A 型机器人比B 型机器人每小时多搬运 20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等•求 A 、B 型机器人 每小时分别搬运多少袋大米.【参考答案】***试卷处理标记,请不要删除一、选择题1 . D解析:D 【解析】 【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。
E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,23.如图,△ABC 中,AB=AC ,点A.2个正八边形和1个正三角形:135 ° +135 ° +60 ° =330 °,故不符合;B.3个正方形和2个正三角形:90 ° +90 ° +90 ° +60 ° +60 ° =390 °,故不符合;C.1个正五边形和1个正十边形:108 ° +144 ° =252 °,故不符合;D.2个正六边形和2个正三角形:120 ° +120 ° +60 ° +60 ° =360 °,符合;故选D.【点睛】本题考查多边形的内角,熟练掌握多边形的内角的度数是解题关键2. B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)( x-3)2=X2-3X+X-3=X2-2X-3所以a=2, b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键•3. A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m的范围即可【详解】2X m ,1 ,X 3方程两边同乘以X 3,得2X m X 3,移项及合并同类项,得X m 3,Q分式方程竺卫1的解是非正数,X 3 0 ,X 3m 3 0(m 3) 3 0,解得,m 3,故选:A.此题考查分式方程的解,解题关键在于掌握运算法则求出4. B解析:B【解析】【分析】先根据等腰三角形的性质求出/ ADB的度数,再由平角的定义得出/ ADC的度数,根据等腰三角形的性质即可得出结论.【详解】解:•••△ ABD 中,AB=AD,/ B=80 ,•••/ B= / ADB=80 ,•••/ ADC=180 -Z ADB=100 ,•/ AD=CD ,— 180 Z ADC 180 100 “• Z C=40 .2 2故选B .考点:等腰三角形的性质.5. C解析:C【解析】【分析】根据“走高速用的时间比走国道少花 1.5小时”列出方程即可得出答案•【详解】根据题意可得,走高速所用时间150 20小时,走国道所用时间150小时2.5x x即型15L20 1.5x 2.5x故答案选择C.【点睛】本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度x时间”及其变形列出等式是解决本题的关键.6. D解析:D【解析】【分析】m的值1根据左图中阴影部分的面积是a2-b2,右图中梯形的面积是一(2a+2b)( a-b) = (a+b)2(a-b),利用面积相等即可解答.【详解】1•••左图中阴影部分的面积是a2-b2,右图中梯形的面积是1( 2a+2b)( a-b) = (a+b)(2a-b ),--a 2-b ?=( a+b )( a-b ).故选D . 【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关 键.7. A解析:A 【解析】 【分析】由 AE 丄 AB , EF 丄 FH , BG 丄 AG ,可以得到/ EAF= / ABG ,而 AE=AB , / EFA= / AGB ,由此可以证明 AEFAAGB , △BGCCHD , GC=DH , CH=BG .故可求出 式即可求出图形的面积. 【详解】•••如图,AE 丄 AB 且 AE=AB,EF 丄 FH,BG 丄 FH? / EAF+ / BAG=90o ,/ ABG+ / BAG=90o ? / EAF= /ABG , ••• AE=AB, / EFA= / AGB, / EAF= / ABG ?△ EFA ◎△ AGB , ••• AF=BG , AG=EF.同理证得 ABGCCHD 得 GC=DH , CH=BG. 故 FH=FA+AG+GC+CH=3+6+4+3=16—1故 S= (6+4) X 16-3 X 4-6 X 3=50.2故选A.8. D解析:D 【解析】 【分析】【详解】 原式=2X^>? ( x-y ) =2^y,•/x-3y=0 ,••• x=3y ,所以AF=BG , AG=EF ;同理证得FH 的长,然后利用面积的割补法和面积公/ EAB= / EFA= / BGA=90o, 此题考查全等三角形的性质与判定,解题关键在于证明AEFAAGB 和 △BGCCHD.先把分母因式分解,再约分得到原式2X y,然后把x=3y 代入计算即可.x y 【点睛】6y y 7•原式= =.3y y 2故选:D.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.9. D解析:D【解析】【分析】根据全等三角形的判定定理逐个判断即可.【详解】A、T在AABC 和ADCB 中ABC DCBBC CBACB DBC•••△ ABC ◎△ DCB ( ASA),故本选项不符合题意;B、T/ ABD =Z DCA,/ DBC = Z ACB,•••/ ABD + Z DBC = Z ACD + ZACB,即/ ABC = Z DCB ,•••在Z\ABC 和ADCB 中ABC DCBBC CBACB DBC• A ABC BA DCB ( ASA),故本选项不符合题意;C、T在AABC 和ADCB 中BC CBACB DBCAC DB• A ABC BA DCB ( SA®,故本选项不符合题意;D、根据Z ACB = Z DBC , BC = BC , AB = DC不能推出AABCBA DCB,故本选项符合题意;故选:D.【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS , ASA , AAS , SSS.10. C解析:C【解析】【分析】利用角平分线的性质、等腰三角形的判定与性质逐一判定即可【详解】•••在AABC 中,/ ABC和/ ACB的平分线相交于点O1 1•••/ OBC= / ABC,/ OCB= / ACB , / A+ / ABC+ / ACB=180 ,2 21•••/ OBC+ / OCB=90 - / A21•••/ BOC=180 - ( / OBC+ / OCB) =90°+ _ / A,故C 错误;2•••/ EBO= / CBO,/ FCO= / BCO , EF//BC•••/ EBO= / EOB ,Z FCO= / FOC,••• BE=OE , CF=OF••• EF=EO+OF=BE+CF ,故A 正确;由已知,得点O是ABC的内心,至U ABC各边的距离相等,故B正确;作OM丄AB,交AB于M,连接OA,如图所示:•••在△ABC中,/ ABC和/ACB的平分线相交于点O• OM= OD m1 1 1…S AAEF S AAOE S AAOF AE OM AF OD OD AE AF 2 2 2选项正确;故选:C.【点睛】此题主要考查运用角平分线的性质、等腰三角形的判定与性质,解题关键是注意数形结合思想的运用•11. D解析:D1mn,故D2试题分析:A、连接CE、DE,根据作图得到OC=OD, CE=DEA•••在AEOC与厶EOD中,OC=OD, CE=DE OE=OE•••△ EOC^A EOD ( SSS .•••/ AOE=Z BOE,即射线OE是/ AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,•△ COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又•••射线OE平分/ AOB,「. OE是CD的垂直平分线.•C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,「. CD不是OE的平分线,•O、E两点关于CD所在直线不对称,错误,符合题意.故选D.12. C解析:C【解析】【分析】首先计算出多边形的外角的度数,再根据外角和诂卜角度数=边数可得答案.【详解】解:•••多边形的每个内角都是108°•每个外角是180°- 108° =72°,•这个多边形的边数是360°叼2°5 ,•••这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.二、填空题13.±4【解析】【分析】这里首末两项是x和2的平方那么中间项为加上或减去x和2的乘积的2倍也就是kx由此对应求得k的数值即可【详解】•••是一个多项式的完全平方• kx=±2X2?x:k=±4故答案为:土4【解析:土4.【分析】这里首末两项是x和2的平方,那么中间项为加上或减去X和2的乘积的2倍也就是kx,由此对应求得k的数值即可.【详解】X2kx 4是一个多项式的完全平方,••• kx= ±2X2?<,k=±4.故答案为:±4.【点睛】此题考查完全平方式,解题关键在于掌握计算公式14.40。