四种命题相互关系练习题
四 种命题
问题 1.证明:若 p q 2 ,则 p q ≤ 2 .
2 2
证明: 假设 p q 2 ,
则 ( p q) 4 , p 2 q 2 2 pq 4 , ∴
2
2 2
假设原命题结 论的反面成立 看能否推出原命题 条件的反面成立
2 2
P2
2+y2=0,则x=y=0. 练习:证明x
练2.
圆的两条不是直径的相交弦不能互相平分。
已知:如图,在⊙O中,弦AB、CD交于P,且 AB、CD不是直径.求证:弦AB、CD不被P平分.
证明: 假设弦AB 、CD被P平分, ∵P点一定不是圆心O,连接OP, 根据垂径定理的推论, 有 OP⊥AB, OP⊥CD 即 过点P有两条直线与OP都垂直, 这与垂线性质矛盾, ∴弦AB、CD不被P平分。
∵ p q ≥ 2 pq , 2 2 2 2 ∴ 2( p q ) 4 , ∴ p q 2 , 尝试成功 2 2 ∴ p q 2. 得证
这表明原命题的逆否命题为真命题,从而原命 题也为真命题.
反证法:
• 要证明某一结论A是正确的,但不直 接证明,而是先去证明A的反面(非A) 是错误的,从而断定A是正确的。 • 即反证法就是通过否定命题的结论而 导出矛盾来达到肯定命题的结论,完 成命题的论证的一种数学证明方法。
结论:原命题与逆否命题总是具有相同的真假 性,逆命题与否命题也总是具有相同的真假性.
练习.四种命题真假的个数可能为( 答:0个、2个、4个。 )个。
例1、 判断命题“若x+y>5,则x>2或y>3” 的真假
直接判断比较困难时,先判断逆否 命题的真假。
数学命题及其关系的练习题及答案
数学命题及其关系的练习题及答案关于数学命题及其关系的练习题及答案1.1命题及其关系重难点:了解命题及其逆命题、否命题与逆否命题;明白四种命题之间的关系;会利用两个命题互为逆否命题的关系判别命题的真假.考纲要求:①了解命题及其逆命题、否命题与逆否命题.②理解必要条件、充分条件与充要条件的意义,会分析四种命题的互相关系.经典例题:已知命题;若是的充分非必要条件,试求实数的取值范围.当堂练习:1. 给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若,则有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是 ( )A.①② B.②③C.①③ D.③④1. “△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为()A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角D.以上都不对3. 给出4个命题:①若,则x=1或x=2;②若,则;③若x=y=0,则;④若,x+y是奇数,则x,y中一个是奇数,一个是偶数.那么:()A.①的逆命题为真 B.②的否命题为真C.③的逆否命题为假 D.④的逆命题为假4. 命题“若△ABC不是等腰三角形,则它的任何两个内角不相等.”的`逆否命题是()A.“若△ABC是等腰三角形,则它的任何两个内角相等.”B.“若△ABC任何两个内角不相等,则它不是等腰三角形.”C.“若△ABC有两个内角相等,则它是等腰三角形.”D.“若△ABC任何两个角相等,则它是等腰三角形.”5. 命题p:若A∩B=B,则;命题q:若,则A∩B≠B.那么命题p与命题q的关系是()A.互逆 B.互否C.互为逆否命题 D.不能确定6. 对以下四个命题的判断正确的是 ( )(1)原命题:若一个自然数的末位数字为0,则这个自然数能被5整除(2)逆命题:若一个自然数能被5整除,则这个自然数的末位数字为0(3)否命题:若一个自然数的末位数字不为0,则这个自然数不能被5整除(4)逆否命题:若一个自然数不能被5整除,则这个自然数的末位数字不为0A.(1)、(3)为真,(2)、(4)为假 B.(1)、(2)为真,(3)、(4)为假C.(1)、(4)为真,(2)、(3)为假 D.(2)、(3)为真,(1)、(4)为假7. 直线的倾斜角为钝角的一个必要非充分条件是()A.k<0 B.k<-1 C.k<1 D.k>-28. 直线,互相平行的一个充分条件是()A.,都平行于同一个平面 B.,与同一个平面所成的角相等C.平行于所在的平面 D.,都垂直于同一个平面9. 已知a1,a2,a3,a4是非零实数,则a1a4=a2a3是a1,a2,a3,a4成等比数列的()A.充分非必要条件 B.必要非充分条件C.充分且必要条件 D.既不充分又不必要条件10. 在ΔABC中,条件甲:A<B,条件乙:cosA>cosB,则甲是乙的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件11. 在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是 (把符合要求的命题序号都填上).12.命题则对复合命题的下述判断:①p或q为真;②p或q为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中判断正确的序号是(填上你认为正确的所有序号).13. 设集合A=x2+x-6=0,B=mx+1=0,则B是A的真子集的一个充分不必要的条件是_ .14. 设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的__________条件.15. 写出下列命题的逆命题、否命题、逆否命题,并指出他们的真假:(1)若xy=0,则x,y中至少有一个是0;(2)若x>0,y>0,则xy>0;16. 设集合,,则“或”是“”的条件?17. 已知x的一元二次方程(m∈Z)① mx2-4x+4=0 ② x2-4mx+4m2-4m-5=0求方程①和②都有整数解的充要条件18.设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b >1是两根α、β均大于1的什么条件?参考答案:经典例题:【解析】由,得.:.由,得.:B={}.∵是的充分非必要条件,且, AB.即当堂练习:1.C;2.B;3.A;4.C;5.C;6.C;7.C;8.D;9.B; 10.C; 11. ②; 12.①④⑤⑥; 13. m=(也可为或0);14. 充分不必要.15. 【解析】(1)逆命题:若x=0,或y=0则xy=0;否命题:xy≠0,则x≠0且y≠0;逆否命题:若x≠0,且y≠0则xy≠0;(2)逆命题:若xy>0,则x>0,y>0;否命题:若x≤0,或y≤0则xy≤0;逆否命题:若xy≤0;则x≤0,或y≤016. 【解析】“或”,,因为“或”,但,故“或”是“”的必要不充分条件.17. 【解析】方程①有实根的充要条件是解得m1.方程②有实根的充要条件是,解得故m=-1或m=0或m=1.当m=-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m=1.反之,m=1①②都有整数解.∴①②都有整数解的充要条件是m=1.18. 【解析】根据韦达定理得a=α+β,b=αβ.判定的条件是p:结论是q:(注意p中a、b满足的前提是Δ=a2-4b≥0)(1)由,得a=α+β>2,b=αβ>1,∴qp(2)为证明pq,可以举出反例:取α=4,β=,它满足a=α+β=4+>2,b=αβ=4×=2>1,但q不成立.综上讨论可知a>2,b>1是α>1,β>1的必要但不充分条件.【关于数学命题及其关系的练习题及答案】。
1-1-2 四种命题及其相互关系
基础巩固强化一、选择题1.设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是() A.若a≠-b,则|a|≠|b|B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-bD.若|a|=|b|,则a=-b[答案] D[解析]将原命题的条件改为结论,结论改为条件,即得原命题的逆命题.2.命题:“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1,或x≤-1B.若-1<x<1,则x2<1C.若x>1,或x<-1,则x2>1D.若x≥1,或x≤-1,则x2≥1[答案] D[解析]-1<x<1的否定为x≤-1或x≥1,x2<1的否定为x2≥1,故逆否命题为“若x≤-1或x≥1,则x2≥1”,故选D.3.(2012~2013学年度安徽安庆市高二期末测试)命题“若ab=0,则a=0或b=0”的逆否命题是()A.若a=0或b=0,则ab=0B.若ab≠0,则a≠0或b≠0C.若a≠0且b≠0,则ab≠0D.若a≠0或b≠0,则ab≠0[答案] C[解析]命题“若ab=0,则a=0或b=0”的逆否命题是“若a≠0且b≠0,则ab≠0”.4.(2012·宿州高二检测)命题“若c<0,则方程x2+x+c=0有实数解”,则()A.该命题的逆命题为真,逆否命题也为真B.该命题的逆命题为真,逆否命题也假C.该命题的逆命题为假,逆否命题为真D.该命题的逆命题为假,逆否命题也为假[答案] C[解析]如:当c=0时,方程x2+x+c=0有实数解,该命题的逆命题“若方程x2+x+c=0有实数解,则c<0”是假命题;若c<0,则Δ=1-4c>0,命题“若c<0,则方程x2+x+c=0有实数解”是真命题,故其逆否命题是真命题.5.命题“若a=5,则a2=25”与其逆命题、否命题、逆否命题这四个命题中,假命题是()A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题[答案] D[解析]∵原命题为真,逆命题为假,∴逆否命题为真,否命题为假.6.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中真命题的个数是()A.4B.3C.2D.0[答案] C[解析]“当AB=AC时,△ABC为等腰三角形”为真,故逆否命题为真,逆命题:“△ABC为等腰三角形,则AB=AC”为假,故否命题为假.二、填空题7.命题“若a>1,则a>0”的逆否命题是______命题(填“真”或“假”).[答案]真[解析]∵原命题为真,∴其逆否命题为真.8.命题“若x=3,y=5,则x+y=8”的逆命题是____________________;否命题是__________________,逆否命题是____________________.[答案]逆命题:若x+y=8,则x=3,y=5;否命题:若x≠3或y≠5,则x+y≠8;逆否命题:x+y≠8,则x≠3或y≠5.9.命题“若函数f(x)=ax+b,则函数是一次函数”以及它的逆命题、否命题、逆否命题中,真命题的个数为________.[答案] 2[解析]命题“若函数f(x)=ax+b,则函数是一次函数”是假命题,故其逆否命题是假命题;该命题的逆命题是“若函数f(x)是一次函数,则函数f(x)=ax+b”为真命题,故其否命题是真命题.三、解答题10.把命题“全等三角形的面积相等”改写成“若p,则q”的形式,并写出它的逆命题、否命题与逆否命题.[解析]“若p,则q”的形式:若两个三角形全等,则它们的面积相等.逆命题:若两个三角形的面积相等,则这两个三角形全等.否命题:若两个三角形不全等,则它们的面积不相等.逆否命题:若两个三角形的面积不相等,则这两个三角形不全等.。
四种命题的真假关系(含答案)
B. 当 揀 时该命题成立
C. 当 揀 时该命题不成立
D. 当 揀 时该命题成立
25.已知命题“函数 f(x)、g(x)定义在 R 上,h(x)=f(x)•g(x),若 f(x)、g(x)均为奇函数,
ᇮtan 揀
17.下列命题中,假命题的个数为( ).
①对所有正数 p, ;
②不存在实数 x,使 x<4 且
揀;
3
③存在实数 x,使得 ᇮ
ᇮ且 䮠 ;
④3>3,
A. 1
B. 2
C. 3
D. 4
18.命题“若 则 ”及其逆命题,否命题,逆否命题中真命题的个数可能是( )
A. 1
B. 2
C. 3
D. 都有可能
题中,真命题的个数为( )
A. 0
B. 1
C. 2
D. 4
3.下列命题错误的是( )
A. 命题“若 m>0,则方程 x2+x﹣m=0 有实数根”的逆否命题为:“若方程 x2+x﹣m=0 无实数根,则
m≤0”
B. 若 p∨q 为真命题,则 p,q 至少有一个为真命题
C. “x=1”是“x2﹣3x+2=0”的充分不必要条件
D. 若 p∧q 为假命题,则 p,q 均为假命题
4.在命题“若抛物线 揀 ᄂ ܾ 的开口向下,则 䮠ᄂ ܾ
”的逆命题、否命题、逆否命
题中结论成立的是( )
A. 都真
B. 都假
C. 否命题真
D. 逆否命题真
5.下列说法正确的是( )
A. “若 ᄂ 䮠 ᇮ ,则 ᄂ 䮠 ᇮ ”的否命题是“若 ᄂ 䮠 ᇮ ,则 ᄂ ᇮ ”
A. 3
人教A版选修2-1第一章第2课时同步练习§1.1.3 四种命题间的相互关系
§1.1.3 四种命题间的相互关系一、选择题:1、下列命题中,真命题是( )A 、若ac bc >,则a b >B 、若2x =,则2320x x -+=的否命题C 、“若3b =,则29b =”的逆命题 D 、“相似三角形的对应角相等“的逆否命题2、命题“若2x =或3x =,则2560x x -+=”以及它的逆命题、否命题、逆否命题中,假命题的个数为( )A 、0 B、2 C 、3 D 、43、下列命题中,不是真命题的为( )A 、命题“若240b ac ->,则二次方程20ax bx c ++=有实根”的逆否命题;B 、“四边相等的四边形是正方形”的逆命题;C 、“29x =,则3x =”的否命题;D 、“对顶角相等”的逆命题4、有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“a b >,则22a b >”的逆否命题;③“若3x ≤-,则260x x +->”的否命题;④若ba 是无理数,则,ab 是无理数。
其中真命题的个数是( )A 、0B 、1C 、2D 、35、命题“若3a >-,则6a >-”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A 、1B 、2C 、3D 、46、命题“若p ⌝,则q ”是真命题,则下列命题一定是真命题的是( )A 、若p ,则p ⌝B 、若q ,则 p ⌝C 、若q ⌝,则pD 、若q ⌝,则p ⌝二、填空题:7、在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线。
以上两个命题中,逆命题为真命题的是 ;8、“已知a ∈全集U ,若a A ∈,则()U a C A ∉”的逆命题是 ; 它是(填真假) 命题9、下列四个命题:①“若0x y +=,则互为相反数”的否命题;②“若a 和b 都是偶数,则a b +是偶数”的否命题;③“若a b >,则22a b >”的逆否命题;④已知,,,a b c d 是实数,“若,a b c d ==,则a c b d +=+”的逆命题,其中真命题的序号是 ;10、反证法证明的原理是 ;11、用反证法证明“若a b ⋅不是偶数,则a 、b 都不是偶数”时,应假设 ;三、解答题:12、已知0c ≤,求证:若a b c ≤+,则a b ≤13、已知()f x 是(,)-∞∞上的增函数,,a b R ∈,求证:若()()()()f a f b f a f b +≥-+-,则0a b +≥14、若,,a b c 均为实数,且222a x y π=-+,223b y z π=-+,226c z x π=-+,求证:,,a b c 中至少有一个大于0。
1.1.3四种命题间的相互关系
反证法的步骤:
1. 假设命题的结论不成立,即假设结论的 反面成立。 推理过程中一定要用到才行
王新敞
奎屯 新疆
2. 从这个假设出发,通过推理论证,得出 矛盾。 显而易见的矛盾(如和已知条件矛盾). 3. 由矛盾判定假设不正确,从而肯定命题 的结论正确。
可能出现矛盾四种情况:
• • • • 与题设矛盾; 与反设矛盾; 与公理、定理矛盾; 在证明过程中,推出自相矛盾的结论。
(真 ) (假 ) (假 ) (真 )
例题讲解
例1:设原命题是:当c>0时,若a>b,则ac>bc. 写出它的逆命题、否命题、逆否命题。 并分别判断它们的真假。
分析:“当c>0时”是大前提,写其它命题时应该保留。 原命题的条件是“a>b”, 结论是“ac>bc”。 解:逆命题:当c>0时,若ac>bc, 则a>b. (真) (真) (真) (真)
A O
已知:如图,在⊙O中,弦AB、 CD交于点P,且AB、CD不是直径. 求证:弦AB、CD不被P平分.
D
证明:假设弦AB、CD被P平分,
由于P点一定不是圆心O,连结OP, 根据垂径定理的推论,有
P
C
B
OP⊥AB,OP⊥CD, 即过点P有两条直线与OP都垂直,这与垂 线性质矛盾。
所以,弦AB、CD不被P平分。
所以假设不成立, 从而______________ x =y=0。 成立。
反 证 法
例 2
用反证法证明 : 如果a b 0, 那么 a b .
或者 a b
证明: 假设 a不大于 b , 则或者 a b ,
因为a 0, b 0, 所以 a b a a b a与 a b b b a b a bab
四种命题间的相互关系
证明:假设a不能被2整除,则a必为奇数, 故可令a=2m+1(m为整数), 由此得a2=(2m+1)2=4m2+4m+1=4m(m+1)+1, 此结果表明a2是奇数, 这与题中的已知条件(a2能被2整除)相矛盾 ∴a能被2整除.
练习
1. (2008山东文)给出命题:若函数是幂函数,
6. 求证:若一个三角形的两条边不相等, 则这两条边所对的角也不相等.
证明:如果一个三角形的两边所对的角相等, 则这个三角形是等腰三角形, 且这两条边是等腰三角形的两条腰, 也就是说两条边相等. 这就证明了原命题的逆否命题是真命题 所以原命题也是真命题.
课堂小结
1. 四种命题的相互关系:
2. 四种命题的真假性:
即(1-a)b > 1 , (1-b)c> 1 ,(1-c)a> 1 4
4
4
4
而 1- a + b ≥ (1- a)b > 1 , 1- b + c ≥ (1- b)c > 1 , 1-c +a ≥ (1-c)a > 1 ,
2
22
22
2
1 得
-
a+ 2
b
+
1
-
b+ 2
c
+
1-
c+ 2
a
>
3 2
即 3 > 3 ,属于自相矛盾,
A.4
B.3 C.2
D.0
5. 命题“已知a,b为实数,若x2+ax+b≤0有非空解 集,则a2-4b≥0.”写出该命题的逆命题,否命题,逆 否命题,并判断真假.
《四种命题及其关系》课时作业2
《四种命题及其关系》课时作业一、选择题1.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .1B .2C .3D .42.命题“若A ∩B =A ,则A ⊆B ”的逆否命题是( )A .若A ∪B ≠A ,则A ⊇B B .若A ∩B ≠A ,则A ⊆BC .若A ⊆B ,则A ∩B ≠AD .若A ⊇B ,则A ∩B ≠A3.命题“若x 2<1,则-1<x <1”的逆否命题是( )A .若x 2≥1,则x ≥1或x ≤-1B .若-1<x <1,则x 2<1C .若x >1或x <-1,则x 2>1D .若x ≥1或x ≤-1,则x 2≥14.“若函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数,则log a 2<0”的逆否命题是( )A .若log a 2≥0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内不是减函数B .若log a 2<0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内不是减函数C .若log a 2≥0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数D .若log a 2<0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数5.有下列四个命题,其中真命题有( )①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.A .①②B .②③C .①③D .③④二、填空题6.命题“若A ∪B =B ,则A ⊆B ”的否命题是_________________ ___,逆否命题是_______ ___7.命题“若x 、y 是奇数,则x +y 是偶数”的逆否命题是________________________________.8.“已知a ∈U (U 为全集),若a ∉∁U A ,则a ∈A ”的逆命题是__ __ _________ ,它是____ _(填“真”“或”“假”)命题.9.“若x ≠1,则x 2-1≠0”的逆否命题为________命题.(填“真”或“假”)10.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b, 则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________.11.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,若 l ⊥m ,则α⊥β的逆否命题是 (填“真”或“假”)12. ①若a ≥b >-1,则a 1+a ≥b 1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n 2;③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切这三个命题中的真命题是三、解答题13.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.14. 已知奇函数f (x )是定义域为R 的增函数,a ,b ∈R ,若f (a )+f (b )≥0,求证:a +b ≥0.15. 证明:已知R y x ∈,,且2>+y x ,则y x ,中至少有一个大于1。
1.1命题及四种命题间的关系
q:4x2+4(m-2)x+1=0无实根.若p,q一真 一假,求m的取值范围.
逆否命题的应用
• 某个命题与自然数n有关,如果当n=k(k∈N )时 该命题成立,那么推得当n=k+1时命题也成立, 现知当n=5时命题不成立,那么可推得( ) • A、当n=6时该命题不成立 • B、当n=6时该命题成立 • C、当n=4时该命题不成立 • D、当n=4时该命题成立
※
例 2.判断下列命题的真假: 对于实数 x 、y,若 x +y≠8,则 x ≠ 2 或 y≠6;
逆命题:若x=2,则x2-3x+2=0; (真) (真) 否命题:若x2-3x+2≠0,则x≠2; (假) 逆否命题:若x≠2,则x2-3x+2≠0.
已知原命题:若x>0,y<0,则x+y>0, 那么其逆命题、否命题和逆否命题分别是 什么?这些命题的真假如何?
原命题:若x>0,y<0,则x+y>0(假) ;
2
例3.已知命题p:lg(x2-2x-2)≥0; 命题q:0<x<4, 若命题p是真命题,命题q是假命题, 求实数x的取值范围. 变式练习:若命题P与命题q一真一假, 求实数x的取值范围。
“若p,则q” 思考2 对具有“若p,则q”形式的命 题,在逻辑上,p、q分别是什么地位?
例如:若两个三角形全等,则它们相似。 例:正方形的四条边相等。
1.1命题及四种命题
新课讲授
(1)命题: 一般地,在数学中,我们把 用语言、符号或式子表达的,可 以判断真假的陈述句叫做命题.
(2)真命题、假命题:
判断为真的语句叫做真命题; 判断为假的命题叫做假命题.
例1、判断下列语句是否是命题,并说明理由。 (1) 3是无理数; (2)福建真美啊!; (3)x R, x 4 x 4 0; (4) x 2 0;
25:四种命题间的逆否关系
25:四种命题间的逆否关系1.下列说法错误的是()A.命题“若x2-4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2-4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”2.与命题“若a∈M则b∉M”的等价的命题是()A.若a∉M,则b∉M B.若b∉M,则a∈MC.若a∉M,则b∈M D.若b∈M,则a∉M3.命题“若a,b都是奇数,则a-b是偶数”的逆否命是()A.若a-b不是偶数,则a,b不都是奇数B.a-b不是偶数,则a,b都不是奇数C.若a-b不是偶数,则a,b都不是偶数D.若a-b是奇数,则a,b都是偶数4.在命题“若a>b,则ac2>bc2”及它的逆命题、否命题、逆否命题之中,其中真命题有()A.4个B.3个C.2个 D.1个5.命题a的逆命题是b,命题b的否命题是c,则a与c互为()A.逆命题B.否命题C.逆否命题D.不能确定6.“若一个数不是负数,则它的平方不是正数”和这个命题真值相同的命题()A.若一个数是负数,则它的平方是正数B.若一个数的平方不是正数,则它不是负数C.若一个数的平方是正数,则它是负数D.若一个数不是负数,则它的平方是非负数7.下列哪个命题的逆命题为真()A.若a>b,则ac>bc B.若a2>b2,则a>b>0C.若|x-3|>1,则2<x<4 D.若2<x<2,则x2>48.命题:“若x、y、z都大于0,则xyz>0”的逆否命题是()A.若xyz<0,则x、y、z都不大于0B.若xyz<0,则x、y、z不都大于0C.若xyz≤0,则x、y、z都不大于0D.若xyz≤0,则x、y、z不都大于09.命题p的否命题为r,命题r的逆命题为s,则s是p的()A.原命题B.逆命题C.否命题D.逆否命题10.下列命题中与命题“能被6整除的整数一定能被2整除.”等价的命题是()A.能被2整除的整数一定能被6整除B.不能被6整除的整数一定不能被2整除C.不能被2整除的整数不一定能被6整除D.不能被2整除的整数一定不能被6整除11.已知p:|x+1|>2,q:x>a,且¬p是¬q的充分不必要条件,则实数a的取值范围可以是()A.a≥1 B.a≤1 C.a≥-1 D.a≤-312.“若一个数不是负数,则它的平方不是正数”和这个命题真值相同的命题()A.若一个数是负数,则它的平方是正数B.若一个数的平方不是正数,则它不是负数C.若一个数的平方是正数,则它是负数D.若一个数不是负数,则它的平方是非负数13.命题“若a>b,则a+c>b+c”的逆否命题为()A.若a<b,则a+c<b+c B.若a≤b,则a+c≤b+cC.若a+c<b+c,则a<b D.若a+c≤b+c,则a≤b14.命题“两条对角线相等的平行四边形是矩形”是命题“矩形是两条对角线相等的平行四边形”的()A.逆命题B.否命题C.逆否命题D.原命题15.命题a的逆命题是b,命题b的否命题是c,则a与c互为()A.逆命题B.否命题C.逆否命题D.不能确定16.命题“若m<0,则方程:x2+3x+m=0有实根”的逆否命题是()A.若m>0,则方程:x2+3x+m=0没有实根B.若方程:x2+3x+m=0没有实根,则m>0C.若方程:x2+3x+m=0没有实根,则m≥0D.若m≥0,则方程:x2+3x+m=0没有实根17.命题“若a>b,则a+1>b”的逆否命题是()A.若a+1≤b,则a>b B.若a+1<b,则a>bC.若a+1≤b,则a≤b D.若a+1<b,则a<b18.下列命题中与命题“能被6整除的整数一定能被2整除.”等价的命题是()A.能被2整除的整数一定能被6整除B.不能被6整除的整数一定不能被2整除C.不能被2整除的整数不一定能被6整除D.不能被2整除的整数一定不能被6整除19.与命题:“若a∈P,则b∉P”等价的命题是()A.若a∉P,则b∉P B.若b∉P,则a∈PC.若a∉P,则b∈P D.若b∈P,则a∉P20.与命题“若m∈M,则n∉M”等价的命题是.21.命题“若x2<1,则-1<x<1”的逆否命题是.22.命题“若ab=0,则a、b中至少有一个为零”的逆否命题是.23.已知一个命题的否命题是“如果x>2,那么x2>4”,则它的逆命题是.24.命题:“如果a>1,那么a>0.”的逆否命题为.25.给出下列命题:①若一个四边形的四条边不相等,则它不是正方形;②若一个四边形对角互补,则它内接于圆;③正方形的四条边相等;④圆内接四边形对角互补;⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有;互为否命题的有;互为逆否命题的有.26.与原命题的逆命题等价的是原命题的命题.27.“如果x=5或x=6,则(x-5)(x-6)=0”的逆否命题是.28.已知命题:“如果a>0,b>0,那么ab>0”,则它的逆否命题是.29.命题“若一个数的平方是正数,则它是负数”的逆命题是.30.写出命题“若x∈A∪B,则x∈A或x∈B”的逆否命题.31.命题“若x2<1,则-1<x<1”的逆否命题是.32.命题“若ab=0,则a、b中至少有一个为零”的逆否命题是.33.若命题A的否命题是B,命题B的逆命题是C,则C是A的逆命题的命题(用“逆”、“否”、“逆否”填空)34.命题“若x2+y2+2x+1=0,则x=-1且y=0”的逆否命题是.35.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是.。
高一数学命题与四种命题练习题
高一数学命题与四种命题练习题典例剖析题型一:判断命题的真假【例 1】判断以下语句是不是命题:⑴张三是四川人;⑵ 1010是个很大的数;⑶ x22x 0 ;⑷ x2 6 0 ;⑸11 2 ;【例 2】判断以下语句是不是命题,假如,判断出其真假,若不是,说明原因.(1)矩形莫非不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?( 3)求证:x R ,方程x2x 10 无实根.(4)x 5(5)人类在 2020 年登上火星 .【例 3】设语句 p(x) : cos(x πsin x,写出 p(π,并判断它是不是真命题;))23【例 4】判断以下命题的真假.⑴ 空间中两条不平行的直线必定订交;⑵ 垂直于同一个平面的两个平面相互垂直;⑶ 每一个周期函数都有最小正周期;⑷ 两个无理数的乘积必定是无理数;⑸若 A ú B ,则 A I B B ;⑹若 m 1,则方程x22x m0 无实数根.⑺已知 a ,b ,c ,d R ,若 a c 或b d,则a b c d ;⑻已知 a ,b ,c ,d R ,a b c d ,则a c 或b d.【例 5】下边有四个命题:①若 a 不属于N,则 a 属于N;② 若 a N ,b N ,则a b 的最小值为 2 ;③ x2 1 2 x 的解可表示为 1 ,1 .此中真命题的个数为()A. 0个B.1个C.2个D.3个- 1 -【例 6】 命题 p :奇函数必定有f (0) 0 ;命题 q :函数 yx1的单一递减区间是[ 1,0) U (0 ,1].x则以下四个判断中正确的选项是( ) A . p 真 q 真B . p 真 q 假C . p 假 q 真D . p 假 q 假【例 7】 给出以下三个命题:① 若 a ≥ b 1,则a ≥b ;1 a1 b② 若正整数 m 和 n 知足 m ≤ n ,则 m(nm) ≤ n;2③ 设 P( x 1 ,y 1 ) 为 圆 O 1 : x 2y 2 9 上 任 一 点 , 圆 O 2 以 Q( a ,b) 为圆 心 且 半 径为 1 . 当(a x ) 2 (by )2 1时,圆 O 与圆 O 相切;1112此中假命题的个数为()A . 0B . 1C . 2D . 3【例 8】 已知三个不等式:ab0 ,ad0 ,cd 0(此中a ,b ,c ,d 均为实数).用此中两个不等bc ab式作为条件,余下的一个不等式作为结论构成一个命题,可构成真命题的个数是()A . 0B . 1C . 2D . 3【例 9】 已知 m ,n 是两条不一样直线,, , 是三个不一样平面,以下命题中正确的选项是()A .若m ∥ , ∥ ,则m ∥ n B .若,,则∥nC .若m ∥ , ∥,则∥D .若m,,则m ∥ nmn【例 10】 已知直线 m 、 n 与平面 、 ,给出以下三个命题:① 若 m ∥ ,n ∥ ,则 m ∥ n ;②若 m ∥ ,n ,则 nm ;③ 若 m,m ∥,则.此中真命题的个数是()A . 0B . 1C . 2D . 3【例 11】 已知三个不等式: ab 0, bc ad 0,cd0 (此中 a,b,c, d 均为实数) .用此中两个不等a b式作为条件,余下的一个不等式作为结论构成一个命题,可构成真命题的个数是 () A. 0B.1C.2D. 3【例 12】 下边有五个命题:① 函数 y sin 4 x cos 4 x 的最小正周期是 π.- 2 -②终边在 y 轴上的角的会合是 a | a kπ,k Z.2③在同一坐标系中,函数y sin x 的图象和函数y x 的图象有三个公共点.④把函数 y 3sin 2xπ的图象向右平移π获得y 3sin 2x的图象.36⑤函数 y sin xπ 在0,π上是减函数.2此中真命题的序号是.【例 13】对于四周体ABCD,以下命题正确的选项是(写出全部正确命题的编号).①相对棱 AB 与 CD 所在的直线是异面直线;②由极点 A 作四周体的高,其垂足是BCD 的三条高线的交点;③若分别作ABC 和ABD 的边 AB 上的高,则这两条高所在的直线异面;④ 分别作三组相对棱中点的连线,所得的三条线段订交于一点;⑤ 最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例 14】设和为不重合的两个平面,给出以下命题:①若内的两条订交直线分别平行于内的两条直线,则平行于;②若外一条直线 l 与内的一条直线平行,则 l 和平行;③设和订交于直线 l ,若内有一条直线垂直于l ,则和垂直;④直线 l 与垂直的充足必需条件是 l与内的两条直线垂直.上边命题中,真命题的序号是____.(写出全部真命题的序号)【例 15】若x2,5 和 x x | x 1或x 4 都是假命题,则x 的范围是___________.【例 16】设V是已知平面M上全部向量的会合,对于映照r r rf : V V ,a V ,记a的象为 f (a ) .若映照f :Vr r r r r rV 知足:对全部 a ,b V 及随意实数,都有 f ( a b) f (a) f (b) ,则 f 称为平面 M 上的线性变换.现有以下命题:r r①设 f是平面 M 上的线性变换,则f(0)0 ;r r r②对 a V ,设 f (a )2a ,则 f 是平面M上的线性变换;w.w.w.k.s.5.u.c.o.mr rV r r r是平面 M 上的线性变换;③若 e 是平面M上的单位向量,对a设 f (a )a e ,则 f④设 fr r r r r r是平面 M 上的线性变换,a,b V ,若 a ,b 共线,则 f ( a) ,f (b) 也共线.此中真命题是(写出全部真命题的序号)【例 17】设有两个命题:p : 不等式| x || x 1| a 的解集为R ,命题 q : f ( x)(73a) x在R上为减函数 . 如果两个命题中有且只有一个是真命题,那么实数a的取值范围- 3 -是.【例 18】对于 x 的方程 x2 121 k 0 ,给出以下四个命题:x2①存在实数 k ,使得方程恰有 2 个不一样的实根;②存在实数 k ,使得方程恰有 4 个不一样的实根;③存在实数 k ,使得方程恰有 5 个不一样的实根;④存在实数 k ,使得方程恰有8 个不一样的实根;此中假命题的个数是().A.0B.1C.2D.3【例 19】对于直角坐标平面内的随意两点A( x1,y1) 、 B(x2,y2 ) ,定义它们之间的一种“距离”:AB x1 x2y1y2.给出以下三个命题:①若点 C在线段 AB上,则 AC CB AB ;②在 ABC 中,若 C 90,则 AC2CB2AB 2;③在 ABC中,AC CB AB .此中真命题的个数为()A.1个B. 2个C. 3个D. 4个【例 20】设直线系 M : x cos( y 2)sin1(0 ≤≤ 2 π) ,对于以下四个命题:A . M 中全部直线均经过一个定点B.存在定点 P 不在 M 中的任一条直线上C.对于随意整数n(n ≥ 3) ,存在正 n 边形,其全部边均在M 中的直线上D. M 中的直线所能围成的正三角形面积都相等此中真命题的代号是(写出全部真命题的代号).题型二:四种命题之间的关系【例 21】命题“若x y ,则| x | | y |”,写出它的抗命题、否命题、逆否命题,并判断它们的真假【例 22】写出命题“若a,b都是偶数,则a b 是偶数”的抗命题,否命题,逆否命题,并判断它们的真假 .【例 23】写出以下命题的抗命题,否命题,逆否命题,并判断它们的真假.⑴ “负数的平方是正数”;⑵ “若 a 和b都是偶数,则a b 是偶数”;⑶ “当 c 0时,若 a b ,则 ac bc”;⑷ “若 x y 5 ,则x 3 且y 2 ”;【例 24】写出以下命题的否命题,并判断否命题的真假.- 4 -⑴命题 p :“若ac0, 则二次方程 ax2bx c0 没有实根”;⑵命题 q :“若x a 且x b ,则x2(a b) x ab 0 ”;⑶命题 r :“若 (x1)(x 2)0 ,则x 1 或 x 2 ”.⑷命题 l :“ ABC中,若 C 90,则A、 B 都是锐角”;⑸命题 s :“若abc0 ,则a,b,c中起码有一个为零”.【例 25】假如两个三角形全等,那么它们的面积相等;①假如两个三角形的面积相等,那么它们全等;②假如两个三角形不全等,那么它们的面积不相等;③假如两个三角形的面积不相等,那么它们不全等;④命题②、③、④ 与命题① 有何关系?【例 26】以下命题中正确的选项是()① “若 x2y20 ,则x,y不全为零”的否命题② “正多边形都相像”的抗命题③ “若 m0 ,则x2x m 0 有实根”的逆否命题④ “若 x3是有理数,则 x 是无理数”的逆否命题A .①②③④B.①③④C.②③④D.①④【例 27】命题:“若220(a ,b R ),则“b0”的逆否命题是()a b a A .若a b 0( a,b R ) ,则 a 2b20B.若a0且b0(a,R ),则22b a bC.若a b0(a ,b220 R ) ,则 a bD.若a 0或,,则a22b 0( a b R)b【例 28】命题:“若 x21,则 1 x 1 ”的逆否命题是(2,则 x≥ 1 或 x≤ 1B.若A .若x≥1 C.若 x 1 或 x2D.若1,则x 1)1 x 1 ,则x21x ≥ 1 或 x ≤1 ,则x2≥1【例 29】已知命题“假如 a ≤ 1 ,那么对于 x 的不等式 (a 24) x2( a 2) x 1 ≥ 0 的解集为”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有()A.0 个B.2 个C.3 个D.4 个【例 30】有以下四个命题:① “若 x y 0 ,则x, y互为相反数”的抗命题;② “全等三角形的面积相等”的否命题;③ “若 q ≤ 1 ,则 x22x q0有实根”的逆否命题;④ “等边三角形的三个内角相等”抗命题;此中真命题的个数为()- 5 -A .1B. 2C. 3D. 4【例 31】下边有四个命题:①会合 N 中最小的数是1;② 若 a 不属于N,则 a 属于N;③若a N ,b N , 则a b 的最小值为2;④ x212x 的解可表示为1,1 .此中真命题的个数为()A.0个B.1个C.2个D.3个【例 32】有以下四个命题:①“若x y0,则 x, y互为相反数”的抗命题;② “全等三角形的面积相等”的否命题;③“若 q1,则x22x q0 有实根”的逆否命题;④“不等边三角形的三个内角相等”抗命题 . 此中真命题为()A.①②B.②③C.①③D.③④【例 33】原命题:“设 a ,b,c R ,若a b ,则ac2bc2”以及它的抗命题、否命题、逆否命题中,真命题共有()个.A . 0B.1C. 2D. 4【例 34】给出以下四个命题:① “若 x y0 ,则x,y互为相反数”的抗命题;② “全等三角形的面积相等”的否命题;③ “若 q ≤ 1 ,则 x2x q0 有实根”的逆否命题;④ “不等边三角形的三内角相等”的逆否命题.此中真命题是()A.①②B.②③C.①③D.③④【例 35】命题:“若 x21,则 1 x 1 ”的逆否命题是()A .若x2≥1,则 x≥ 1 或 x≤ 1B.若 1 x 1 ,则x21C.若 x 1 或 x1,则x21D.若 x ≥ 1 或 x ≤ 1 ,则x2≥1【例 36】有以下四个命题:①“若 x y 0 ,则x,y互为相反数”的抗命题;②“全等三角形的面积相等”的否命题;③“若 q ≤ 1 ,则 x2 2 x q0 有实根”的逆否命题;④“不等边三角形的三个内角相等”抗命题.此中真命题为()A.①②B.②③C.①③D.③④【例 37】命题“若ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是.【例 38】以下命题中_________为真命题.① “A I B A ”建立的必需条件是“AüB”;- 6 -② “若 x2 y20 ,则 x ,y全为0”的否命题;③ “全等三角形是相像三角形”的抗命题;④ “圆内接四边形对角互补”的逆否命题.【例 39】“在ABC 中,若 C 90 ,则 A 、 B 都是锐角”的否命题为;【例 40】有以下四个命题:①命题“若xy1 ,则 x ,y互为倒数”的抗命题;②命题“面积相等的三角形全等”的否命题;③命题“若 m≤ 1 ,则x 2有实根”的逆否命题;④命题“若2 x m 0AIB B,则A B ”的逆否命题.此中是真命题的是(填上你以为正确的命题的序号).【例 41】命题“若x, y是奇数,则x y 是偶数”的逆否命题是;它是命题.【例 42】写出命题“若m0 ,则方程x2x m 0 有实数根”的逆否命题,判断其真假,并加以证明.【例 43】已知等比数列 { a n } 的前 n 项和为 S n.⑴若 S m, S m 2, S m 1成等差数列,证明a m, a m 2, a m 1成等差数列;⑵ 写出⑴的抗命题,判断它的真伪,并给出证明.【例 44】在平面直角坐标系xOy 中,直线l与抛物线 y 22x 订交于A、B两点.(1)求证:“假如直线l过点 T( 3, 0),那么OA OB=3”是真命题;(2)写出( 1)中命题的抗命题,判断它是真命题仍是假命题,并说明原因.- 7 -。
命题:四种命题、复合命题
2命题及其关系、充分条件与必要条件作者杜老师1.命题的概念可以判断真假、用文字或符号表述的语句叫作命题,其中判断为真的语句叫作真命题,判断为假的语句叫作假命题。
2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为_______________,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有确定的关系。
3.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件。
(2)若p⇒q且q p,则p是q的_________________条件。
(3)若p q且q⇒p,则p是q的________________条件。
(4)若p⇔q,则p是q的____________条件。
(5)若p q且q p,则p是q的________________________条件。
[判一判](1)“x2>1”是命题。
( )(2)“cos x=3”是命题。
( )(3)四种形式的命题中,真命题的个数为0或2或4。
( )(5)否命题就是命题的否定。
( )(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件。
( )[练一练]1.下列命题是真命题的为()2.(2015·山东卷)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( ) A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤03.(2015·天津卷)设x∈R,则“|x-2|<1”是“x2+x-2>0”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.命题“若b2-4ac>0,则方程ax2+bx+c=0(a≠0)有两个不相等的实根”的否命题、逆命题和逆否命题中,真命题的个数为( )A.0 B.1C.2 D.35.若“m≤a”是“方程x2+x+m=0有实数根”的必要不充分条件,则实数a的取值范围是________________。
四种命题的真假关系
复习回顾 1.四种命题的形式是什么? 2.四种命题的基本关系是什么? 引例1:写出下列命题的逆命题,否命题和 逆否命题,并判断它们的真假: (1)若x<y,则y>x; (2)若a=0,则ab=0; (3)当x∈R时,若函数f(x)图象过原点,则f(x) 是奇函数。
问题1:由上面3个题目,你能得出什么结论?
2.下列说法: (1)四种命题中真命题的个数一定是偶数; (2)若一个命题的逆命题是真命题,则它的否命 题不一定是真命题; (3)逆命题与否命题之间是互为逆否关系; (4)若一个命题的逆否命题是假命题,则它的逆 命题与否命题都是假命题; (5)一个命题的否命题为真,它的逆命题必为假。 其中正确的个数有( ) A.1个 B.2个 C.3个 D.4个
一.四种命题之间的真假关系 (1)两个命题互为逆否命题, 它们具有相同的真假性; (2)两个命题互为否命题或互为逆命题, 它们的真假性没有关系。
课堂练习 1.若命题p的否命题为r,命题r的逆命题为s, 则命题p的逆命题t与s的关系是( ) A.互为逆命题 B.互为否命题 C.互为逆否命题 D.同一个命题
引例1:证明:若x2&的原理:
(2)应用间接法证明的一般步骤:
(3) 适宜用反证法证明的数学命题:
例1,求证:若a b 0,则 a b
3.命题“若x=3,则x2-9x+18=0”的逆命题, 否命题和逆否命题中,假命题的个数为( ) A . 0 个 B . 1 个 C . 2个 D . 3个
关键词 大(小)于 是 全为 都是 有 任何 所有的 至少一个 至多一个 均为 p或 q p且 q
否定 不大(小)于 不是 不全为 不都是 无 某些 有一个 一个也没有 至少两个 不均为 ┐p且┐q ┐p或┐q
四种命题间的相互关系试题
四种命题及其关系基础达标1.设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是() A.若a≠-b,则|a|≠|b| B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-b D.若|a|=|b|,则a=-b2.当命题“若p,则q”为真时,下列命题中一定正确的是() A.若q,则p B.若﹁p,则﹁q C.若﹁q,则﹁p D.p且q 3.命题“若a∉A,则b∈B”的否命题是()A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉A4.命题“两对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的()A.逆命题B.否命题C.逆否命题D.等价命题5.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是() A.若a+b+c≠3,则a2+b2+c2<3 B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3 D.若a2+b2+c2≥3,则a+b+c =36.命题“如果x≥a2+b2,那么x≥2ab”的逆命题是________.7.命题“若x≠1,则x2-1≠0”的真假性为________.8.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________________.9.判断下列命题的真假.(1)对角线不相等的四边形不是等腰梯形;(2)若x∉A∩B,则x∉A且x∉B;(3)若x2+y2≠0,则xy≠0.10.已知命题P:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.(1)写出命题P的否命题;(2)判断命题P的否命题的真假,并证明你的结论.能力提升1.已知命题“非空集合M中的元素都是集合P中的元素”是假命题,那么下列命题中真命题的个数为()①M中的元素都不是P的元素;②M中有不属于P的元素;③M中有属于P的元素;④M中的元素不都是P的元素.A.1 B.2 C.3 D.42.下列四个命题中:①“等边三角形的三个内角均为60°”的逆命题;②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题;④“若ab≠0,则a≠0”的否命题.其中真命题的序号是________.3.判断下列命题的真假:(1)“若x∈A∪B,则x∈B”的逆命题与逆否命题;(2)“若自然数能被6整除,则自然数能被2整除”的逆命题.4.给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅;命题乙:函数y=(2a2-a)x为增函数.(1)甲、乙至少有一个是真命题;(2)甲、乙有且只有一个是真命题;分别求出符合(1)(2)的实数a的取值范围.。
四种命题
则a+b≠1.
逆否证法
常用的“结论词”与“反设词”列表如 下: 原结论 原结论
词 至少有 一个 至多有 一个 至少有 n个 至多有 n个 反设词 一个也没有 至少有两个 至多有n-1个
词 对所有x 存在某x不成立 成立 对任意x 存在某x成立 不成立 p或 q p且 q 非p且非q
反设词
至少有n+1个
非p或非q
知识要点:
一、四种命题的概念:
原命题: 若 p 则 q . 逆命题: 若 q 则 p . 否命题: 若 p 则 ┐q .
逆否命题:若 ┐ q 则 ┐p.
举例
二、等价性:
1、原命题为真,它的逆否命题一定真;
2、原命题为真,它的逆命题、否命题不
一定真; 3、一个命题与它的逆否命题是等价的.
举例
三、四种命题之间的关系:
6
至少有一个大于0.
例3、已知正实数a、b、c满足
a+b+c=1,在关系式
3(1-a2)≤4(b+c),
3(1-b2)≤4(c+a), 3(1-c2)≤4(a+b)中,
试证明至少有一个成立.
例4、已知a和b均为正有理数,且 a和
b 都是无理数,证明 a b是无理数.
例5、证明:若a2+2ab+b2+a+b-2≠0,
返回
例2、判断下列命题的真假,并写出它 们的逆命题、否命题、逆否命题. (1)若a>b,则ac2>bc2;
(2)若在二次函数y=ax2+bx+c中,
b2-4ac<0,则该二次函数图象
与x轴有公共点.
返回
例3、判断下列命题的真假:
高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)
高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)一.选择题(共8小题)1.命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可取下面哪组值反例说明()A.a=1,b=1B.a=﹣1,b=﹣1C.a=1,b=2D.a=﹣1,b=1 2.下列命题:①同旁内角互补,两直线平行;②若a2=b2,则a=b;③锐角与钝角互为补角;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个3.下列说法中,正确的有()个①,,,0,cos60︒五个数中,其中是无理数的有2个.②关于x的一元二次方程mx2﹣2x﹣10有两个实数根,那么字母m的取值范围是m>﹣1且m≠0.③平行四边形,圆,正六边形,线段四个图形既是中心对称图形,也是轴对称图形.④“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤相等的圆心角所对的弧相等⑥单项式的次数是3次.A.1个B.2个C.3个D.4个4.给出下列4个命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④对顶角相等,它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个6.下列说法正确的有()①在,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个7.下列正确叙述的个数是()①每个命题都有逆命题②真命题的逆命题是真命题③假命题的逆命题是真命题④每个定理都有逆定理⑤每个定理一定有逆命题⑥命题“若a=b,那么a3=b3”的逆命题是假命题.A.1B.2C.3D.48.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b|B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b|D.如果|a|≠|b|,那么a≠b二.填空题(共16小题)9.命题“若a=b,则﹣a=﹣b”的逆命题是.10.命题“如果a2=b2,那么a=b”的逆命题是命题.(填写“真”或“假”)11.命题:“两直线平行,则同旁内角互补”的逆命题为.12.命题“若a=b,则a2=b2”的逆命题是.13.对于命题“如果a=b,那么ac=bc.”,它的逆命题是命题.(填“真”或“假”)14.命题“如a=b,那么|a|=|b|”的逆命题是命题.(填“真”或“假”)15.命题:“如果a=b,那么3a=3b”的逆命题是,该逆命题是(填“真”或“假”)命题.16.“若a=b,则a2=b2”的逆命题是命题.(填“真”或“假”)17.命题“若a=b,则|a|=|b|”的逆命题是.18.命题“如果a2=b2,那么a=b”的逆命题是命题(填“真”或“假”).19.命题“若a2=b2,则a=b.”的逆命题是.20.命题:“如果a=b,那么a2=b2”的逆命题是,该命题是命题(填真或假).21.命题:“若a=b,则a4=b4”,该命题的逆命题是;该命题的逆命题是命题.(填“真”或“假”)22.命题“如果a2=b2,那么a=b”的逆命题是,该命题的逆命题是命题(填真或假)23.命题“如果,那么a=b”的逆命题是:.24.命题“如果a=b,那么a2=b2”的逆命题是.高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)参考答案与试题解析一.选择题(共8小题)1.命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可取下面哪组值反例说明()A.a=1,b=1B.a=﹣1,b=﹣1C.a=1,b=2D.a=﹣1,b=1【解答】解:命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可以取a=﹣1,b=1说明.故选:D.【点评】本题考查命题与定理,解题的关键是理解题意,灵活运用所学知识解决问题.2.下列命题:①同旁内角互补,两直线平行;②若a2=b2,则a=b;③锐角与钝角互为补角;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补是真命题;②若a2=b2,则a=b的逆命题是若a=b,则a2=b2是真命题;③锐角与钝角互为补角的逆命题是互补的角是锐角与钝角,是假命题;④相等的角是对顶角的逆命题是对顶角相等,是真命题;故选:B.【点评】此题主要考查了命题与定理,正确把握相关性质是解题关键.3.下列说法中,正确的有()个①,,,0,cos60︒五个数中,其中是无理数的有2个.②关于x的一元二次方程mx2﹣2x﹣10有两个实数根,那么字母m的取值范围是m>﹣1且m≠0.③平行四边形,圆,正六边形,线段四个图形既是中心对称图形,也是轴对称图形.④“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤相等的圆心角所对的弧相等⑥单项式的次数是3次.A.1个B.2个C.3个D.4个【解答】解:①正确.,,,0,cos60︒五个数中,其中,是无理数.②错误.mx2﹣2x﹣10是代数式,表示方程.③错误.平行四边形是中心对称图形,不是轴对称图形.④正确.“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤错误.在同圆或等圆中,相等的圆心角所对的弧相等.⑥错误.单项式的次数是2次.故选:B.【点评】本题考查无理数、一元二次方程、代数式、中心对称图形、轴对称图形、圆心角与弧之间的关系、单项式的次数的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.4.给出下列4个命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④对顶角相等,它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④对顶角相等的逆命题是相等的角是对项角,是假命题;它们的逆命题是真命题的个数是2个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.6.下列说法正确的有()①在,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个【解答】解:在,,π,﹣3.1415926,中,共有2个无理数,所以①错误;若a=b,则a2=b2,它的逆命题为若a2=b2,则a=b,此是逆命题为假命题,所以②错误;若n边形的内角和是外角和的3倍,即(n﹣2)×180°=3×360°,解得n=8,即它是八边形,所以③正确;平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧,所以④错误.故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.下列正确叙述的个数是()①每个命题都有逆命题②真命题的逆命题是真命题③假命题的逆命题是真命题④每个定理都有逆定理⑤每个定理一定有逆命题⑥命题“若a=b,那么a3=b3”的逆命题是假命题.A.1B.2C.3D.4【解答】解:把原命题的题设与结论交换得到它的逆命题,所以①正确;真命题:若a=b,则|a|=|b|,其逆命题为:若|a|=|b|,则a=b,它是假命题,所以②错误;假命题:若am>bm,则a>b,其逆命题:若a>b,则am>bm,它是假命题,所以③错误;真命题的逆命题不一定是真命题,所以④错误;每个定理一定有逆命题,所以⑤正确;命题“若a=b,那么a3=b3”的逆命题为“若a3=b3,则a=b”,它是真命题,所以⑥错误.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题叫定理;两个命题的题设与结论互换的命题互为逆命题.8.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b|B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b|D.如果|a|≠|b|,那么a≠b【解答】解:已知本题中命题的题设是a=b,结论是|a|=|b|,所以它的逆命题中的题设是|a|=|b|,结论是a=b,所以本题中的逆命题是如果|a|=|b|,那么a=b.故选:B.【点评】本题考查了互逆命题的知识.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.二.填空题(共16小题)9.命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b.【解答】解:命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b,故答案为:若﹣a=﹣b,则a=b【点评】此题考查命题问题,关键是根据命题的题设和结论进行颠倒得出逆命题即可解答.10.命题“如果a2=b2,那么a=b”的逆命题是真命题.(填写“真”或“假”)【解答】解:“如果a2=b2,那么a=b”的逆命题是“如果a=b,那么a2=b2.”“如果a2=b2,那么a=b”的逆命题是真命题,故答案为:真.【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.命题:“两直线平行,则同旁内角互补”的逆命题为同旁内角互补,两直线平行.【解答】解:命题“两直线平行,同旁内角互补”的题设是“两直线平行”,结论是“同旁内角互补”,故其逆命题是“同旁内角互补,两直线平行”.故应填:同旁内角互补,两直线平行.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.对于命题“如果a=b,那么ac=bc.”,它的逆命题是假命题.(填“真”或“假”)【解答】解:命题“如果a=b,那么ac=bc.”,它的逆命题是“如果ac=bc,那么a=b.”,是假命题,故答案为:假.【点评】本题考查的是命题的概念、命题的真假判断,掌握逆命题的概念是解题的关键.14.命题“如a=b,那么|a|=|b|”的逆命题是假命题.(填“真”或“假”)【解答】解:命题“如a=b,那么|a|=|b|”的逆命题是如果|a|=|b|,那么a=b,是假命题,【点评】本题考查的是命题的逆命题、以及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.命题:“如果a=b,那么3a=3b”的逆命题是如果3a=3b,那么a=b,该逆命题是真(填“真”或“假”)命题.【解答】解:根据题意得:命题“如果a=b,那么3a=3b”的条件是如果a=b,结论是3a=3b,故逆命题是如果3a=3b,那么a=b,该命题是真命题.故答案为:如果3a=3b,那么a=b,真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.也考查了命题的真假判断.16.“若a=b,则a2=b2”的逆命题是假命题.(填“真”或“假”)【解答】解:若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.此逆命题为假命题.故答案为假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.17.命题“若a=b,则|a|=|b|”的逆命题是若|a|=|b|,则a=b.【解答】解:命题“若a=b,则|a|=|b|”的逆命题是:“若|a|=|b|,则a=b”.故答案为若|a|=|b|,则a=b【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.18.命题“如果a2=b2,那么a=b”的逆命题是真命题(填“真”或“假”).【解答】解:“如果a2=b2,那么a=b”的逆命题是“如果a=b,那么a2=b2.”“如果a2=b2,那么a=b”的逆命题是真命题,【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.19.命题“若a2=b2,则a=b.”的逆命题是若a=b,则a2=b2.【解答】解:命题“若a2=b2,则a=b”的条件是a2=b2,结论是a=b,故逆命题是:若a=b,则a2=b2.故答案为如果a=b,那么a2=b2.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.20.命题:“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b,该命题是假命题(填真或假).【解答】解:根据题意得:命题“如果a=b,那么a2=b2”的条件是如果a=b,结论是a2=b2”,故逆命题是如果a2=b2,那么a=b,该命题是假命题.故答案为:如果a2=b2,那么a=b;假.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.21.命题:“若a=b,则a4=b4”,该命题的逆命题是若a4=b4,则a=b;该命题的逆命题是假命题.(填“真”或“假”)【解答】解:“若a=b,则a4=b4”的条件是:a=b,结论是:a4=b4,∴逆命题是:若a4=b4,则a=b,若a4=b4,则a=±b,故为假命题,故答案为若a4=b4,则a=b,假.【点评】本题考查了互逆命题的知识以及真假命题的判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,难度适中.22.命题“如果a2=b2,那么a=b”的逆命题是如果a=b,那么a2=b2,该命题的逆命题是真命题(填真或假)【解答】解:命题“如果a2=b2,那么a=b”的条件是如果a2=b2,结论是a=b,故逆命题是:如果a=b,那么a2=b2,为真命题.故答案为如果a=b,那么a2=b2,真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.23.命题“如果,那么a=b”的逆命题是:如果a=b,那么.【解答】解:命题“如果a=b”的逆命题是:如果a=b,那么故答案为:如果a=b,那么【点评】本题考查了逆命题的概念.关键是明确交换原命题的题设和结论,得到逆命题.24.命题“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b.【解答】解:“如果a=b,那么a2=b2”的逆命题是:如果a2=b2,那么a=b.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.考点卡片1.四种命题及其关系四种命题及其关系.1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题.3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题.2.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)3.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.。
四种命题间的逆否关系(含答案)
4.下列结论错误的是( )
A. 命题:“若
䁦
,则
”的逆否命题是“若
,则
䁦
”
B. “ 뙸 ႛ ”是“ 뙸 ႛ ”的充分不必要条件
C. 命题:“
,
뙸 ”的否定是“
,
”
D. 若“
”为假命题,则 뙸 均为假命题
5.命题“若一个数是负数,则它的平方是正数”的逆命题是( )
A. “若一个数是负数,则它的平方不是正数” B. “若一个数的平方是正数,则它是负数”
C. “若一个数不是负数,则它的平方不是正数” D. “若一个数的平方不是正数,则它不是负数”
-1-
6.命题“若 不正确,则 不正确”的逆命题的等价命题是( )
A. 若 不正确,则 不正确
B. 若 不正确,则 正确
C. 若 正确,则 不正确
D. 若 正确,则 正确
7.与命题“若 3 ,则
”等价的命题是 ( )
2.下列说法错误的是( )
A.
,
B. 一个命题的逆命题为真,则它的否命题也一定为真
C. “
”是“
”成立的必要条件 D. “若 sin sin ,则
”的逆否命题是真命题
3.命题“若α= ,则 tanα=1”的逆否命题是( )
A. 若 ,则 tan
B. 若
,则 tan
C. 若 tan ,则
D. 若 tan ,则
四种命题间的逆否关系
一、单选题
1.下列命题中正确的是( )
①“若 x2+y2≠0,则 x,y 不全为零”的否命题;
②“正多边形都相似”的逆命题;
③“若 m>0,则 x2+x﹣m=0 有实根”的逆否命题;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(二)
[学业水平层次]
一、选择题
1.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()
A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数
B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数
C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是增函数
D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是增函数
【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.“f(x)在其定义域内是减函数”的否定是“f(x)在其定义域内不是减函数”,不能误认为是“f(x)在其定义域内是增函数”.【答案】 A
2.(2014·济宁高二检测)命题“已知a,b都是实数,若a+b>0,则a,b不全为0”的逆命题、否命题与逆否命题中,假命题的个数是()
A.0B.1C.2D.3
【解析】逆命题“已知a,b都是实数,若a,b不全为0,则
a+b>0”为假命题,其否命题与逆命题等价,所以否命题为假命题.逆否命题“已知a,b都是实数,若a,b全为0,则a+b≤0”为真命题,故选C.
【答案】 C
3.(2014·南宁高二检测)已知命题“若ab≤0,则a≤0或b≤0”,则下列结论正确的是()
A.真命题,否命题:“若ab>0,则a>0或b>0”
B.真命题,否命题:“若ab>0,则a>0且b>0”
C.假命题,否命题:“若ab>0,则a>0或b>0”
D.假命题,否命题:“若ab>0,则a>0且b>0”
【解析】逆否命题“若a>0且b>0,则ab>0”,显然为真命题,又原命题与逆否命题等价,故原命题为真命题.否命题为“若ab>0,则a>0且b>0”,故选B.
【答案】 B
4.(2014·潍坊高二期末)命题“若x=3,则x2-2x-3=0”的逆否命题是()
A.若x≠3,则x2-2x-3≠0
B.若x=3,则x2-2x-3≠0
C.若x2-2x-3≠0,则x≠3
D.若x2-2x-3≠0,则x=3
【解析】其逆否命题为“若x2-2x-3≠0,则x≠3”.故选C.
【答案】 C
二、填空题
5.(2014·三门峡高二期末)命题“若x >2,则x 2>4”的逆命题是________________.
【解析】 原命题的逆命题为“若x 2>4,则x >2”.
【答案】 若x 2>4,则x >2
6.命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是_________________.
【解析】 ax 2-2ax -3≤0恒成立.
当a =0时,-3≤0成立;
当a ≠0时,⎩⎨⎧ a <0,Δ=4a 2+12a ≤0.
解得-3≤a <0.
故-3≤a ≤0.
【答案】 -3≤a ≤0 7.在空间中,给出下列两个命题:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.其中逆命题为真命题的是________.
【解析】 ①的逆命题:若空间四点中任何三点都不共线,则这四点不共面,是假命题;②的逆命题:若两条直线是异面直线,则这两条直线没有公共点,是真命题.
【答案】 ②
三、解答题
8.已知函数f(x)是(-∞,+∞)上的增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.
(1)写出其逆命题,判断其真假,并证明你的结论;
(2)写出其逆否命题,判断其真假,并证明你的结论.
【解】(1)逆命题是:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.它为真,可证明原命题的否命题为真来证明它.
否命题为:若a+b<0,则f(a)+f(b)<f(-a)+f(-b).如果a+b<0,则a<-b,b<-a.因为f(x)是(-∞,+∞)上的增函数,则f(a)<f(-b),f(b)<f(-a),所以f(a)+f(b)<f(-a)+f(-b),故原命题的否命题为真,所以逆命题为真.
(2)逆否命题是:若f(a)+f(b)<f(-a)+f(-b),则a+b<0.它为真,可证明原命题为真来证明它.
因为a+b≥0,所以a≥-b,b≥-a.因为f(x)在(-∞,+∞)上是增函数,所以f(a)≥f(-b),f(b)≥f(-a),所以f(a)+f(b)≥f(-a)+f(-b),故原命题为真.所以逆否命题为真.
9.判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.
【解】原命题的逆否命题:已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.判断真假如下:
抛物线y=x2+(2a+1)x+a2+2的开口向上,
判别式Δ=(2a+1)2-4(a2+2)=4a-7,
因为a<1,所以4a-7<0,
即抛物线y=x2+(2a+1)x+a2+2与x轴无交点.
所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.
故原命题的逆否命题为真.
[能力提升层次]
1.与命题“若a·b=0,则a⊥b”等价的命题是()
A.若a·b≠0,则a不垂直于b
B.若a⊥b,则a·b=0
C.若a不垂直于b,则a·b≠0
D.若a·b≠0,则a⊥b
【解析】原命题与其逆否命题为等价命题.
【答案】 C
2.(2014·福州期末)命题“若x+y是偶数,则x,y都是偶数”的逆否命题是()
A.若x,y都不是偶数,则x+y不是偶数
B.若x,y不都是偶数,则x+y是偶数
C.若x,y不都是偶数,则x+y不是偶数
D.若x,y都不是偶数,则x+y是偶数
【解析】“x,y都是偶数”的否定为“x,y不都是偶数”,“x+y是偶数”的否定是“x+y不是偶数”.故选C.
【答案】 C
3.下列命题中________为真命题(填上所有正确命题的字间距序号).
①若A∩B=A,则A B;②“若x=y=0,则x2+y2=0”的逆命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.
【解析】①错误,若A∩B=A,则A⊆B;②正确,它的逆命题为“若x2+y2=0,则x=y=0”为真命题;③错误,它的逆命题为“相似三角形是全等三角形”为假命题;④正确,因为原命题为真命题,故逆否命题也为真命题.
【答案】②④
4.写出下列命题的逆命题、否命题、逆否命题,然后判断真假。
(1)等高的两个三角形是全等三角形;
(2)弦的垂直平分线平分弦所对的弧.
【解】(1)逆命题:若两个三角形全等,则这两个三角形等高,是真命题;
否命题:若两个三角形不等高,则这两个三角形不全等,是真命题;逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.
(2)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题;
否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦。