武汉大学《分析化学》第3章 分析化学中的误差及数据处理

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Er =E/xT = x - xT /xT×100%
真值:客观存在,但绝对真值不可测
理论真值 约定真值 相对真值
精密度: 平行测定结果相互靠近的程度,用偏差衡量。
偏差: 测量值与平均值的差值,用 d表示
d=x-
∑di = 0
x
平均偏差: 各单个偏差绝对值的平均值
n
xi x
d i 1 n
相对平均偏差:平均偏差与测量平均值的比值
R=A+B-C ER=|EA|+|EB|+|EC| R=AB/C ER/R=|EA/A|+|EB/B|+|EC/C|
3.2 有效数字及运算规则
1 有效数字: 分析工作中实际能测得的数字,包括全 部可靠数字及一位不确定数字在内
a 数字前0不计,数字后计入 : 0.03400 b 数字后的0含义不清楚时, 最好用指数形式表示 : 1000
随机误差
a. 加减法
R=mA+nB-pC b. 乘除法
R=mA×nB/pC c. 指数运算
R=mAn d. 对数运算
R=mlgA
sR2=m2sA2+n2sB2+p2sC2 sR2/R2=sA2/A2+sB2/B2+sC2/C2 sR/R=nsA/A sR=0.434msA/A
极值误差 最大可能误差
2 有效数字运算中的修约规则
四舍六入五成双
尾数≤4时舍; 尾数≥6时入
尾数=5时, 若后面数为0, 舍5成双;若5后面还有 不是0的任何数皆入
例 下列值修约为四位有效数字
0.324 74 0.324 75 0.324 76
0.324 7 0.324 8 0.324 8
0.324 85
0.324 8
0.324 851
0.324 9
禁止分次修约
0.57
0.5749 × 0.575
0.58
运算时可多保留一位有效数字进行
3 运算规则
加减法: 结果的绝对误差应不小于各项中绝对误差最大 的数。 (与小数点后位数最少的数一致)
0.112+12.1+0.3214=12.5
乘除法: 结果的相对误差应与各因数中相对误差最大的 数相适应 (与有效数字位数最少的一致) 0.0121×25.66×1.0578=0.328432
不存在系统误差的情况下,测定次数越多其 平均值越接近真值。一般平行测定4-6次
过失 由粗心大意引起,可以避免的
3 误差的传递
系统误差
a. 加减法
R=mA+nB-pC wk.baidu.com
b. 乘除法
R=mA×nB/pC
c. 指数运算
R=mAn
d. 对数运算
R=mlgA
ER=mEA+nEB-pEC ER/R=EA/A+EB/B-EC/C ER/R=nEA/A ER=0.434mEA/A
系统误差!
x3
准确度及精密度都高-结x4果可靠
2 系统误差与随即误差
系统误差:又称可测误差 具单向性、重现性、可校正特点
方法误差: 溶解损失、终点误差-用其他方法校正 仪器误差: 刻度不准、砝码磨损-校准(绝对、相对) 操作误差: 颜色观察 试剂误差: 不纯-空白实验 主观误差: 个人误差
随即误差: 又称偶然误差 不可校正,无法避免,服从统计规律
S
3.相对标准偏差(变异系数RSD)
n
xi m 2
i 1
n
n
xi x 2
i 1
n 1
S RSD 100 %
x
4.衡量数据分散度: 标准偏差比平均偏差合理
5.标准偏差与平均偏差的关系 d=0.7979σ
6.平均值的标准偏差 σū= σ/ n1/2,s ū= s / n1/2
s ū与n1/2成反比
第3章 分析化学中的误差及数据处理
3.1 分析化学中的误差 3.2 有效数字及其运算规则 3.3 有限数据的统计处理 3.4 回归分析法
3.1 分析化学中的误差
1 准确度和精密度
准确度: 测定结果与真值接近的程度,用误差衡量。
绝对误差: 测量值与真值间的差值, 用 E表示
误差
E = x - xT
相对误差: 绝对误差占真值的百分比,用Er表示
m ◇分析天平(称至0.1mg):12.8228g(6) , 0.2348g(4) , 0.0600g(3)
◇千分之一天平(称至0.001g): 0.235g(3) ◇1%天平(称至0.01g): 4.03g(3), 0.23g(2) ◇台秤(称至0.1g): 4.0g(2), 0.2g(1) V ☆滴定管(量至0.01mL):26.32mL(4), 3.97mL(3) ☆容量瓶:100.0mL(4),250.0mL (4) ☆移液管:25.00mL(4); ☆量筒(量至1mL或0.1mL):25mL(2), 4.0mL(2)
(1.0×103, 1.00×103, 1.000 ×103) c 自然数和常数可看成具有无限多位数(如倍数、分数关系) d 数据的第一位数大于等于8的,可多计一位有效数字,如
9.45×104, 95.2%, 8.65 e 对数与指数的有效数字位数按尾数计,如 pH=10.28, 则
[H+]=5.2×10-11 f 误差只需保留1~2位
例 NaOH
CaCO 2HCl CaCl H CO HCl(过量)
3
2
2
3
w CaCO3 =
H2O+CO2
1
0.1000 25.00 0.1000 24.10 M ( 2 CaCO3 )
m 103 s
0.1000 25.00 0.1000 24.10 100.1 / 2
1 随机误差的正态分布
系统误差:可校正消除 随机误差:不可测量,无法避免,可用统计方法研究
测量值的频数分布
频数,相对频数,骑墙现象 分组细化 测量值的正态分布
0.2351 103
0.0191599 ?0.0192
3.3 有限数据的统计处理
总体 样本 样本容量 n, 自由度 f=n-1 样本平均值 总体平均值 m 真值 xT 标准偏差 s
x
1 标准偏差
1.总体标准偏差σ
无限次测量;单次偏差均方根
2.样本标准偏差 s
样本均值
x
n→∞时, →μ , s→σ
相对平均偏差
n
% d 100 % i 1 x i x 100 %
x
nx
标准偏差:s
s
n
x
x 2
i
i 1
n 1
相对标准偏差:RSD
s RSD 100 %
x
准确度与精密度的关系
x1
x2
x3
x4
准确度与精密度的关系
1.精密度好是准确度好的前提; 2.精密度好不一定准确度高
x 1
x2
相关文档
最新文档