《算法的概念》课件

合集下载

赣科版(2022)五上信息科技 第4课 算法的概念 课件

赣科版(2022)五上信息科技 第4课 算法的概念 课件

பைடு நூலகம் 学一学
在实际生活中,人们一直都在寻求有效解决问题的方法,例如:
(1)做饭时,如何在做完一 桌饭菜后,还能保证饭、菜、 汤都有一个合适的温度;
(2)指挥交通时,警察叔权如 何通过指挥来往车辆和行人有序 通行,提高道路通行效率;
学一学
在实际生活中,人们一直都在寻求有效解决问题的方法,例如:
(3)旅游时,如何规划旅行 路线,以确保在有限的时间和 预算内,提高行程的性价比;
算法的概念?
学一学
一、身边的算法 算法并不遥远,它就在我们身边。古代的算法主要指的是“算术”,即数值的算术 运算。随着科学技术的发展,“算法”的外延和内涵逐渐发生变化。
日常生活中,看似平常的做法都蕴含着一定的道理,如果将这些做法抽象成数学描 述可能就是一些非常有效的算法。
算法可能是一个计算公式,可能是一个赢得比赛的策略,也可能是一个解决综合问 题的复杂方案。
(4)设计电梯时,如何设置有 效的电梯调度方案,以确保乘客 等待的总时间最短……
学一学
对问题解决的思考在生活中比比皆是,当这些解决问题的步骤被 人们描述并记录下来之后,就成为可以重复执行的、用来解决某一类 问题的算法。
学一学
二、算法的概念 算法在生活中是普遍存在的,算法是在有限步骤内求解问题所使用的方法 与步骤,如图4-2所示,算法中的每一步都能被人或者机器装置执行。
(赣科版)五年级上册
第4课
算法的概念
目录
1
教学目标
2
新知导入
3
议一议
4
想一想
5
做一做
6
练一练
7
课堂总结
8
作业布置
1 教学目标
1.了解身边的算法 2.理解算法的概念

人教版高中数学必修三第一章-算法初步第一节《算法的概念》教学课件3(共21张PPT)

人教版高中数学必修三第一章-算法初步第一节《算法的概念》教学课件3(共21张PPT)
趣味益智游戏
一人带着一只狼、一只羊和一箱蔬菜要过河,但只 有一条小船.乘船时,每次只能带狼、羊和蔬菜中的一 种.当有人在场时,狼、羊、蔬菜都相安无事.一旦人 不在,狼会吃羊,羊会吃菜.请设计一个方案,安全地将狼、 羊和蔬菜带过河.
过河游戏
如何发电子邮件?
假如你的朋友不会发电子邮件,你能教会他么? 发邮件的方法很多,下面就是其中一种的操作步骤:
第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.
变式: “判断53是否质数”的算法如下:
第1步,用2除53得余数为1,余数不为0,所以2不能整除53;
第2步,用3除53得余数为2,余数不为0,所以3不能整除53;
……
第52步,用52除53得余数为1,余数不为0,故52不能整除53;
第二步, 给定区间[a,b],满足f(a) ·f(b)<0.
第三步,
取中间点
m
a
2
b.
第四步, 若f(a) ·f(m) < 0,则含零点的区间为
[a,m];否则,含零点的区间b].
第五步,判断f(m)是否等于0或者[a,b]的长 度是否小于d,若是,则m是方程的近似解;否 则,返回第三步.
|a-b| 1
0.5 0.25 0.125 0.062 5 0.031 25 0.015 625 0.007 812 5 0.003 906 25
y=x2-2
1 1.25 1.5
1.375
2
于是,开区间(1.4140625,1.41796875)中 的实数都是当精确度为0.005时的原方程的近 似解.
判断“整数n(n>2)是否是质数”的算法 自然语言描述
第一步 给定大于2的整数n. 第二步 令i=2. 第三步 用i除n,得到余数r. 第四步 判断“r=0”是否成立.若是,则n不是质

算法的概念 课件

算法的概念  课件

2.算法设计的要求 (1)设计的算法要适用于一类问题,并且遇到类似问题能够重复使用; (2)算法过程要做到能一步一步地执行,每一步执行的操作,必须是明确有 效的,不能含糊不清; (3)所设计的算法必须在有限步后得到问题的结果,不能无限进行下去; (4)设计的算法的步骤应当是最简练的,即最优算法. 3.算法与数学中的解法的联系和区别 (1)联系:算法与解法是一般与特殊的关系,也是抽象 与具体的关系,算法的获取要借助一般意义上具体问题的求解方法,而任 何一个具体问题都可利用这类问题的一般方法解决.
4.不唯一性:求解某一问题的解法不一定是_唯__一__的,对于同一个问题可 以有_不__同__的算法.
5.普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计 算器计算都要经过有限、事先设计好的步骤加以解决.
下列可以看成算法的是( ) A.学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再做作 业,之后做适当的练习题
(2)根据算法的特征可以知道,算法要有明确的开始与结束,每一步操作都 必须是明确而有效的,必须在有限步内得到明确的结果,所以②③正确.而解 决某一类问题的算法不一定是唯一的,故①错误.
【答案】 (1)C (2)B
1.算法实际上是解决问题的一种程序性方法,它通常解决 某一个或一类问题,在用算法解决问题时,显然体现了特殊与一 般的数学思想.
已知一个学生的语文成绩为 89,数学成绩为 96,外语成绩为 99.求他的总 分和平均分的一个算法为:
第一步,令 A=89,B=96,C=99. 第二步,计算总分 S=____①____. 第三步,计算平均分 M=____②____. 第四步,输出 S 和 M. 【答案】 ①A+B+C ②S3
算法的概念
完成下列问题. 1.有限性:一个算法的步骤序列是_有__限__的,必须在_有__限__步__操作之后停止, 不能是_无__限__的. 2.确定性:算法中的每一步应该是_确__定__的并且能有效地执行且得到_确__定__ 的结果,而不应当模棱两可.

认识算法ppt课件

认识算法ppt课件

03
常见算法介绍
排序算法
冒泡排序
通过重复地遍历待排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过 来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
选择排序
在未排序的序列中找到最小(或最大)的元素,存放到排序序列的起始位置,然后再从剩 余未排序的元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。以此类推 ,直到所有元素均排序完毕。
哈希搜索
通过哈希函数将关键字转换成数组下 标,然后直接访问该下标元素。如果 下标位置上的元素就是所查找的元素 ,则搜索成功;否则搜索失败。
图算法
Dijkstra算法
用于解决单源最短路径问题。它是一种贪心算法,按照路径长度从小到大的顺序生成最 短路径。
Floyd-Warshall算法
用于解决所有节点对之间的最短路径问题。它通过动态规划的思想,将问题分解为更小 的子问题并逐步求解。
算法表示
可以使用自然语言、伪代 码、流程图等多种方式表 示。
算法在计算机科学中的地位
算法是计算机科学的核心
01
计算机程序本质上是一组算法步骤,用于实现特定的功能或解
决特定的问题。
算法是计算机科学研究的重要领域
02
算法研究涉及理论计算机科学、数据结构、计算几何等多个领
域,是计算机科学领域的重要分支。
认识算法ppt课件
• 算法的定义与重要性 • 算法的分类与特点 • 常见算法介绍 • 算法设计与分析 • 算法在实际应用中的挑战与解决方

01
算法的定义与重要性
算法的基本概念
01
02
03
算法定义
算法是一组明确、有序的 步骤,用点

《算法的概念及描述方式》课件

《算法的概念及描述方式》课件

义务教育信息科技课程标准(2022年版)第三学段(5~6年级)算法的概念及描述方式怎样过河呢?故事内容:一位农夫带着一匹狼,一只羊和一颗白菜过河,河边有一条小船,农夫划船每次只能载狼、羊、白菜中的一样过河。

农夫不在旁边时,狼会吃羊,羊会吃白菜。

思考:农夫该如何将狼、羊、白菜都安全运过河?方法一:方法二:步骤1农夫带羊过河步骤2农夫放下羊,独自返回步骤3农夫带狼过河步骤4农夫放下狼,带羊返回步骤5农夫放下羊,带菜过河步骤6农夫放下菜,独自返回步骤7农夫带羊过河步骤1农夫带羊过河步骤2农夫放下羊,独自返回步骤3农夫带菜过河步骤4农夫放下菜,带羊返回步骤5农夫放下羊,带狼过河步骤6农夫放下狼,独自返回步骤7农夫带羊过河在实际生活中,人们直都在寻求有效解决问题的方法,例如:指挥交通时,警察叔叔如何通过指挥来往车辆和行人有序通行,提高道路通行效率;旅游时,如何规划旅行路线,以确保在有限的时间和预算内,提高行程的性价比;设计电梯时,如何设置有效的电梯调度方案,以确保乘客等待的总时间最短..N一 、算法的概念理解问题 解决12算法是通过明确的、可执行的操作步骤描述的问题求解方案。

算法可能是一个计算公式,可能是一个赢得比赛的策略,也可能是一 个解决综合问题的复杂方案。

步骤步骤步骤乙写一写:人Hk身的异月那些沏茶、下棋、洗衣服、测体温、购物、做饭、出租车……二、算法的描述方式设计出一个解决问题的算法,也需要用能被算法执行者(人或者机器)理解的形式加以呈现,才能被算法执行者理解并执行。

算法的这种呈现方式就称为算法的描述。

常用的描述算法的方法有自然语言、流程图等。

(一)用自然语言描述算法:人们生活中使用的语言,如汉语、英语等,都是自然语言。

使用自然语言描述解决问题过程的方法称为“用自然语言描述算法”。

(二)用流程图描述算法流程图是一种以图解方式表示算法的描述方法,它由一些简单的图形符号组成,并用带箭头的流程线连接这些图形符号,用来表示问题解决的步骤及顺序。

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?

输出x

浙教版(2019)高中信息技术必修12.1算法的概念及描述课件(15张ppt)

浙教版(2019)高中信息技术必修12.1算法的概念及描述课件(15张ppt)
算法中对于每个步骤的执行描述必须是明确的。
如果问题求解时所有数据都是不变且已知的,则所需数据包含在算法中,不必再在执行时输人数据。如果一些初始数据需要在算法执行时临时获取以适应不同情形的问题,则算法需要包1个或多个输人。
算法的核心价值就是解决问题,而解的终极目标就是需要知道结果究竞如何
2.1.2算法的描述方式(或算法的呈现方式)
算法的特征课堂习题
下面关于算法的描述,正确的是( )
A.一个算法只能有一个输入B. 算法只能用框图来表示C.一个算法的执行步骤可以是无限的D.一个完整的算法,不管用什么方法来表示,都至少有一个输出结果
2.1.1算法的概念
3、算法三要素
①、数据
②、运算
③、控制转移(选择、循环)
用算法解决问题时,必须明确参与运算的初始数据、运算时产生的中间数据以及解决问题后的结果数据
已缴费
是住校生
到所属教室班级休息
到财务处缴费
凭缴费单到高一公寓领取生活用品,布置床铺




高一新生报到流程
2.1.1算法的概念
2、算法的特征
①、有穷性
②、可行性
③、确定性
④、0个或多个输入
⑤、1个或多个输出
一个算法的步骤必须是有限的,不能是无限的。
一个算法中的每一步操中能做到并且能在有限的时间内完成。
A.6 B.8 C.9 D.15
2.1.2算法的描述方式(或算法的呈现方式)
3、伪代码:
伪代码指的是一种比较接直观简洁、符号接近计算机程序代码的算法描述。根据它很容易转换为相应的计算机语言代码
格式1:If 格件 then (语句序列1) Else (语句序列2)
对数据计算和判断

人教版高中数学必修三课件:1.1.1 算法的概念

人教版高中数学必修三课件:1.1.1 算法的概念
解:b→a→c→d→e
考点类析
例2 写出解方程x2-2x-3=0的一个算法.
解:方法一,算法如下: 第一步,将等号左边因式分解,得(x-3)(x+1)=0①; 第二步,由①式得x-3=0或x+1=0; 第三步,解x-3=0得x=3,解x+1=0得x=-1,即x=3或x=-1.
考点类析
例2 写出解方程x2-2x-3=0的一个算法. 解:方法二,算法如下: 第一步,移项,得x2-2x=3①; 第二步,①式等号两边同时加1并配方,得(x-1)2=4②; 第三步,②式等号两边同时开方,得x-1=±2③; 第四步,解③式得x=3或x=-1.
预习探究
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同 的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决.
预习探究
知识点三
算法的设计要求
设计算法的要求主要有以下几点: (1)写出的算法必须能解决一类问题,并且能够重复使用; (2)要使算法尽量简单、步骤尽量少; (3)要保证算法的各个步骤有效,计算机能够执行,且在有限步骤后能得到结果.
备课素材
累加、累乘问题的算法 解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正 确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要 易于实现、易于理解,效率要高,通用性要好等.
备课素材
备课素材
[例2] 求1×3×5×7×9×11的值,写出其算法.
解:算法如下:
备课素材
[小结]
知识 1.算法的概念; 2.算法的特性; 3.算法的设计
方法
易错
1.根据具体的问题进行判断,是 给出问题,在书写步骤时,不能

算法的概念课件PPT

算法的概念课件PPT

动态规划
背包问题
给定一组物品和一个背包容量,如何选择物品放入背包以使得背 包内物品的总价值最大。
最长公共子序列(LCS)
给定两个序列,找出它们的最长公共子序列。
最优二叉搜索树
给定一组按概率排序的键和对应的搜索成本,构建一棵二叉搜索树 使得总的搜索成本最低。
04 算法性能分析
时间复杂度
时间复杂度的定义
空间复杂度
1 2
空间复杂度的定义
描述算法执行所需内存空间与问题规模之间的关 系,也用大O表示法表示。
常见空间复杂度类型
包括常数空间复杂度O(1)、线性空间复杂度O(n) 等。
3
空间复杂度的优化
通过减少不必要的内存占用、使用数据结构等方 式来降低空间复杂度。
稳定性与正确性评估
01
算法稳定性评估
稳定性指算法在输入数据发生微小变化时,输出结果不会发生较大变化
问题分类
根据问题的性质和求解方 法,将问题分为不同类型, 如排序问题、图论问题等。
问题建模方法
运用数学、逻辑等工具, 对问题进行形式化描述, 建立问题的数学模型。
数据结构选择
基本数据结构
掌握数组、链表、栈、队 列等基本数据结构的特点 和使用方法。
高级数据结构
了解并学会使用树、图、 堆等高级数据结构,以便 更有效地解决问题。
算法在各个领域的应用
随着算法技术的不断成熟和普及,其将在各个领域得到更广泛的应用,如医疗、金融、交 通等,为社会发展带来更多的便利和进步。
THANKS FOR WATCHING
感谢您的观看
描述算法执行时间与问题规模之间的关系,通常用大O表 示法表示。
常见时间复杂度类型
包括常数时间复杂度O(1)、线性时间复杂度O(n)、对数时 间复杂度O(logn)、线性对数时间复杂度O(nlogn)、平方 时间复杂度O(n^2)、立方时间复杂度O(n^3)等。

算法的概念及描述课件高中信息技术浙教版(2019)必修1(18张PPT)

算法的概念及描述课件高中信息技术浙教版(2019)必修1(18张PPT)
判断任意一个一元二次方程是否有实数根
输入a、b、c的值 if b**2-4*a*c>=0 :
(输出“该方程有实数根”) else:
(输出“该方程没有实数根”)
伪代码 接近 计算 机程序代码 的算法描述 方式,介于自 然语言和程 序设计语言 之间。
历年真题
7.关于算法流程图下面说法正确的是(D)
A、流程图必须包含一个判断框 B、流程图直观易懂,但是容易产生二义性 C、算法描述只能使用流程图 D、流程图中无须填写程序代码
的值为( C )
A.2 B.3 C.4 D.5
历年真题
6.某算法的流程图如图所示,依次输入x的值为3、2、1、-1后,该算法的输出结果
为( A )
A3 B4 C5 D6
伪代码描述算法
判断任意一个一元二次方程是否有实数根 1、输入a、b、c 2、如果b2-4ac>=0,输出“该方程有实数根”;否则,输出 “该方程没有实数根”
算法---程序的“灵魂”
广义上讲,算法是为了解决一类特定问题而采取的确定的、有限的步骤。 在计算机领域,算法作为一个精心设计的运算序列,描述了计算机如何将输入转换 为输出的过程。
算法的一般特征如下:
有输入:可以没有吗?
可以没有
有输出:算法必须要有吗? 必须要有
有穷性:写出所有的偶数 可行性:计算宇宙的面积
4.在《几何原本》一书中,“辗转相除法”可以求出任意两个正整数的最大公约 数,具体步骤如下: (1)输入两个正整数m和n (2)以m除以n,得到余数r (3)若r=0,则输出n的值,算法结束,否则执行步骤(4) (4)令m n,n r,并返回步骤(2)

历年真题
5.某算法的部分流程图如图2-1-6所示。执行这部分流程,若输入a的值为36,则输出c

算法的概念 公开课一等奖课件

算法的概念  公开课一等奖课件

典例剖析 题型一 对算法概念的理解 【例 1】 下列关于算法的说法,正确的个数有( ) ①求解某一类问题的算法是唯一的; ②算法必须在有限步操作之后停止; ③算法的每一步操作必须是明确的,不能有歧义或模糊; ④算法执行后一定产生确定的结果. A.1 B.2 C.3 D.4
思路点拨:根据算法概念来解答. 【解析】由于算法具有有穷性、确定性、输出性等特点, 因而②③④正确,而解决某类问题的算法不一定唯一,从而① 错. 【答案】C
【答案】S1 先计算出 495 g 硫黄如果平均分成三份每一份 应该是 165 g.
S2 165 g 中有 3 个 5 g 和 3 个 50 g. S3 用 5 g 砝码称出 5 g 硫黄. S4 用 5 g 砝码和 5 g 硫黄共同称出 10 g 硫黄. S5 再用 50 g 砝码称出 50 g 硫黄. S6 用 50 g 砝码和 50 g 硫黄共同称出 100 g 硫黄. S7 把 5 g、10 g、50 g、100 g 硫黄混合,构成 165 g 硫黄, 也就是一份的质量.
2.算法的特征 (1)概括性:写出的算法必须能够解决某一类问题,并且能 够重复使用. (2)逻辑性:算法从初始步骤开始,分为若干个明确的步骤, 前一步是后一步的前提,只有完成前一步,才能进行下一步, 而且每一步都是正确无误的,从而组成具有很强逻辑性的步骤 序列. (3)有穷性:一个算法必须保证在执行了有限步之后结束. (4)不唯一性:求解某一个问题的算法不一定只有唯一的一 个,也可以有不同的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体问题,都可以设计合理的算法去解决.
思路点拨:可以从前向后逐一求和,也可以设计一个变量 S, 将 1 至 5 个数依次加给 S.
【解析】解法一:第一步,计算 1+2,得 3. 第二步,将第一步中运算结果 3 与 3 相加,得 6. 第三步,将第二步中运算结果 6 与 4 相加,得 10. 第四步,将第三步的运算结果 10 与 5 相加,得 15. 第五步,输出运算结果.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档