高中数学解题思维提升专题08数列大题部分训练手册

合集下载

2019年高考数学二轮复习解题思维提升专题08数列大题部分训练手册

2019年高考数学二轮复习解题思维提升专题08数列大题部分训练手册

专题08 数列大题部分【训练目标】1、 理解并会运用数列的函数特性;2、 掌握等差数列,等比数列的通项公式,求和公式及性质;3、 掌握根据递推公式求通项公式的方法;4、 掌握常用的求和方法;5、 掌握数列中简单的放缩法证明不等式。

【温馨小提示】高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。

总之,此类题目难度中等,属于必拿分题。

【名校试题荟萃】1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求使得成立的n 的最小值.【答案】(1)2nn a = (2)10(2)由(1)可得112nn a ⎛⎫= ⎪⎝⎭,所以,由,即21000n>,因为,所以10n ≥,于是使得成立的n 的最小值为10.2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b 的前n 项和n T .【答案】(1) (2)(2)由函数()f x 的图象在点22(,)a b 处的切线方程为所以切线在x 轴上的截距为21ln 2a -,从而,故22a =从而n a n =,2n n b =,2n nn a nb =所以故。

3、(辽宁省辽河油田第二高级中学2019届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N .(1)求1a ,2a ;(2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和. 【答案】(1)1,2 (2)12-=n n a (3)(3)由(2)知12-=n n n na ,记其前n 项和为n T ,于是①②①-②得从而.4、(湖南省浏阳一中、株洲二中等湘东六校2019届高三12月联考数学(理)试题)已知数列}{n a 的前n 项 和n S 满足,且11=a 。

专题08规律题方法总结与例题专训(原卷版)

专题08规律题方法总结与例题专训(原卷版)

专题08 规律题方法总结与例题专训【知识点睛】常见规律题类型❖周期性循环特点:常以3个或4个数据为一周期,以此循环往复;总数比较大,常和年份结合考察处理方法步骤:1.找出第一周期的几个数,确定周期数2.算出题目中的总数和待求数3.用总数÷周期数=m……n(表示这列数中有m个整周期,最后余n个)4.最后余几,待求数就和每周期的第几个一样;❖周期性递变循环特点:常以2个或3个一周期,后边的每组,周期数不变,但是数据的大小会以相同的关系递增或递减;处理方法:同周期性循环基本一致,最后一步需要加入递变的关系❖递变增减型特点:分以此递增和以此递减,通常是数据之间的直接变化,偶尔借助图形;常和年份结合考察处理方法:熟记单独数据规律,直接应用于考察问题;❖算式类比性特点:常给出几个算式或等式,先算简单的,再从简单的类比到复杂题目的计算处理办法:1.正确计算出前面简单算式的答案2.找出数字间的规律3.将简单数字间的关系推导到字母n的关系中❖常见数字间固定规律识记:1.裂项相消法:将一项拆分成多项,前后保持相等,然后利用某些项相消的原则简化运算;2.错位相减法:适用于两个式子间有相同项的题目,两式相减直接抵消掉中间项,剩余首项、尾项再计算;3.倒序求和发:如:计算1+2+3+......+50,可以设S=1+2+3+......+50,则亦有S=50+49+48+ (1)∴2S=51×50,∴S=51×25=…裂项法公式:kn n k n n k +-=+11)(【类题训练】1.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a ,b 的值分别为( )A .16,257B .16,91C .10,101D .10,1612.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这组数的第2022个数是( ) A .B .C .D .3.一只小球落在数轴上的某点P 0,第一次从P 0向左跳1个单位到P 1,第二次从P 1向右跳2个单位到P 2,第三次从P 2向左跳3个单位到P 3,第四次从P 3向右跳4个单位到P 4……若按以上规律跳了100次时,它落在数轴上的点P 100所表示的数恰好是2021,则这只小球的初始位置点P 0所表示的数是( ) A .1971B .1970C .﹣1971D .﹣19704.有一列数a 1,a 2,a 3,…,a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2022为( ) A .B .2C .﹣1D .20225.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数﹣2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数﹣2022将与圆周上的哪个数字重合( )A .0B .1C .2D .36.观察图中正方形四个顶点所标的数字规律,可知数2022应标在( )A.第506个正方形的右上角B.第506个正方形的左下角C.第505个正方形的右上角D.第505个正方形的左下角7.等边三角形(三条边都相等的三角形是等边三角形)纸板ABC在数轴上的位置如图所示,点A、B 对应的数分别为2和1,若△ABC绕着顶点逆时针方向在数轴上连续翻转,翻转第1次后,点C所对应的数为0,则翻转2023次后,点C所对应的数是()A.﹣2021B.﹣2022C.﹣2023D.﹣20248.下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图中黑色棋子的个数是()A.6067B.6066C.6065D.60649.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形武(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位、千位、十万位数用横式表示;“0”用空位来代替,以此类推例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.10.根据图中数字的排列规律,在第⑦个图中,a﹣b﹣c的值是()A.﹣190B.﹣66C.62D.6411.已知整数m1,m2,m3,m4,…满足下列条件:m1=0,m2=﹣|1+m1|,m3=﹣|2+m2|,m4=﹣|3+m3|,…,以此类推,m2020=.12.在2020个“□”中依次填入一列数字m1,m2,m3…,m2020,使得其中任意四个相邻的“□”中所填的数字之和都等于15.已知m3=2,m6=7,则m1+m2020的值为.27…13.有一数值转换器,原理如图所示,若开始输入x的值是1,可发现第一次输出的结果是4,第二次输出的结果是2,……,请你探索第2021次输出的结果是.14.如图,数字都是按一定规律排列的,其中x的值是.15.观察图,找出规律.,则的值为.16.观察以下等式:第1个等式:×(2﹣)=1+;第2个等式:×(2﹣)=1+;第3个等式:×(2﹣)=1+;第4个等式:×(2﹣)=1+;第2021个等式:.17.请你观察:,,;…+=+=1﹣=;++=++=1﹣=;…以上方法称为“裂项相消求和法”.请类比完成:(1)+++=;(2)++++…+=;(3)计算:的值.18.先阅读下列内容,然后解答问题.因为.所以.请解答:(1)应用上面的方法计算:….(2)类比应用上面的方法计算:….19.观察以下图案和算式,解答问题:(1)1+3+5+7+9=;(2)1+3+5+7+9+…+19=;(3)请猜想1+3+5+7+……+(2n﹣1)=;(4)求和号是数学中常用的符号,用表示,例如,其中n=2是下标,5是上标,3n+1是代数式,表示n取2到5的连续整数,然后分别代入代数式求和,即:=3×2+1+3×3+1+3×4+1+3×5+1=46请求出的值,要求写出计算过程,可利用第(2)(3)题结论.20.从2开始,连续的偶数相加,它们的和的情况如表:加数m的个数和S12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(1)按这个规律,当m=6时,和为;(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:=.(3)应用上述公式计算:①2+4+6+ (200)②202+204+206+ (300)21.观察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52;……(1)请根据你发现的规律填空:7×9+1=()2;(2)用含n的等式表示上面的规律:;(3)用找到的规律解决下面的问题:计算:22.(1)①观察一列数1,2,3,4,5,…,发现从第二项开始,每一项与前一项之差是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n =;②如果欲求1+2+3+4+…+n的值,可令S=1+2+3+4+…+n❶,将①式右边顺序倒置,得S =n+…+4+3+2+1❷,由❷式+❶式,得2S=;∴S=;由结论求1+2+3+4+…+55=;(2)①观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n=;②为了求1+3+32+33+…+32018的值,可令M=1+3+32+33+…+32018❶,则3M=3+32+33+…+32019❷,由❷式﹣❶式,得3M﹣M=32019﹣1,∴M=,即1+3+32+33+...+32018=.仿照以上推理,计算1+5+52+53+ (551)。

专题08 数列-2022年高考真题和模拟题数学分类汇编(解析版)

专题08 数列-2022年高考真题和模拟题数学分类汇编(解析版)

专题08 数列1.【2022年全国乙卷】已知等比数列{a n }的前3项和为168,a 2−a 5=42,则a 6=( ) A .14 B .12 C .6 D .3【答案】D 【解析】 【分析】设等比数列{a n }的公比为q,q ≠0,易得q ≠1,根据题意求出首项与公比,再根据等比数列的通项即可得解. 【详解】解:设等比数列{a n }的公比为q,q ≠0, 若q =1,则a 2−a 5=0,与题意矛盾, 所以q ≠1,则{a 1+a 2+a 3=a 1(1−q 3)1−q =168a 2−a 5=a 1q −a 1q 4=42,解得{a 1=96q =12 , 所以a 6=a 1q 5=3. 故选:D .2.【2022年全国乙卷】嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1α1,b 2=1+1α1+1α2,b 3=1+1α1+1α2+1α3,…,依此类推,其中αk ∈N ∗(k =1,2,⋯).则( ) A .b 1<b 5 B .b 3<b 8C .b 6<b 2D .b 4<b 7【答案】D 【解析】 【分析】根据αk ∈N ∗(k =1,2,…),再利用数列{b n }与αk 的关系判断{b n }中各项的大小,即可求解. 【详解】解:因为αk ∈N ∗(k =1,2,⋯),所以α1<α1+1α2,1α1>1α1+1α2,得到b 1>b 2,同理α1+1α2>α1+1α2+1α3,可得b 2<b 3,b 1>b 3又因为1α2>1α2+1α3+1α4, α1+1α2+1α3<α1+1α2+1α3+1α4,故b 2<b 4,b 3>b 4;以此类推,可得b 1>b 3>b 5>b 7>⋯,b 7>b 8,故A 错误; b 1>b 7>b 8,故B 错误;1α2>1α2+1α3+⋯1α6,得b 2<b 6,故C 错误;α1+1α2+1α3+1α4>α1+1α2+⋯1α6+1α7,得b 4<b 7,故D 正确.故选:D.3.【2022年新高考2卷】中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,DD 1,CC 1,BB 1,AA 1是举, OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA1BA 1=k 3,若k 1,k 2,k 3是公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=( )A .0.75B .0.8C .0.85D .0.9【答案】D 【解析】 【分析】设OD 1=DC 1=CB 1=BA 1=1,则可得关于k 3的方程,求出其解后可得正确的选项. 【详解】设OD 1=DC 1=CB 1=BA 1=1,则CC 1=k 1,BB 1=k 2,AA 1=k 3,依题意,有k3−0.2=k1,k3−0.1=k2,且DD1+CC1+BB1+AA1OD1+DC1+CB1+BA1=0.725,所以0.5+3k3−0.34=0.725,故k3=0.9,故选:D4.【2022年北京】设{a n}是公差不为0的无穷等差数列,则“{a n}为递增数列”是“存在正整数N0,当n>N0时,a n>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【分析】设等差数列{a n}的公差为d,则d≠0,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【详解】设等差数列{a n}的公差为d,则d≠0,记[x]为不超过x的最大整数.若{a n}为单调递增数列,则d>0,若a1≥0,则当n≥2时,a n>a1≥0;若a1<0,则a n=a1+(n−1)d,由a n=a1+(n−1)d>0可得n>1−a1d ,取N0=[1−a1d]+1,则当n>N0时,a n>0,所以,“{a n}是递增数列”⇒“存在正整数N0,当n>N0时,a n>0”;若存在正整数N0,当n>N0时,a n>0,取k∈N∗且k>N0,a k>0,假设d<0,令a n=a k+(n−k)d<0可得n>k−a kd ,且k−a kd>k,当n>[k−a kd]+1时,a n<0,与题设矛盾,假设不成立,则d>0,即数列{a n}是递增数列.所以,“{a n}是递增数列”⇐“存在正整数N0,当n>N0时,a n>0”.所以,“{a n}是递增数列”是“存在正整数N0,当n>N0时,a n>0”的充分必要条件.故选:C.5.【2022年浙江】已知数列{a n}满足a1=1,a n+1=a n−13a n2(n∈N∗),则()A.2<100a100<52B.52<100a100<3C.3<100a100<72D.72<100a100<4【答案】B【解析】【分析】先通过递推关系式确定{a n}除去a1,其他项都在(0,1)范围内,再利用递推公式变形得到1 a n+1−1a n=13−a n>13,累加可求出1a n>13(n+2),得出100a100<3,再利用1a n+1−1a n=13−a n<1 3−3n+2=13(1+1n+1),累加可求出1a n−1<13(n−1)+13(12+13+⋯+1n),再次放缩可得出100a100>52.【详解】∵a1=1,易得a2=23∈(0,1),依次类推可得a n∈(0,1)由题意,a n+1=a n(1−13a n),即1a n+1=3a n(3−a n)=1a n+13−a n,∴1a n+1−1a n=13−a n>13,即1a2−1a1>13,1a3−1a2>13,1a4−1a3>13,…,1a n−1a n−1>13,(n≥2),累加可得1a n −1>13(n−1),即1a n>13(n+2),(n≥2),∴a n<3n+2,(n≥2),即a100<134,100a100<10034<3,又1a n+1−1a n=13−a n<13−3n+2=13(1+1n+1),(n≥2),∴1a2−1a1=13(1+12),1a3−1a2<13(1+13),1a4−1a3<13(1+14),…,1a n−1a n−1<13(1+1n),(n≥3),累加可得1a n −1<13(n−1)+13(12+13+⋯+1n),(n≥3),∴1a100−1<33+13(12+13+⋯+199)<33+13(12×4+16×94)<39,即1a100<40,∴a100>140,即100a100>52;综上:52<100a100<3.故选:B.【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩.6.【2022年全国乙卷】记S n为等差数列{a n}的前n项和.若2S3=3S2+6,则公差d=_______.【答案】2【解析】【分析】转化条件为2(a1+2d)=2a1+d+6,即可得解.【详解】由2S3=3S2+6可得2(a1+a2+a3)=3(a1+a2)+6,化简得2a3=a1+a2+6,即2(a1+2d)=2a1+d+6,解得d=2.故答案为:2.7.【2022年北京】己知数列{a n}各项均为正数,其前n项和S n满足a n⋅S n=9(n=1,2,⋯).给出下列四个结论:①{a n}的第2项小于3;②{a n}为等比数列;③{a n}为递减数列;④{a n}中存在小于1100的项.其中所有正确结论的序号是__________.【答案】①③④【解析】【分析】推导出a n=9an −9a n−1,求出a1、a2的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【详解】由题意可知,∀n∈N∗,a n>0,当n=1时,a12=9,可得a1=3;当n≥2时,由S n=9an 可得S n−1=9an−1,两式作差可得a n=9an−9a n−1,所以,9a n−1=9a n−a n,则9a2−a2=3,整理可得a22+3a2−9=0,因为a2>0,解得a2=3√5−32<3,①对;假设数列{a n}为等比数列,设其公比为q,则a22=a1a3,即(9S2)2=81S1S3,所以,S22=S1S3,可得a12(1+q)2=a12(1+q+q2),解得q=0,不合乎题意,故数列{a n}不是等比数列,②错;当n ≥2时,a n =9a n−9an−1=9(a n−1−a n )a n a n−1>0,可得a n <a n−1,所以,数列{a n }为递减数列,③对;假设对任意的n ∈N ∗,a n ≥1100,则S 100000≥100000×1100=1000, 所以,a 100000=9S100000≤91000<1100,与假设矛盾,假设不成立,④对.故答案为:①③④. 【点睛】关键点点睛:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.8.【2022年全国甲卷】记S n 为数列{a n }的前n 项和.已知2S n n+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值. 【答案】(1)证明见解析; (2)−78. 【解析】 【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n ={S 1,n =1S n −S n−1,n ≥2 ,作差即可得到a n −a n−1=1,从而得证;(2)由(1)及等比中项的性质求出a 1,即可得到{a n }的通项公式与前n 项和,再根据二次函数的性质计算可得. (1) 解:因为2S n n+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n−1+(n −1)2=2(n −1)a n−1+(n −1)②,①−②得,2S n +n 2−2S n−1−(n −1)2=2na n +n −2(n −1)a n−1−(n −1), 即2a n +2n −1=2na n −2(n −1)a n−1+1,即2(n −1)a n −2(n −1)a n−1=2(n −1),所以a n −a n−1=1,n ≥2且n ∈N*, 所以{a n }是以1为公差的等差数列. (2)解:由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即(a 1+6)2=(a 1+3)⋅(a 1+8),解得a 1=−12, 所以a n =n −13,所以S n =−12n +n(n−1)2=12n 2−252n =12(n −252)2−6258,所以,当n =12或n =13时(S n )min =−78.9.【2022年新高考1卷】记S n 为数列{a n }的前n 项和,已知a 1=1,{S na n}是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n (n+1)2(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得S na n=1+13(n −1)=n+23,得到S n =(n+2)a n3,利用和与项的关系得到当n ≥2时,a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,进而得:a nan−1=n+1n−1,利用累乘法求得a n =n (n+1)2,检验对于n =1也成立,得到{a n }的通项公式a n =n (n+1)2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n=2(1−1n+1),进而证得.(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵{S na n}是公差为13的等差数列,∴S na n=1+13(n −1)=n+23,∴S n =(n+2)a n3,∴当n ≥2时,S n−1=(n+1)a n−13,∴a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,整理得:(n −1)a n =(n +1)a n−1, 即a nan−1=n+1n−1,∴a n =a 1×a2a 1×a3a 2×…×an−1a n−2×ana n−1=1×32×43×…×nn−2×n+1n−1=n(n+1)2,显然对于n=1也成立,∴{a n}的通项公式a n=n(n+1)2;(2)1 a n =2n(n+1)=2(1n−1n+1),∴1a1+1a2+⋯+1a n=2[(1−12)+(12−13)+⋯(1n−1n+1)]=2(1−1n+1)<210.【2022年新高考2卷】已知{a n}为等差数列,{b n}是公比为2的等比数列,且a2−b2= a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素个数.【答案】(1)证明见解析;(2)9.【解析】【分析】(1)设数列{a n}的公差为d,根据题意列出方程组即可证出;(2)根据题意化简可得m=2k−2,即可解出.(1)设数列{a n}的公差为d,所以,{a1+d−2b1=a1+2d−4b1a1+d−2b1=8b1−(a1+3d),即可解得,b1=a1=d2,所以原命题得证.(2)由(1)知,b1=a1=d2,所以b k=a m+a1⇔b1×2k−1=a1+(m−1)d+a1,即2k−1=2m,亦即m=2k−2∈[1,500],解得2≤k≤10,所以满足等式的解k=2,3,4,⋯,10,故集合{k |b k=a m+a1,1≤m≤500}中的元素个数为10−2+1=9.11.【2022年北京】已知Q:a1,a2,⋯,a k为有穷整数数列.给定正整数m,若对任意的n∈{1, 2,⋯,m},在Q中存在a i,a i+1,a i+2,⋯,a i+j(j≥0),使得a i+a i+1+a i+2+⋯+a i+j=n,则称Q为m−连续可表数列.(1)判断Q:2,1,4是否为5−连续可表数列?是否为6−连续可表数列?说明理由;(2)若Q:a1,a2,⋯,a k为8−连续可表数列,求证:k的最小值为4;(3)若Q:a1,a2,⋯,a k为20−连续可表数列,且a1+a2+⋯+a k<20,求证:k≥7.【答案】(1)是5−连续可表数列;不是6−连续可表数列.(2)证明见解析.(3)证明见解析.【解析】【分析】(1)直接利用定义验证即可;(2)先考虑k≤3不符合,再列举一个k=4合题即可;(3)k≤5时,根据和的个数易得显然不行,再讨论k=6时,由a1+a2+⋯+a6<20可知里面必然有负数,再确定负数只能是−1,然后分类讨论验证不行即可.(1)a2=1,a1=2,a1+a2=3,a3=4,a2+a3=5,所以Q是5−连续可表数列;易知,不存在i,j使得a i+a i+1+⋯+a i+j=6,所以Q不是6−连续可表数列.(2)若k≤3,设为Q:a,b,c,则至多a+b,b+c,a+b+c,a,b,c,6个数字,没有8个,矛盾;当k=4时,数列Q:1,4,1,2,满足a1=1,a4=2,a3+a4=3,a2=4,a1+a2=5,a1+a2+ a3=6,a2+a3+a4=7,a1+a2+a3+a4=8,∴k min=4.(3)Q:a1,a2,⋯,a k,若i=j最多有k种,若i≠j,最多有C k2种,所以最多有k+C k2=k(k+1)种,2=15个数,矛盾,若k≤5,则a1,a2,…,a k至多可表5(5+1)2=21个数,从而若k<7,则k=6,a,b,c,d,e,f至多可表6(6+1)2而a+b+c+d+e+f<20,所以其中有负的,从而a,b,c,d,e,f可表1~20及那个负数(恰21个),这表明a~f中仅一个负的,没有0,且这个负的在a~f中绝对值最小,同时a~f中没有两数相同,设那个负数为−m(m≥1),则所有数之和≥m+1+m+2+⋯+m+5−m=4m+15,4m+15≤19⇒m=1,∴{a,b,c,d,e,f}={−1,2,3,4,5,6},再考虑排序,排序中不能有和相同,否则不足20个,∵1=−1+2(仅一种方式),∴−1与2相邻,若−1不在两端,则"x , −1 , 2 , __,__,__"形式,若x=6,则5=6+(−1)(有2种结果相同,方式矛盾),∴x≠6,同理x≠5,4,3,故−1在一端,不妨为"−1 ,2, A, B, C, D"形式,若A=3,则5=2+3(有2种结果相同,矛盾),A=4同理不行,A=5,则6=−1+2+5(有2种结果相同,矛盾),从而A=6,由于7=−1+2+6,由表法唯一知3,4不相邻,、故只能−1,2,6,3,5,4,①或−1,2,6,4,5,3,②这2种情形,对①:9=6+3=5+4,矛盾,对②:8=2+6=5+3,也矛盾,综上k≠6∴k≥7.【点睛】关键点睛,先理解题意,是否为m−可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从1到m中间的任意一个值.本题第二问k≤3时,通过和值可能个数否定k≤3;第三问先通过和值的可能个数否定k≤5,再验证k=6时,数列中的几项如果符合必然是{−1,2,3,4,5,6}的一个排序,可验证这组数不合题.12.【2022年浙江】已知等差数列{a n}的首项a1=−1,公差d>1.记{a n}的前n项和为S n(n ∈N∗).(1)若S4−2a2a3+6=0,求S n;(2)若对于每个n∈N∗,存在实数c n,使a n+c n,a n+1+4c n,a n+2+15c n成等比数列,求d的取值范围.(n∈N∗)【答案】(1)S n=3n2−5n2(2)1<d≤2【解析】【分析】(1)利用等差数列通项公式及前n项和公式化简条件,求出d,再求S n;(2)由等比数列定义列方程,结合一元二次方程有解的条件求d的范围.(1)因为S4−2a2a3+6=0,a1=−1,所以−4+6d−2(−1+d)(−1+2d)+6=0,所以d 2−3d =0,又d >1, 所以d =3, 所以a n =3n −4, 所以S n =(a 1+a n )n2=3n 2−5n2,(2)因为a n +c n ,a n+1+4c n ,a n+2+15c n 成等比数列, 所以(a n+1+4c n )2=(a n +c n )(a n+2+15c n ),(nd −1+4c n )2=(−1+nd −d +c n )(−1+nd +d +15c n ),c n 2+(14d −8nd +8)c n +d 2=0,由已知方程c n 2+(14d −8nd +8)c n +d 2=0的判别式大于等于0,所以Δ=(14d −8nd +8)2−4d 2≥0,所以(16d −8nd +8)(12d −8nd +8)≥0对于任意的n ∈N ∗恒成立, 所以[(n −2)d −1][(2n −3)d −2]≥0对于任意的n ∈N ∗恒成立, 当n =1时,[(n −2)d −1][(2n −3)d −2]=(d +1)(d +2)≥0, 当n =2时,由(2d −2d −1)(4d −3d −2)≥0,可得d ≤2 当n ≥3时,[(n −2)d −1][(2n −3)d −2]>(n −3)(2n −5)≥0, 又d >1 所以1<d ≤21.(2022·河南·通许县第一高级中学模拟预测(文))在等差数列{}n a 中,35a =,1511109a a +=,则15a a ⋅=( )A .92B .9C .10D .12【答案】B 【解析】 【分析】将已知等式变形,由等差数列下标和计算即可得到结果. 【详解】 由1511109a a +=得:153********a a a a a a a +==,315995aa a ∴⋅==.故选:B.2.(2022·福建省德化第一中学模拟预测)设等差数列{}n a 的前n 项和为n S ,若728S =,则237a a a ++的值为( )A .8B .10C .12D .14【答案】C 【解析】 【分析】根据等差数列的求和公式,求得44a =,结合等差数列的性质,化简得到27433a a a a =++,即可求解. 【详解】因为728S =,由等差数列的性质和求和公式得17747()7282a a S a +===,即44a =, 则112374393(3)312a d a a a a a d =+=+==++. 故选:C.3.(2022·北京·北大附中三模)已知数列{}n a 满足2123n a a a a n =,其中1,2,3,n =,则数列{}n a ( ) A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项 D .无最大项,无最小项【答案】A 【解析】 【分析】求得数列{}n a 的通项公式,再分析数列的单调性即可 【详解】依题意,因为2123n a a a a n =,其中1,2,3,n =,当1n =时,2111a ==,当2n ≥时,21231(1)n a a a a n -=-,2123n a a a a n =,两式相除有22211,2(1)1n n a n n n ⎛⎫=+≥ ⎪--⎝⎭=,易得n a 随着n 的增大而减小,故24n a a ≤=,且11n a a >=,故最小项为11a =,最大项为24a = 故选:A4.(2022·辽宁实验中学模拟预测)已知数列{}()*N n a n ∈是首项为1的正项等差数列,公差不为0,若1a 、数列{}2n a 的第2项、数列{}2n a 的第5项恰好构成等比数列,则数列{}n a 的通项公式为( ) A .21n a n =- B .21n a n =+ C .1n a n =- D .1n a n =+【答案】A 【解析】 【分析】根据题意设()11n a n d =+-,所以()2121n d a n =+-,()2211n d a n =+-,所以1,13d +,124d +构成等比数列,即()()2131124d d +=⨯+,求出d 即可求解. 【详解】设等差数列{}n a 的公差为()0d d >,所以()11n a n d =+-,所以()2121n d a n =+-, ()2211n d a n =+-,又1a 、数列{}2n a 的第2项、数列{}2n a 的第5项恰好构成等比数列,即1,13d +,124d +构成等比数列,所以()()2131124d d +=⨯+, 解得2d =,0d =(舍去),所以21n a n =-. 故选:A.5.(2022·四川·绵阳中学实验学校模拟预测(文))已知数列{}n a 的前n 项和为n S ,且11a =,0n a ≠,11n n n a a S λ+=-,若存在实数λ使{}n a 是等差数列,则{}n a 的公差为( )A .1B .2C .2λD .λ【答案】B 【解析】 【分析】利用1(2)n n n S S a n --=≥得{}n a 的递推关系,从而求得λ与公差d 的关系,再由21a a d -=求得d .【详解】 设公差为d ,因为11n n n a a S λ+=-,所以2n ≥时,111n n n a a S λ--=-, 两式相减得:111()()n n n n n n a a a S S a λλ+---=-=, 因为0n a ≠,所以112n n a a d λ+--==,由1211a a S λ=-121da =-得221a d =-.从而21211a a d d -=--=,2d =, 故选:B .6.(2022·湖南·邵阳市第二中学模拟预测)已知正项等比数列{}n a 满足3212a a a =+,若存在m a 、n a ,使得2116m n a a a ⋅=,则14m n+的最小值为( ) A .83B .16C .114 D .32【答案】D 【解析】 【分析】设等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,由已知条件可得出6m n +=,将代数式14m n +与()16m n +相乘,利用基本不等式可求得14m n+的最小值. 【详解】设等比数列{}n a 的公比为q ,则0q >,由3212a a a =+可得220q q --=,解得2q,因为2116m n a a a ⋅=,则2112112216m n a a --⋅⋅=,24m n ∴+-=,可得6m n +=,由已知m 、N n *∈,所以,()1411414566m n m n m n m n n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭13562⎛≥+= ⎝, 当且仅当24n m ==时,等号成立, 因此,14m n +的最小值为32. 故选:D.7.(2022·浙江·三模)设数列{}n a 满足()21192,24n n n a a a n N a *+=-+∈=,记数列221n a ⎧⎫⎨⎬-⎩⎭的前n 项的和为n S ,则( ) A .10127a < B .存在k *∈N ,使1k k a a += C .1012S < D .数列{}n a 不具有单调性【答案】C 【解析】 【分析】 根据题意求得54n a ≥,进而得到132n a +-与32n a -同号,结合作差法比较法,可判定B 、D 错误;由()()11214n n n n a a a a +-=--+,得到114n n a a +-≥,利用叠加法,可判定A 错误;化简得到1111133222n n n a a a +=----,利用裂项法求和,可判定C 正确. 【详解】由于()211551,244n n a a a +=-+≥=,则54n a ≥,又由21333122422n n n n n a a a a a +⎛⎫⎛⎫-=-+=-- ⎪⎪⎝⎭⎝⎭,则132n a +-与32n a -同号. 又由12a =,则32n a >,可得221933042n n nn n a a a a a +⎛⎫-=-+=-> ⎪⎝⎭, 所以数列{}n a 单调递增,故B 、D 错误; 又因为()()11214n n n n a a a a +-=--+, 由数列{}n a 单调递增,且12a =,所以20,10n n a a ->->,所以114n n a a +-≥, 累加得1011100254a a -≥=,所以10127a ≥,故A 错误; 由21924n nn a a a +=-+可得1111133222n n n a a a +=----, 因为12n a a >=,所以101110211112333222S a a a =-<=---,故C 正确.故选:C .8.(2022·吉林·东北师大附中模拟预测(理))数列{}n a 为等差数列,前n 项的和为n S ,若10110a <,101110120a a +>,则当0n S <时,n 的最大值为( )A .1011B .1012C .2021D .2022【答案】C 【解析】 【分析】分析数列{}n a 的单调性,计算2021S 、2022S ,即可得出结论. 【详解】因为10110a <,101110120a a +>,则10120a >,故数列{}n a 为递增数列, 因为()12021202110112021202102a a S a +==<,()()120222022101110122022101102a a S a a +==+>,且当1012n ≥时,10120n a a ≥>,所以,当2022n ≥时,20220n S S ≥>, 所以,满足当0n S <时,n 的最大值为2021. 故选:C.9.(2022·辽宁·渤海大学附属高级中学模拟预测)已知等差数列{}n a 的前n 项和为n S ,且满足()552sin 2350a a +--=,()201820182sin 2370a a +--=,则下列结论正确的是( ) A .20222022S =,且52018a a > B .20222022S =-,且52018a a < C .20224044S =-,且52018a a > D .20224044S =,且52018a a <【答案】C 【解析】 【分析】根据题意构造函数()2sin 3f x x x =-,确定函数的奇偶性及单调性,进而根据()()520182,2f a f a ++的关系即可确定答案.【详解】设函数()2sin 3f x x x =-,则()f x 为奇函数,且()2cos 30f x x '=-<,所以()f x 在R 上递减,由已知可得()()552sin 2321a a +-+=-,()()201820182sin 2321a a +-+=,有()521f a +=-,()201821f a +=,所以()()5201822f a f a +<+,且()()5201822f a f a +=-+,所以520185201822a a a a +>+⇒>,且()5201822a a +=-+,所以520184a a +=-,120222022520182022()1011()40442a a S a a +==+=-.故选:C.10.(2022·全国·模拟预测)已知数列{}n a 满足对任意的*n ∈N ,总存在*m ∈N ,使得n m S a =,则n a 可能等于( ) A .2022n B .2022n C .22022n D .2022n【答案】B 【解析】 【分析】A 选项,利用等比数列求和公式列出方程,令n =2时,得到120222023m -=,m 不存在,A 错误;B 选项,利用等差数列求和公式进行求解得到方程()101112022n n m +=,取()12n n m +=即可,C 选项,利用平方和公式得到()()21216n n n m ++=,当n =2时,25m =,m 不存在;D 选项,当n =2时,1112m+=,m 不存在. 【详解】对于选项A :当2022nn a =时,则{}n a 是等比数列,因为n m S a =所以()20222022120222021n m -=,当n =2时,120222023m -=,m 不存在,A 错误;对于选项B :当2022n a n =时,{}n a 是等差数列,因为n m S a =,则()()120221*********n n n S n n m +=⨯=+=,取()12n n m +=即可,B 正确; 对于选项C :当22022n a n =时,n m S a =,则()()()2222121202212202220226n n n n S n m ++=⨯++⋅⋅⋅+=⨯=,当n =2时,25m =,m 不存在,C 错误; 对于选项D :当2022n a n =时,n m S a =,则11120222022123n m ⎛⎫+++⋅⋅⋅+= ⎪⎝⎭,当n =2时,1112m+=,m 不存在,D 错误. 故选:B .11.(2022·江苏·南京外国语学校模拟预测)已知数列{}n a 各项都不为0,121,3a a ==且满足141n n n a a S +=-,(1)求{}n a 的通项公式; (2)若114n n n a b a -=-,{}n b 的前n 项和为n T ,求n T 取得最小值时的n 的值. 【答案】(1)21n a n =-; (2)7n =. 【解析】 【分析】(1)由141n n n a a S +=-得2n ≥时,1141n n n a a S --=-, ①-②得114n n a a +--=,分奇偶项即可求出n a (2)由114n n n a b a -=-得22215n n b n -=-,当7n ≤时,0n b ≤,当7n >时,0n b > 当7n =时,n T 取得最小值 (1)141n n n a a S +=-①当2n ≥时,1141n n n a a S --=-② ①-②114n n n n n a a a a a +-⇒-=0n a ≠114n n a a +-∴-={}n a ∴的奇数项和偶数项各自成等差数列且121,3a a ==()()21141432211,21(n n a n n n a n n -∴=+-=-=--∴=-为奇数),()234141221,21n n a n n n a n =+-=-=⋅-∴=-(n 为偶数),21n a n ∴=-(2)22131215215n n b n n -==+--,当7n ≤时,0n b ≤, 当7n >时,0n b >∴当7n =时,n T 取得最小值12.(2022·福建·厦门双十中学模拟预测)等差数列{}n a 的前n 项和为n S ,已知19a =,2a 为整数,且5n S S ≤. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)112n a n =- (2)()992n nT n =-【解析】 【分析】(1)根据题意得公差d 为整数,且50a ≥,60a ≤,分析求出d 即可;(2)111292112n b n n ⎛⎫=- ⎪--⎝⎭,再利用裂项相消法求和即可.(1)由19a =,2a 为整数知,等差数列{}n a 的公差d 为整数. 又5n S S ≤,故50a ≥,60a ≤. 于是940d +≥,950d +≤,解得9945d -≤≤-, 因此2d =-,故数列{}n a 的通项公式为112n a n =-. (2)()()111111292292112n b n n n n ⎛⎫==- ⎪----⎝⎭,于是1211111112795792112n n T b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦()1112929992n n n ⎛⎫=-= ⎪--⎝⎭. 13.(2022·宁夏·银川一中模拟预测(理))已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式; (2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,若不等式12n n nS λ-<+对任意的*n ∈恒成立,求实数λ的取值范围.【答案】(1)21n a n =-,12n n b -=;(2)(),2-∞. 【解析】 【分析】(1)利用等差数列()11n a a n d +-=,等比数列11n n b b q -=代入计算;(2)利用错位相减法可得1242n n n S -+=-,令2142nn c -=-,由{}n c 为递增数列,结合恒成立思想可得答案. (1)解:因为数列{}n b 是等比数列,则可得2123124b b q b b q ==⎧⎨==⎩,解得112b q =⎧⎨=⎩, 所以12n n b -=.因为数列{}n a 是等差数列,且111a b ==,8117116a a d +=++=,则公差2d =, 所以()12121n a n n =+-=-.故21n a n =-,12n n b -=;(2)解:由(1)得:1112n n n n a nc b -++==, 数列{}n c 的前n 项和为121231222n n nS -=+++⋅⋅⋅+①所以22111231222222n n n n n S --=+++⋅⋅⋅++②由①-②得:121111112121222222222n n n n n n n n n S -+⎛⎫=+++⋅⋅⋅+-=--=- ⎪⎝⎭,所以1242n n n S -+=-.不等式12n n n S λ-<+恒成立,化为不等式2142n λ-<-恒成立,令2142n n c -=-且{}n c 为递增数列,即转化为()min n c λ<当1n =时,()12min 1422n c -=-=,所以2λ<. 综上可得:实数λ的取值范围是(),2-∞.14.(2022·湖北·襄阳四中模拟预测)已知等差数列{}n a 满足11a =,且前四项和为28,数列{}n b 的前n 项和n S 满足()233n n S b R λλ=-∈.(1)求数列{}n a 的通项公式,并判断{}n b 是否为等比数列;(2)对于集合A ,B ,定义集合{}A B x x A x B -=∈∉且.若1λ=,设数列{}n a 和{}n b 中的所有项分别构成集合A ,B ,将集合A B -的所有元素按从小到大依次排列构成一个新数列{}n c ,求数列{}n c 的前30项和30T .【答案】(1)43n a n =-,判断答案见解析 (2)1926 【解析】 【分析】(1)根据等数列的前n 项和公式和通项公式可求出{}n a 的通项公式,根据等比数列的定义可判断{}n b 是否为等比数列;(2)结合等差数列的前n 项和,等差数列与等比数列的通项公式可求出结果. (1)∵{}n a 是等差数列,11a =,且前四项和为28, ∵43441282S d ⨯=⨯+⨯=,解得4d =∵()14143n a n n =+-=-.∵233n nn S b λ=-,∵当2n ≥时,11233n n S b λ--=-,两式相减得()12332n n n b b b n -=-≥, 即()132n n b b n -=≥,又11233b b λ=-∵13b λ=∵当0λ=时,数列{}n b 的通项公式为0n b =.不是等比数列当0λ≠时,数列{}n b 是首项为,公比为3的等比数列,∵3nn b λ=.(2)由(1)知3nn b =,则4581,243b b ==因为304303127a =⨯-=, 所以4305b a b <<,所以,30T 中要去掉{}n b 的项最多4项,即3,9,27,81, 其中9,81是{}n a 和{}n b 的公共项,所以数列{}n c 的前30项和30T 由{}n a 的前32项和,去掉9,81, ()()()330122321+1259+81=-90=19262a a a T ⨯=++⋅⋅⋅+-所以数列{}n c 的前30项和30T 为1926.15.(2022·浙江省江山中学模拟预测)在数列{}n a 中,121,2a a ==,且对任意的n *∈N ,都有2132n n n a a a ++=-. (1)求数列{}n a 的通项公式;(2)若{}1234A x x x x x x x =<<<<或,定义集合A 的长度为4321x x x x -+-.已知数列{}n b 的通项公式为()()()()12111n n na xb n a x a x a x *=∈+++N ,若关于x 不等式1220221b bb +++>的解集A ,求集合A 的长度. 【答案】(1)12n na(2)101121(1)34-【解析】 【分析】(1)构造等比数列结合累加法即可求通项;(2)根据不等式特点,巧用作差转换成高次不等式求解. (1)21211()322n n n n n n n a a a a a a a +++++==-⇒--,211a a -=,所以112n n n a a -+-=,12112132112()()()11221212n n n n n n a a a a a a a a -----=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+=+=-,即12n na ;(2) 因为()()()()12111n n na xb n a x a x a x *=∈+++N ,1220221b bb +++>即就是2021202124211(1)(21)(1)(21)(41)(1)(21)(2+1)x x x x x x x x x x x x x +++⋅⋅⋅+>++++++++⋅⋅⋅, 2021202124211(1)(21)(1)(21)(41)(1)(21)(2+1)11x x x x x x x x x x x x x x ++⋅⋅⋅+>-=+++++++⋅⋅⋅++,2021202142121(1)(21)(41)(1)(21)(2+1)1(1)(21)(1)(21)x x x x x x x x x x x x x x +⋅⋅⋅+>-=+++++⋅⋅⋅+++++,⋅⋅⋅,202110(1)(21)(41)(2+1)x x x x >+++⋅⋅⋅,即2021(1)(21)(41)(2+1)0x x x x +++⋅⋅⋅<,根据数轴标根法可知不等式的解集为1|12A x x ⎧=-<<-⎨⎩或1148x -<<-或⋅⋅⋅或202020211122x ⎫-<<-⎬⎭,集合A 的长度为10112021101111[1()]1112124(1)12823414-++⋅⋅⋅+==--. 【点睛】数列求通项分方法有构造等比或等差数列法,累加法,累乘法等.。

2024年高考数学二轮复习解题思维提升专题08数列大题部分训练手册

2024年高考数学二轮复习解题思维提升专题08数列大题部分训练手册

专题08 数列大题部分【训练目标】1、 理解并会运用数列的函数特性;2、 驾驭等差数列,等比数列的通项公式,求和公式及性质;3、 驾驭依据递推公式求通项公式的方法;4、 驾驭常用的求和方法;5、 驾驭数列中简洁的放缩法证明不等式。

【温馨小提示】高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,娴熟的敏捷的运用数列的性质会大大削减计算量;大题则侧重于考查依据递推公式求通项公式,求和的方法。

总之,此类题目难度中等,属于必拿分题。

【名校试题荟萃】1、(宁夏长庆高级中学2025届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求使得成立的n 的最小值.【答案】(1)2nn a = (2)10(2)由(1)可得112nn a ⎛⎫= ⎪⎝⎭,所以,由,即21000n>,因为,所以10n ≥,于是使得成立的n 的最小值为10.2、(宁夏长庆高级中学2025届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b 的前n 项和n T .【答案】(1)(2)(2)由函数()f x 的图象在点22(,)a b 处的切线方程为所以切线在x 轴上的截距为21ln 2a -,从而,故22a =从而n a n =,2n n b =,2n n n a n b =所以故。

3、(辽宁省辽河油田其次高级中学2025届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N .(1)求1a ,2a ;(2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和. 【答案】(1)1,2 (2)12-=n n a (3)(3)由(2)知12-=n n n na ,记其前n 项和为n T ,于是① ②①-②得从而.4、(湖南省浏阳一中、株洲二中等湘东六校2025届高三12月联考数学(理)试题)已知数列}{n a 的前n 项 和n S 满意,且11=a 。

专题08 数列小题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题08 数列小题综合(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题08数列小题综合考点十年考情(2015-2024)命题趋势考点1数列的增减性(10年3考)2022·全国乙卷、2022·北京卷2021·全国甲卷、2020·北京卷1.掌握数列的有关概念和表示方法,能利用与的关系以及递推关系求数列的通项公式,理解数列是一种特殊的函数,能利用数列的周期性、单调性解决简单的问题,该内容是新高考卷的必考内容,常考查利用与关系求通项或项及通项公式构造的相关应用,需综合复习2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,能在具体的问题情境中识别数列的等差关系并能用等差数列的有关知识解决相应的问题,熟练掌握等差数列通项公式与前n项和的性质,该内容是新高考卷的必考内容,一般给出数列为等差数列,或通过构造为等差数列,求通项公式及前n项和,需综合复习3.掌握等比数列的通项公式与前n项和公式,能在具体的问题情境中识别数列的等比关系并能用等比数列的有关知识解决相应的问题,熟练掌握等比数列通项公式与前n项和的性质,该内容是新高考卷的必考内容,一般给出数列为等比数考点2递推数列及数列的通项公式(10年6考)2023·北京卷、2022·北京卷、2022·浙江卷2021·浙江卷、2020·浙江卷、2020·全国卷2019·浙江卷、2017·上海卷考点3等差数列及其前n项和(10年10考)2024·全国甲卷、2024·全国甲卷、2024·全国新Ⅱ卷、2022·全国乙卷、2023·全国甲卷、2023·全国乙卷、2023·全国新Ⅰ卷、2022·北京卷、2020·浙江卷、2020·山东卷、2020·全国卷、2019·全国卷2019·江苏卷、2019·北京卷、2019·全国卷、2019·全国卷、2018·北京卷、2018·全国卷、2017·全国卷、2016·浙江卷、2015·重庆卷2015·全国卷、2015·全国卷、2016·北京卷、2016·江苏卷、2015·广东卷、2015·陕西卷、2015·安徽卷、2015·全国卷考点4等比数列及其前n项和(10年10考)2023·全国甲卷、2023·天津卷、2023·全国新Ⅱ卷2023·全国甲卷、2023·全国乙卷、2022·全国乙卷、2021·全国甲卷、2020·全国卷、2020·全国卷、2020·全国卷、2019·全国卷、2019·全国卷2017·全国卷、2017·北京卷、2017·江苏卷、2016·浙江卷、2016·全国卷、2015·浙江卷2015·全国卷、2015·全国卷、2015·湖南卷2015·广东卷、2015·安徽卷列,或通过构造为等比数列,求通项公式及前n 项和。

08 数列的概念+等差数列(原卷版)-高二数学寒假进阶学习方案(人教A版2019选择性必修第二册)

08 数列的概念+等差数列(原卷版)-高二数学寒假进阶学习方案(人教A版2019选择性必修第二册)

08数列的概念+等差数列一、典例精析拓思维(名师点拨)核心问题1数列例1.(2022·全国·高三专题练习)设数列{}n a 中,1112,1n n a a a -=+=(2n ≥且*n N ∈),则2022a =()A.1-B.12C.2D.52练习1-1.(2022·全国·高三专题练习)数列{}n a 满足112a =,111n n a a +=-,则2021a 等于()A.1-B.12C.2D.3练习1-2.(2022·全国·高三专题练习(理))已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为()A.()1,12B.()3,10C.()2,11D.()3,9核心问题2数列单调性例1.(2020·陕西·渭南市杜桥中学高二期中(理))设数列2328n a n n =-,则数列的最小项是()A.第4项B.第5项C.第6项D.第7项例2.(2021·全国·高二期末)已知数列{}n a 的通项公式是342n n a n =+,那么这个数列是()A.摆动数列B.递减数列C.递增数列D.常数列练习2-1.(2021·全国·高二课时练习)已知数列{}n a 是递增数列,且其通项公式为2n a n n λ=+,则实数λ的取值范围是()A.7,2⎛⎫-+∞ ⎪⎝⎭B.[)0,+∞C.[)2,-+∞D.()3,-+∞例4.(2021·广西南宁·高二期末(文))已知数列{}n a 满足9(21),10n n a n n N +⎛⎫=+∈ ⎪⎝⎭,设{}n a 中的最大项为0n a ,则0n =()A.10B.9C.11D.14核心问题3等差通项1.(2021·全国·高二专题练习)已知等差数列{}n a ,满足23418a a a ++=,23466=a a a 求数列{}n a 的通项公式.2.(2019·安徽·天长市关塘中学高一期末)已知等差数列{}n a 的前n 项和为n S ,且1320a S +=,550S =.(1)求数列{}n a 的通项公式;(2)请确定3998是否是数列{}n a 中的项?核心问题4等差下标和性质例1.(2020·四川·宁南中学高二开学考试(理))已知等差数列{}n a 中,815a =,则17915a a a a +++=()A.15B.30C.45D.60练习1-1.(2021·四川·射洪中学高三阶段练习(理))已知数列{}n a 是等差数列,满足120214a a +=,则1011a =()A.4B.2C.0D.2-练习1-2.(2018·山西·怀仁市第一中学校高二阶段练习(理))在等差数列{}n a 中,1815360a a a ++=,则9102a a -的值为()A.6B.8C.12D.13核心问题5等差求和公式例1.(2021·陕西·西安市第八十九中学高二阶段练习(文))已知数列{}n a 的前n 项和为n S ,满足1n a ≥,且()241,n n S a n N *=+∈.(1)求123,,a a a 的值;(2)猜想数列{}n a 的通项公式,并计算数列{}n a 前100项和100S .例2.(2022·全国·模拟预测)已知n S 为数列{}n a 的前n 项和,且28n S n n =-+.(1)求证:数列{}n a 是等差数列;(2)记n n b a =,试求数列{}n b 的前n 项和n T .例3.(2021·北京·高二期末)在等差数列{}n a 中,48108,12a a a +==.(1)求数列{}n a 的首项1a 和公差d ;(2)设数列{}n a 的前n 项和为n S ,求n S 的最小值.核心问题6等差数列和的性质例1.(2021·河南·高二阶段练习)记等差数列{}n a 的前n 项和为n S ,已知55S =,1521S =,则10S =()A.9B.10C.12D.13练习1-1.(2021·江苏·高二专题练习)等差数列{}n a 中,n S 表示其前n 项和,若10100S =,20110S =,则30S =()A.-80B.120C.30D.111练习1-2.(2022·重庆市育才中学模拟预测)已知等差数列{}n a 前n 项和为n S ,且4813S S =,则816S S 等于()A.18B.19C.13D.310例2.(2021·福建省平和第一中学高二阶段练习)记等差数列{}n a 与{}n b 的前n 项和分别为n S 与n T ,若123n n S n T n +=+,则55a b =()A.2110B.4241C.1021D.4142练习2-1.(2021·山西师范大学实验中学高二阶段练习)若等差数列{}n a 与等差数列{}n b 的前n 项和分别为n S 和n T ,且2531+=-n n S n T n ,则88a b =()A.2123B.1311C.3544D.3747例3.(2020·甘肃省会宁县第一中学高二阶段练习(理))设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为()A.511B.38C.1D.2二、厚积薄发勤演练(题型归类练)一、单选题1.(黑龙江省牡丹江地区四校2021-2022学年高二上学期12月联合考试数学试题)在等差数列{}n a 中,若233a a +=,564a a +=,则公差d =()A.1B.2C.13D.162.(2021·湖北·武汉中学高二阶段练习)在等差数列{}n a 中,已知12a =,2313a a +=,则456a a a ++等于()A.40B.42C.43D.453.(2021·河南·高三阶段练习(文))等差数列{}n a 满足344a a +=,788a a +=,则1112a a +=()A.10B.12C.14D.164.(2022·江苏·高二)已知在数列{}n a 中,*11(n n a a n N -=+∈且2)n ≥,设n S 为{}n a 的前n 项和,若972S =,则9a =()A.8B.12C.16D.365.(2021·山西·芮城中学高二阶段练习)设n S 是等差数列{}n a 的前n 项和,若80,a <且98,a a >则使0n S >成立的正整数n 的最小值为()A.15B.16C.17D.186.(2021·河北·武安市第三中学高二阶段练习)等差数列{}n a 的前n 项和为n S ,若18240,a S S <=,则满足0n S >的最小的正整数n 的值为()A.31B.32C.33D.347.(2021·河南·永城高中高二期中(理))我国古代的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:二马相逢时驽马所走的路程为()A.855里B.1062里C.1188里D.1395里8.(2021·新疆昌吉·模拟预测(文))已知数列{}n a 满足()()111N n n n a na n *+-+=∈,且前n 项和为n S ,若N n *∀∈,6n S S ≥,则6S 的取值范围为()A.73,2⎡⎤⎢⎥⎣⎦B.90,2⎡⎤⎢⎥⎣⎦C.92,2⎡⎤⎢⎥⎣⎦D.[]0,3二、填空题9.(2021·山西·芮城中学高二阶段练习)已知等差数列{}n a 的前n 项和为n S ,且20202019120202019S S -=,则数列{}n a 的公差为_______.10.(2021·福建省平和第一中学高二阶段练习)已知数列{}n a 的首项12a =,122n n n a a a +=+,1n =,2,3,…,则2012a =________.11.(2021·陕西·咸阳市实验中学高二阶段练习)记等差数列{}n a 的前n 项和为n S ,若311a a =,且公差0d <,则当n S 取最大值时,n =_______.12.(2021·陕西·泾阳县教育局教学研究室高二期中(理))我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层的中心是一块天心石,围绕它的第圈有9块石板,从第二圈开始,每一圈比前一圈多9块共有9圈,则第六圈的石板块数是________.三、解答题13.(2022·江苏·高二)已知n S 是等差数列{}n a 的前n 项和,且412S =,840S =.(1)求数列{}n a 的通项公式;(2)设n n S b n=,n T 为数列{}n b 的前n 项和,求n T .14.(2021·山西·高二阶段练习)在等差数列{}n a 中,2186a =-,901000a a +=.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .。

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。

)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。

2019年高考数学二轮复习解题思维提升专题08数列大题部分训练手册

2019年高考数学二轮复习解题思维提升专题08数列大题部分训练手册

专题08 数列大题部分【训练目标】1、 理解并会运用数列的函数特性;2、 掌握等差数列,等比数列的通项公式,求和公式及性质;3、 掌握根据递推公式求通项公式的方法;4、 掌握常用的求和方法;5、 掌握数列中简单的放缩法证明不等式。

【温馨小提示】高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。

总之,此类题目难度中等,属于必拿分题。

【名校试题荟萃】1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求使得成立的n 的最小值.【答案】(1)2n n a = (2)10(2)由(1)可得112nn a ⎛⎫= ⎪⎝⎭,所以,由,即21000n>,因为,所以10n ≥,于是使得成立的n 的最小值为10.2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b 的前n 项和n T .【答案】(1) (2)(2)由函数()f x 的图象在点22(,)a b 处的切线方程为所以切线在x 轴上的截距为21ln 2a -,从而,故22a =从而n a n =,2n n b =,2n nn a nb =所以故。

3、(辽宁省辽河油田第二高级中学2019届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N .(1)求1a ,2a ;(2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和.【答案】(1)1,2 (2)12-=n n a (3)(3)由(2)知12-=n n n na ,记其前n 项和为n T ,于是①②①-②得从而.4、(湖南省浏阳一中、株洲二中等湘东六校2019届高三12月联考数学(理)试题)已知数列}{n a 的前n 项和n S 满足,且11=a 。

高考数学解答题(新高考)数列求和(奇偶项讨论求和)(典型例题+题型归类练)(解析版)

高考数学解答题(新高考)数列求和(奇偶项讨论求和)(典型例题+题型归类练)(解析版)

专题08 数列求和(奇偶项讨论求和)(典型例题+题型归类练)一、必备秘籍有关数列奇偶项的问题是高考中经常涉及的问题,解决此类问题的难点在于搞清数列奇数项和偶数项的首项、项数、公差(比)等.本专题主要研究与数列奇偶项有关的问题,并在解决问题中让学生感悟分类讨论等思想在解题中的有效运用.因此,在数列综合问题中有许多可通过构造函数来解决.类型一:通项公式分奇、偶项有不同表达式;例如:n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数角度1:求n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数的前2n 项和2n T角度2:求n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数的前n 项和n T类型二:通项含有(1)n -的类型;例如:(1)nn n c a =-类型三:已知条件明确的奇偶项或含有三角函数问题二、典型例题类型一:通项公式分奇、偶项有不同表达式通项公式分奇、偶项有不同表达式;例如:n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数角度1:求n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数的前2n 项和2n T例题1.(2022·浙江嘉兴·模拟预测)已知公差不为零的等差数列{}n a 满足24692,,,a a a a =成等比数列.数列{}n b 的前n 项和为n S ,且满足()22N n n S b n *=⋅-∈(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足211,,n n n n n n a a c a n b ++⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .第(2)问解题思路点拨:由(1)知:,,可代入到第(2)问中,求出的通项公式:,即:注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧,由于奇偶项通项比较复杂,可设;,则(注意到本例求解的为偶数项和,最后一项一定是代入偶数的通项公式,否则,若是求,最后一项是代入奇数项通项,还是代入偶数项通项,则需要讨论)分组求和当为奇数 当为偶数,两式相减得:综上:【答案】(1)n a n =;2nn b =(2)2255212n n n n T n +=+-+ (1)由题:46922,24,27a d a d a d =+=+=+,∵2649a a a =⋅,即()()()2242227d d d +=++得:1d =,即n a n = 当1n =时,12b =,当2n ≥时,22n n S b =⋅-,1122n n S b --=⋅-,两式相减整理得12nn b b -=, 即数列{}n b 是以首项12b =,公比2q的等比数列∴2nn b =(2)当n 为奇数时,1111(2)22n c n n n n ⎛⎫==- ⎪++⎝⎭1352111111112335212121n n nA c c c c n n n -⎛⎫=++++=-+-++-= ⎪-++⎝⎭ 当n 为偶数时,n c =23521222n n n B +=+++, 231135212122222n n n n n B +-+=++++ 两式相减得:23111113222213121525122222222222n n n n n n n n n B +-+++++=++++-=+--=- 得:2552n nn B +=-2255212n n n n n n T A B n +=+=+-+角度2:求n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数的前n 项和n T例题2.(2022·山东日照·模拟预测)已知数列{}n a 中,11a =,22a =,2n n a ka +=(1k ≠),n *∈N ,23a a +,34a a +,45a a +成等差数列.(1)求k 的值和{}n a 的通项公式;(2)设22log n n na nb a n ⎧=⎨⎩,为奇数,为偶数,求数列{}n b 的前n 项和n S .第(2)问解题思路点拨:由(1)知,代入即:注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧当为偶数时,数列{的前项中有个奇数项,有个偶数项.(注意到本例求解的,最后一项是代入奇数项通项,还是代入偶数项通项,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,整理:综上:21n b -++1n a -+,注意到最后一项n 为偶数,再利用1n n a -+,其中奇数项,偶数项各为【答案】(1)2k =,12222n n n n a n -⎧⎪=⎨⎪⎩,为奇数,为偶数(2)12221,38211,38n n n n nn S n n +⎧+-+⎪⎪=⎨--⎪+⎪⎩为偶数为奇数 (1)解:23a a +,34a a +,45a a +成等差数列, 所以()3423452a a a a a a +=+++,得5342a a a a -=-,得()()2311k a k a -=-, 因为1k ≠,所以322a a ==,所以312a k a ==,得12222n n n n a n -⎧⎪=⎨⎪⎩,为奇数,为偶数. (2)由(1)知,122n n n b n n -⎧⎪=⎨⎪⎩,为奇数,为偶数当n 为偶数时,设n =2k ,可得21321242n k k k S S b b b b b b -==++⋅⋅⋅+++++()022212222422k k -=++⋅⋅⋅++++⋅⋅⋅+ ()()22114141142232k k k k k k ++--=+⨯=+-,即()22138n n n nS +-=+; 当n 为奇数时,设n =2k -1,可得2113212422n k k k S S b b b b b b ---==++⋅⋅⋅++++⋅⋅⋅+ ()0222122224222k k -=++⋅⋅⋅++++⋅⋅⋅+- ()()()2221114141142232k k k k k k +-----=+⨯=+-, 即1221138n n n S +--=+. 综上所述,()12221,38211,38n n n n nn S n n +⎧+-+⎪⎪=⎨--⎪+⎪⎩为偶数为奇数.类型二:通项含有(-1)n的类型通项含有(1)n -的类型;例如:(1)nn n c a =-例题3.(2022·河南·开封高中模拟预测(理))在数列{}n a 中,33a =,数列{}n a 的前n 项和n S 满足()()*112n n S a n n =+∈N . (1)求数列{}n a 的通项公式; (2)若()21nn n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)()*n a n n =∈N (2)2*2*,,2,.2n n nn N n T n n n N n ⎧+-∈⎪⎪=⎨+⎪∈⎪⎩且是奇数且是偶数 第(2)问解题思路点拨:由题意知,求,代入:注意到通项中含有“”,会影响最后一项取“正还是负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的,代入最后一项,是正,还是负,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,即:注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,整理:综上:(1)因为()112n n S a n =+,所以()12n n nS a =+. 所以当2n ≥时,()11112n n n S a ---=+. 两式相减,得()()1211n n n a na n n a n -=+----, 即()()1211n n n a n a --=--. 所以()111n n n a na +-=-.相减得()()()11121n n n n n a n a na n a +----=--, 即112n n n a a a -+=+. 所以数列{}n a 是等差数列. 当n =1时,()11112a a =+,解得11a =. 所以公差31131a a d -==-. 所以()()*11n a n n n =+-=∈N . (2)()()2211nnn nb a n =-=-⨯, 当n 为奇数时,()()22222212311212n n nT n n n +=-+-+⋅⋅⋅+-⨯=++⋅⋅⋅+--=-⎡⎤⎣⎦;当n 为偶数时,22222123122n n n T n n +=-+-+⋅⋅⋅+=++⋅⋅⋅+=.综上所述,2*2*,,2,.2n n n n N n T n n n N n ⎧+-∈⎪⎪=⎨+⎪∈⎪⎩且是奇数且是偶数例题4.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(1)求数列{}n a 的通项公式;(2)设数列()()24141nnn a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T感悟升华(核心秘籍)(1)对比例题3,例题4,通项都含有“(1)n-”,在求和时都使用(连续两项分组求和法:即连续的两项分一组);不同的是,例题3求前n 项和nT ;例题4求前2n 项和2nT ;(2)对于例题3求123n n T b b b b =+++⋅⋅⋅+,其中最后一项代入,是取“正”还是取“负”不确定,故需讨论n 为奇数还是偶数,在讨论时,作为核心技巧,先讨论n 为偶数,再利用n 为偶数的结论,快速求n 为奇数的和;;(3)对于例题4求21234212n n n T b b b b b b -=++++++,注意到最后一项2n b 一定是正,故不需要讨论;【答案】(1)*,N na n n =∈(2)21141n T n =-++ (1)公差d 不为零的等差数列{}n a ,由2319a a a =⋅, ()()211182a a d a d +=+,解得1a d =.第(2)问解题思路点拨:由(1)知:,可代入到第(2)问中,求出的通项公式:,注意到通项中含有“”,会影响最后一项取“正还是负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的为偶数项和,代入最后一项,一定是正,故不需要讨论)分组求和又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列, 所以*,N na n n =∈.(2)解:由(1)可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n T n n n n ∴=--++--+--++---+1141n =-++, 类型三:已知条件明确的奇偶项或含有三角函数问题例题5.(2022·江西赣州·二模(文))已知数列{}n a 的前n 项和为n S ,且满足()22n n S a n *=-∈N(1)求数列{}n a 的通项公式;(2)已知()2cos log n n b n a π=⋅,求数列{}n b 的前n 项和n T .感悟升华(核心秘籍)第(2)问解题思路点拨:由题意知,求,注意,所以可化简为:,注意到通项中含有“”,会影响最后一项取“正”还是取“负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的,代入最后一项,是正,还是负,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,即:注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,,整理:综上:【答案】(1)2n n a =(2),;1,.n n n T n n ⎧=⎨--⎩ 为偶数为奇数(1)当1n =时,1122S a =-,即12a = 当2n ≥时,1122n n S a --=-,即12a =所以1122n n n n n a S S a a --=-=-得()122n n a a n -=≥ 即{}n a 以12a =为首相,公比为2的等比数列 所以数列{}n a 的通项公式为2n n a =(2)()()()cos 2cos 12nn n b n a n n n ππ=⋅=⋅=-⋅①当n 为偶数时,1232468102n n T b b b b n =+++⋅⋅⋅+=-+-+-+⋅⋅⋅+ 22nn =⋅= ②当n 为奇数时,1231n n n n T b b b b T b -=+++⋅⋅⋅+=+ ()12212n n n -=⋅+-=-- 综上:,;1,.n n n T n n ⎧=⎨--⎩ 为偶数为奇数三、题型归类练1.(2022·湖北·荆门市龙泉中学二模)已知数列{}n a 的前n 项和为112n n S a +=-,且214a = (1)求数列{}n a 的通项公式;(2)()0.5*log ,,n n n a n b n N a n ⎧=∈⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T ; 【答案】(1)12nn a ⎛⎫= ⎪⎝⎭(2)211334nn +-⨯ (1)在数列{}n a 中, 由112n n S a +=-可知1212n n S a ++=-, 两式作差可得()()1211212n n n n S a S a +++---=-,即2112n n a a ++=, 当1n =时,1212S a =-,,即112a =,211412a a ==, 所以数列{}n a 是以12为首项,12为公比的等比数列,即1111222n nn a -⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭; (2)由(1)知()*,1,2nn n n b n N n ⎧⎪=∈⎨⎛⎫⎪ ⎪⎝⎭⎩为奇数为偶数, 所以()()21321242n n n T b b b b b b -=+++++++()211113214162n n ⎛⎫=+++-++++ ⎪⎝⎭()111441211214nn n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+-⎢⎥⎣⎦=+-211334nn =+-⨯.2.(2022·全国·模拟预测)已知数列{}n a 满足11a =,14nn n a a +⋅=,*n ∈N .(1)求数列{}n a 的通项公式n a ;(2)若2log ,,1,,n n n a n b a n ⎧=⎨+⎩为奇数为偶数求数列{}n b 的前2n 项和2n S .【答案】(1)12,,2,.n n n n a n -⎧=⎨⎩为奇数为偶数(2)1224433n n S n +=+-(1)由题意,当1n =时,24a =,因为14n n n a a +⋅=①,则1124n n n a a +++⋅=②,可得24n na a +=, 所以数列{}n a 的奇数项和偶数项都是公比为4的等比数列.因为11a =,24a =,所以当n 为奇数时,1112142n n n a a +--=⨯=;当n 为偶数时,12242nn n a a -=⨯=.综上,12,,2,.n n nn a n -⎧=⎨⎩为奇数为偶数 (2)由(1)得1,,21,,n n n n b n -⎧=⎨+⎩为奇数为偶数∴()()21321242n n n S b b b b b b -=++⋅⋅⋅++++⋅⋅⋅+()()41422214nn n n ⎡⎤--⎡⎤⎢⎥=++⎢⎥-⎢⎥⎣⎦⎣⎦124433n n +=+-. 3.(2022·山东·肥城市教学研究中心模拟预测)已知数列{}n a 满足11a =,19nn n a a +⋅=,N n *∈.(1)求数列{}n a 的通项公式n a ;(2)若13log ,1,n n n a n b a n ⎧⎪=⎨⎪-⎩为奇数为偶数,求数列{}n b 的前2n 项和2n S .【答案】(1)13,3,n n nn a n -⎧=⎨⎩为奇数为偶数(2)1229898n n n S +--= (1)解:由题意,当1n =时,129a a =,可得29a =,因为19n n n a a +⋅=,可得1129n n n a .a +++=,所以,29n na a +=, 所以数列{}n a 的奇数项和偶数项都是公比为9的等比数列.所以当n 为奇数时,设()21N n k k *=-∈,则1221211933k k n n k a a ----==⋅==, 当n 为偶数时,设()2N n k k *=∈,则12299933k k k nn k a a -==⋅===.因此,13,3,n n nn a n -⎧=⎨⎩为奇数为偶数. (2)解:由(1)得1,31,n n n n b n -⎧=⎨-⎩为奇数为偶数,()()21321242n n n S b b b b b b -∴=+++++++()()2462024223333n n n =-----+++++-⎡⎤⎣⎦()()12919229892198nn n n n n +----=-+-=-.4.(2022·福建三明·模拟预测)设数列{}n a 的前n 项和为n S ,()122n n S n a +-+=,210a =,1n n b a =-. (1)求证:{}n b 是等比数列;(2)设332,1,log log n n nn b n c n b b +⎧⎪=⎨⎪⋅⎩为奇数为偶数,求数列{}n c 的前21n 项和21n T +.【答案】(1)证明见解析(2)()232133841n n nT n ++-=++ (1)证明:对任意的N n *∈,1224n n S a n +=+-, 当1n =时,则有12228a a =-=,解得14a =,当2n ≥时,由1224n n S a n +=+-可得1226n n S a n -=+-,上述两个等式作差得122n n n a a a +=-+,所以,132n n a a +=-,则()1131n n a a +-=-, 所以,13n n b b +=且1113b a =-=,所以,数列{}n b 是等比数列,且首项和公比均为3.(2)解:由(1)可知1333n nn b -=⨯=,所以,()3,1,2n n n c n n n ⎧⎪=⎨⎪+⎩为奇数为偶数,所以,()1321211113332446222n n T n n ++=++++++⨯⨯+()()3211113332446222n n n +⎡⎤=+++++++⎢⎥⨯⨯+⎣⎦()21339111119412231n n n +⎡⎤-⨯=++++⎢⎥-⨯⨯+⎣⎦()232333111111331842231841n n nn n n ++--⎛⎫=+⨯-+-++-=+ ⎪++⎝⎭. 5.(2022·江西·新余四中模拟预测(理))在数列{}n a 中,21,,2,n nn n a n -⎧=⎨⎩为奇数为偶数 (1)求1a ,2a ,3a ;(2)求数列{}n a 的前n 项和n S .【答案】(1)11a =,24a =,35a =(2)212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 (1)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数所以12111a =⨯-=,2224a ==,32315a =⨯-=,(2)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数 所以1a ,3a ,5a ,是以1为首项,4为公差的等差数列,2a ,4a ,6a ,是以4为首项,4为公比的等比数列.当n 为奇数时,数列的前n 项中有12n +个奇数项,有12n -个偶数项.所以()()1231322431n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++12211141411242214221423n n n n n n n -+⎛⎫++⎛⎫-- ⎪ ⎪++-⎝⎭⎝⎭=⨯+⨯+=+-; 当n 为偶数时,数列{{}n a 的前n 项中有2n 个奇数项,有2n个偶数项.所以()()1231331242n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++2224141242214221423nn n n n n n +⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭=⨯+⨯+=+-. 所以212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 6.(2022·安徽省舒城中学模拟预测(理))已知数列{}n a 的前n 项和为,239n n n S S a =-. (1)求数列{}n a 的通项公式;(2)若()31log nn n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)13n n a +=;(2),23,2n nn T n n ⎧⎪⎪=⎨+⎪-⎪⎩为偶数为奇数 【详解】(1)当1n =时,11239S a =-.因为11S a =,所以11239a a =-,所以19a =. 因为239n n S a =-,所以11239n n S a ++=-. 两式相减,得11233n n n a a a ++=-,即13n n a a += 又因为19a =,所以0n a >.所以数列{}n a 是以9为首项,3为公比的等比数列.所以11933n n n a -+=⨯=.(2)由(1)可知()()()31log 11n nn n b a n =-=-+故当n 为偶数时,()()()234512n nT n n ⎡⎤=-++-++⋯+-++=⎣⎦当n 为奇数时,()()()()()123451112n n T n n n n -⎡⎤=-++-++⋯+--+-+=-+⎣⎦ 32n +=-所以,23,2n nn T n n 为偶数为奇数⎧⎪⎪=⎨+⎪-⎪⎩ 7.(2022·全国·模拟预测)已知数列{}n a 中,()112,1n n n a n a a a +=-=+. (1)求证:数列1n a n +⎧⎫⎨⎬⎩⎭是常数数列;(2)令(1),nn n n b a S =-为数列{}n b 的前n 项和,求使得99n S ≤-的n 的最小值.【答案】(1)证明见解析;(2)最小值为67. (1)由()11n n n n a a a +-=+得:()111n n na n a +=++,即()1111n n a a n n n n +=+++ 11111n n a a n n n n +∴=+-++,即有111,1n n a a n n +++=∴+数列1n a n +⎧⎫⎨⎬⎩⎭是常数数列; (2)由(1)知:()1113,31,(1)31n n n n a a a n b n n+=+=∴=-∴=-- 即()31,31,n n n b n n -⎧⎪=⎨--⎪⎩为偶数为奇数,∴当n 为偶数时,()()()()32581134312n nS n n ⎡⎤=-++-+++--+-=⎣⎦,显然99n S -无解; 当n 为奇数时,()()11313131122n n n n n S S a n ++++⎡⎤=-=-+-=-⎣⎦,令99n S ≤-,解得:66n , 结合n 为奇数得:n 的最小值为67. 所以n 的最小值为67.8.(2022·重庆八中模拟预测)已知{n a }是各项都为正数的数列,其前n 项和为n S ,且满足12n n nS a a =+. (1)求证:数列{2n S }为等差数列; (2)设()1nnnb a =-,求{n b }的前64项和64T .【答案】(1)证明见解析;(2){}n b 的前64项和648T =. (1)∵ 12n n nS a a =+,所以221n n n S a a -= 当2n ≥时,有1n n n a S S -=-,代入上式得()12n n n S S S -- ()211n n S S ---=整理得()22112n n S S n --=≥.又当1n =时, 211121S a a -=解得11S =;∴数列{}2n S 是首项为1,公差为1的等差数列. (2)由(1)可得211n S n n =+-=,∵{}n a 是各项都为正数,∴n S ,∴12)n n n a S S n -=-=≥, 又111a S ==,∴n a则(1)(1)n nn n n b a -===-,6411)T ∴=-+-+⋅⋅⋅-+=11-+⋅⋅⋅8,即:648T =.∴{}n b 的前64项和648T =.9.(2022·辽宁·模拟预测)已知n S 为等差数列{}n a 的前n 项和,1522a a +=,()22n n S n a n =-+. (1)求{}n a 的通项公式; (2)设()1821nn n n n b a a ++=-⋅,求数列{}n b 的前21n 项和21n T +. 【答案】(1)41n a n =-(2)8102421n n +-+(1)解:设等差数列{}n a 的公差为d . 由1522a a +=,得311a =,由()22n n S n a n =-+,得()2222S a =-, 又21222S a a a d =+=-,解得4d =, 所以()3341n a a n d n =+-=-. (2)由(1)得()1821nn n n n b a a ++=-⋅, ()()()8214143+=-⋅-+nn n n ,()1114143⎛⎫=-+ ⎪-+⎝⎭n n n ,所以21123221++=+++++n n n T b b b b b ,111111113771111158183⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭n n 118387⎛⎫-+ ⎪++⎝⎭n n , 11387=--+n ,8102421+=-+n n .10.(2022·山东济宁·三模)已知等差数列{}n a 的前n 项和为n S ,且31a =,67S =,数列{}n b 满足11222n n b b b ++++=-.(1)求数列{}n a 和{}n b 的通项公式;(2)记()tan n n n c b a π=⋅,求数列{}n c 的前3n 项和. 【答案】(1)3n n a =,2nn b =(2))187n - (1)解:设等差数列{}n a 的公差为d ,则3161216157a a d S a d =+=⎧⎨=+=⎩,解得113a d ==,所以,()111333n na n =+-=,当1n =时,21222b ,当2n ≥时,112122n n n b b b b +-++++=-,可得12122n n b b b -+++=-,上述两个等式作差可得1222n n nn b +=-=,12b =也满足2n n b =,故对任意的N n *∈,2n n b =.(2)解:由(1)可得2tan3nn n c π=, 设(323132323132202n n n n n n n p c c c -----=++=⨯+=,所以,18nn p p +==,所以,数列{}n p 是等比数列,且首项为1p =-8, 因此,数列{}n c 的前3n 项和为))31818187n n n T ---==-.11.(2022·陕西西安·三模(理))设公差不为零的等差数列{}n a 的前n 项和为n S ,36S =,2a ,4a ,8a 成等比数列,数列{}n b 满足11b =,121n n b b +=+. (1)求数列{}n a 和{}n b 的通项公式; (2)求10021πsin 2kk k aa =⎛⎫⋅⋅ ⎪⎝⎭∑的值.【答案】(1)n a n =,21nn b =-;(2)5000-.(1)设等差数列{}n a 的公差为d (0d ≠),由题意得()()()31211133637S a d a d a d a d =+=⎧⎪⎨+=++⎪⎩,解得111a d =⎧⎨=⎩, 故数列{}n a 的通项公式n a n =. ∵121n n b b +=+,∴()1121n n b b ++=+,即1121n n b b ++=+(*n ∈N ),又11b =, ∴{}1n b +是以2为首项,2为公比的等比数列,12nn b +=, ∴21nn b =-.(2)当2k m =,*m ∈N 时,()22πsin 2sin π02k k a a m m ⎛⎫⋅⋅== ⎪⎝⎭,当21k m =-,*m ∈N 时,()()()2122π21sin 21sinπ12122m k k m a a m m +-⎛⎫⋅⋅=-=-⋅- ⎪⎝⎭, ∴10022222221πsin 135797992kk k aa =⎛⎫⋅⋅=-+-+⋅⋅⋅+- ⎪⎝⎭∑()()()()()()1313575797999799=-++-++⋅⋅⋅+-+()2135797995000=-⨯++++⋅⋅⋅++=-.12.(2022·江苏·南京市第一中学三模)数列{}n a 满足116nn n a a +=,12a =.(1)求{}n a 的通项公式;(2)若2sin 2n n n b a π=,求数列{}n b 的前20项和20S .【答案】(1)212n n a -=(2)()4022115- (1)116nn n a a +=11216n n n a a +++∴=,两式相除得:216n na a +=, 当21n k =-时, 1357211352316k k k a a a a a a a a ---⨯⨯⨯⨯= 121216k k a --∴=⨯ ,212n n a -∴=当2n k =时, 168242462216k kk a a a a a a a a --⨯⨯⨯⨯= 12816k k a -∴=⨯,212n n a -∴=综上所述,{}n a 的通项公式为:212n n a -=(2)由(1)知:212n n a -∴=2212sin 2n n n b π-∴= ∴ 数列{}n b 的前20项和:20123419201357373949163614002sin2sin2sin 2sin 2sin2sin 222222S b b b b b b ππππππ=++++++=⋅+⋅+⋅+⋅++⋅+⋅1537373993614164002sin 2sin 2sin2sin 2sin 2sin222222ππππππ⎛⎫⎛⎫=⋅+⋅++⋅+⋅+⋅++⋅ ⎪ ⎪⎝⎭⎝⎭()()()104401593337404421222122222221122115⎡⎤--⎢⎥⎣⎦=+++++===--- 13.(2022·广东茂名·模拟预测)已知数列{}n a 的前n 项和为n S ,满足()213n n S a =-,*n N ∈. (1)求数列{}n a 的通项公式; (2)记sin2n n n b a π=⋅,求数列{}n b 的前100项的和100T . 【答案】(1)()2nn a =-,n *∈N (2)101225- (1)当2n ≥时,()()11221133n n n n n a S S a a --=-=---, 整理得12nn a a -=-, 又()111213a S a ==-,得12a =- 则数列{}n a 是以-2为首项,-2为公比的等比数列. 则()2nn a =-,n *∈N(2)当4,n k k N *=∈时,()4442sin 02k kk b π=-⋅=, 当41,n k k N *=-∈时,()()444111412sin22k k k k b π----=-⋅=, 当42,n k k N *=-∈时,()()4242422sin 02k k k b π---=-⋅=, 当43,n k k N *=-∈时,()()444333432sin22k k k k b π----=-⋅=-,则()()5973799100123100222222T b b b b =++++=-+++++++()()25254334101442222222212125-⋅-⋅-=-+=--。

高考数学(理)之数列 专题08 数列的求和(裂项相消法求和)(解析版)

高考数学(理)之数列 专题08 数列的求和(裂项相消法求和)(解析版)

数列08 数列的求和(裂项相消法求和)一、具体目标:1.掌握等差、等比数列的求和方法; 2.掌握等非差、等比数列求和的几种常见方法.考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述:求数列前n 项和的基本方法(1)直接用等差、等比数列的求和公式求和; 等差:11()(1)22n n n a a n n S na d +-==+; 等比:11(1)(1)(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩公比是字母时需要讨论.(理)无穷递缩等比数列时, (2)掌握一些常见的数列的前n 项和公式:()21321+=++++n n n Λ; n n n +=++++22642Λ; 2531n n =++++Λ;()()61213212222++=++++n n n n Λ;()2333321321⎥⎦⎤⎢⎣⎡+=++++n n n Λ(3)倒序相加法求和:如果一个数列{}na ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.(4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b qa S -=11【考点讲解】中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合.2.关注相减的项数及没有参与相减的项的保留.(5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n =,,n n b n c n ⎧⎪⎨⎪⎩为奇数为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.形如:n n b a +其中⎪⎩⎪⎨⎧是等比数列是等差数列nn b a ,()()⎩⎨⎧∈=∈-==**N k k n n g N k k n n f a n ,2,,12, (6)合并求和:如求22222212979899100-++-+-Λ的和.(7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项:111;(1)1n n n n =-++ 1111;(21)(21)22121n n n n ⎛⎫=- ⎪-+-+⎝⎭ 1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦;n n n n -+=++111.1.【2019年优选题】+⨯411+⨯741Λ+⨯1071=+-+)13)(23(1n n ( )A.13+n nB.131++n nC.1312+-n n D.1322+-n n 【解析】本题运用的是裂项相消法将每项裂开两项后相加,中间的项是互为相反数相加和为零. 原式=13)1311(31)]131231()7141()411[(31-=+-=+--++-+-n nn n n Λ. 【答案】A2.【2019年优选题】设数列ΛΛΛΛ,11,,321,211++++n n 的前n 项和为n S ,则n S 等于( )A .n n -+1 B.n n ++1 C.11-+nD.11++n【真题分析】【解析】本题考查的是裂项相消法求和,本题是在每项的分母有理化的同时,将每一项转化为两项后,再相加,中间项相消. 因为n n n n -+=++111.所以11321211+++++++=n n S n ΛΛn n n n -++--++-+-=112312Λ11-+=n【答案】C3.【2019年优选题】._______321132112111=+++++++++++nΛΛ 【解析】本题考点是求数列通项及裂项相消法求和.∵12112()123(1)1n a n n n n n ===-++++++L12111211131212112+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-++-+-=n n n n n S n Λ. 【答案】12+n n4.【2017年高考全国II 卷理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑___________. 【解析】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk kn S n n n n ==-+-++-=-=+++∑L . 【答案】21n n + 5.【2018年高考天津卷理数】设{}n a 是等比数列,公比大于0,其前n 项和为()n S n *∈N ,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为()n T n *∈N , (i )求n T ;(ii )证明221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N . 【解析】本小题主要考查等差数列的通项公式,等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.(1)设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=. 因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d +=由5462a b b =+, 可得131316,b d += 从而11,1,b d == 故.n b n =所以,数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(2)(i )由(1),有122112nn n S -==--,故 1112(12)(21)22212n nnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑L . 6.【2017年高考全国III 卷】设数列{}n a 满足123(21)2n a a n a n +++-=L .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.【解析】(1)因为a 1+3a 2+…+(2n −1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n −3)a n−1 =2(n −1). 两式相减得(2n −1)a n =2,所以a n =22n−1 (n ≥2).又由题设可得a 1=2,从而{a n }的通项公式为a n =22n−1.(2)记{a n2n+1}的前n 项和为S n ,由(1)知a n2n+1 = 2(2n+1)(2n−1)=12n−1−12n+1.则 S n = 11− 13+ 13− 15+…+12n−1−12n+1=2n2n+1.【答案】(1)122-=n a n ;(2)122+n n.1.数列{}n a 的前n 项和为n S ,若5)1(1S n n a n ,则+=等于 ( )A.1B.56C.16D.130【解析】因为111)1(1+-=+=n n n n a n,所以⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=61515141413131212115S6561161515141413131212115=-=-+-+-+-+-=S .【答案】B 2.)13)(23(1741411+-++⨯+⨯n n Λ等于 ( ) A.2231n n -+ B.2131n n -+ C.131n n ++ D.31nn + 【解析】1111()(32)(31)33231n a n n n n ==--+-+111111111:()(1)31447323133131n nS n n n n =-+-++-=-=-+++L【答案】D3.数列{}n a 满足12121n n a n n n =++++++L ,12n n n b a a +=又,求数列{}nb 的前n 项和. 【解析】因为1(12)12=+++=+L n n a n n ,又128(1)+==+n n n b a a n n = 118(1-+n n ) 12111111188()()()811223111n n b b b n n n n ⎡⎤⎡⎤+++=-+-++-=-=⎢⎥⎢⎥+++⎣⎦⎣⎦L L 所以. 【模拟考场】4.数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,. (1)求;(2)求证. 【解析】(1)设的公差为,的公比为,则为正整数,,依题意有①由知为正有理数,故为的因子之一, 解①得.故(2)∴5.已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前;(2)若数列}1{,3),(}{11nn n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n . 【解析】(1)设等差数列}{n a 的公差为d ,则⎩⎨⎧+=+=+21111)5()20(,60156d a d a a d a 解得⎩⎨⎧==.5,21a d32+=∴n a n .)4(2)325(+=++=n n n n S n(2)由).,2(,111*--+∈≥=-∴=-N n n a b b a b b n n n n n n{}n a n a n n S {}n b 113,1a b =={}n a b 2264b S =,n n a b 1211134n S S S +++<L {}n a d {}n b q d 3(1)n a n d =+-1n n b q -=1363(1)22642(6)64n n nda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩(6)64d q +=q d 61,2,3,62,8d q ==132(1)21,8n n n a n n b -=+-=+=35(21)(2)n S n n n =++++=+L 121111111132435(2)n S S S n n +++=++++⨯⨯⨯+L L 11111111(1)2324352n n =-+-+-++-+L 11113(1)22124n n =+--<++112211121112,()()()(1)(14)3(2).3,n n n n n n n n b b b b b b b b a a a b n n n n b -----≥=-+-++-+=++++=--++=+=L L 当时对也适合))(2(*∈+=∴N n n n b n ).211(21)2(11+-=+=∴n n n n b n )211123(21)2114121311(21+-+-=+-++-+-=n n n n T n Λ )2)(1(4532+++=n n n n6.已知n S 是数列{n a }的前n 项和,并且1a =1,对任意正整数n ,241+=+n n a S ;设Λ,3,2,1(21=-=+n a a b n n n ).(I )证明数列}{n b 是等比数列,并求}{n b 的通项公式; (II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T . 【解析】(I )),2(24,2411≥+=∴+=-+n a S a S n n n n Θ 两式相减:),2(4411≥-=-+n a a a n n n*),(2)2(2,2)(42,2),2)((41111121111N n b a a b a a a a a b a a b n a a a n n n n n n n n n n n n n n n n ∈=-=--=-=∴-=∴≥-=∴++++++++-+,21=∴+nn b b }{n b ∴是以2为公比的等比数列, ,325,523,24,2112121121=-==+=∴+=+-=b a a a a a a a b 而Θ*)(231N n b n n ∈⋅=∴-(II ),231-==n n n b C ,)1(12log 2log 1log log 11222212+=⋅=⋅∴+++n n C C n n n n 而,111)1(1+-=+n n n n .111)111()4131()3121()211(+-=+-++-+-+-=∴n n n T n Λ7.已知数列{}a n :ΛΛΛ,2133323122211nn n n ++++++,,,, ①求证数列{}a n 为等差数列,并求它的公差. ②设()N n a a b n n n ∈=+11,求……++++n b b b 21的和。

2023年新高考数学创新题型微专题08 数列专题(新定义)(解析版)

2023年新高考数学创新题型微专题08 数列专题(新定义)(解析版)

专题08 数列专题(新定义)一、单选题1.(2023春·甘肃张掖·高二高台县第一中学校考阶段练习)对于正项数列{}n a 中,定义:12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称值”已知数列{}n a 的“匀称值”为2n G n =+,则该数列中的10a =( ) A .83B .125 C .94D .2110【答案】D【分析】确定()123223n n nG n n a a a na =+=+++⋅⋅⋅+,取10n =和9n =带入式子,相减得到答案. 【详解】123232nn a a a na G n n+++⋅⋅⋅+==+,即()123223n n nG n n a a a na =+=+++⋅⋅⋅+,故()12310231010102a a a a +++⋅⋅⋅+=⨯+;()1239239992a a a a +++⋅⋅⋅+=⨯+; 两式相减得101021a =,所以102110a =. 故选:D2.(2023春·浙江·高三开学考试)对任意正整数对(,)h k ,定义函数(,)f h k 如下:(1,)1f j =,()()()()11,,,i f i j j i f i j i ++=−≤,则( )A .(1,)1f j j +=B .1(,)2C i j f i j −=C .()21(,)21jji j f i j j =⎡⎤⋅=⋅−⎣⎦∑D .[]11(,)22jn nj i j f i j n ==⋅=+−∑∑【答案】C【分析】根据新定义得(1,)(,)1f i j j if i j i +−=+,令i j =即可判断A ,根据()()()()()()2,3,4,123,,,1,22,33,4f j f j f j j j j f j f j f j −−−===累乘可判断B ,利用二项式定理求得12C C C 21nnnnn+++=−,结合()211(,)21jji jji i j f i j j C j ==⎡⎤⋅==−⎣⎦∑∑判断C ,[]()111(,)21j n nj j i j j f i j ===⋅=−∑∑∑,结合等比数列的前n 项和公式判断D. 【详解】()()()()()()1,11,,,,1f i j j ii f i j j i f i j f i j i +−++=−∴=+,令i j =,则(1,)0(,)f j j f j j +=,(1,)0f j j ∴+=,A 错误;(2,)1(3,)2(4,)3,,,(1,)2(2,)3(3,)4f j j f j j f j j f j f j f j −−−===,(,)1,(1,)f i j j i f j i−+= 累乘得:(,)(1)(2)(3)(1)1C (1,)2345ij f i j j j j j i f j i j−−−−+==⨯⨯⨯⨯⨯,1(1,)1,(,)C ,()ij f j f i j i j j=∴=≤,令1i =,则B 错误; 因为()01211C C C C nnn n n n +=++++,所以12C C C 21n nn n n +++=−,()211(,)C 21jji jj i i jf i j j j ==⎡⎤⋅==−⎣⎦∑∑,则C 正确;[]()11112(12)(,)212212n jnnjn j i j j f i j n n +===−⋅=−=−=−−−∑∑∑,则D 错误. 故选:C .3.(2023春·安徽·高二合肥市第八中学校联考开学考试)定义:对于数列{}n a ,如果存在一个常数()*N T T ∈,使得对任意的正整数0n n ≥恒有n T n a a +=,则称数列{}n a 是从第0n 项起的周期为T 的周期数列.已知周期数列{}n b 满足:11b =,23b =,12n n n b b b −−=−(3n ≥),则2023b =( ) A .1− B .3− C .2− D .1【答案】D【分析】写出周期数列{}n b 的前几项,发现周期为6,进而求得2023b 的值. 【详解】写出周期数列{}n b 的前几项:1,3,2,1−,3−,2−,1,3,2,1−,3−,2−,1,…, 发现周期数列{}n b 是周期为6的周期数列, ∴20233376111b b b ⨯+===. 故选:D .4.(2023秋·福建南平·高二统考期末)若数列{}n a 的前n 项和为n S ,nn S b n=,则称数列{}n b 是数列{}n a 的“均值数列”.已知数列{}n b 是数列{}n a 的“均值数列”且n bn =,设数列⎧⎫的前n 项和为n T ,若()2132n m m T −<对*n ∈N 恒成立,则实数m 的取值范围为( ) A .[]1,2−B .()1,2-C .()(),12,−∞−⋃+∞D .(][),12,−∞−⋃+∞【答案】B【分析】由新定义求得n S ,然后由1n n n a S S −=−求得n a ,从而可求得n T (裂项相消法)后得n T 的最小值,解相应不等式可得结论. 【详解】由题意nS n n=,即2n S n =, ∴2n ≥时,221(1)21n n n a S S n n n −=−=−−=−,又111a S ==,∴*n ∈N 时,21n a n =−,==2n n T +=+=, 易知1{}2是递增数列,∴1{}2的最小值是12(1n =时取得), 由题意21(3)2m m −<,解得12m −<<.故选:B .5.(2023秋·山西长治·高三校联考阶段练习)对于一个n 项数列()*1212:,,,,1,n k k A a a a S a a a k n k =+++≤≤∈N ,记A 的“Cesaro 平均值”为()121+++n S S S n,若数列121010,,,a a a 的“Cesaro 平均值”为2022,数列121010,,,,x a a a 的“Cesaro 平均值”为2046,则x =( )A .24B .26C .1036D .1541【答案】B【分析】先求出121010S S S +++的值,再根据Cesaro 平均值的求法列出等式,即可求出x 的值.【详解】因为数列121010,,,a a a 的“Cesaro 平均值”为12101020221010S S S +++=,所以12101020221010S S S +++=⨯. 因为121010,,,,x a a a 的“Cesaro 平均值”为()()()12101020461011x x S x S x S +++++++=,所以10112022101020461011x +⨯=,所以20202046x +=,解得26x =,故选:B.6.(2023春·湖北咸宁·高二校考开学考试)等比数列{}n a 中1512a =,公比12q =−,用12Π⋅⋅⋅⋅⋅⋅=n n a a a 表示它的前n 项之积,则1Π,2Π,…,n ∏中最大的是( ) A .11Π B .10Π C .9Π D .8Π【答案】C【分析】根据题意分析,n n a ∏的符号,结合前n 项之积的性质运算求解.【详解】∵110,02a q >=−<,则当n 为奇数时,0n a >,当n 为偶数时,0n a <,∴当()43N n k k *=−∈或()4N n k k *=∈时,0n ∏>,当()42N n k k *=−∈或()41N n k k *=−∈时,0n ∏<,由题意可得:115122n n a −⎛⎫=− ⎪⎝⎭,令1151212n n a −⎛⎫=≥ ⎪⎝⎭,解得10n ≤,若n ∏取到最大,则3k =,9n =,即{}n ∏中最大的是9Π. 故选:C.7.(2022秋·北京·高二北京二中校考期末)如果数列{}n a 满足211n n n na a k a a +++−=(k 为常数),那么数列{}n a 叫做等比差数列,k 叫做公比差.下列四个结论中所有正确结论的序号是( ) ①若数列{}n a 满足12n na n a +=,则该数列是等比差数列;②数列{}2nn ⋅是等比差数列;③所有的等比数列都是等比差数列; ④存在等差数列是等比差数列. A .①②③ B .①③④ C .①②④ D .②③④【答案】B【分析】根据比等差数列的定义211n n n na a k a a +++−=(k 为常数),逐一判断①②③④是否是等比差数列即可可得到答案.【详解】①数列{}n a 满足12n na n a +=,则2112(1)22n n n na a n n a a +++−=+−=,满足等比差数列的定义,故①正确; ②数列{2}n n ⋅,+212111(2)2(1)2(1)22n n n n n nn n a a a a n n n n +++++−=+⋅+⋅−+⋅⋅ 2(2)2(1)22(1)(1)n n n n n n n ⋅+⋅−+⋅==−⋅+⋅+,不满足等比差数列的定义,故②错误; ③设等比数列的公比为q ,则2110n n n na a a a q q +++−==−,满足等比差数列,故③正确; ④设等差数列的公差为d , 则22112()n n n n n n n n n n a a a a a d a d d a d a a a d +++−++−=−=++, 故当0d=时,满足2110n n n na a a a +++−=,故存在等差数列是等比差数列,即④正确;故答案为:①③④ 故选:B.8.(2019秋·北京·高三101中学校考阶段练习)定义在()(),00,∞−+∞U 上的函数()f x ,如果对于任意给定的等比数列{}n a ,(){}n f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,∞−+∞U 上的如下函数:①()2f x x =;②()2xf x =;③()1f x x=;④()ln f x x =,其中是“保等比数列函数”的序号为( ) A .①② B .③④ C .①③ D .②④【答案】C【分析】根据新定义,结合等比数列性质221n n n a a a ++=,一一加以判断,即可得到结论.通过积的乘方,即可判断①;通过指数的幂的运算,即可判断②;通过积的运算即可判断③;由对数的运算法则,即可判断④.【详解】设{}n a 是等比数列,由等比数列性质知221n n n a a a ++=,对于①,()()()()222222211n n n n n n a a f a f a a f a ++++===,即(){}n f a 仍是等比数列,故正确;对于②,()()()22122212222n n n n n a a a a a n n n f a f a f a ++++++==≠=,即(){}n f a 不是等比数列,故不正确; 对于③,()()()221221111n n n n n n f a f a f a a a a ++++=⋅==,即(){}n f a 是等比数列,故正确;对于④,()()()()222211ln ln ln n n n n n n f a f a a a a f a ++++=≠=, 即(){}n f a 不是等比数列,故不正确; 故选:C .9.(2023秋·吉林·高二吉林一中校考期末)若数列{}n a 满足1120n na a +−=,则称{}n a 为“必会数列”,已知正项数列{}n a 为“必会数列”,若453a a +=,则23a a +=( ). A .19B .1C .6D .12【答案】D【分析】根据数列新定义可得数列{}n a 是以12q =为公比的等比数列,利用等比数列通项公式,即可求得答案.【详解】由题意数列{}n a 满足1120n n a a +−=,可得112n n a a +=, 故正项数列{}n a 是以12q =为公比的等比数列, 则2322532341()()3,124a a a a a a a a q +===+∴=++,故选:D10.(2022秋·陕西渭南·高二统考期末)设{}n a 是无穷数列,若存在正整数k ,使得对任意的n *∈N ,均有n k n a a +>,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数.若{}n b 是间隔递增数列,则数列{}n b 的通项不可能...是( )A .92n b n n=−B .31n n b =+C .113n nb =−D .()2nn b n =−−【答案】D【分析】根据间隔递增数列的定义求解即可. 【详解】对于A :()()9922n k n b n k n b n k n ++−=−++−,化简得:()920n n kb k n b n k +⎡⎤=+>⎢⎥+−⎢⎥⎣⎦,存在正整数k ,使得对任意的n *∈N ,0n n k b b +>−恒成立,所以{}n b 是间隔递增数列;对于B :()3131313n k n k nk n n b b ++=+−−−−=, 因为k 为正整数且n *∈N ,所以()3130k n−>,所以0n n k b b +>−,所以{}n b 是间隔递增数列; 对于C :11111113333n k n k n nn k b b ++⎪−⎛⎫=−−+=− ⎝⎭, 因为k 为正整数且n *∈N ,所以111033n k ⎛⎫−> ⎪⎝⎭,所以0n n k b b +>−,所以{}n b 是间隔递增数列; 对于D :()()()22n knn k n b n k n b ++−=−+−+−()()()22n kn n k ⎡⎤=−−+−⎣⎦,当k ∈正奇数,n *∈N 时,()()20kn n k −+−>,()2n−的正负由n 的奇偶性决定,此时0n n k b b +>−不恒成立,不符合间隔递增数列的定义;当k ∈正偶数,n *∈N 时,()()20kn n k −+−<,()2n−的正负由n 的奇偶性决定,此时0n n k b b +>−不恒成立,不符合间隔递增数列的定义; 故选:D.11.(2023·全国·高三专题练习)对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a −<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”.在数列{}n a 中,若98n a n n=+−,则数列{}n a 的“谷值点”为( ) A .2 B .7C .2,7D .2,5,7【答案】C【分析】先求出12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,再得到7n ≥,N n ∈,980n n+−>,结合数列的单调性以及谷值点的定义即可得求解.【详解】因为98n a n n=+−, 所以12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,当7n ≥,N n ∈,980n n+−>,所以9988n a n n n n =+−=+−,因为函数98y x x=+−在[)7,+∞上单调递增, 所以7n ≥时,数列98n a n n=+−为单调递增数列, 所以21a a <,23a a <,76a a <,78a a <, 所以数列{}n a 的“谷值点”为2,7. 故选:C.12.(2023·全国·高二专题练习)若数列{}n a 满足121n n a a +=−,则称{}n a 为“对奇数列”.已知正项数列{}1n b +为“对奇数列”,且12b =,则n b =( ) A .123n −⨯ B .12n − C .12n + D .2n【答案】D【分析】根据题意可得()11211n n b b ++=+−,进而可得{}n b 为等比数列,再求得通项公式即可.【详解】由题意得()11211n n b b ++=+−,所以12n n b b +=,又12b =,所以{}n b 是首项为2,公比为2的等比数列,所以1222n nn b −=⨯=.故选:D .13.(2022春·辽宁葫芦岛·高二校联考阶段练习)设()n a Ω表示落在区间[],n n a 内的偶数个数.在等比数列{}n a n −中,14a=,211a =,则()4a Ω=( )A .21B .20C .41D .40【答案】C【分析】设{}n a n −的公比为q ,根据1a 和2a 求出q ,从而得n a 和4a ,再根据()n a Ω的定义可求出结果. 【详解】设{}n a n −的公比为q ,则2121123141a q a −−===−−, 所以111(1)(41)33n n n n a n a q−−−=−⋅=−⋅=,则3n n a n =+,所以445438a =+=.所以落在区间[]4,85内的偶数共有41个,故()441a Ω=. 故选:C14.(2023春·湖北·高三黄冈中学校联考开学考试)对于数列{}n a ,定义11222−=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( )A .127,53⎡⎤−−⎢⎥⎣⎦B .167,73⎡⎤−−⎢⎥⎣⎦C .512,25⎡⎤−−⎢⎥⎣⎦D .169,74⎡⎤−−⎢⎥⎣⎦【答案】A【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫−+≤ ⎪+⎝⎭n n p n 对任意的n N *∈恒成立,分类讨论n 可求出结果.【详解】由1112222n n n n A a a a n −+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n −−+++=−⋅,∴1122(1)2−+⋅=⋅−−⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n N *∈恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n −+−⨯++−⨯⨯+≤, 即22225335(5)(5)022p pn n n n −+−⨯+−+−≤, 即5(5)(53)0222pn p p n n −+++++≤, 即(6)(5)(8)02p n n n +−++≤, 即216(5)06+⎛⎫−+≤ ⎪+⎝⎭n n p n 对任意的n N *∈恒成立,当14n ≤≤时,2164266+−≤=+++n p n n 对任意的n N *∈恒成立, 因为4412226465n +≥+=++,∴125−≤p ,所以125p ≥−,当5n =时,216(5)06n n p n +⎛⎫−+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+−≥=+++n p n n 对任意的n N *∈恒成立, 因为447226663n +≤+=++,∴73−≥p ,所以73p ≤−,综上可得:实数p 的取值范围为127,53⎡⎤−−⎢⎥⎣⎦.故选:A .15.(2023·全国·高三专题练习)若数列{}n b 满足:若()*,m n b b m n ∈=N ,则11m n b b ++=,则称数列{}n b 为“等同数列”.已知数列{}n a 满足55a =,且()1+=−n n n a n a a ,若“等同数列”{}n b 的前n 项和为n S ,且114b a b ==,22b a =,510S a =,则2022S =( )A .4711B .4712C .4714D .4718【答案】D【分析】先对已知关系式变形,求出数列{}n a 的通项公式,再利用“等同数列”的定义与已知条件得{}n b 是周期数列,即可得2022S . 【详解】由()1+=−n n n a n a a 得11n n a a n n+=+,则1251125n n n a a aa n n n −−=====−−, 故n a n =,所以111b a ==,222b a ==,411b a ==, 所以41b b =,所以522b b ==1010S a ==,所以3121210b ++++=,解得34b =,同理得634b b ==, 741b b ==,852b b ==,…,故数列{}n b 是以3为周期的数列,所以()202267431246744718S S ⨯==++⨯=, 故选:D .16.(2022·全国·高三专题练习)设数列{}n a ,若存在常数t ,对任意小的正数s ,总存在正整数0n ,当0n n ≥时,n a t s −<,则数列{}n a 为收敛数列.下列关于收敛数列说法正确的是( ) A .若等比数列{}n a 是收敛数列,则公比()0,1q ∈ B .等差数列不可能是收敛数列C .设公差不为0的等差数列{}n a 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列D .设数列{}n a 的前n 项和为n S ,满足11a =,11n n S a +=+,则数列{}n a 是收敛数列 【答案】C【分析】根据题中定义,结合特殊的等差数列和等比数列、数列的周期性、等差数列前n 项和公式逐一判断即可.【详解】当数列为常数列(不为零),因此该数列是等差数列又是等比数列,显然该数列是收敛数列,因此选项AB 不正确;选项C :设等差数列{}n a 的公差为()d d ≠0,所以1111(1)2n S na n n d =+−,当0d ≠时,当n →+∞时,10nS →, 所以数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列,因此本选项正确;选项D :因为11a =,11n n S a +=+,所以可得21a =,当2,N n n *≥∈时,由1111n n n n S a S a +−=+⇒=+,两式相减,得11n n n a a a +−=−,所以345670,1,1,0,1a a a a a ==−=−==,所以该数列的周期为6,该数列不可能是收敛数列,因此本选项说法不正确, 故选:C【点睛】关键点睛:利用数列的周期性、常数列的性质是解题的关键.17.(2022春·安徽亳州·高三蒙城县第六中学校联考开学考试)设数列{}m A :1a ,2a ,…,()2m a m ≥,若存在公比为q 的等比数列{}1m B +:1b ,2b ,…,1m b +,使得1k k k b a b +<<,其中1k =,2,…,m ,则称数列{}1m B +为数列{}m A 的“等比分割数列”.若数列{}10A 的通项公式为()21,2,,10nn a n ==,其“等比分割数列”{}11B 的首项为1,则数列{}11B 的公比q 的取值范围是( ) A .()9102,2 B .()10112,2C .()1092,2D .()11102,2【答案】C【分析】由题意可得,()121,2,3,,10n n n qq n −<<=L ,从而可得2q >且()121,2,3,,10n n q n −<=L ,可得122nn q −<<,再根据指数函数的单调性求出12nn −的最小值即可【详解】由题意可得,()121,2,3,,10n n n qq n −<<=L ,所以2q >,且()121,2,3,,10n n qn −<=L ,当1n =时,12<成立;当2n =,3,…,10时,应有12nn q −<成立, 因为2x y =在R 上单调递增,所以111122nn n −−+=随着n 的增大而减小,故1092q <,综上,q 的取值范围是()1092,2. 故选:C.18.(2022春·江苏无锡·高二江苏省江阴市第一中学校考开学考试)若数列{an }满足21321111222n n a a a a a a −−<−<<−<……,则称数列{an }为“半差递增”数列.已知“半差递增”数列{cn }的前n项和Sn 满足*221()n n S c t n N +=−∈,则实数t 的取值范围是( )A .1(,)2−∞B .(-∞,1)C .1(,)2+∞D .(1, +∞)【答案】A【分析】根据*221()n n S c t n N +=−∈,利用递推公式求得数列{}n c 的通项公式.再根据新定义的意义,代入解不等式即可求得实数t 的取值范围.【详解】因为*221()n n S c t n N +=−∈所以当2n ≥时, 11221n n S c t −−+=−两式相减可得1220n n n c c c −+−=,即123n n c c −=,所以数列{}n c 是以公比23q =的等比数列 当1n =时,1213t c −=所以121233n n t c −−⎛⎫=⋅ ⎪⎝⎭,则1221121221221223363183n n n n n t t t c c −−−−−−−⎛⎫⎛⎫⎛⎫−=⋅−⋅=⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭11112121212212233233183nn n n n t t t c c −−+−−−⎛⎫⎛⎫⎛⎫−=⋅−⋅=⋅ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭由“差半递增”数列的定义可知21212212183183n n t t −−−−⎛⎫⎛⎫⋅<⋅ ⎪ ⎪⎝⎭⎝⎭化简可得()221213t t −<−⨯解不等式可得12t <即实数t 的取值范围为1,2⎛⎫−∞ ⎪⎝⎭故选:A.19.(2022·浙江·高二学业考试)通过以下操作得到一系列数列:第1次,在2,3之间插入2与3的积6,得到数列2,6,3;第2次,在2,6,3每两个相邻数之间插入它们的积,得到数列2,12,6,18,3;类似地,第3次操作后,得到数列:2,24,12,72,6,108,18,54,3.按上述这样操作11次后,得到的数列记为{}n a ,则1025a 的值是( ) A .6 B .12 C .18 D .108【答案】A【分析】设数列经过第n 次拓展后的项数为n b ,因为数列每一次拓展是在原数列的相邻两项中增加一项,则经过第1n +次拓展后增加的项数为1n b −,从而可得1121n n n n b b b b +=+−=−,从而可求出21nn b =+,从而可知经过11次拓展后在2与6之间增加的数为1021−,由此可得出经过11次拓展后6所在的位置,即可得出答案.【详解】解:设数列经过第n 次拓展后的项数为n b ,因为数列每一次拓展是在原数列的相邻两项中增加一项,则经过第1n +次拓展后增加的项数为1n b −, 所以1121n n n n b b b b +=+−=−, 即()1121n n b b +−=−,即1121n n b b +−=−, 所以数列{}1−n b 是以12b =为首项,2为公比的等比数列,是以12nn b −=,所以21n n b =+,则经过11次拓展后在2与6之间增加的数为1021−,所以经过11次拓展后6所在的位置为第10102111211025−++=+=, 所以10256a =. 故选:A.二、多选题20.(2022秋·安徽阜阳·高三安徽省临泉第一中学校联考阶段练习)若数列{}n a 满足:对任意正整数{}1,n n n a a +−为递减数列,则称数列{}n a 为“差递减数列”.给出下列数列{}()*N n a n ∈,其中是“差递减数列”的有( ) A .2n n a = B .2n a n =C .n aD .ln n a n =【答案】CD【分析】利用差递减数列的定义及函数的单调性即可求解.【详解】对A ,若2n n a =,则11222n n nn n a a ++−=−=,由函数2n y =在()0,∞+上单调递增,所以{}1n n a a +−为递增数列,故A 错误;对B ,若2n a n =,则221(1)21n n a a n n n +−=+−=+,由函数21y n =+在()0,∞+上单调递增,所以{}1n n a a +−为递增数列,故B 错误;对C ,若n a =1n n a a +−==y =()0,∞+上单调递减,所以{}1n n a a +−为递减数列,故C 正确;对D ,若ln n a n =,则()111ln 1ln ln ln 1n n n a a n n n ++⎛⎫−=+−==+ ⎪⎝⎭,由函数1ln 1y n ⎛⎫=+ ⎪⎝⎭在()0,∞+上单调递减,所以{}1n n a a +−为递减数列,故D 正确. 故选:CD .21.(2023春·江西新余·高二新余市第一中学校考阶段练习)若数列{}n a 满足:,A B ∃∈R ,0AB ≠,使得对于*n ∀∈N ,都有21n n n a Aa Ba ++=+,则称{}n a 具有“三项相关性”,下列说法正确的有( ). A .若数列{}n a 是等差数列,则{}n a 具有“三项相关性” B .若数列{}n a 是等比数列,则{}n a 具有“三项相关性” C .若数列{}n a 是周期数列,则{}n a 具有“三项相关性”D .若数列{}n a 具有正项“三项相关性”,且正数A ,B 满足1A B +=,12a a B +=,数列{}n b 的通项公式为n n b B =,{}n a 与{}n b 的前n 项和分别为n S ,n T ,则对*n ∀∈N ,n n S T <恒成立【答案】ABD【分析】根据题目给出的“三项相关性”的定义,逐项验证即可.【详解】若{}n a 为等差数列,则有211n n n n a a a a +++−=−,212n n n a a a ++=−,A 正确;若数列{}n a 是等比数列,则21n n a qa ++=,1n n a qa +=,(0q ≠),即()211n n n a q a qa ++=−+,易知1q ≠,显然成立,1q =时,21n n n a a a ++==,取12A B ==,有211122n n n a a a ++=+,也成立,所以B 正确; 对周期数列:0,0,1,0,0,1,⋅⋅⋅,所以1n =时,100A B =⨯+⨯,显然不成立,所以C 错误; 对D ,()211n n n a B a Ba ++=−+,即()211n n n n a a B a a ++++=+,12a a B += ∴121n n n n a a B BB −+++=⋅=,1B >,易知()211n n n n n a a B a a a ++++=+>,即n n b a >,*N n ∈,故n n S T <,D 正确; 故选:ABD22.(2023春·广东惠州·高三校考阶段练习)斐波那契数列又称黄金分割数列,因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用n a 表示斐波那契数列的第n 项,则数列{}n a 满足:121a a ==,21n n n a a a ++=+,记121ni n i a a a a ==++⋅⋅⋅+∑,则下列结论正确的是( )A .数列{}n a 是递增数列B .()2123n n n a a a n −+=+≥C .20222202220231i i a a a ==⋅∑D .2021202311i i a a ==−∑【答案】BCD【分析】由数列的递推公式可判断A,B ;利用累加法计算可判断选项C,D.【详解】对A ,由21n n n a a a ++=+知,{}n a 的前10项依次为:1,1,2,3,5,8,13,21,34,55, 其中,第一二项相等,不满足递增性,故A 错误;对B ,根据递推公式12n n n a a a −−=+,得()21213n n n n n n n a a a a a a a n −−−++=++=+≥,故B 正确;对C ,2121a a a =⋅,()222312321a a a a a a a a =⋅−=⋅−⋅,()233423432a a a a a a a a =⋅−=⋅−⋅,……,()220222022202320212022202320222021a a a a a a a a =⋅−=⋅−⋅,∴22212202220222023a a aa a ++⋅⋅⋅=⋅,即20222202220231i i a a a ==⋅∑,故C 正确;对D ,由递推式,得321a a a −=,432a a a −=,…,202320222021a a a −=, 累加得324320232022122021a a a a a a a a a −+−+⋅⋅⋅+−=++⋅⋅⋅+, ∴20232122021a a a a a −=++⋅⋅⋅+, ∴1220212023220231a a a a a a ++⋅⋅⋅+=−=−, 即2021202311i i a a ==−∑,故D 正确;故选:BCD .23.(2023秋·河北邯郸·高二统考期末)若{}n a 不是等比数列,但{}n a 中存在互不相同的三项可以构成等比数列,则称{}n a 是局部等比数列.下列数列中是局部等比数列的是( ) A .(){}28n−+ B .137n ⎧⎫⎨⎬+⎩⎭C .17122n n +⎧⎫−⎨⎬⎩⎭D .{}225n +【答案】ABD【分析】对于ABD ,直接取特定项验证即可;对于C ,定义法可证为等比数列后即可判断.【详解】对于A :若()28nn a =−+,则16a =,212a =,424a =,由212624=⨯,得1a ,2a ,4a 成等比数列,因为(){}28n−+不是等比数列,所以(){}28n−+是局部等比数列.故A 正确;对于B :若137n a n =+,则1110a =,11140a =,511160a =,由21114010160⎛⎫=⨯ ⎪⎝⎭,得1a ,11a ,51a 成等比数列,因为137n ⎧⎫⎨⎬+⎩⎭不是等比数列,所以137n ⎧⎫⎨⎬+⎩⎭是局部等比数列. 故B 正确;对于C :若117113222n n n n a ++=−=,则112n n a a +=,则{}n a 是等比数列,所以17122n n +⎧⎫−⎨⎬⎩⎭不是局部等比数列. 故C 错误;对于D :若225n a n =+,则550a =,15250a =,351250a =,由250125050250=,得5a ,15a ,35a 成等比数列,因为{}225n +不是等比数列,所以{}225n +是局部等比数列. 故D 正确.故选:ABD.24.(2023春·安徽蚌埠·高二蚌埠二中校考阶段练习)已知数列{}n a 是各项均为正数且公比不等于1的等比数列()*N n ∈,对于函数()f x ,若数列(){}ln n f a 为等差数列,则称函数()f x 为“保比差数列函数”,则定义在()0,∞+上的如下函数中是“保比差数列函数”的有( ) A .()1f x x=为“保比差数列函数” B .()2f x x =为“保比差数列函数”C .()e xf x =为“保比差数列函数” D .()f x =“保比差数列函数”【答案】ABD【分析】设数列{}n a 的公比为()1q q ≠,利用保比差数列函数的定义,结合等差数列的定义逐项验证即可. 【详解】设数列{}n a 的公比为()1q q ≠, 选项A :()1ln lnn nf a a =, 所以()()11111ln ln lnln ln ln n n n n n n af a f a q a a a +++−=−==−是常数, 所以数列(){}ln n f a 为等差数列,A 满足题意;选项B :()2ln ln n n f a a =,所以()()22221112ln ln ln ln ln ln 2ln n n n n nna f a f a aa q q a +++−=−===是常数,所以数列(){}ln n f a 为等差数列,B 满足题意;选项C :()ln ln e n an n f a a ==,所以()()11ln ln n n n n f a f a a a ++−=−不是常数, 所以数列(){}ln n f a 不为等差数列,C 不满足题意; 选项D :()ln n f a =所以()()11ln ln ln 2n n f a f a q +−==是常数,所以数列(){}ln n f a 为等差数列,D 满足题意; 故选:ABD25.(2022秋·福建福州·高二校联考期末)在数列{}n a 中,若221(2,,n n a a p n n p *−−=≥∈N 为常数),则称{}n a 为“平方等差数列”.下列对“平方等差数列”的判断,其中正确的为( )A .{}(2)n−是平方等差数列B .若{}n a 是平方等差数列,则{}2n a 是等差数列C .若{}n a 是平方等差数列,则{}(,,,n ka b k b k b *+∈N 为常数)也是平方等差数列D .若{}n a 是平方等差数列,则{}(,,,kn b a k b k b *+∈N 为常数)也是平方等差数列【答案】BD【分析】根据等差数列的定义,结合平方等差数列的定义逐一判断即可. 【详解】对于A ,当n 为奇数时,则()1n −为偶数,所以()()()11122223?2n n n n n −−−−−−=−+=−,当n 为偶数时,则()1n −为奇数,所以()()()11122223?2n n n n n −−−−−−=+=,即{}(2)n−不符合平方等差数列的定义,故错误;对于B ,若{}n a 是平方等差数列,则221(2,,n n a a p n n p *−−=≥∈N 为常数),即{}2n a 是首项为21a ,公差为p 的等差数列,故正确;对于C ,若{}n a 是平方等差数列,则221(2,,n n a a p n n p *−−=≥∈N 为常数), 则()()()()222221112n n n n n n ka b ka b k a a kb a a −−−+−+=−+−,即()())222112n n n n ka b ka b k p kb a a −−+−+=+−,当{}n a 为等差数列时,1n n a a d −−=,则{}n ka b +为平方等差数列, 当{}n a 不为等差数列时,则{}n ka b +不为平方等差数列,故错误;对于D ,因为{}n a 是平方等差数列,所以()()222222121111+++++−−=−==−=kn kn kn kn kn k n a a a a a a p ,把以上的等式相加,得()()()()()222222121111+++++−−+−+⋯+−=kn kn kn kn k n k n a a a a a a kp , 22(1)k n kn a a kp +∴−=,则()221kn b k n ba a kp +++−=,即数列{}knb a +是平方等差数列,故正确; 故选:BD26.(2023秋·山西吕梁·高二统考期末)定义:在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫作该数列的一次“美好成长”.将数列1,4进行“美好成长”,第一次得到数列1,4,4;第二次得到数列1,4,4,16,4,L ,设第n 次“美好成长”后得到的数列为121,,,,,4k x x x L ,并记()412log 14n k a x x x =⨯⨯⨯⨯⨯L ,则( )A .25a =B .131n n a a +=−C .21nk =+D .数列{}n na 的前n 项和为()()13213218n n n n +−+++【答案】ABD【分析】对A :由题意直接运算判断;对B :根据第1n +次“美好成长”与第n 次“美好成长”的关系分析运算;对C :根据题意分析可得:()1121n n b b ++=+,利用构造法结合等比数列分析运算;对D :由131n n a a +=−,利用构造法结合等比数列可得312n n a +=,利用裂项相消结合分组求和运算求解.【详解】对A :()()25144244log 144log 42,log 144164log 45a a =⨯⨯===⨯⨯⨯⨯==,A 正确;对B :由题意可知:()()()(){}()()212141211241214log 1414log 1414k n k k k x x x a x x x x x x x x x x +⎡⎤⨯⨯⨯⨯⨯⎡⎤=⨯⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⎢⎥⎣⎦⨯⎢⎥⎣⎦()()312441214log 3log 141314k k n x x x x x x a ⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯−=−,故131n n a a +=−,B 正确;对C :设第n 次“美好成长”后共插入n b 项,即n k b =,共有1n b +个间隔,且11b =, 则第1n +次“美好成长”后再插入1n b +项,则()1121n n n n b b b b +=++=+, 可得()1121n n b b ++=+,且1120b +=≠,故数列{}1n b +是以首项为2,公比为2的等比数列, 则11222n n n b −+=⨯=,故21n n k b ==−,C 错误;对D :∵131n n a a +=−,则111322n n a a +⎛⎫−=− ⎪⎝⎭,且113022a −=≠, 故数列12n a ⎧⎫−⎨⎬⎩⎭是以首项为32,公比为3的等比数列,则11333222n n n a −−=⨯=,即312n n a +=,设()()()1313232332222n n n n n n n n nna An B A n B An A B +=+⋅−++⋅+=−−−⋅+=⨯+⎡⎤⎣⎦,则122320A A B ⎧−=⎪⎨⎪−−=⎩,解得1438A B ⎧=−⎪⎪⎨⎪=⎪⎩,故1321233882n n n n n nna +−−=⋅−⋅+, 设数列{}n na 的前n 项和为n S , 则22311211133212122333333888888222n n n n n n n S a a na +⎡−−−−−⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=⨯−⨯+⨯−⨯++⋅−⋅++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L L()()1113122321322388218n n n n n n n n ++⎛⎫+ −++⎪−⎝⎭=−⋅++=, 即数列{}n na 的前n 项和为()()13213218n n n n +−+++,D 正确.故选:ABD. 【点睛】结论点睛:(1)构造法:()()110,1n n n n a ka m km k a a λλ++=+≠≠⇔+=+;(2)裂项构造:()()()11n n n kn b q An B q A n B q ++⋅=+⋅−++⋅⎡⎤⎣⎦.27.(2023春·安徽·高二合肥市第八中学校联考开学考试)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*N n n ∈次得到数列1,1x ,2x ,3x ,…,k x ,2.记1212n k a x x x =+++⋅⋅⋅++,数列{}n a 的前n 项和为n S ,则( ) A .342a = B .133n n a a +=− C .()2332n a n n =+ D .()133234n n S n +=+− 【答案】ABD【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可. 【详解】解:由题意可知,第1次得到数列1,3,2,此时1k =, 第2次得到数列1,4,3,5,2,此时3k =,第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =,第n 次得到数列1,1x ,2x ,3x ,L ,k x ,2,此时21n k =−, 由此可得133a =+,2339a =++,33392742a =+++=,故A 正确; 43392781a =++++,…,()112331333333333132n n nna +−+=++++⋅⋅⋅+=+=−,故C 错误; 由1332n n a ++=,可得2133332n n n a a +++==−,故B 正确;由()()()23411129131313333333232221324n n n n n n n S a a a n ++−=++⋅⋅⋅+=+++⋅⋅⋅++=⨯+=+−−,故D 正确.故选:ABD .三、填空题28.(2022春·上海长宁·高二上海市延安中学校考期中)对于数列{}n a ,若存在正整数m ,使得对任意正整数n ,都有n m n a a q +=(其中q 为非零常数),则称数列{}n a 是以m 为周期,以q 为周期公比的“类周期性等比数列”.若“类周期性等比数列”的前4项为1,1,2,3,周期为4,周期公比为3,则数列{}n a 前21项的和为__. 【答案】1090【分析】确定43n n a a +=,数列{}n a 从第二项起连续四项成等比数列,利用等比数列公式计算得到答案. 【详解】43n n a a +=,故513a a q ==,由题意得数列{}n a 从第二项起连续四项成等比数列, 234512339,3a a a a q +++=+++==,则数列{}n a 前21项的和为()5523451913()(1)11090113a a a a q a q ⨯−+++−+=+=−−. 故答案为:109029.(2022秋·福建泉州·高二统考期末)对于数列{}n a ,记:()()()()()()()1212311112n n n n n n n n n a a +++∆∆∆=∆=∆=∆∆,,,…,()()()111k k n n k n−+−∆∆=∆(其中*n ∈N ),并称数列(){}k n ∆为数列{}n a 的k 阶商分数列.特殊地,当(){}kn ∆为非零常数数列时,称数列{}n a 是k 阶等比数列.已知数列{}n a 是2阶等比数列,且20123220482a a a ===,,,若n m n a a −=,则m =___________. 【答案】23【分析】根据给定的定义,计算(1)(1)12,∆∆,进而求出数列(1){}n ∆的公比及通项,再借助累乘法求出数列{}n a 的通项即可推理计算作答.【详解】由数列{}n a 是2阶等比数列,得(2)(0)nq q ∆=≠,即(1)(2)1(1)n nnq +∆∆==∆, 且(1)(1)10(1)932212(1)12112,2,2a a q a a ∆∆==∆====∆,即数列(1){}n ∆是首项为102,公比为12的等比数列, 则有(1)10111112()()22n n n −−∆=⨯=,即1111()2n n n a a −+=,当2n ≥时, 22320109121(10)(9)(12)3221121111112()()()()()22222nn n n n n n aa a a a a a a −+−−−−+−+−++−−=⋅⋅⋅⋅=⨯⨯⨯⨯==,而12a =满足上式,因此22320212n n n a −+⎛⎫= ⎪⎝⎭,由n m n a a −=得:222320()23()202211()()22nn m n m n −+−−−+=,即222320()23()20n n m n m n −+=−−−+,整理得(2)23(2)m n m n m −=−,又n 为小于m 的任意正整数,所以23m =. 故答案为:23【点睛】关键点睛:涉及数列新定义问题,关键是正确理解给出的定义,由给定的数列结合新定义探求数列的相关性质,并进行合理的计算、分析、推理等方法综合解决.30.(2023·河南郑州·统考一模)“外观数列”是一类有趣的数列,该数列由正整数构成,后一项是前一项的“外观描述”.例如:取第一项为1,将其外观描述为“1个1”,则第二项为11;将描述为“2个1”,则第三项为21;将21描述为“1个2,1个1”,则第四项为1211;将1211描述为“1个1,1个2,2个1”,则第五项为111221,…,这样每次从左到右将连续的相同数字合并起来描述,给定首项即可依次推出数列后面的项.则对于外观数列{}n a ,下列说法正确的有______. ①若13a =,则从4a 开始出现数字2;②若1a k =(1k =,2,3,…,9),则()*n a n ∈N 的最后一个数字均为k ;③{}n a 不可能为等差数列或等比数列; ④若1123a =,则()*n a n ∈N 均不包含数字4.【答案】②④【分析】对①,由外观数列定义列举判断; 对②,由外观数列定义判断; 对③,取反例,如122a =;对④,由反证法,结合外观数列定义判断.【详解】对①,12343,13,1113,3113a a a a ====,①错;对②,由外观数列的定义,每次都是从左到右描述,故一开始的k (1k =,2,3,…,9)始终在最右边,即最后一个数字,②对; 对③,取122a =,则2322a a ===,此时既为等差数列,也为等比数列,③错;对④,1234123,111213,31121113,1321123113a a a a ====,设数列()*,5k a k k N ∈≥首次出现数字4,则1k a −必出现了4个连续的相同数字m (1m =,2,3,…,9),而2k a −的描述必包含“1个m ,1个m ”,与1k a −的描述矛盾,故()*n a n ∈N 均不包含数字4,④对.故选:②④31.(2023秋·内蒙古阿拉善盟·高三阿拉善盟第一中学校考期末)设数列{}n a 的前n 项和为n S ,对任意n *∈N 都有1n n a a t ++=(t 为常数),则称该数列为“t 数列”,若数列{}n a 为“2数列”,且11a =−,则2023S =______. 【答案】2021【分析】利用并项求和即可.【详解】根据题意得到:2320222402532a a a a a a ++=+===,所以()()()202312345202220232101112021S a a a a a a a =+++++++=⨯−=.故答案为:2021.32.(2023秋·宁夏吴忠·高二吴忠中学校考期末)定义n 个正数12,,,n p p p ⋯的“均倒数”为12nnp p p ++⋅⋅⋅+,若各项均为正数的数列{}n a 的前n 项的“均倒数”为121n +,则2023a 的值为______ 【答案】8091【分析】利用“均倒数”的概念求出(21)n S n n =+,再利用递推关系求出41n a n =−,再代入值即可. 【详解】由已知可得数列{}n a 的前n 项的“均倒数”为 121,21n n n n a a a S n ==++⋯++可得(21)n S n n =+,则2n …时, 21[2(1)1](1)231n S n n n n −=−+−=−+141n n n a S S n −∴=−=−,当1n =时,113a S ==,满足41n a n =−, 202341,4202318091n a n a ∴=−=⨯−=.故答案为: 8091 .33.(2023秋·安徽淮北·高二淮北一中校考期末)对给定的数列{}()0n n a a ≠,记1n n na b a +=,则称数列{}n b 为数列{}n a 的一阶商数列;记1n n nb c b +=,则称数列{}n c 为数列{}n a 的二阶商数列;以此类推,可得数列{}n a 的P 阶商数列()P *∈N ,已知数列{}n a 的二阶商数列的各项均为e ,且121,1a a ==,则10a =___________.【答案】36e【分析】由题意可得1e n n n b c b +==,从而得1e n n b −=,即11e n n naa −+=,由累乘法即可求得10a 的值. 【详解】解:由数列{}n a 的二阶商数列的各项均为e ,可知1e n n nb c b +==, 而2111a b a ==, 故数列{}n b 是以1为首项,e 为公比的等比数列,即1e n n b −=,即11e ,n n na n a −*+=∈N , 即283102412391,e,e ,,e a a a a a a a a ====. 所以()18828128363102421011239··11e e ?·e e =e=e a a a a a a a a a a +⋅+++=⋅⋅⋅=⋅⋅⋅=,故3610e a =.故答案为:36e34.(2022秋·上海·高二期中)定义:对于任意数列{}n a ,假如存在一个常数a 使得对任意的正整数n 都有n a a <,且lim n n a a →+∞=,则称a 为数列{}n a 的“上渐近值”.已知数列{}n a 有12,a a a p ==(p 为常数,且0p >),它的前n 项和为n S ,并且满足()12n n n a a S −=,令2112n n n n n S S p S S ++++=+,记数列{}122n p p p n +++−的“上渐近值”为k ,则100coskπ的值为 _____. 【答案】12−##-0.5【分析】先根据n S 求解数列{}n a 的通项公式,得出等差数列后,利用等差数列求和方法求出n S ,代入n p 得出n p 的表达式,最后即可得出上渐近值. 【详解】解:当1n =时,()1111102a a S a ⨯−===,当2n ≥时,()()()1111122n n n n n n a a n a a a S S −−−−−=−=−,得到112n n n a a n −−=−, 根据累乘法:()212332123421n n n n a a n p n n n −−−=⨯⨯⨯⨯⨯⨯=−−−−;满足n=1情况, 故而数列{}n a 是首项为0,公差为p 的等差数列,()12n n n pS −∴=,21122112222n n n n n S S n n p S S n n n n +++++⎛⎫∴=+=+=+− ⎪++⎝⎭, 122n p p p n ∴+++−=111111111221232435112n n n n n n ⎛⎫+−+−+−++−+−− ⎪−++⎝⎭11121212n n ⎛⎫=+−− ⎪++⎝⎭()()46312n n n +=−++,()()()1246li 231m l 32im n n n n p p p n n n →+∞→+∞⎛⎫+∴+++−=−= ⎪ ⎪++⎝⎭, 3k ∴=,10010021coscos cos 332k πππ⎛⎫∴==−=− ⎪⎝⎭. 故答案为:12−35.(2023·高二课时练习)定义:各项均不为零的数列{}n a 中,所有满足10i i a a +⋅<的正整数i 的个数称为这个数列{}n a 的变号数.已知数列{}n b 的前n 项和26n S n n a =−+(n *∈N ,5a ≠),令41n na b =−(n *∈N ),若数列{}n a 的变号数为2,则实数a 的取值范围是___________. 【答案】()(),59,−∞+∞。

2019年高考数学二轮复习解题思维提升专题08数列大题部分训练手册(附答案)

2019年高考数学二轮复习解题思维提升专题08数列大题部分训练手册(附答案)

【答案】
(1)
(2)不存在
(2)
,
S1 1,
, .等式的左边是一个偶数,右边是一个奇数,所以不存
在这样的 r,t ,使得 S1, Sr , St 成等差数列.
14、(浙江省诸暨中学 2019 届高三期中考试题)设数列an 满足:
(1).求数列an 的通项公式;
(2).设
【答案】
(1) an
1 3n
和 Sn 满足
,且 a1 1。
(1)求数列的通项公式 an ;
(2)记
, Tn
为{bn}
的前
n
项和,求使 Tn
2 n
成立的 n
的最小值.
【答案】(1) an 2n 1 (2)5
(2)由(1)知,

由 Tn
2 n

n2
4n
2
,有 (n
2)2
6
,所以
n
5,
n 的最小值为 5.
5、(黑龙江省哈尔滨市第六中学 2019 届高三 12 月月考数学(理)试题)已知数列 an 满足 a1 2 ,
, n N .
(1)求 a1 , a2 ;
(2)求数列an 的通项公式;
(3)求数列nan 的前 n 项和.
【答案】(1)1,2
(2) an 2 n1
(3)
(3)由(2)知 nan n2n1 ,记其前 n 项和为 Tn ,
于是


① ②得
从而

4、(湖南省浏阳一中、株洲二中等湘东六校 2019 届高三 12 月联考数学(理)试题)已知数列{an} 的前 n 项
an 2 n1 .
12、(江苏省盐城市 2019 届高三上学期期中考试)已知正项数列{an } 的首项 a1 1,前 n 项和 Sn 满

专题08 解决数列的综合问题-2021年高考数学二轮复习核心考点微专题(苏教版)(原卷版)

专题08 解决数列的综合问题-2021年高考数学二轮复习核心考点微专题(苏教版)(原卷版)

【真题感悟】1.已知函数f (x )=6(3)3,7,7x a x x a x ---≤⎧⎨>⎩,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是________.2.数列{a n }满足a n =n +λ2n -17(其中λ为实常数),n ∈N *,且a 8数列{a n }的最小项, a 9数列{a n }的最大项,则实数λ的取值范围为________.3.已知数列{b n }满足b n =2λ⎝⎛⎭⎫-12n -1-n 2,若数列{b n }是单调递减数列,则实数λ的取值范围为________.4.数列{a n }满足a n =n +c n(其中c 为实常数),n ∈N *,且a 3为数列{a n }的最小项,则实数λ的取值范围为________.【考向分析】数列问题一直以来是高考的重点且位于压轴题的位置,而数列的特点是方法灵活,难度较大,本专题就数列中的单调性问题,奇偶性问题,存在性问题等热点问题加以探究,以便学生能更好的理解数列.【典例导引】(一)数列中的单调性问题变式2 在数列{a n }中,已知a 1=2,a n +1=3a n +2n -1.(1)求证:数列{a n +n }为等比数列;(2)记b n =a n +(1-λ)n ,且数列{b n }的前n 项和为T n ,若T 3为数列{T n }中的最小项,求λ的取值范围.(二)数列中的奇偶性问题例2. 已知等差数列{a n }的前n 项和为S n ,且2a 5-a 3=13,S 4=16.(1)求数列{a n }的前n 项和S n ;(2)设T n =∑i =1n (-1)·a i ,若对一切正整数n ,不等式λT n <[a n +1+(-1)n +1a n ]·2n-1恒成立,求实数λ的取值范围.变式1 设函数f (x )=2x +33x (x >0),数列{a n }满足a 1=1,a n =f ⎝⎛⎭⎫1a n -1(n ∈N *,且n ≥2). (1)求数列{a n }的通项公式;(2)设T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…+(-1)n -1a n a n +1,若T n ≥tn 2对n ∈N *恒成立,求实数t 的取值范围. 变式2 已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n .(三)数列中的存在性问题例3. 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和为S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. 变式1 已知常数p >0,数列{a n }满足a n +1=|p -a n |+2a n +p ,n ∈N *.(1)若a 1=-1,p =1,①求a 4的值;②求数列{a n }的前n 项和S n .(2) 若数列{a n }中存在三项,a r ,a s ,a t (r ,s ,t ∈N *,r <s <t )依次成等差数列,求a 1p的取值范围. 变式2 已知数列{a n }满足a 1+a 2+…+a n =n 2(n ∈N *).(1)求数列{a n }的通项公式;(2)对任意给定的k ∈N *,是否存在p ,r ∈N *(k <p <r )使1a k ,1a p ,1a r成等差数列?若存在,用k 分别表示p 和r (只要写出一组);若不存在,请说明理由.【跟踪演练】1.已知数列{a n }为等差数列,其前12项和为354,在前12项中,偶数项之和与奇数项之和的比为3227,则这个数列的公差为________.2.等比数列{a n }的首项为1,项数为偶数,且奇数项和为85,偶数项和为170,则数列的项数为________.3.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a 2n b n为整数的正整数n 的个数是________.4.已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *,设b n =2a n +(-1)n a n ,则数列{b n }的前2n 项和为________.1.已知数列{a n },a n =n 2+λn +3(其中λ为常实数),且a 3为数列{a n }的最小项,则实数λ的取值范围是________.2.若数列{c n }满足c n =⎩⎪⎨⎪⎧4n -1,当n 为奇数时;4n +9,当n 为偶数时.则数列{c n }的前19项的和T 19=________. 3.设S n 是等差数列{a n }的前n 项和,满足a 1=1,S 6=36,且a m ,a m +2,a k 成等比数列,则m +k 的值为________.4.已知数列{a n }的前n 项和S n =(-1)n ·n ,若对任意正整数n ,(a n +1-p )(a n -p )<0恒成立,则实数p 的取值范围是________.5. 已知数列{a n }满足:a 1=12,a n +1-a n =3n -1-nq ,n ∈N *,p ,q ∈R .a 4为数列{a n }的最小项,求q 的取值范围.6.已知{a n }是各项均为正数的等差数列,其前n 项和为S n ,且a 2·a 3=40,S 4=26.(1)求数列{a n }的通项公式;①求证:数列{b n }是等比数列;②求满足S n >T n 的所有正整数n 的值.7. 已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 取值范围.8. 已知n ∈N *,数列{a n }的各项均为正数,前n 项和为S n ,且a 1=1,a 2=2,设b n =a 2n -1+a 2n .(1)若数列{b n }是公比为3的等比数列,求S 2n ;(2)若S 2n =3(2n -1),数列{a n a n +1}也为等比数列,求数列的{a n }通项公式.9.若数列{a n }中的项都满足a 2n -1=a 2n <a 2n +1(n ∈N *),则称{a n }为“阶梯数列”.(1)设数列{b n }是“阶梯数列”,且b 1=1,b 2n +1=9b 2n -1(n ∈N *),求b 2 016;(2)设数列{c n }是“阶梯数列”,其前n 项和为S n ,求证:{S n }中存在连续三项成等差数列,但不存在连续四项成等差数列;(3)设数列{d n }是“阶梯数列”,且d 1=1,d 2n +1=d 2n -1+2(n ∈N *),记数列⎝⎛⎭⎫1d n d n +2的前n 项和为T n .问是否存在实数t ,使得(t -T n )⎝⎛⎭⎫t +1T n<0对任意的n ∈N *恒成立?若存在,请求出实数t 的取值范围;若不存在,请说明理由.10.已知数列{a n }是各项均不为0的等差数列,S n 为其前n 项和,且满足a 2n =S 2n -1,令b n =1a n ·a n +1,数列{b n }的前n 项和为T n .(1)求数列{a n }的通项公式及数列{b n }的前n 项和为T n ;(2)是否存在正整数m ,n (1<m <n ),使得T 1,T m ,T n 成等比数列?若存在,求出所有的m ,n 的值;若不存在,请说明理由.11.设公差不为零的等差数列{a n }的各项均为整数,S n 为其前n 项和,且满足a 2a 3a 1=-54,S 7=7. (1)求数列{a n }的通项公式;12. 已知数列{a n }中,a 2=1,前n 项和为S n ,且S n =n a n -a 12. (1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式;(3)设lg b n =a n +13n ,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.。

专题08 等比数列-高中数学必备考试技能之二级结论提高速度原创精品(2021版)(解析版)

专题08 等比数列-高中数学必备考试技能之二级结论提高速度原创精品(2021版)(解析版)
【详解】设 S2 k , S 4 3k ,由数列 an 为等比数列(易知数列 an 的公比 q 1 ),得
S2 , S4 S2 , S6 S4 为等比数列,又 S2 k , S4 S2 2k , S6 S4 4k , S6 7 k ,
Hale Waihona Puke a96 a99 9S .
a96 a99 9S 36 .
8.已知等比数列 an 的各项均为正数,若 log 3 a1 log 3 a2 log 3 a12 12 ,则 a6 a7 =( )
A.1
B.3
C.6
D.9
【答案】D
【解析】由 log 3 a1 log 3 a2
也成等比数列,进而突破难点.
针对训练*举一反三
1.在各项均为正数的等比数列中 an , a3 2 2 , a5 2 1 ,则 a1a5 2a2 a6 a3 a7 (
A.1
B.9
C. 5 2 7

D. 3 2 9
【答案】B
【详解】因为 an 为各项为正的等比数列, a3 2 2 , a5 2 1 ,
高考数学必备考试技能之“二级结论*提高速度”原创精品【2021 版】
结论八:等比数列
已知等比数列{an},公比为 q,前 n 项和为 Sn.
n-m
m
n
*
(1)an=am·q ,an+m=anq =amq (m,n∈N ).
*
(2)若 m+n=p+q,则 am·an=ap·aq(m,n,p,q∈N );反之,不一定成立.

【答案】 64


【详解】等比数列 {an } 的前 n 项和为 S n ,则 S4 , S8 S4 , S12 S8 , S16 S12 也成等比数列,

2021年高考数学总复习 第八章 数列练习

2021年高考数学总复习 第八章 数列练习

2021年高考数学总复习 第八章 数列练习1.定义:⑴等差数列 ;⑵等比数列 N)n 2,(n )0(}1n 1-n 2n 1n n ∈≥⋅=⇔≠=⇔++a a a q q a a a n{ )0k ,1q ,0q (kq k Sn 0,(n ≠≠≠-=⇔=⇔的常数)均为不为q c cq a n n ; 2.等差、等比数列性质等差数列 等比数列通项公式前n 项和 qq a a qq a S q na S q n n n n --=--=≠==11)1(1.2;1.1111时,时, 性质 ①a n =a m + (n -m)d, ①a n =a m q n-m ;②m+n=p+q 时a m +a n =a p +a q ②m+n=p+q 时a m a n =a p a q③成AP ③成GP④成AP, ④成GP,真题再现:一、选择题1.(xx )已知数列满足{}12430,,103n n n a a a a ++==-则的前项和等于( )A .B .C .D .2 .(xx 安徽)设为等差数列的前项和,,则=( )A .B .C .D .23 .设首项为,公比为错误!未找到引用源。

的等比数列的前项和为,则( )A .B .C .D .4 .(xx 年高考辽宁卷(文))下面是关于公差的等差数列的四个命题:其中的真命题为( )A .B .C .D .5.(广东卷文)已知等比数列的公比为正数,且·=2,=1,则= ( )A. B. C. D.26.已知为等差数列,,则等于( )A. -1B. 1C. 3D.77.(江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, ,则等于( )A. 18B. 24C. 60D. 908.(湖南)设是等差数列的前n 项和,已知,,则等于( )A .13B .35C .49D . 639.(福建卷理)等差数列的前n 项和为,且 =6,=4, 则公差d 等于( )A .1B C.- 2 D 310.(辽宁卷文)已知为等差数列,且-2=-1, =0,则公差d=()A.-2B.-C.D.211.(四川卷文)等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是()A. 90B. 100C. 145D. 19012.(重庆卷文)设是公差不为0的等差数列,且成等比数列,则的前项和=()A.B.C.D.二、填空题1 .(xx年高考重庆卷(文))若2、、、、9成等差数列,则____________.2 .(xx年高考北京卷(文))若等比数列满足,则公比=__________;前项=_____________.3 .(xx年高考广东卷(文))设数列是首项为,公比为的等比数列,则________4 .(xx年高考江西卷(文))某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n(n∈N*)等于_____________.5 .(xx年高考辽宁卷(文))已知等比数列是递增数列,是的前项和,若是方程的两个根,则____________.6.(xx年上海高考数学试题(文科))在等差数列中,若,则_________.7.(全国卷Ⅰ理)设等差数列的前项和为,若,则=8.(浙江理)设等比数列的公比,前项和为,则.9.(北京文)若数列满足:,则;前8项的和 .(用数字作答)10.(全国卷Ⅱ文)设等比数列{}的前n项和为。

2024年高考数学专项突破数列大题基础练(解析版)

2024年高考数学专项突破数列大题基础练(解析版)

数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设13n n n b a a +=,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n++=,且n n ab n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n nnb a=,求{}n b 的前n 项和n T .2024年高考数学专项突破数列大题基础练(解析版)7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,12n n a n S n+=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}nc 的前n 项和为n T ,求12111n T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1nn a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n an n c a ⎛⎫=+ ⎪⎝⎭,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n a S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足1121,1nn S a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项145a =,且满足143n n n a a a+=+,设11nnb a =-.(1)求证:数列{}n b 为等比数列;(2)若1231111140na a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n nb a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000na nb =-,求数列{}n b 的前15项和15T (用具体数值作答).23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,1154,115n n a n a a n+-==+.(1)求{}n a 的通项公式;(2)若()()1,414n n n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设2211log log n n n b a a +=⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n ∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n S n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n nn nn a b a a +-+=,求数列{}nb 的前2n 项和2nT .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n na nb a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设3132312log log log n n nb b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .【答案】(1)21n a =-;(2)11a =.【分析】(1)利用累加法求2n a 即可;(2)根据()121nn n a a +=+⋅-得到212a a =-,322a a =+,联立得到1q =-,然后代入求1a 即可.【详解】(1)由题意得()121nn n a a +-=⋅-,所以()()()22212122211n n n n n a a a a a a a a ---=-+-++-+ ()()()212212121211n n --=⋅-+⋅-++⨯-+ 211=-+=-.(2)设数列{}n a 的公比为q ,因为()121nn n a a +=+⋅-,所以212a a =-,322a a =+,两式相加得2311a a q a =⋅=,所以1q =±,当1q =时,2112a a a ==-不成立,所以1q =-,2112a a a =-=-,解得11a =.2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .【答案】(1)21n a n =-;3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设3n b a a =,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n++=,且n n ab n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .【答案】(1)13n n b -=6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n nb a =,求{}n b 的前n 项和n T .7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,2n n S n=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}n c 的前n 项和为n T ,求111T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1nn a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n an n c a ⎛⎫=+ ⎪,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为333log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设1n b a a =,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.【答案】(1)n a n =(2)n nP Q <13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足111,1nn a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项15a =,且满足13n n n a a +=+,设1n nb a =-.(1)求证:数列{}n b 为等比数列;(2)若1111140a a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n n b a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000na nb =-,求数列{}n b 的前15项和15T (用具体数值作答).()()1061022166490300022-==--+23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,11,115n n a a n+==+.(1)求{}n a 的通项公式;(2)若()()1,414n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设1log log n b a a =⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n n n n n a b a a +-+=,求数列{}n b 的前2n 项和2n T .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设31323log log log n n b b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.。

2019年高考数学二轮复习解题思维提升专题07数列小题部分训练手册

2019年高考数学二轮复习解题思维提升专题07数列小题部分训练手册

专题07 数列小题部分【训练目标】1、 理解并会运用数列的函数特性;2、 掌握等差数列,等比数列的通项公式,求和公式及性质;3、 掌握根据递推公式求通项公式的方法;4、 掌握常用的求和方法;5、 掌握数列中简单的放缩法证明不等式。

【温馨小提示】高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。

总之,此类题目难度中等,属于必拿分题。

【名校试题荟萃】1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(文)试卷)设等差数列}{n a 的前n 项和为n S , 若,则使0>n a 的最小正整数n 的值是( ) A.8 B.9C.10D.11【答案】C2、等差数列{}n a 中,n S 为n a 的前n 项和,208=a ,567=S ,则12a =( )8、(福建省“永安一中、德化一中、漳平一中”2019届高三上学期12月三校联考试题+数学(文))已知等差数列{}n a 中,100a =,公差()2,0d ∈-,若,,则数列{}n a 的前n 项和n S 的最大值为( )A.πB.5πC.10πD.15π 【答案】D【解析】原式,再根据平方差公式,两角和差的余弦公式可得,根据等差数列的性质可知,则即,结合100a=可求得13aπ=,则,再利用配方法可知当9n=或10时取得最大值,最大值为15π。

【答案】D10、(河北省衡水中学2019届高三第一次摸底考试数学(理)试题)已知数列,若数列的前项和,则的值为________.【答案】16【解析】据题意,得,所以当时,.两式相减,得.所以当时,,故.11、(河北省衡水中学2019届高三第一次摸底考试数学(文)试题)已知数列的前项和为,正项等比数列中,,,则( )A. B. C. D.【答案】D【解析】数列{a n}的前n项和S n=n2﹣n,∴a1=S1=0,n≥2时,a n=S n﹣S n﹣1=2n﹣2,n=1时也成立.∴a n=2n﹣2.设正项等比数列{b n}的公比为q>0,b2=a3=4.根据b n+3b n﹣1=4b n2(n≥2,n∈N+),∴=4,化为q2=4,解得q=2.∴b1×2=4,解得b1=2.∴b n=2n,则log2b n=n.12、(河北省衡水中学2019届高三第二次摸底考试数学(理)试题)已知数列的前项和,若不等式对恒成立,则整数的最大值为________________.【答案】4记,n≥2时,.∴n≥3时,,.∴5﹣λ,即,∴整数λ的最大值为4.13、(河北省衡水中学2019届高三上学期三调考试数学(文)试卷)已知公比不为1的等比数列的前项和为,且满足、、成等差数列,则( )A. B. C. D.【答案】C【解析】公比不为1的等比数列的前项和为,、、成等差数列,可得,即为,即,解得(1舍去),则,14、(河北省衡水中学2019届高三上学期三调考试数学(理)试卷)已知数列的前项和为,且满足:,,,则__________.【答案】(湖北省重点高中联考协作体2018届高三上学期期中考试数学(文)试题)数列满足,,15、则__________.【答案】【解析】由题意得,∴数列的周期为3,∴。

2019年高考数学二轮复习解题思维提升专题07数列小题部分训练手册

2019年高考数学二轮复习解题思维提升专题07数列小题部分训练手册

专题07 数列小题部分【训练目标】1、 理解并会运用数列的函数特性;2、 掌握等差数列,等比数列的通项公式,求和公式及性质;3、 掌握根据递推公式求通项公式的方法;4、 掌握常用的求和方法;5、 掌握数列中简单的放缩法证明不等式。

【温馨小提示】高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。

总之,此类题目难度中等,属于必拿分题。

【名校试题荟萃】1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(文)试卷)设等差数列}{n a 的前n 项和为n S , 若,则使0>n a 的最小正整数n 的值是( ) A.8 B.9C.10D.11【答案】C2、等差数列{}n a 中,n S 为n a 的前n 项和,208=a ,567=S ,则12a =( )8、(福建省“永安一中、德化一中、漳平一中”2019届高三上学期12月三校联考试题+数学(文))已知等差数列{}n a 中,100a =,公差()2,0d ∈-,若,,则数列{}n a 的前n 项和n S 的最大值为( )A.πB.5πC.10πD.15π 【答案】D【解析】原式,再根据平方差公式,两角和差的余弦公式可得,根据等差数列的性质可知,则即,结合100a=可求得13aπ=,则,再利用配方法可知当9n=或10时取得最大值,最大值为15π。

【答案】D10、(河北省衡水中学2019届高三第一次摸底考试数学(理)试题)已知数列,若数列的前项和,则的值为________.【答案】16【解析】据题意,得,所以当时,.两式相减,得.所以当时,,故.11、(河北省衡水中学2019届高三第一次摸底考试数学(文)试题)已知数列的前项和为,正项等比数列中,,,则( )A. B. C. D.【答案】D【解析】数列{a n}的前n项和S n=n2﹣n,∴a1=S1=0,n≥2时,a n=S n﹣S n﹣1=2n﹣2,n=1时也成立.∴a n=2n﹣2.设正项等比数列{b n}的公比为q>0,b2=a3=4.根据b n+3b n﹣1=4b n2(n≥2,n∈N+),∴=4,化为q2=4,解得q=2.∴b1×2=4,解得b1=2.∴b n=2n,则log2b n=n.12、(河北省衡水中学2019届高三第二次摸底考试数学(理)试题)已知数列的前项和,若不等式对恒成立,则整数的最大值为________________.【答案】4记,n≥2时,.∴n≥3时,,.∴5﹣λ,即,∴整数λ的最大值为4.13、(河北省衡水中学2019届高三上学期三调考试数学(文)试卷)已知公比不为1的等比数列的前项和为,且满足、、成等差数列,则( )A. B. C. D.【答案】C【解析】公比不为1的等比数列的前项和为,、、成等差数列,可得,即为,即,解得(1舍去),则,14、(河北省衡水中学2019届高三上学期三调考试数学(理)试卷)已知数列的前项和为,且满足:,,,则__________.【答案】(湖北省重点高中联考协作体2018届高三上学期期中考试数学(文)试题)数列满足,,15、则__________.【答案】【解析】由题意得,∴数列的周期为3,∴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题08 数列大题部分【训练目标】1、 理解并会运用数列的函数特性;2、 掌握等差数列,等比数列的通项公式,求和公式及性质;3、 掌握根据递推公式求通项公式的方法;4、 掌握常用的求和方法;5、 掌握数列中简单的放缩法证明不等式。

【温馨小提示】高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。

总之,此类题目难度中等,属于必拿分题。

【名校试题荟萃】1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求使得成立的n 的最小值.【答案】(1)2nn a = (2)10(2)由(1)可得112nn a ⎛⎫= ⎪⎝⎭,所以,由,即21000n>,因为,所以10n ≥,于是使得成立的n 的最小值为10.2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b的前n 项和n T .【答案】(1) (2)(2)由函数()f x 的图象在点22(,)a b 处的切线方程为所以切线在x 轴上的截距为21ln 2a -,从而,故22a =从而n a n =,2n n b =,2n nn a nb =所以故。

3、(辽宁省辽河油田第二高级中学2019届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N .(1)求1a ,2a ;(2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和.【答案】(1)1,2 (2)12-=n n a (3)(3)由(2)知12-=n n n na ,记其前n 项和为n T ,于是① ②①-②得从而.4、(湖南省浏阳一中、株洲二中等湘东六校2019届高三12月联考数学(理)试题)已知数列}{n a 的前n 项 和n S 满足,且11=a 。

(1)求数列的通项公式n a ; (2)记,n T 为}{n b 的前n 项和,求使nT n 2≥成立的n 的最小值. 【答案】(1)12-=n a n (2)5(2)由(1)知,∴,由nT n 2≥有242+≥n n ,有6)2(2≥-n ,所以5≥n , ∴n 的最小值为5.5、(黑龙江省哈尔滨市第六中学2019届高三12月月考数学(理)试题)已知数列{}n a 满足12a =,且, *n N ∈.(1)设2nn na b =,证明:数列{}n b 为等差数列,并求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S . 【答案】 (1)(2)【解析】(1)把2n n n a b =代入到,得,同除12n +,得11n n b b +=+,∴{}n b 为等差数列,首项1112a b ==,公差为1,∴.(2)由,再利用错位相减法计算得: .。

6、(安徽省肥东县高级中学2019届高三11月调研考试数学(理)试题)已知数列{}n a 满足:11a =,.(1)设nn a b n=,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S . 【答案】(1)(2)(2)由(Ⅰ)可知,设数列12n n -⎧⎫⎨⎬⎩⎭的前n 项和n T则①②。

7、(广东省中山一中、仲元中学等七校2019届高三第二次联考(11月)数学(理)试题)已知数列{}n a 为公差不为0的等差数列,满足15a =,且2930,,a a a 成等比数列. (1)求{}n a 的通项公式; (2) 若数列{}n b 满足(n *∈N ),且13b =,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】 (1)23n a n =+ (2)对13b =上式也成立,所以,即,所以.8、(江西省玉山县一中2019届高三上学期期中考试数学(理)试卷)数列{n a }中,81=a ,24=a ,且满足,)(*N n ∈(1)设,求n S ;(2)设,)(*N n ∈,,)(*N n ∈,是否存在最大的正整数m ,使得对任意*N n ∈均有32mT n >成立?若存在求出m 的值;若不存在,请说明理由。

【答案】(1)(2)7从而故数列T n 是单调递增数列,又因是数列中的最小项,要使恒成立,故只需成立即可,由此解得m <8,由于m ∈Z *, 故适合条件的m 的最大值为7.9、(辽宁省沈阳市东北育才学校2019届高三上学期第三次模拟数学(文)试题)已知数列{}n a 满足N *.(1)求数列{}n a 的通项公式; (2)设以2为公比的等比数列{}n b 满足N *),求数列的前n 项和n S . 【答案】(1)243n a n =-(2)【解析】(1)由题知数列{}3n a +是以2为首项,2为公差的等差数列,.10、(江西省南康中学2019届高三上学期第四次月考数学(理)试题)已知数列{}n a 的前n 项和为n S ,且12-=n n a S .(1)求数列{}n a 的通项公式;(2)记,求数列{}n b 的前n 项和n T .【答案】 (1)12n -(2)2121n n -+【解析】 (1)当时,,得当时,有,所以即,满足时,, 所以是公比为2,首项为1的等比数列,故通项公式为.11、已知数列{a n }各项均不相同,a 1=1,定义,其中n ,k ∈N*.(1)若n b n =)1(,求5a ; (2)若b n +1(k )=2b n (k )对2,1=k 均成立,数列{a n }的前n 项和为S n . (i )求数列{a n }的通项公式;(ii )若k ,t ∈N *,且S 1,S k -S 1,S t -S k 成等比数列,求k 和t 的值. 【答案】 (1)95-=a(2)(i )12-=n n a ;(ii )k =2,t =3【解析】 (1)因为,所以,所以95-=a .(2)(i )因为b n +1(k )=2b n (k ),得,令k =1,,……………①k =2,,……………② 由①得,……………③②+③得,……………④①+④得n n a a 21=+,又011≠=a ,所以数列{}n a 是以1为首项,2为公比的等比数列,所以12-=n n a .12、(江苏省盐城市2019届高三上学期期中考试)已知正项数列}{n a 的首项11a =,前n 项和n S 满足.(1)求数列}{n a 的通项公式;(2)若数列}{n b 是公比为4的等比数列,且也是等比数列,若数列+n n a b λ⎧⎫⎨⎬⎩⎭单调递增,求实数λ的取值范围;(3)若数列}{n b 、}{n c 都是等比数列,且满足n n n a b c -=,试证明:数列}{n c 中只存在三项. 【答案】(1)n a n = (2)23λ>-(3)见解析【解析】 (1),故当2≥n 时,两式作差得:,由}{n a 为正项数列知,,即}{n a 为等差数列,故n a n = 。

(2)由题意,,化简得 311-=b ,所以,所以,由题意知恒成立,即3>13n λ-恒成立,所以133λ-<,解得23λ>-;13、(浙江省诸暨中学2019届高三期中考试题)已知数列}{n a ,满足11=a ,232=a ,,(1)证明:为等比数列并求}{n a 的通项公式;(2)n S 为数列}{n a 的前n 项和,是否存在*∈N t r ,,)(t r <使得t r S S S ,,1成等差数列,若存在求出t r ,,不存在,请说明理由。

【答案】(1) (2)不存在(2),11=∴S ,,.等式的左边是一个偶数,右边是一个奇数,所以不存在这样的t r ,,使得t r S S S ,,1成等差数列.14、(浙江省诸暨中学2019届高三期中考试题)设数列{}n a 满足:(1).求数列{}n a 的通项公式;(2).设,求数列{}n b 的前n 项和n S . 【答案】(1)n n a 31=∴ (2)见解析(2)①当n为奇数时,.②当n为偶数时,.15、(河北省衡水中学2019届高三上学期三调考试数学(文)试卷)已知数列中,,.(1)求的通项公式;(2)数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围.【答案】(1)见解析(2).所以数列是以3为公比,以为首项的等比数列,从而;(2),.,两式相减得,∴.∴,若为偶数,则,∴,若为奇数,则,∴,∴,∴.16、(湖南省长沙市雅礼中学2019届高三上学期月考(一)数学(理)试题)已知是等比数列,满足,且成等差数列.(1)求数列的通项公式;(2)设,数列的前项和为,求正整数的值,使得对任意均有.【答案】(1)(2)5.①-②得:,所以,则.由得:当时,; 当时,…;所以对任意,且均有故k=5.。

相关文档
最新文档