河北中考数学试题及答案解析[最新版]
河北省2020年中考数学试题(解析版)
6.如图 1,已知 ABC ,用尺规作它的角平分线.
如图 2,步骤如下,
第一步:以 B 为圆心,以 a 为半径画弧,分别交射线 BA , BC 于点 D , E ; 第二步:分别以 D , E 为圆心,以 b 为半径画弧,两弧在 ABC 内部交于点 P ;
第三步:画射线 BP .射线 BP 即为所求.
81012 变形得:
k
92 1112 1
k 8 10 12
9 19 1111111
8 10 12 8101012
8 10 12 10 .
故选:B.
【点睛】本题考查了平方差公式的应用,灵活运用平方差公式是解题的关键.
10.如图,将 ABC 绕边 AC 的中点 O 顺时针旋转 180°.嘉淇发现,旋转后的 CDA 与 ABC 构成平行四
7.若 a ¹ b ,则下列分式化简正确的是( )
A.
a2 a b2 b
B.
a2 a b2 b
【答案】D
C. a2 a b2 b
D.
1 2
a
a
1b b
2
【解析】
【分析】
根据 a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.
【详解】∵a≠b,
∴
a b
2 2
a b
,选项
A
错误;
a b
∴a 0;
第二步:分别以
D
,
E
为圆心,大于
1 2
DE
的长为半径画弧,两弧在
ABC
内部交于点
P
;
∴ b 1 DE 的长; 2
第三步:画射线 BP .射线 BP 即为所求.
综上,答案为: a 0 ; b 1 DE 的长, 2
2020年部编人教版河北省中考数学试题及答案(Word精析版)
2020年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃答案:B解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B。
2. 截至2020年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A.0.423×107B.4.23×106C.42.3×105D.423×104答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4 230 000=4.23×106 3.下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形。
4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A、B、C都不符合,选D。
x-4=5.若x=1,则||A.3B.-3C.5D.-5答案:A解析:当x=1时,|x-4|=|1-4|=3。
2021年中考数学试题及解析:河北-解析版
2021年河北中考数学试题分析1、命题模式突破,强调实战能力今年的中考数学试卷改革力度较大,打破了多年的命题模式。
整套试卷“起点低,坡度缓,尾巴翘”。
试题覆盖面广,内容新颖,较好的落实了“狠抓基础,渗透思想,突出能力,着重创新”新课改的理念。
2、以夯实基础为出发点基本题以常规题型为主,采用了直接考查数与式的运算、有理数大小的比较、二次根式的意义、函数的图像与性质、正方体的展开与折叠、圆的有关知识,方差的特征量、统计与概率等的基本知识。
这类试题的特点,起点低,考查的知识相对单一,内容大都来源于课本,是对教材内容的深入考查,学生很容易上手并正确解答。
如1-8题、13-15题、19-21题,都能在课本上找到源头,这对中学数学教学有良好的导向作用。
3、专项试题突出能力今年试题设计精心,立意凸现了对中学数学的通性通法的重点考查。
如:第14、17题体现了转化的思想,第18题考查了特殊到一般的归纳思想,第19、22题考查了方程思想,第12、20题考查了数形结合的思想,第11、24题考查了函数思想,第25、26题用运动变化中特殊数量关系寻找的研究,这使得整套试卷突出能力立意,为初中数学教学指明了方向。
4、“多思少算”命题新倾向今年开放性、探究性试题的设置分布广泛,通过设置操作、观察、探究、应用等方面的问题,给学生提供了一定的思考研究空间。
如第17题留给学生的思考空间较大,虽然其中一个图形处于运动状态,但是通过转化,使阴影部分的周长形成规律,巧妙解题。
第25题以学生熟悉的平行线为原型,通过扇形的改变和运动,形成一个探究性题目,图形的设置减少了文字量,降低了对学生文字阅读能力的要求。
题目发掘并串联了点与直线的距离、直线与圆的位置关系、三角函数等重要内容,侧重考查了运动变化中的不变量问题、解直角三角形问题、垂径定理和圆心角问题,本题带有浓郁的探究成分,要求学生善于对新情景、新信息进行有效的加工和整合,完成本题要求学生有较好的现场学习、迁移和应用的能力,这类试题多有较好的区分度和可推广性。
河北省2020年中考数学试题(解析版)
2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A. 0条B. 1条C. 2条D. 无数条 【答案】D【解析】【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D .【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.2.墨迹覆盖了等式“3x 2x x =(0x ≠)”中的运算符号,则覆盖的是( ) A. +B. -C. ×D. ÷【答案】D【解析】【分析】直接利用同底数幂的除法运算法则计算得出答案.【详解】∵3x 2x x =(0x ≠), 32x x x ÷=,∴覆盖的是:÷.故选:D .【点睛】本题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解【答案】C【解析】【分析】根据因式分解的定义进行判断即可;【详解】①左边多项式,右边整式乘积形式,属于因式分解;②左边整式乘积,右边多项式,属于整式乘法;故答案选C.【点睛】本题主要考查了因式分解的定义理解,准确理解因式分解的定义是解题的关键.4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A. 仅主视图不同B. 仅俯视图不同C. 仅左视图不同D. 主视图、左视图和俯视图都相同【答案】D【解析】【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A. 9B. 8C. 7D. 6【答案】B【解析】【分析】根据统计图中的数据结合中位数和众数的定义,确定a的值即可.【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∴a=8.故答案为B.【点睛】本题考查条形统计图、中位数和众数的定义,掌握中位数和众数的定义是解答本题的关键.∠,用尺规作它的角平分线.6.如图1,已知ABC如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A. a ,b 均无限制B. 0a >,12b DE >的长 C. a 有最小限制,b 无限制D. 0a ≥,12b DE <的长 【答案】B【解析】【分析】根据作角平分线的方法进行判断,即可得出结论. 【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ;∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长; 第三步:画射线BP .射线BP 即为所求. 综上,答案为:0a >;12b DE >的长, 故选:B .【点睛】本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.7.若a b ,则下列分式化简正确的是( ) A. 22a a b b +=+ B. 22a a b b -=- C. 22a a b b = D. 1212a a bb = 【答案】D【解析】【分析】根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.【详解】∵a≠b,∴22a ab b +≠+,选项A错误;22a ab b-≠-,选项B错误;22a ab b≠,选项C错误;1212a abb=,选项D正确;故选:D.【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR【答案】A【解析】【分析】以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.【详解】解:如图所示,四边形ABCD的位似图形是四边形NPMQ.故选:A【点睛】此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.9.若()()229111181012k --=⨯⨯,则k =( ) A. 12 B. 10 C. 8 D. 6【答案】B【解析】【分析】利用平方差公式变形即可求解.【详解】原等式()()229111181012k --=⨯⨯变形得: ()()229111181012k --=⨯⨯()()()()919111111181012-+-+=⨯⨯ 810101281012⨯⨯⨯=⨯⨯ 10=.故选:B .【点睛】本题考查了平方差公式的应用,灵活运用平方差公式是解题的关键.10.如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下: 点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处.∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是( )A. 嘉淇推理严谨,不必补充B. 应补充:且AB CD =, C . 应补充:且//AB CDD. 应补充:且OA OC =,【答案】B【解析】【分析】 根据平行四边形的判定方法“两组对边分别相等的四边形是平行四边形”即可作答.【详解】根据旋转的性质得: CB=AD ,AB=CD ,∴四边形ABDC 是平行四边形;故应补充“AB=CD ”,故选:B .【点睛】本题主要考查了平行四边形的判定和旋转的性质,牢记旋转前、后的图形全等,熟练掌握平行四边形的判定方法是解题的关键.11.若k 为正整数,则()k k k k k k ++⋅⋅⋅+=个( ) A. 2k k B. 21k k + C. 2k k D. 2k k +【答案】A【解析】【分析】根据乘方的定义及幂的运算法则即可求解.【详解】()k k kk k k ++⋅⋅⋅+=个()()2k k k k k ⋅==2k k , 故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.12.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错.误.的是( )A. 从点P 向北偏西45°走3km 到达lB. 公路l的走向是南偏西45° C. 公路l 走向是北偏东45°D. 从点P 向北走3km 后,再向西走3km 到达l【答案】A【解析】【分析】根据方位角的定义及勾股定理逐个分析即可.【详解】解:如图所示,过P 点作AB 的垂线PH ,选项A :∵BP=AP=6km ,且∠BPA=90°,∴△PAB 为等腰直角三角形,∠PAB=∠PBA=45°,又PH ⊥AB ,∴△PAH 为等腰直角三角形,∴PH=2=PA ,故选项A 错误; 选项B :站在公路上向西南方向看,公路l 的走向是南偏西45°,故选项B 正确;选项C :站在公路上向东北方向看,公路l 的走向是北偏东45°,故选项C 正确;选项D :从点P 向北走3km 后到达BP 中点E ,此时EH 为△PEH 的中位线,故EH=12AP=3,故再向西走3km 到达l ,故选项D 正确.故选:A .【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.13.已知光速为300000千米秒,光经过t 秒(110t ≤≤)传播的距离用科学记数法表示为10n a ⨯千米,则n 可能为( )A. 5B. 6C. 5或6D. 5或6或7【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:当t=1时,传播的距离为300000千米,写成科学记数法为:5310⨯千米,当t=10时,传播的距离为3000000千米,写成科学记数法为:6310⨯千米,∴n 的值为5或6,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.”,下列判断正确的是( )A. 淇淇说的对,且A ∠的另一个值是115°B. 淇淇说的不对,A ∠就得65°C. 嘉嘉求的结果不对,A ∠应得50°D. 两人都不对,A ∠应有3个不同值【答案】A【解析】【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【详解】解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A 还应有另一个不同的值∠A′与∠A 互补.故∠A′=180°−65°=115°.故选:A .【点睛】此题主要考查了三角形的外接圆,正确分类讨论是解题关键. 15.如图,现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若5b =,则点P 的个数为0;乙:若4b =,则点P 的个数为1;丙:若3b =,则点P 的个数为1.下列判断正确的是( )A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对【答案】C【解析】【分析】分别令x(4-x)的值为5,4,3,得到一元二次方程后,利用根的判别式确定方程的根有几个,即可得到点P的个数.【详解】当b=5时,令x(4-x)=5,整理得:x2-4x+5=0,△=(-4)2-4×5=-6<0,因此点P的个数为0,甲的说法正确;当b=4时,令x(4-x)=4,整理得:x2-4x+4=0,△=(-4)2-4×4=0,因此点P有1个,乙的说法正确;当b=3时,令x(4-x)=3,整理得:x2-4x+3=0,△=(-4)2-4×3=4>0,因此点P有2个,丙的说法不正确;故选:C.【点睛】本题考查二次函数与一元二次方程,解题的关键是将二次函数与直线交点个数,转化成一元二次方程根的判别式.16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是()A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,4【答案】B【解析】【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大三角形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,由勾股定理,得222+=a b c ,A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.==,则ab =_________.【答案】6【解析】【分析】根据二次根式的运算法则即可求解.-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.18.正六边形的一个内角是正n 边形一个外角的4倍,则n =_________.【答案】12【解析】【分析】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n 边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n 边形一个外角的4倍,∴正n 边形的外角为30°,∴正n 边形的边数为:360°÷30°=12.故答案为:12.【点睛】本题考查了正多边形的外角与内角的知识,熟练掌握正多边形的内角和和外角和定理是解决此类题目的关键.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数k y x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.【答案】 (1). -16 (2). 5 (3). 7【解析】【分析】(1)先确定T 1的坐标,然后根据反比例函数k y x=(0x <)即可确定k 的值; (2)观察发现,在反比例函数图像上的点,横纵坐标只积相等,即可确定另一点;(3)先分别求出T 1~T 8的横纵坐标积,再从小到大排列,然后让k 位于第4个和第5个点的横纵坐标积之间,即可确定k 的取值范围和k 的整数值的个数.【详解】解:(1)由图像可知T 1(-16,1)又∵.函数k y x =(0x <)的图象经过T 1 ∴116k =-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8)∵L 过点4T∴k=-10×4=40 观察T 1~T 8,发现T 5符合题意,即m=5;(3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.【点睛】本题考查了反比例函数图像的特点,掌握反比例函数图像上的点的横纵坐标积等于k 是解答本题的关键.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.已知两个有理数:-9和5.(1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值. 【答案】(1)-2;(2)1m =-.【解析】【分析】(1)根据有理数的混合运算法则即可求解;(2)根据平均数的定义列出不等式即可求出m 的取值,故可求解.【详解】(1)(9)52-+=422-=-; (2)依题意得(9)53m -++<m 解得m >-2∴负整数m =-1.【点睛】此题主要考查有理数、不等式及平均数,解题的关键是熟知有理数、不等式的运算法则. 21.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.【答案】(1)2252a +;166a --;(2)24a 12a+9-;和不能为负数,理由见解析.【解析】【分析】(1)根据题意,每按一次按键,屏幕的A 区就会自动加上2a ,B 区就会自动减去3a ,可直接求出初始状态按2次后A ,B 两区显示的结果.(2)依据题意,分别求出初始状态下按4次后A ,B 两区显示的代数式,再求A ,B 两区显示的代数式的和,判断能否为负数即可.【详解】解:(1)A 区显示结果为:22225+a +a =25+2a ,B 区显示结果为:163a 3a=166a ﹣--﹣-;(2)初始状态按4次后A 显示为:2222225+a +a +a a 254a +=+B 显示为:163a 3a 3a 3a=1612a ﹣----﹣-∴A+B=225+4a +(-1612a)-=24a 12a+9-=2(2a 3)-∵2(2a 3)0≥-恒成立,∴和不能为负数.【点睛】本题考查了代数式运算,合并同类项,完全平方公式问题,解题关键在于理解题意,列出代数式进行正确运算,并根据完全平方公式判断正负.22.如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC OD =.以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:AOE POC ∆∆≌;②写出∠1,∠2和C ∠三者间的数量关系,并说明理由.(2)若22OC OA ==,当C ∠最大时,直接..指出CP 与小半圆的位置关系,并求此时EOD S 扇形(答案保留π).【答案】(1)①见详解;②∠2=∠C+∠1;(2)CP 与小半圆相切,43π. 【解析】【分析】(1)①直接由已知即可得出AO=PO ,∠AOE=∠POC ,OE=OC ,即可证明;②由(1)得△AOE ≌△POC ,可得∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,即可得出答案;(2)当C ∠最大时,可知此时CP 与小半圆相切,可得CP⊥OP,然后根据222OC OA OP ===,可得在Rt △POC 中,∠C=30°,∠POC=60°,可得出∠EOD ,即可求出S 扇EOD .【详解】(1)①在△AOE 和△POC 中=AO PO AOE POC OE OC =⎧⎪⎨⎪=⎩∠∠,∴△AOE ≌△POC ;②∠2=∠C+∠1,理由如下:由(1)得△AOE ≌△POC ,∴∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,∴∠2=∠C+∠1;(2)在P 点的运动过程中,只有CP 与小圆相切时∠C 有最大值,∴当C ∠最大时,可知此时CP 与小半圆相切,由此可得CP ⊥OP ,又∵222OC OA OP ===,∴可得在Rt △POC 中,∠C=30°,∠POC=60°,∴∠EOD=180°-∠POC=120°,∴S 扇EOD =2120360R π⨯⨯=43π. 【点睛】本题考查了全等三角形的性质和判定,三角形的外角,切线的性质,扇形面积的计算,掌握知识点灵活运用是解题关键.23.用承重指数W 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当3x =时,3W =.(1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q W W =-厚薄.①求Q 与x 的函数关系式;②x 为何值时,Q 是W 薄的3倍?【注:(1)及(2)中的①不必写x 的取值范围】【答案】(1)213W x =;(2)①124Q x =-;②2cm x =. 【解析】【分析】(1)设W=kx 2,利用待定系数法即可求解;(2)①根据题意列出函数,化简即可;②根据题意列出方程故可求解.【详解】(1)设W=kx 2,∵3x =时,3W =∴3=9k∴k=13∴W 与x 的函数关系式为213W x =; (2)①∵薄板的厚度为xcm ,木板的厚度为6cm∴厚板的厚度为(6-x )cm ,∴Q=2211(6)41233x x x ⨯=-+-- ∴Q 与x 的函数关系式为124Q x =-;②∵Q 是W 薄的3倍∴-4x+12=3×213x解得x1=2,x2=-6(不符题意,舍去)经检验,x=2是原方程的解,∴x=2时,Q 是W 薄的3倍.【点睛】此题主要考查函数与方程的应用,解题的关键是根据题意找到等量关系列出函数或方程求解.24.表格中的两组对应值满足一次函数y kx b =+,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.(1)求直线l 的解析式;(2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y a =与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值. 【答案】(1)l :31y x ;(22;(3)a 的值为52或175或7 【解析】【分析】(1)根据待定系数法即可求解;(2)根据题意得到直线l ',联立两直线求出交点坐标,再根据两点间的距离公式即可求解;(3)分对称点在直线l ,直线l '和y 轴分别列式求解即可.【详解】(1)依题意把(-1,-2)和(0,1)代入y kx b =+, 得21k b b -=-+⎧⎨=⎩, 解得31k b =⎧⎨=⎩, ∴直线l 的解析式为31y x , (2)依题意可得直线l '的解析式为3y x ,作函数图像如下:令x=0,得y=3,故B (0,3), 令313y x y x =+⎧⎨=+⎩,解得14x y =⎧⎨=⎩, ∴A (1,4),∴直线l '被直线l 和y 轴所截线段的长AB=22(10)(43)2-+-=;(3)①当对称点在直线l 上时,令31a x ,解得x=13a -, 令3a x =+,解得x=3a -,∴2×13a -=a-3, 解得a=7;②当对称点在直线l '上时,则2×(a-3)=13a -, 解得a=175; ③当对称点在y 轴上时,则13a -+(3a -)=0, 解得a=52; 综上:a 的值为52或175或7. 【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法、一次函数的图像与性质及坐标的对称性.25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终..停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接..写出k的值.【答案】(1)14P=;(2)256m n=-;当4n=时,距离原点最近;(3)3k=或5【解析】【分析】(1)对题干中三种情况计算对应概率,分析出正确的概率即可;硬币朝上为正面、反面的概率均为12,甲和乙猜正反的情况也分为三种情况:①甲和乙都猜正面或反面,概率为12,②甲猜正,乙猜反,概率为14,③甲猜反,乙猜正,概率为14,(2)根据题意可知乙答了10次,答对了n次,则打错了(10-n)次,再根据平移的规则推算出结果即可;(3)刚开始的距离是8,根据三种情况算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果;【详解】(1)题干中对应的三种情况的概率为:①11111+= 22222⨯⨯;②11111+= 24244⨯⨯;③11111+= 24244⨯⨯;甲的位置停留在正半轴上的位置对应情况②,故P =14. (2)根据题意可知乙答了10次,答对了n 次,则打错了(10-n )次,根据题意可得,n 次答对,向西移动4n ,10-n 次答错,向东移了2(10-n ),∴m=5-4n+2(10-n )=25-6n ,∴当n=4时,距离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对打错时,二者之间的距离缩小2,∴当加一位置相距2个单位时,共缩小了6个单位或10个单位,∴62=3÷或102=5÷,∴3k =或5k =.【点睛】本题主要考查了概率的求解,通过数轴的理解进行准确分析是解题的关键. 26.如图1和图2,ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. 【答案】(1)3;(2)43MP =;(3)当03x ≤≤时,24482525d x =+;当39x ≤≤时,33355d x =-+;(4)23t s =【解析】【分析】(1)根据当点P 在BC 上时,PA ⊥BC 时PA 最小,即可求出答案;(2)过A 点向BC 边作垂线,交BC 于点E ,证明△APQ ∽△ABC ,可得2APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,根据S S 上下=45可得 24=9APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,可得23AP AB =,求出AB=5,即可解出MP ; (3)先讨论当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ ·sinC ,求解即可,再讨论当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,根据d=CP·sinC 即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3; (2)过A 点向BC 边作垂线,交BC 于点E ,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==, ∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭, ∴23AP AB =, AE=2BC ·tan 3C =, 根据勾股定理可得AB=5, ∴2253AP MP AB +==, 解得MP=43; (3)当0≤x≤3时,P BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35, ∴d=35PQ , ∵AP=x+2, ∴25AP x PQ AB BC+==, ∴PQ=285x +⨯, ∴d=23855x +⨯⨯=24482525x +, 当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335, 综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩; (4)AM=2<AQ=94, 移动的速度=936=14, ①从Q 平移到K ,耗时:92414-=1秒, ②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114, ∵∠APQ+∠QPC=∠B+∠BAP ,APQ B ∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-, 整理得y 2-8y=554-, (y-4)2=94, 解得y 1=52,y 2=112, 52÷14=10秒, 112÷14=22秒, ∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键。
冀教版_2021年河北省中考数学试题及答案
2021河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷I 为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的1.计算30的结果是A .3B .30C .1D .02.如图1,∠1+∠2等于A .60°B .90°C .110°D .180°3.下列分解因式正确的是A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)24.下列运算中,正确的是A .2x -x =1B .x +x 4=x 5C .(-2x )3=-6x 3D .x 2y ÷y =x 2 5.一次函数y =6x +1的图象不经过...A .第一象限B .第二象限C .第三象限D .第四象限 6.将图2①围成图2②的正方体,则图②中的红心“”标志所在的正方形是正方体中的A .面CDHEB .面BCEFC .面ABFGD .面ADHG 7.甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方并有分别是227S =甲,219.6S =乙,2 1.6S =丙,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选A .甲团B .乙团C .丙团D .甲或乙团8.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是A .1米B .5米C .6米D .7米9.如图3,在△ABC 中,∠C =90°,BC =6,D ,E 分别在AB ,AC 上,将△ABC 沿DE 折叠,使点A 落在A ′处,若A ′为CE 的中点,则折痕DE 的长为A .12B .5米C .6米D .7米10.已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为 A .2 B .3 C .5 D .13图1 ① ②图211.如图4,在长形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆住的侧面,刚好能组合成圆住.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是12.根据图5中①所示的程序,得到了y 与x 的函数图象,如图5中②,若点M 是y 轴正半轴上任意一点,过点M 作PQ∥x 轴交图象于点P 、Q ,连接OP 、OQ ,则以下结论:①x <0时,y =2x ②△OPQ 的面积为定值 ③x >0时,y 随x 的增大而增大 ④MQ =2PM ⑤∠POQ 可以等于90° 其中正确结论是 A .①②④ B .②④⑤ C .③④⑤ D .②③⑤ 2021年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共90分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小是,每小题3分,共18分,把答案写在题中横线上) 13π,-4,0这四个数中,最大的数是___________.14.如图6,已知菱形ABCD ,其顶点A 、B 在数轴上对应的数分别为-4和1,则BC =_____.15.若︱x -3︱+︱y +2︱=0,则x +y 的值为_____________.16.如图7,点O 为优弧ACB 所在圆的心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,则∠D =____________.图6A B C D0 ①②A B C D O图7 C ① ② 图817.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置得到图②,则阴影部分的周长为_________18.如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”. 若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是____________. 三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程 或演算步骤)19.(本小题满分8分)已知2x y =⎧⎪⎨=⎪⎩x ,yy a =+的解. 求(a +1)(a -1)+7的值20.(本小题满分8分)如图10,在6×8的网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均为小正方形的顶点.⑴以O 为位似中心,在网格图...中作△A ′B ′C ′,使△A ′B ′C ′和△ABC 位似,且位似比为1:2⑵连接⑴中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)图9如图11,一转盘被等分成三个扇形,上面分别标有关-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).⑴若小静转动转盘一次,求得到负数的概率;⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋而合”,用列表法(或画树形图)求两人“不谋而合”的概率.22.(本小题满分8分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.⑴问乙单独整理多少分钟完工?⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?23.(本小题满分9分)如图12,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.⑴求证:①DE=DG;②DE⊥DG;⑵尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);⑶连接⑵中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想;⑷当1CECB n时,衣直接写出ABCDDEFGSS正方形正方形的值.-112图11小宇小静AB CDK图11已知A 、B 两地的路程为240千米,某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现在有货运收费项目及收费标准表,行驶路程S (千米)与行驶时间t (时)的函数图象(如图13中①),上周货运量折线统计图(如图13中②)等信息如下:⑴汽车的速度为__________千米/时,火车的速度为_________千米/时;设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围)及x 为何值时y 汽>y 火;(总费用=运输费+冷藏费+固定费用)⑶请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?图13① 图13 ②如图14①至图14④中,两平行线AB、CD音的距离均为6,点M为AB上一定点.思考:如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,当α=________度时,点P到CD的距离最小,最小值为____________.探究一在图14①的基础上,以点M为旋转中心,在AB、CD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点N到CD的距离是______________.探究二将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB、CD之间顺时针旋转.⑴如图14③,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值:⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数据:sin49°=34,cos41°=34,tan37°=34)BADC图14①BADC图14 ③BADC图14 ②BADC图14 ④M如图15,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(用含t的代数式表示);⑵当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,S=218;③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.。
2024河北中考数学试卷电子版
2024河北中考数学试卷电子版引言本文将为您提供2024年河北中考数学试卷的电子版。
该试卷是河北省教育厅组织的中学毕业生统一考试的一部分,涵盖了中学数学的各个知识点和技能。
通过阅读该试卷,您将了解到中学数学的题型和考点,帮助您更好地了解中学数学的教学内容和考试要求。
一、选择题1.下列式子中哪个是等式?A) 2 + 3 = 5B) 2 + 3 > 5C) 2 + 3 < 5正确答案:A) 2 + 3 = 5解析:等号(=)表示左右两边的值相等,所以只有A) 2 + 3 = 5是等式。
2.一个正方形的边长为8cm,那么它的周长是多少?A)16 cmB)32 cmC)64 cm正确答案:B) 32 cm解析:正方形的周长等于四条边长的和,所以周长为8 + 8 + 8 + 8 = 32 cm。
3.已知 (x - 2) ÷ 3 = 5,求未知数 x 的值。
A)9B)12C)17正确答案:B) 12解析:将等式中的除法转化为乘法,得到 x - 2 = 3 × 5 = 15,再将等式中的减法转化为加法,得到 x = 15 + 2 = 17。
二、填空题1.解方程 2x - 5 = 7,得到的解是 __________。
正确答案:x = 6解析:将等式中的减法转化为加法,得到 2x = 7 + 5 = 12,再将等式中的乘法转化为除法,得到 x = 12 ÷ 2 = 6。
2.若 a + b = 12,a - b = 4,则 a 的值是 __________。
正确答案:a = 8解析:将等式相加得到 a + b + a - b = 12 + 4,合并同类项得到 2a = 16,再将等式中的乘法转化为除法,得到 a = 16 ÷ 2 = 8。
3.若 2x + 3y = 9,x - 2y = 1,则 y 的值是 __________。
正确答案:y = 2解析:将等式相减得到 2x + 3y - (x - 2y) = 9 - 1,合并同类项得到 x + 5y = 8,再将等式中的加法转化为减法,得到5y = 8 - x,最后将等式中的乘法转化为除法,得到 y = (8 - x) ÷ 5。
2021年河北省中考数学真题试卷(word,解析版)
2021年河北省中考数学试卷一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.b C.c D.d2.不一定相等的一组是()A.a+b与b+a B.3a与a+a+aC.a3与a•a•a D.3(a+b)与3a+b3.已知a>b,则一定有﹣4a□﹣4b,“□”中应填的符号是()A.>B.<C.≥D.=4.与结果相同的是()A.3﹣2+1B.3+2﹣1C.3+2+1D.3﹣2﹣15.能与﹣(﹣)相加得0的是()A.﹣﹣B.+C.﹣+D.﹣+6.一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代B.B代C.C代D.B代7.如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是8.图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=()A.1cm B.2cm C.3cm D.4cm9.若取1.442,计算﹣3﹣98的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.01442 10.如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边的值是()边ABCDEFA.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD=∠A+∠B(等量代换).下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A.蓝B.粉C.黄D.红15.(2分)由(﹣)值的正负可以比较A=与的大小,下列正确的是()A.当c=﹣2时,A=B.当c=0时,A≠C.当c<﹣2时,A>D.当c<0时,A<16.(2分)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.18.(4分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E 保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应(填“增加”或“减少”)度.19.(4分)用绘图软件绘制双曲线m:y=与动直线l:y=a,且交于一点,图1为a=8时的视窗情形.(1)当a=15时,l与m的交点坐标为;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,则整数k =.三、解答题(本大题有7个小题,共66分。
2021年河北省中考数学试题及参考答案(word解析版)
2021年河北省中考数学试题及参考答案(word解析版)2021年河北省中考数学试题及参考答案一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.下列图形具有稳定性的是()A. B. C. D.2.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为() A.4B.6C.7D.103.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.将9.52变形正确的是()A.9.52=92+0.52 B.9.52=(10+0.5)(10��0.5)C.9.52=102��2×10×0.5+0.52D.9.52=92+9×0.5+0.525.图中三视图对应的几何体是()A. B. C. D.6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:1则正确的配对是()A.①��Ⅳ,②��Ⅱ,③��Ⅰ,④��Ⅲ C.①��Ⅱ,②��Ⅳ,③��Ⅲ,④��Ⅰ 7.有三种不同质量的物体“”“”“B.①��Ⅳ,②��Ⅲ,③��Ⅱ,④��Ⅰ D.①��Ⅳ,②��Ⅰ,③��Ⅱ,④��Ⅲ”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A. B.C. D.8.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点C B.过点P作PC⊥AB于点C且AC=BC C.取AB中点C,连接PC D.过点P作PC⊥AB,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲?x丙?13,x乙?x丁?15;s又高又整齐的是() A.甲B.乙 C.丙D.丁10.图中的手机截屏内容是某同学完成的作业,他做对的题数是()2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗2A.2个 B.3个 C.4个 D.5个11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 13.若2n+2n+2n+2n=2,则n=() A.��1 B.��2C.0D.1 414.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是() A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3D.216.对于题目“一段抛物线L:y=��x(x��3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为3整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则() A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确 D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分) 17.计算:?12? . ?318.若a,b互为相反数,则a2��b2= .19.如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90?1(多边形外角和)的,?45是360°28这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分) 20.(8分)嘉淇准备完成题目:(1)他把“发现系数“”印刷不清楚.”猜成3,请你化简:(3x2+6x+8)��(6x+5x2+2);”是几?(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.422.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着��5,��2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.24.(10分)如图,直角坐标系xOy中,一次函数y??x?5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC��S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.12AB,使点B25.(10分)如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧?在O右下方,且tan∠AOB=4AB上任取一点P,且能过P作直线l∥OB交数轴于点Q,,在优弧?3设Q在数轴上对应的数为x,连接OP.5感谢您的阅读,祝您生活愉快。
2020年河北省中考数学试题(word版,含答案)
考生须知1.考生应按规定的时间入场,开始考试后15分钟禁止迟到考生进入考场。
2.考生入场时须主动出示《准考证》以及有效身份证件(身份证、军人、武警人员证件、未成年人的户口本、公安户籍部门开具的《身份证》号码证明、护照或者港、澳、台同胞证件),接受考试工作人员的核验,并按要求在“考生花名册”上签自己的姓名。
3.考生只准携带必要的文具入场,如铅笔、签字笔、毛笔、水粉水彩颜料等,具体要求见招考简章。
禁止携带任何已完成作品以及各种无线通信工具(如寻呼机、移动电话)等物品。
如发现考生携带以上禁带物品,考生将作为违纪处理,取消该次考试成绩。
考场内不得擅自相互借用文具。
4.考生入场后按号入座,将本人《准考证》以及有效身份证件放在课桌上,以便核验。
5.考生答题前应认真填写试卷及答题纸上的姓名、准考证号等栏目并粘贴带有考生个人信息的条形码。
凡不按要求填写或字迹不清、无法辨认的,试卷及答题纸一律无效。
责任由考生自付。
6.开考后,考生不得中途退场。
如因身体不适要求中途退场,须征得监考人员及考点主考批准,并在退场前将试卷、答题纸如数上交。
7.考生遇试卷分发错误或试题字迹不清等情况应及时要求更换;涉及试题内容的疑问,不得向监考人员询问。
8.考生在考场内必须严格遵守考场纪律,对于违反考场规定、不服从监考人员管理和舞弊者,取消当次考试成绩。
9.考试结束铃声响时,考生要立即停止答题,并将试卷、答题纸按要求整理好,翻放在桌上,待监考人员收齐后方可离开考场。
任何考生不准携带试卷、答题纸离开考场。
离开考场后不准在考场附近逗留和交谈。
试卷第1页,总8页2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.墨迹覆盖了等式“()”中的运算符号,则覆盖的是( )A.+B.-C.×D.÷3.对于①,②,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是元/千克,发现这四个单价的中位数恰好也是众数,则()A.9B.8C.7D.66.如图1,已知,用尺规作它的角平分线.m 0x ≠3(13)x xy x y -=-2(3)(1)23x x x x +-=+-a a =ABC ∠第一步:以为圆心,以为半径画弧,分别交射线,于点,; 第二步:分别以,为圆心,以为半径画弧,两弧在内部交于点; 第三步:画射线.射线即为所求. 下列正确的是()A.,均无限制B.,的长C.有最小限制,无限制D.,的长7.若,则下列分式化简正确的是()A.B.C. D. 8.在如图所示的网格中,以点为位似中心,四边形的位似图形是()A.四边形B.四边形C.四边形D.四边形9.若,则( )A.12B.10C.8D.610.如图,将绕边的中点顺时针旋转180°.嘉淇发现,旋转后的与构成平行四B a BA BCDE D E b ABC ∠P BP BP a b 0a >12b DE >a b 0a ≥12b DE <a b ≠22a ab b +=+22a ab b -=-22a a b b=1212aab b =O ABCD NPMQ NPMR NHMQ NHMR ()()229111181012k--=⨯⨯k =ABC ∆AC O CDA ∆ABC ∆点,分别转到了点,处, 而点转到了点处. ∵,∴四边形是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵,”和“∴四边形……”之间作补充.下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且,C.应补充:且D.应补充:且, 11.若为正整数,则( ) A.B. C.D.12.如图,从笔直的公路旁一点出发,向西走到达;从出发向北走也到达.下列说法错误的是()A.从点向北偏西45°走到达B.公路的走向是南偏西45°C.公路的走向是北偏东45°D.从点向北走后,再向西走到达13.已知光速为300 000千米秒,光经过秒()传播的距离用科学记数法表示为千米,则可能为()A C C AB D CB AD =ABCD CB AD =AB CD =//AB CD OA OC =k ()kk kk k k ++⋅⋅⋅+=个2kk21k k+2kk 2kk+l P 6km l P 6km l P 3km l l l P 3km 3km l t 110t ≤≤10na ⨯nA.5B.6C.5或6D.5或6或714.有一题目:“已知;点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图.由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.” 下列判断正确的是()A.淇淇说的对,且的另一个值是115°B.淇淇说的不对,就得65°C.嘉嘉求的结果不对,应得50°D.两人都不对,应有3个不同值15.如图,现要在抛物线上找点,针对的不同取值,所找点的个数,三人的说法如下,甲:若,则点的个数为0; 乙:若,则点的个数为1; 丙:若,则点的个数为1. 下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()O ABC ∆130BOC ∠=︒A ∠ABC ∆O OB OC 2130BOC A ∠=∠=︒65A ∠=︒A ∠A ∠A ∠A ∠A ∠(4)y x x =-(,)P a b b P 5b =P 4b =P 3b =PA.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.,则_________. 18.正六边形的一个内角是正边形一个外角的4倍,则_________.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~8的整数).函数()的图象为曲线.(1)若过点,则_________;(2)若过点,则它必定还过另一点,则_________;(3)若曲线使得这些点分布在它的两侧,每侧各4个点,则的整数值有_________个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.已知两个有理数:-9和5. (1)计算:; (2)若再添一个负整数,且-9,5与这三个数的平均数仍小于,求的值.21.有一电脑程序:每按一次按键,屏幕的区就会自动加上,同时区就会自动减去,且均显示化简后的结果.已知,两区初始显示的分别是25和-16,如图.==ab =n n =m T m ky x=0x <L L 1T k =L 4T m T m =L 18~T T k (9)52-+m m m m A 2a B 3a A B如,第一次按键后,,两区分别显示:(1)从初始状态按2次后,分别求,两区显示的结果;(2)从初始状态按4次后,计算,两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点为中点,分别延长到点,到点,使.以点为圆心,分别以,为半径在上方作两个半圆.点为小半圆上任一点(不与点,重合),连接并延长交大半圆于点,连接,.(1)①求证:;②写出∠1,∠2和三者间的数量关系,并说明理由.(2)若,当最大时,直接指出与小半圆的位置关系,并求此时(答案保留).23.用承重指数衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,. (1)求与的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为(厘米),.①求与的函数关系式; ②为何值时,是的3倍?【注:(1)及(2)中的①不必写的取值范围】24.表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,A B A B A B O AB OA C OB D OC OD =O OA OC CD P A B OP E AE CP AOE POC ∆∆≌C ∠22OC OA ==C ∠CP EOD S 扇形πW W x 3x =3W =W x x Q W W =-厚薄Q x x Q W 薄x y kx b =+l k b对图象的影响,将上面函数中的与交换位置后得另一个一次函数,设其图象为直线.-1 0-21(1)求直线的解析式;(2)请在图上画出直线(不要求列表计算),并求直线被直线和轴所截线段的长;(3)设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值. 25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动. ①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对次,且他最终停留的位置对应的数为,试用含的代数式表示,并求该位置距离原点最近时的值; (3)从图的位置开始,若进行了次移动游戏后,甲与乙的位置相距2个单位,直接写出的值. 26.如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.k b l 'x y l l 'l 'l y y a =l l 'y a P n m n m O n k k ABC ∆AB AC =8BC =3tan 4C =K AC M N AB BC 2AM CN ==P M MB BN -N Q ACP APQ B ∠=∠(1)当点在上时,求点与点的最短距离;(2)若点在上,且将的面积分成上下4:5两部分时,求的长;(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长. 2020年河北省初中毕业生升学文化课考试数学答案卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1-10小题各3分,11~16小题各2分,每小题给出的四个选项中只有一个是符合题目要求的)题号 1 2 3 4 5 6 7 8 选项 D D C D B B D A 题号 9 10 11 12 13 14 15 16 选项 BBAACACB卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题各有3个空,每空2分)17.6 18.12 19.-16;5;7三、解答題(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(1)-2 (2)21.(1);P BC P A P MB PQ ABC ∆MP P x 03x ≤≤39x ≤≤P AC x P APQ ∠APQ ∆P M B N 94AK =K 1m =-2252a +166a --(2),和不能为负数 22.(1)①证明略; ② (2)23.(1) (2)①②由题可知: 解得:;(舍) ∴当时,是的3倍. 24.(1):(2):(3)的值为或或7 25.(1) (2) 当时,解得 ∵为整数∴当时,距离原点最近 (3)或5 26.(1) (2)∴即 ∴, (3)当时, 22254(1612)(23)0a a a ++--=-≥21C ∠=∠+∠43π213W x =2211(6)33Q x x =--124x =-2112433x x -=⨯12x =26x =-2cm x =Q W 薄l 31y x =+l '3y x =+a 5217514P =256m n =-0m =256n =n 4n =3k =min 1tan 32d BC C =⋅=APQ ABC ∆∆∽2APQ ABC S AP AB S ∆∆⎛⎫= ⎪⎝⎭23AP AB =103AP =43MP =03x ≤≤24482525d x =+当时, (4)39x ≤≤33355d x =-+23t s =。
2021年河北省中考数学试题(word版含答案)
2021年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,1—10小题,每题3分;11—16小题,每题2分,共42分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.计算:=-⨯-)1(23 ( )A. 5B.1C.-1D.62.以下说法正确的选项是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1-一、图1-2依次对折后,再按图1-3打出一个圆形小孔,那么展开摊平后的图案( )4.以下运算正确的选项是( ) A.21211-=⎪⎭⎫ ⎝⎛- B. 60000001067=⨯ C.()2222a a = D.523a a a =⋅5.图2中的三视图所对应的几何体是( )D C B A 图1—3 图1—2 图1—16.如图3,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F ,以下三角形中,外心不是..点O 的是( ) A.△ABE B.△ACF C.△ABD D.△ADE7.在数轴上标注了四段范围,如图4,那么表示8的点落在( )A.段①B.段 ②C.段③D.段④8.如图5,AB ∥EF ,CD ⊥EF ,∠BAC=50°,那么∠ACD=( )A.120°B.130°C.140°D.150°9.已知:岛P 位于岛Q 的正西方,由岛P ,Q 别离测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示用意是( )10.一台印刷机每一年印刷的书本数量y(万册)与它的利历时刻x(年)成反比例关系,当x=2时,y=20,那么y 与x 的函数图像大致是( )图4 图3图511.利用加减消元法解方程组⎩⎨⎧=--=+②①635 1052y x y x ,以下做法正确的选项是( )A.要消去y ,能够将25⨯+⨯②①B.要消去x ,能够将)5(3-⨯+⨯②①C.要消去y ,能够将35⨯+⨯②①D.要消去x ,能够将2)5(⨯+-⨯②①12.假设关于x 的方程022=++a x x 不存在...实数根,那么a 的取值范围是( )A.a<1B.a>1C.a ≤1D.a ≥113.将一质地均匀的正方体骰子掷一次,观看向上一面的点数,与点数3相差2的概率是( ) A.21 B.31 C.51 D.6114.如图6,直线332:--=x y l 与直线a y =(a 为常数)的交点在第四象限,那么a 可能在( )A.21<<aB.02<<-aC.23-≤≤-aD.410-<<-a15.如图7,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 别离为PA ,PB 的中点,关于以下各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而转变的是( )A.②③B.②⑤C.①③④D.④⑤图6图7图8图8是甲、乙两张不同的矩形纸片,将它们别离沿着虚线剪开后,各自要拼一个与原先面积相等的正方形,那么( )A.甲、乙都能够B.甲、乙都不能够C.甲不能够,乙能够D.甲能够,乙不能够二、填空题(本大题共4个小题,每题3分,共12分,把答案写在题中横线上)17.假设02015=a ,那么=a18.假设02≠=b a ,那么aba b a--222的值为 19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重归并叠在一路,如图9,那么∠3+∠1-∠2= °20.如图10,∠BOC=9°,点A 在OB 上,且OA=1,按以下要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…… 如此画下去,直到得第n 条线段,以后就不能再画出符合要求的线段了,那么n=三、解答题(本大题共6个小题,共66分。
20XX年河北省中考数学试题(含答案解析)
20XX年河北省中考数学试题(含答案解析)20XX年河北省中考数学试卷(共26题,满分120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.× D.÷ 3.对于①x ﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9 B.8 C.7 D.6 6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,bDE的长C.a有最小限制,b无限制D.a≥0,bDE的长7.若a≠b,则下列分式化简正确的是()A.B.C.D.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 9.若8×10×12,则k=()A.12 B.10 C.8 D.6 10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC 11.(2分)若k为正整数,则()A.k2k B.k2k+1 C.2kkD.k2+k 12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km 到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 13.(2分)已知光速为*****千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5 B.6 C.5或6 D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:ab,则ab=.18.正六边形的一个内角是正n边形一个外角的4倍,则n =.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点Tm,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x 的取值范围] 24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l 和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.(12分)如图1和图2,在△ABC 中,AB=AC,BC=8,tanC.点K在AC边上,点M,N分别在AB,BC 上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P 到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长.20XX年河北省中考数学试卷答案解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.2.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.× D.÷ 解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9 B.8 C.7 D.6 解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,bDE的长C.a有最小限制,b无限制D.a≥0,bDE的长解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.7.若a≠b,则下列分式化简正确的是()A.B.C.D.解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC,OM2,OD,OB,OA,OR,OQ=2,OP2,OH3,ON2,∵2,∴点D对应点Q,点B 对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.9.若8×10×12,则k=()A.12 B.10 C.8 D.6 解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B.10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC 解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.11.(2分)若k为正整数,则()A.k2k B.k2k+1 C.2kk D.k2+k 解:((k-k)k=(k2)k=k2k,故选:A.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.13.(2分)已知光速为*****千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5 B.6 C.5或6 D.5或6或7 解:当t=1时,光传播的距离为1×*****=*****=3×105(千米),则n=5;当t=10时,光传播的距离为10×*****=***-*****=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A 还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:ab,则ab=6.解:原式=3ab,故a=3,b=2,则ab=6.故答案为:6.18.正六边形的一个内角是正n边形一个外角的4倍,则n=12.解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm (m为1~8的整数).函数y(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点Tm,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.解:(1)2;(2)根据题意得,m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.解:(1)A区显示的结果为:25+2a2,B 区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数.22.(9分)如图,点O 为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W 薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x 的取值范围] 解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k,∴W与x的函数关系式为Wx2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄(6﹣x)2x2=﹣4x+12,即Q与x的函数关系式为Q =﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3x2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l 和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;∴直线l′的解析式为y=x+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线l′:y=x+3与y轴的交点为(0,3),∴直线l'被直线l和y轴所截线段的长为:;(3)把y=a代入y=3x+1得,a=3x+1,解得x;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣30时,a,当(a﹣3+0)时,a=7,当(0)=a﹣3时,a,∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错.(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)不妨设甲连续k次正确后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k ﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k 的值为3或5.26.(12分)如图1和图2,在△ABC中,AB=AC,BC =8,tanC.点K在AC边上,点M,N分别在AB,BC上,且AM=CN =2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P 到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长.解:(1)如图1中,过点A作AH⊥BC 于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C,∴AH=3,AB=AC5.∴当点P在BC上时,点P到A的最短距离为3.(2)如图1中,∵∠APQ=∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴()2,∴,∴AP,∴PM=AP=AM2.(3)当0≤x≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴,∠AQP=∠C,∴,∴PQ(x+2),∵sin∠AQP=sin∠C,∴PJ=PQ-sin∠AQP(x+2).当3≤x≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC-sin∠C(11﹣x).(4)由题意点P的运动速度单位长度/秒.当3<x≤9时,设CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴,∴,∴y(x﹣7)2,∵0,∴x=7时,y有最大值,最大值,∵AK,∴CK=5 当y时,(x﹣7)2,解得x=7±,∴点K被扫描到的总时长=(6﹣3)23秒.方法二:①点P在AB上的时候,有11/4个单位长度都能扫描到点K;②在BN阶段,当x在3~5.5(即7﹣1.5)的过程,是能扫到K点的,在5.5~8.5(即7+1.5)的过程是扫不到点K的,但在8.5~9(即点M到N全部的路程)能扫到点K.所以扫到的时间是[(9﹣8.5)+(5.5﹣3)]23(秒).。
2020年河北省中考数学试卷及答案
2020 年河北省中考数学试卷一、选择题(本大题共16 小题,共42 分。
1 ~10 小题各 3 分,11 ~16 小题各 2 分,小题给出的四个选项中,只有一项是符合题目要求的)1 .( 3 分)下列运算结果为正数的是()A .(﹣ 3 ) 2B .﹣ 3 ÷ 2C .0 × (﹣2020 )D . 2 ﹣ 32 .(3 分)把0.0813 写成 a × 10 n ( 1 ≤ a <10 ,n 为整数)的形式,则 a 为()A . 1B .﹣ 2C .0.813D .8.133 .( 3 分)用量角器测得∠ MON 的度数,下列操作正确的是()A .B .C .D .4 .( 3 分)= ()A .B .C .D .5 .( 3 分)图 1 和图 2 中所有的小正方形都全等,将图 1 的正方形放在图 2 中①②③④ 的某一位置,使它与原来7 个小正方形组成的图形是中心对称图形,这个位置是()A .①B .②C .③D .④6 .( 3 分)如图为张小亮的答卷,他的得分应是()A .100 分B .80 分C .60 分D .40 分7 .( 3 分)若△ ABC 的每条边长增加各自的10% 得△ A′B′C′ ,则∠ B′ 的度数与其对应角∠ B 的度数相比()A .增加了10%B .减少了10%C .增加了( 1 + 10% )D .没有改变8 .( 3 分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A .B .C .D .9 .( 3 分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O .求证:AC ⊥ BD .以下是排乱的证明过程:① 又BO=DO ;②∴ AO ⊥ BD ,即AC ⊥ BD ;③∵四边形ABCD 是菱形;④∴ AB=AD .证明步骤正确的顺序是()A .③ → ② → ① → ④B .③ → ④ → ① → ②C .① → ② → ④ →③ D .① → ④ → ③ → ②10 .( 3 分)如图,码头 A 在码头 B 的正西方向,甲、乙两船分别从A ,B 同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A .北偏东55°B .北偏西55°C .北偏东35°D .北偏西35°11 .( 2 分)如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的是()A .B .C .D .12 .( 2 分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A . 4 + 4 ﹣=6B . 4 + 4 0 + 4 0 =6C . 4 + =6D . 4 ﹣ 1 ÷ + 4=613 .( 2 分)若= + ,则中的数是()A .﹣ 1B .﹣ 2C .﹣ 3D .任意实数14 .( 2 分)甲、乙两组各有12 名学生,组长绘制了本组 5 月份家庭用水量的统计图表,如图,甲组12 户家庭用水量统计表4 5 6 9用水量(吨)户数 4 5 2 1比较 5 月份两组家庭用水量的中位数,下列说法正确的是()A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15 .( 2 分)如图,若抛物线y= ﹣x 2 + 3 与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y= (x >0 )的图象是()A .B .C .D .16 .( 2 分)已知正方形MNOK 和正六边形ABCDEF 边长均为 1 ,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点 B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点 C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;… 在这样连续 6 次旋转的过程中,点 B ,M 间的距离可能是()A . 1.4B . 1.1C .0.8D .0.5二、填空题(本大题共 3 小题,共10 分。
2022年河北省中考数学试卷(解析版)
2022年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题。
1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算3a a ÷得?a ,则“?”是()A .0B .1C .2D .3【分析】根据同底数幂的除法法则列方程解答即可.同底数幂的除法法则:底数不变,指数相减.【解答】解:根据同底数幂的除法可得:32a a a ÷=,∴?2=,故选:C .2.(3分)如图,将ABC ∆折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是ABC ∆的()A .中线B .中位线C .高线D .角平分线【分析】根据翻折的性质和图形,可以判断直线l 与ABC ∆的关系.【解答】解:由已知可得,12∠=∠,则l 为ABC ∆的角平分线,故选:D .3.(3分)与132-相等的是()A .132--B .132-C .132-+D .132+【分析】利用有理数的加减法法则,逐个计算得结论.【解答】解:A .113322--=-,选项A 的计算结果是132-;B .113222-=,选项B 的计算结果不是132-;C .113222-+=-,选项C 的计算结果不是132-;D .113322+=,选项D 的计算结果不是132-.故选:A .4.(3分)下列正确的是()A 23=+B 23=⨯C 23=D 0.7=【分析】根据=A 选项;根据0,0)a b =判断B 选项;根据||a =判断C 选项;根据算术平方根的定义判断D 选项.【解答】解:A 、原式=,故该选项不符合题意;B 、原式23==⨯,故该选项符合题意;C 、原式29==,故该选项不符合题意;D 、20.70.49=,故该选项不符合题意;故选:B .5.(3分)如图,将三角形纸片剪掉一角得四边形,设ABC ∆与四边形BCDE 的外角和的度数分别为α,β,则正确的是()A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小【分析】利用多边形的外角和都等于360︒,即可得出结论.【解答】解: 任意多边形的外角和为360︒,360αβ∴==︒.0αβ∴-=.故选:A .6.(3分)某正方形广场的边长为2410m ⨯,其面积用科学记数法表示为()A .42410m ⨯B .421610m ⨯C .521.610m ⨯D .421.610m ⨯【分析】根据正方形的面积=边长⨯边长列出代数式,根据积的乘方化简,结果写成科学记数法的形式即可.【解答】解:22(410)⨯2224(10)=⨯41610=⨯521.610()m =⨯,故选:C .7.(3分)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A .①③B .②③C .③④D .①④【分析】根据组合后的几何体是长方体且由6个小正方体构成直接判断即可.【解答】解:由题意知,组合后的几何体是长方体且由6个小正方体构成,∴①④符合要求,故选:D .8.(3分)依据所标数据,下列一定为平行四边形的是()A .B .C .D .【分析】根据平行四边形的判定定理做出判断即可.【解答】解:A 、80110180︒+︒≠︒,故A 选项不符合条件;B 、只有一组对边平行不能确定是平行四边形,故B 选项不符合题意;C 、不能判断出任何一组对边是平行的,故C 选项不符合题意;D 、有一组对边平行且相等是平行四边形,故D 选项符合题意;故选:D .9.(3分)若x 和y 互为倒数,则11(x y y x+-的值是()A .1B .2C .3D .4【分析】根据x 和y 互为倒数可得1xy =,再将11(x y y x+-进行化简,将1xy =代入即可求值.【解答】解:x 和y 互为倒数,1xy ∴=,11()(2)x y y x +- 1212xy xy=-+-21121=⨯-+-2121=-+-2=.故选:B .10.(3分)某款“不倒翁”(图1)的主视图是图2,PA ,PB 分别与 AMB 所在圆相切于点A ,B .若该圆半径是9cm ,40P ∠=︒,则 AMB 的长是()A .11cm πB .112cm πC .7cmπD .72cmπ【分析】根据题意,先找到圆心O ,然后根据PA ,PB 分别与 AMB 所在圆相切于点A ,B .40P ∠=︒可以得到AOB ∠的度数,然后即可得到优弧AMB 对应的圆心角,再根据弧长公式计算即可.【解答】解:作AO PA ⊥,BO PB ⊥,AO 和BO 相交于点O ,如图,PA ,PB 分别与 AMB 所在圆相切于点A ,B .90OAP OBP ∴∠=∠=︒,40P ∠=︒ ,140AOB ∴∠=︒,∴优弧AMB 对应的圆心角为360140220︒-︒=︒,∴优弧AMB 的长是:220911()180cm ππ⨯=,故选:A .11.(2分)要得知作业纸上两相交直线AB ,CD 所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行【分析】根据平行线的性质、三角形内角和定理解答即可.【解答】解:方案Ⅰ,HEN CFG∠=∠,∴,//MN CD根据两直线平行,内错角相等可知,直线AB,CD所夹锐角与AEM∠相等,故方案Ⅰ可行,方案Ⅱ,根据三角形内角和定理可知,直线AB,CD所夹锐角与180AEH CFG︒-∠-∠相等,故方案Ⅱ可行,故选:C.12.(2分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(,)m n,在坐标系中进行描点,则正确的是()B.A.C.D.【分析】利用已知条件得出n与m的函数关系式,利用函数关系式即可得出结论.【解答】解: 一个人完成需12天,∴一人一天的工作量为1 12,m个人共同完成需n天,∴一人一天的工作量为1 mn,每人每天完成的工作量相同,12mn∴=.12nm∴=,n∴是m的反比例函数,∴选取6组数对(,)m n,在坐标系中进行描点,则正确的是:C.故选:C.13.(2分)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A.1B.2C.7D.8【分析】利用凸五边形的特征,根据两点之间线段最短求得d的取值范围,利用此范围即可得出结论.【解答】解: 平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形,1115d∴+++>且1511d+++>,d∴的取值范围为:28d<<,∴则d可能是7.故选:C.14.(2分)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数【分析】根据中位数和众数的概念做出判断即可.【解答】解:根据题意知,追加前5个数据的中位数是5,众数是5,追加后5个数据的中位数是5,众数为5,数据追加后平均数会变大,∴集中趋势相同的只有中位数和众数,故选:D.15.(2分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3120120⨯=-xB.依题意203120(201)120+⨯=++x xC.该象的重量是5040斤D.每块条形石的重量是260斤【分析】利用题意找出等量关系,将等量关系中的量用已知数和未知数的代数式替换即可得出结论.【解答】解:由题意得出等量关系为:20块等重的条形石的重量3+个搬运工的体重和21=块等重的条形石的重量1+个搬运工的体重,已知搬运工体重均为120斤,设每块条形石的重量是x 斤,203120(201)120x x ∴+⨯=++,A ∴选项不正确,B 选项正确;由题意:大象的体重为202403605160⨯+=斤,C ∴选项不正确;由题意可知:一块条形石的重量2=个搬运工的体重,∴每块条形石的重量是240斤,D ∴选项不正确;综上,正确的选项为:B .故选:B .16.(2分)题目:“如图,45B ∠=︒,2BC =,在射线BM 上取一点A ,设AC d =,若对于d 的一个数值,只能作出唯一一个ABC ∆,求d 的取值范围.”对于其答案,甲答:2d ,乙答: 1.6d =,丙答:d =,则正确的是()A .只有甲答的对B .甲、丙答案合在一起才完整C .甲、乙答案合在一起才完整D .三人答案合在一起才完整【分析】由题意知,当CA BA ⊥或CA BC >时,能作出唯一一个ABC ∆,分这两种情况求解即可.【解答】解:由题意知,当CA BA ⊥或CA BC >时,能作出唯一一个ABC ∆,①当CA BA ⊥时,45B ∠=︒ ,2BC =,2sin 4522AC BC ∴=⋅︒=⨯=即此时d =②当CA BC =时,45B ∠=︒ ,2BC =,∴此时2AC =,即2d ,综上,当d =或2d 时能作出唯一一个ABC ∆,故选:B .二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分,19小题每空1分)17.(3分)如图,某校运会百米预赛用抽签方式确定赛道.若琪琪第一个抽签,她从1~8号中随机抽取一签,则抽到6号赛道的概率是18.【分析】根据抽到6号赛道的结果数÷所有可能出现的结果数即可得出答案.【解答】解:所有可能出现的结果数为8,抽到6号赛道的结果数为1,每种结果出现的可能性相同,P (抽到6号赛道)18=,故答案为:18.18.(3分)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 是否垂直?是(填“是”或“否”);(2)AE =.【分析】(1)证明ACM CFD ∆≅∆,得出CAM FCD ∠=∠,由90CAM CMA ∠+∠=︒,得出90FCD CMA ∠+∠=︒,进而得出90CEM ∠=︒,即可得出AB CD ⊥;(2)先利用勾股定理求出AB =,再证明ACE BDE ∆∆∽,利用相似三角形的性质即可求出AE 的长度.【解答】解:如图1,在ACM ∆和CFD ∆中,2901AC CF ACM CFD CM FD ==⎧⎪∠=∠=︒⎨⎪==⎩,()ACM CFD SAS ∴∆≅∆,CAM FCD ∴∠=∠,90CAM CMA ∠+∠=︒ ,90FCD CMA ∴∠+∠=︒,90CEM ∴∠=︒,AB CD ∴⊥,故答案为:是;(2)如图2,在Rt ABH ∆中,AB ===//AC BD ,CAE DBE ∴∠=∠,ACE BDE ∠=∠,ACE BDE ∴∆∆∽,∴23AE AC BE BD ==,∴23=,5AE ∴=,.19.(3分)如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个.乙盒中都是白子,共8个.嘉嘉从甲盒拿出a 个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,则a =4;(2)设甲盒中都是黑子,共(2)m m >个,乙盒中都是白子,共2m 个.嘉嘉从甲盒拿出(1)a a m <<个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多个;接下来,嘉嘉又从乙盒拿回a 个棋子放到甲盒,其中含有(0)x x a <<个白子,此时乙盒中有y 个黑子,则y x 的值为.【分析】(1)根据嘉嘉从甲盒拿出a 个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,列出方程计算即可求解;(2)根据题意可得乙盒棋子总数比甲盒所剩棋子数多的个数,根据题意可以求出y x =,进一步求出y x的值.【解答】解:(1)依题意有:82(10)a a +=-,解得4a =.故答案为:4;(2)依题意有:2()(2)m a m a m a +--=+个,()y a a x a a x x =--=-+=,1y x x x==.故答案为:(2)m a +,1.三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.(9分)整式13()3m -的值为P .(1)当2m =时,求P 的值;(2)若P 的取值范围如图所示,求m 的负整数值.【分析】(1)把2m =代入代数式中进行计算便可;(2)根据数轴列出m 的不等式进行解答便可.【解答】解:(1)根据题意得,153(2)3()533P =-=⨯-=-;(2)由数轴知,7P ,即13()73m -,解得2m -,m 为负整数,1m ∴=-.2-.21.(9分)某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,(1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.【分析】(1)分别把甲、乙二人的三项成绩相加并比较即可;(2)分别计算出甲、乙二人的三项成绩的加权平均数并比较即可.【解答】解:由题意得,甲三项成绩之和为:95923++=(分),乙三项成绩之和为:89522++=(分),2322> ,∴会录用甲;(2)由题意得,甲三项成绩之加权平均数为:1203601206060959360360360--⨯+⨯+⨯3 2.5 1.5=++7=(分),三项成绩之加权平均数为:1203601206060895360360360--⨯+⨯+⨯854.536=++8=(分),78< ,∴会改变(1)的录用结果.22.(9分)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,22(21)(21)10++-=为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.【分析】写出两个已知正整数之和与这两个正整数之差的平方和,根据完全平方公式,合并同类项法则计算即可求解.【解答】解:两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.理由如下:22()()m n m n ++-222222m mn n m mn n =+++-+2222m n =+222()m n =+,故两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.23.(10分)如图,点(,3)P a 在抛物线2:4(6)C y x =--上,且在C 的对称轴右侧.(1)写出C 的对称轴和y 的最大值,并求a 的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P 及C 的一段,分别记为P ',C '.平移该胶片,使C '所在抛物线对应的函数恰为269y x x =-+-.求点P '移动的最短路程.【分析】(1)根据抛物线的顶点式,判断出顶点坐标,令3y =,转化为方程求出a 即可;(2)求出平移前后的抛物线的顶点的坐标,可得结论.【解答】解:(1) 抛物线22:4(6)(6)4C y x x =--=--+,∴抛物线的顶点为(6,4)Q ,∴抛物线的对称轴为直线6x =,y 的最大值为4,当3y =时,23(6)4x =--+,5x ∴=或7,点P 在对称轴的右侧,(7,3)P ∴,7a ∴=;(2) 平移后的抛物线的解析式为2(3)y x =--,∴平移后的顶点(3,0)Q ',平移前抛物线的顶点(6,4)Q ,∴点P '移动的最短路程5QQ ='==.24.(10分)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线//MN AB .嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14︒,点M 的俯角为7︒.已知爸爸的身高为1.7m .(1)求C ∠的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4 4.1)【分析】(1)由14CAB ∠=︒,90CBA ∠=︒,得76C ∠=︒,根据tan AB C BC=, 1.7BC m =,可得 1.7tan 76 6.8()AB m =⨯︒=,(2)过O 作AB 的垂线交MN 于D ,交圆于H ,即可画出线段DH ,表示最大水深,根据OA OM =,7BAM ∠=︒,//AB MN ,可得76MOD ∠=︒,在Rt MOD ∆中,即知4MD OD =,设OD x =m ,则4MD x =m ,有222(4) 3.4x x +=,解得0.82OD m =,从而2.58 2.6()DH OH OD OA OD m =-=-=≈.【解答】解:(1) 嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14︒,14CAB ∴∠=︒,90CBA ∠=︒,18076C CAB CBA ∴∠=︒-∠-∠=︒,tan AB C BC= , 1.7BC m =,tan 76 1.7AB ∴︒=,1.7tan 76 6.8()AB m ∴=⨯︒=,答:76C ∠=︒,AB 的长为6.8m ;(2)图中画出线段DH 如图:OA OM=,7BAM∠=︒,7OMA OAM∴∠=∠=︒,//AB MN,7AMD BAM∴∠=∠=︒,14OMD∴∠=︒,76MOD∴∠=︒,在Rt MOD∆中,tan MDMODOD∠=,tan76MDOD∴︒=,4MD OD∴=,设OD x=m,则4MD x=m,在Rt MOD∆中,1 3.42OM OA AB m===,222(4) 3.4x x∴+=,x>,0.82x∴=≈,0.82OD m∴=,3.40.82 2.58 2.6()DH OH OD OA OD m∴=-=-=-=≈,答:最大水深约为2.6米.25.(10分)如图,平面直角坐标系中,线段AB的端点为(8,19)A-,(6,5)B.(1)求AB 所在直线的解析式;(2)某同学设计了一个动画:在函数(0,0)y mx n m y =+≠中,分别输入m 和n 的值,使得到射线CD ,其中(,0)C c .当2c =时,会从C 处弹出一个光点P ,并沿CD 飞行;当2c ≠时,只发出射线而无光点弹出.①若有光点P 弹出,试推算m ,n 应满足的数量关系;②当有光点P 弹出,并击中线段AB 上的整点(横、纵坐标都是整数)时,线段AB 就会发光.求此时整数m 的个数.【分析】(1)设直线AB 的解析式为y kx b =+,转化为方程组求解;(2)①把(2,0)代入函数解析式,可得结论;②寻找特殊点,利用待定系数法求解即可.【解答】解:(1)设直线AB 的解析式为y kx b =+,把(8,19)A -,(6,5)B 代入,得81965k b k b -+=⎧⎨+=⎩,解得111k b =-⎧⎨=⎩,∴直线AB 的解析式为11y x =-+;(2)①由题意直线y mx n =+经过点(2,0),20m n ∴+=;② 线段AB 上的整数点有15个:(8,19)-,(7,18)-,(6,17)-,(5,16)-,(4,15)-,(3,14)-,(2,13)-,(1,12)-,(0,11),(1,10),(2,9),(3,8),(4,7),(5,6),(6,5).当射线CD 经过(2,0),(7,18)-时,24y x =-+,此时2m =-,符合题意,当射线CD 经过(2,0),(1,12)-时,48y x =-+,此时4m =-,符合题意,当射线CD 经过(2,0),(1,10)时,1020y x =-+,此时10m =-,符合题意,当射线CD 经过(2,0),(3,8)时,816y x =-,此时8m =,符合题意,当射线CD 经过(2,0),(5,6)时,24y x =-,此时2m =,符合题意,其它点,都不符合题意.解法二:设线段AB 上的整数点为(,11)t t -+,则11tm n t +=-+,20m n += ,(2)11t m t ∴-=-+,119122t m t t -+∴==-+--,86t - ,且t 为整数,m 也是整数,21t ∴-=±,3±,9±,1t ∴=,10m =-,3t =,8m =,5t =,2m =,1t =-,4m =-,7t =-,2m =-,11t =,0m =(不符合题意,综上所述,符合题意的m 的值有5个26.(12分)如图1,四边形ABCD 中,//AD BC ,90ABC ∠=︒,30C ∠=︒,3AD =,AB =,DH BC ⊥于点H .将PQM ∆与该四边形按如图方式放在同一平面内,使点P 与A 重合,点B 在PM 上,其中90Q ∠=︒,30QPM ∠=︒,PM =.(1)求证:PQM CHD ∆≅∆;(2)PQM ∆从图1的位置出发,先沿着BC 方向向右平移(图2),当点P 到达点D 后立刻绕点D 逆时针旋转(图3),当边PM 旋转50︒时停止.①边PQ 从平移开始,到绕点D 旋转结束,求边PQ 扫过的面积;②如图2,点K 在BH上,且9BK =-.若PQM ∆右移的速度为每秒1个单位长,绕点D 旋转的速度为每秒5︒,求点K 在PQM ∆区域(含边界)内的时长;③如图3,在PQM ∆旋转过程中,设PQ ,PM 分别交BC 于点E ,F ,若BE d =,直接写出CF 的长(用含d 的式子表示).【分析】(1)解直角三角形求出QM ,再根据AAS 证明三角形全等即可;(2)①如图1中,PQ 扫过的面积=平行四边形AQQ D '的面积+扇形DQ Q '''的面积;②如图21-中,连接DK .当DM 运动到与DH 重合时,求出15KDH ∠=︒,可得结论;③利用勾股定理求出2DE ,再利用相似三角形的性质求出EF ,可得结论.【解答】(1)证明: 四边形ABCD是矩形,AB DH ∴==90DHB DHC ∠=∠=︒,在Rt AQM ∆中,90Q ∠=︒,30QAM ∠=︒,AM =,12QM AM ∴==QM DH ∴=,90Q DHC ∠=∠=︒ ,30QAM C ∠=∠=︒,在PQM ∆和CHD ∆中,QPM C PQM CHD QM DH ∠=∠⎧⎪∠=∠⎨⎪=⎩,()PQM CHD AAS ∴∆≅∆;(2)解:①如图1中,PQ 扫过的面积=平行四边形AQQ D '的面积+扇形DQ Q '''的面积.设QQ '交AM 于点T .6AQ == ,QT AM ⊥,cos30AT AQ ∴=⋅︒=,PQ ∴扫过的面积250635360ππ⋅⋅=⨯+=;②如图21-中,连接DK .当DM 运动到与DH 重合时,3BH AD == ,9BK =-3(96KH ∴=--=,66CK ∴=-+=2CD DH ==CD CK ∴=,1(18030)752CKD ∴∠=︒-︒=︒,15KDH ∴∠=︒,301515QDK ∠=︒-︒=︒ ,∴点K 在PQM ∆区域(含边界)内的时长436153)15s -+=;③如图3中,在Rt CDH ∆中,DH =30C ∠=︒,6CH ∴==,3BH = ,BE d =,|3|EH d ∴=-,DH = ,90DHE ∠=︒,22222(3)DE EH DH d ∴=+=-+,DEF CED ∠=∠ ,30EDF C ∠=∠=︒,DEF CED ∴∆∆∽,2DE EF EC ∴=⋅,2(3)12(9)d EF d ∴-+=⋅-,26219d d EF d-+∴=-,26216012999d d d CF BC BE EF d d d-+-∴=--=--=--.。
2020年河北省中考数学试卷含答案解析
2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A .9B .8C .7D .66.(3分)如图1,已知∠ABC ,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长7.(3分)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b =abD .12a 12b =ab8.(3分)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR9.(3分)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .610.(3分)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CD D .应补充:且OA =OC11.(2分)若k 为正整数,则(k +k +⋯+k)k ︸k 个k=( )A .k 2kB .k 2k +1C .2k kD .k 2+k12.(2分)如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误的是( )A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:√18−√2=a√2−√2=b√2,则ab=.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n=.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点T m,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 21.(8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图. 如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)用承重指数w 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当x =3时,W =3. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.2020年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷【解答】解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.6.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于12DE ,否则没有交点,故选:B .7.(3分)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b =abD .12a 12b =ab【解答】解:∵a ≠b , ∴a+2b+2≠ab ,故选项A 错误;a−2b−2≠a b,故选项B 错误;a 2b 2≠a b,故选项C 错误; 12a 12b =ab ,故选项D 正确;故选:D .8.(3分)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR【解答】解:∵以点O 为位似中心,∴点C 对应点M ,设网格中每个小方格的边长为1,则OC =√22+12=√5,OM =√42+22=2√5,OD =√2,OB =√32+12=√10,OA =√32+22=√13,OR =√22+12=√5,OQ =2√2,OP =√62+22=2√10,OH =√62+32=3√5,ON =√62+42=2√13, ∵OM OC=√5√5=2, ∴点D 对应点Q ,点B 对应点P ,点A 对应点N ,∴以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ , 故选:A . 9.(3分)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .6【解答】解:方程两边都乘以k ,得 (92﹣1)(112﹣1)=8×10×12k ,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k , ∴80×120=8×10×12k , ∴k =10.经检验k =10是原方程的解. 故选:B .10.(3分)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.=()11.(2分)若k为正整数,则(k+k+⋯+k)k︸k个kA.k2k B.k2k+1C.2k k D.k2+k=((k•k)k=(k2)k=k2k,【解答】解:(k+k+⋯+k)k︸k个k故选:A.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km 也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6√2km,则PC=3√2km,则从点P向北偏西45°走3√2km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A .1,4,5B .2,3,5C .3,4,5D .2,2,4【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是√1×√42=√42, 当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是√2×√32=√62; 当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形; 当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是√2×√22=√42, ∵√62>√42, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:√18−√2=a √2−√2=b √2,则ab = 6 . 【解答】解:原式=3√2−√2=a √2−√2=b √2, 故a =3,b =2, 则ab =6. 故答案为:6.18.(3分)正六边形的一个内角是正n 边形一个外角的4倍,则n = 12 . 【解答】解:正六边形的一个内角为:(6−2)×180°6=120°,∵正六边形的一个内角是正n 边形一个外角的4倍, ∴正n 边形一个外角为:120°÷4=30°, ∴n =360°÷30°=12. 故答案为:12.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点T m,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=−40 x,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L 过点T 4(﹣10,4),T 5(﹣8,5)时,k =﹣40, ∵曲线L 使得T 1~T 8这些点分布在它的两侧,每侧各4个点, ∴﹣36<k <﹣28,∴整数k =﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个, ∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5. (1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 【解答】解:(1)(−9)+52=−42=−2;(2)根据题意得,−9+5+m3<m ,∴﹣4+m <3m , ∴m ﹣3m <4, ∴﹣2m <4, ∴m >﹣2, ∵m 是负整数, ∴m =﹣1.21.(8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图. 如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.【解答】解:(1)A 区显示的结果为:25+2a 2,B 区显示的结果为:﹣16﹣6a ; (2)这个和不能为负数,理由:根据题意得,25+4a 2+(﹣16﹣12a )=25+4a 2﹣16﹣12a =4a 2﹣12a +9; ∵(2a ﹣3)2≥0, ∴这个和不能为负数.22.(9分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).【解答】解:(1)①在△AOE 和△POC 中, {OA =OP∠AOE =∠POC OE =OC, ∴△AOE ≌△POC (SAS ); ②∵△AOE ≌△POC , ∴∠E =∠C , ∵∠1+∠E =∠2, ∴∠1+∠C =∠2;(2)当∠C 最大时,CP 与小半圆相切, 如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴S扇形ODE =120π×22360=43π.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]【解答】解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k=1 3,∴W与x的函数关系式为W=13x 2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄=13(6﹣x)2−13x2=﹣4x+12,即Q与x的函数关系式为Q=﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3×13x 2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【解答】解:(1)∵直线l :y =kx +b 中,当x =﹣1时,y =﹣2;当x =0时,y =1,∴{−k +b =−2b =1,解得{k =3b =1, ∴直线l 的解析式为y =3x +1;∴直线l ′的解析式为y =x +3;(2)如图,解{y =x +3y =3x +1得{x =1y =4, ∴两直线的交点为(1,4),∵直线l ′:y =x +3与y 轴的交点为(0,3),∴直线l '被直线l 和y 轴所截线段的长为:√12+(4−3)2=√2;(3)把y =a 代入y =3x +1得,a =3x +1,解得x =a−13; 把y =a 代入y =x +3得,a =x +3,解得x =a ﹣3;当a ﹣3+a−13=0时,a =52,当12(a ﹣3+0)=a−13时,a =7, 当12(a−13+0)=a ﹣3时,a =175, ∴直线y =a 与直线l ,l ′及y 轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为52或7或175.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.【解答】解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错=1 4.(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)不妨设甲连续k次正确后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k的值为3或5.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P 移动的路程为x ,当0≤x ≤3及3≤x ≤9时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角∠APQ 扫描△APQ 区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若AK =94,请直接写出点K 被扫描到的总时长.【解答】解:(1)如图1中,过点A 作AH ⊥BC 于H .∵AB =AC ,AH ⊥BC ,∴BH =CH =4,∠B =∠C ,∴tan ∠B =tan ∠C =AH BH =34,∴AH =3,AB =AC =√AH 2+BH 2=√32+42=5.∴当点P 在BC 上时,点P 到A 的最短距离为3.(2)如图1中,∵∠APQ =∠B ,∴PQ ∥BC ,∴△APQ ∽△ABC ,∵PQ 将△ABC 的面积分成上下4:5,∴S △APQ S △ABC =(AP AB )2=49, ∴AP AB =23, ∴AP =103,∴PM =AP =AM =103−2=43. (3)当0≤x ≤3时,如图1﹣1中,过点P 作PJ ⊥CA 交CA 的延长线于J .∵PQ ∥BC ,∴AP AB =PQ BC ,∠AQP =∠C , ∴x+25=PQ 8, ∴PQ =85(x +2),∵sin ∠AQP =sin ∠C =35,∴PJ =PQ •sin ∠AQP =2425(x +2). 当3≤x ≤9时,如图2中,过点P 作PJ ⊥AC 于J .同法可得PJ =PC •sin ∠C =35(11﹣x ).(4)由题意点P 的运动速度=936=14单位长度/秒.当3<x ≤9时,设CQ =y .∵∠APC =∠B +∠BAP =∠APQ +∠CPQ ,∠APQ =∠B ,∴∠BAP =∠CPQ ,∵∠B =∠C ,∴△ABP ∽△PCQ ,∴AB CP =BP CQ , ∴511−x =x−3y ,∴y =−15(x ﹣7)2+165,∵−15<0,∴x =7时,y 有最大值,最大值=165,∵AK =94,∴CK =5−94=114<165 当y =114时,114=−15(x ﹣7)2+165, 解得x =7±32, ∴点K 被扫描到的总时长=(114+6﹣3)÷14=23秒. 方法二:①点P 在AB 上的时候,有11/4个单位长度都能扫描到点K ;②在BN 阶段,当x 在3~5.5(即7﹣1.5)的过程,是能扫到K 点的,在5.5~8.5(即7+1.5)的过程是扫不到点K 的,但在8.5~9(即点M 到N 全部的路程)能扫到点K .所以扫到的时间是[(9﹣8.5)+(5.5﹣3)+114]÷14=23(秒).。
2023年河北省中考数学试卷(含答案解析)090250
2023年河北省中考数学试卷试卷考试总分:111 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 16 小题 ,每题 2 分 ,共计32分 )1. 的平方与的和,用式子表示,正确的是( )A.B.C.D. 2.下列图形中表示北偏东的射线是( ) A. B.C.a b a +b 2+ba 2+a 2b 2(a +b)260∘D.3. 计算 的结果是 ( )A.B.C.D.4. 如图,一条毛毛虫要从处去吃树叶,毛毛虫在交叉路口处选择任何树枝都是等可能的,它吃到树叶的概率是( )A.B.C.D.5. 等腰三角形的一边长等于,一边长等于,则它的周长是( )A.B.C.D.或6. 已知可以被以内哪两个整数整除( )⋅a 3()1a2aa 5a 6a 9A 12141316731013171314−124810A.,B.,C.,D.,7. 已知,则的值是( )A.B.C.D.8. 已知(如图),按图所示的尺规作图痕迹不需借助三角形全等就能推出四边形是平行四边形的依据( )A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形9. 若正六边形的边长为,则它的内切圆面积为( )A.B.C.D.10. 某大学为提倡“厉行节约,反对浪费”的社会风尚,制止餐饮浪费行为,深入推进“光盘行动”,对校园浪费现象进行调查.调查后发现,有的学生表示每天大概会吃剩的饭菜,的学生每天大概会吃剩的饭菜,只有的学生大概吃剩的饭菜.若该校有一万人,平均每天每个人浪费粮食,则该校学生一学期(按天)浪费的粮食用科学记数法可表示为( )67787989m=−15–√+2m m 223451249π10π12π15π48.29%50g−100g 33.86%100g−150g 4.86%0g−50g 50g 120A.B.C.D.11. 如图,正方形和正方形中,点在上,,,是的中点,那么的长是( )A.B.C.D.12. 某几何体由若干个大小相同的小正方体搭成,其主视图和左视图如图所示,则搭成这个几何体的小正方体最少需( )A.个B.个C.个D.个6.0×kg1036.0×kg1076.0×kg1046.0×kg105ABCD CEFG D CG BC =1CE =3H AF CH 5–√10−−√32–√22567813. 等腰三角形的一个内角是,则这个三角形的底角的大小是( )A.或B.或C.或D.或14. 如图所示,边长都为的正方形和正三角形如图放置,与在一条直线上,点与点重合.现将沿方向以每秒个单位的速度匀速运动,当点与重合时停止,在这个运动过程中,正方形和重叠部分的面积与运动时间的函数图象大致是( ) A. B.C.D.50∘65∘50∘80∘40∘80∘65∘80∘50∘4ABCD EFG AB EF A F △EFG AB 1F B ABCD △EFG S t15. 如图,在菱形中,,,点,同时由,两点出发,分别沿,方向向点匀速移动(到点为止),点的速度为,点的速度为,经过秒为等边三角形,则的值为( )A.B.C.D.16. 如图,二次函数的图象与轴交于点,与轴的交点在与之间(不包括这两点),对称轴为直线.下列结论:①;②;③若点,点是函数图象上的两点,则;④.其中正确结论有( A.个B.个C.个D.个二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )17. 已知点,和都在反比例函数的图象上,则,,的大小关系为________.(用“”连接)18. 已知,则________.19. 若正方形的外接圆直径为,则其内切圆半径为________.ABCD AB =4cm ∠ADC =120∘E F A C AB CB B B E 1cm/s F 2cm/s t △DEF t 1ss 34s 432sy =a +bx+c x 2x A(−1,0)y B (0,2)(0,3)x =2abc <09a +3b +c >0M(,)12y 1N(,)52y 2<y 1y 2−<a <−3525)1234A(−1,)y 1B(−2,)y 2C(3,)y 3y =(k <0)k x y 1y 2y 3<(+)(+−2)=4m 2n 2m 2n 2+=m 2n 2419. 若正方形的外接圆直径为,则其内切圆半径为________.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20. 列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。
2020年河北省中考数学试题及答案解析
2020年河北省中考数学试题及答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020年)如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A .0条B .1条C .2条D .无数条2.(2020年)墨迹覆盖了等式“3x 2x x =(0x ≠)”中的运算符号,则覆盖的是( ) A .+B .-C .×D .÷3.(2020年)对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解4.(2020年)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A .仅主视图不同B .仅俯视图不同C .仅左视图不同D .主视图、左视图和俯视图都相同5.(2020年)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a 元/千克,发现这四个单价的中位数恰好也是众数,则a =( )A .9B .8C .7D .66.(2020年)如图1,已知ABC ∠,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长 C .a 有最小限制,b 无限制 D .0a ≥,12b DE <的长 7.(2020年)若ab ,则下列分式化简正确的是( )A .22a ab b+=+ B .22a ab b-=- C .22a ab b= D .1212aab b =8.(2020年)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR9.(2020年)若()()229111181012k--=⨯⨯,则k =( )A .12B .10C .8D .610.(2020年)如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是( ) A .嘉淇推理严谨,不必补充 B .应补充:且AB CD =, C .应补充:且//AB CDD .应补充:且OA OC =,11.(2020年)若k 为正整数,则()kk kk k k ++⋅⋅⋅+=个( )A .2k kB .21k k +C .2k kD .2k k +12.(2020年)如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误..的是( )A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D .从点P 向北走3km 后,再向西走3km 到达l13.(2020年)已知光速为300000千米秒,光经过t 秒(110t ≤≤)传播的距离用科学记数法表示为10n a ⨯千米,则n 可能为( ) A .5B .6C .5或6D .5或6或714.(2020年)有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.”,下列判断正确的是( )A .淇淇说的对,且A ∠的另一个值是115°B .淇淇说的不对,A ∠就得65°C .嘉嘉求的结果不对,A ∠应得50°D .两人都不对,A ∠应有3个不同值15.(2020年)如图,现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若5b =,则点P 的个数为0; 乙:若4b =,则点P 的个数为1; 丙:若3b =,则点P 的个数为1. 下列判断正确的是( )A .乙错,丙对B .甲和乙都错C .乙对,丙错D .甲错,丙对16.(2020年)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题17.(2020==,则ab =_________. 18.(2020年)正六边形的一个内角是正n 边形一个外角的4倍,则n =_________. 19.(2020年)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.三、解答题20.(2020年)已知两个有理数:-9和5. (1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值. 21.(2020年)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.22.(2020年)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC OD =.以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:AOE POC ∆∆≌;②写出∠1,∠2和C ∠三者间的数量关系,并说明理由.(2)若22OC OA ==,当C ∠最大时,直接..指出CP 与小半圆的位置关系,并求此时EOD S 扇形(答案保留π).23.(2020年)用承重指数W 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当3x =时,3W =. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q W W =-厚薄.①求Q 与x 的函数关系式; ②x 为何值时,Q 是W 薄的3倍?(注:(1)及(2)中的①不必写x 的取值范围)24.(2020年)表格中的两组对应值满足一次函数y kx b =+,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.(1)求直线l 的解析式;(2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y a =与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直.接.写出a 的值. 25.(2020年)如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P ;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终..停留的位置对应的数为m ,试用含n 的代数式表示m ,并求该位置距离原点O 最近时n 的值;(3)从图的位置开始,若进行了k 次移动游戏后,甲与乙的位置相距2个单位,直接..写出k 的值.26.(2020年)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长; (3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长.参考答案1.D 【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条. 【详解】在同一平面内,画已知直线的垂线,可以画无数条; 故选:D . 【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义. 2.D【分析】直接利用同底数幂的除法运算法则计算得出答案. 【详解】 ∵3x 2x x =(0x ≠), 32x x x ÷=,∴覆盖的是:÷. 故选:D . 【点睛】本题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键. 3.C 【分析】根据因式分解的定义进行判断即可; 【详解】①左边多项式,右边整式乘积形式,属于因式分解; ②左边整式乘积,右边多项式,属于整式乘法; 故答案选C . 【点睛】本题主要考查了因式分解的定义理解,准确理解因式分解的定义是解题的关键. 4.D 【分析】分别画出所给两个几何体的三视图,然后比较即可得答案. 【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.5.B【分析】根据统计图中的数据结合中位数和众数的定义,确定a的值即可.【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∴a=8.故答案为B.【点睛】本题考查条形统计图、中位数和众数的定义,掌握中位数和众数的定义是解答本题的关键.6.B根据作角平分线的方法进行判断,即可得出结论.【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ; ∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长; 第三步:画射线BP .射线BP 即为所求. 综上,答案为:0a >;12b DE >的长, 故选:B .【点睛】本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.7.D【分析】根据a ≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题.【详解】∵a ≠b , ∴22a a b b+≠+,选项A 错误; 22a a b b-≠-,选项B 错误; 22a a b b≠,选项C 错误; 1212a a bb =,选项D 正确; 故选:D .【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.8.A以O 为位似中心,作四边形ABCD 的位似图形,根据图像可判断出答案.【详解】解:如图所示,四边形ABCD 的位似图形是四边形NPMQ .故选:A【点睛】此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.9.B【分析】利用平方差公式变形即可求解.【详解】原等式()()229111181012k --=⨯⨯变形得: ()()229111181012k --=⨯⨯()()()()919111111181012-+-+=⨯⨯810101281012⨯⨯⨯=⨯⨯ 10=.故选:B .【点睛】本题考查了平方差公式的应用,灵活运用平方差公式是解题的关键.10.B【分析】根据平行四边形的判定方法“两组对边分别相等的四边形是平行四边形”即可作答.【详解】根据旋转的性质得: CB=AD ,AB=CD ,∴四边形ABDC 是平行四边形;故应补充“AB=CD ”,故选:B .【点睛】本题主要考查了平行四边形的判定和旋转的性质,牢记旋转前、后的图形全等,熟练掌握平行四边形的判定方法是解题的关键.11.A【分析】根据乘方的定义及幂的运算法则即可求解.【详解】()k k kk k k ++⋅⋅⋅+=个()()2k k k k k ⋅==2k k , 故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.12.A【分析】根据方位角的定义及勾股定理逐个分析即可.【详解】解:如图所示,过P 点作AB 的垂线PH ,选项A :∵BP=AP=6km ,且∠BPA=90°,∴△PAB 为等腰直角三角形,∠PAB=∠PBA=45°, 又PH ⊥AB ,∴△PAH 为等腰直角三角形,∴PH=2=PA ,故选项A 错误; 选项B :站在公路上向西南方向看,公路l 的走向是南偏西45°,故选项B 正确; 选项C :站在公路上向东北方向看,公路l 的走向是北偏东45°,故选项C 正确; 选项D :从点P 向北走3km 后到达BP 中点E ,此时EH 为△PEH 的中位线,故EH=12AP=3,故再向西走3km 到达l ,故选项D 正确.故选:A .【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.13.C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:当t=1时,传播的距离为300000千米,写成科学记数法为:5310⨯千米, 当t=10时,传播的距离为3000000千米,写成科学记数法为:6310⨯千米,∴n 的值为5或6,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.A【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【详解】解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°−65°=115°.故选:A.【点睛】此题主要考查了三角形的外接圆,正确分类讨论是解题关键.15.C【分析】分别令x(4-x)的值为5,4,3,得到一元二次方程后,利用根的判别式确定方程的根有几个,即可得到点P的个数.【详解】当b=5时,令x(4-x)=5,整理得:x2-4x+5=0,△=(-4)2-4×5=-6<0,因此点P的个数为0,甲的说法正确;当b=4时,令x(4-x)=4,整理得:x2-4x+4=0,△=(-4)2-4×4=0,因此点P有1个,乙的说法正确;当b=3时,令x(4-x)=3,整理得:x2-4x+3=0,△=(-4)2-4×3=4>0,因此点P有2个,丙的说法不正确;故选:C.【点睛】本题考查二次函数与一元二次方程,解题的关键是将二次函数与直线交点个数,转化成一元二次方程根的判别式.16.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大三角形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,由勾股定理,得222+=a b c ,A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512C 、∵3+4≠5,则不符合题意;D 、∵2+2=4,则面积为:112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.17.6【分析】根据二次根式的运算法则即可求解.【详解】∵-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.18.12【分析】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n 边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n 边形一个外角的4倍,∴正n 边形的外角为30°,∴正n 边形的边数为:360°÷30°=12.故答案为:12.【点睛】本题考查了正多边形的外角与内角的知识,熟练掌握正多边形的内角和和外角和定理是解决此类题目的关键.19.-16 5 7【分析】(1)先确定T 1的坐标,然后根据反比例函数k y x=(0x <)即可确定k 的值; (2)观察发现,在反比例函数图像上的点,横纵坐标只积相等,即可确定另一点;(3)先分别求出T 1~T 8的横纵坐标积,再从小到大排列,然后让k 位于第4个和第5个点的横纵坐标积之间,即可确定k 的取值范围和k 的整数值的个数.【详解】解:(1)由图像可知T 1(-16,1) 又∵.函数k y x =(0x <)的图象经过T 1 ∴116k =-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8)∵L 过点4T∴k=-10×4=40观察T 1~T 8,发现T 5符合题意,即m=5;(3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16 ∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.【点睛】本题考查了反比例函数图像的特点,掌握反比例函数图像上的点的横纵坐标积等于k 是解答本题的关键.20.(1)-2;(2)1m =-.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据平均数的定义列出不等式即可求出m 的取值,故可求解.【详解】(1)(9)52-+=422-=-; (2)依题意得(9)53m -++<m 解得m >-2∴负整数m =-1.【点睛】此题主要考查有理数、不等式及平均数,解题的关键是熟知有理数、不等式的运算法则.21.(1)2252a +;166a --;(2)24a 12a+9-;和不能为负数,理由见解析.【分析】(1)根据题意,每按一次按键,屏幕的A 区就会自动加上2a ,B 区就会自动减去3a ,可直接求出初始状态按2次后A ,B 两区显示的结果.(2)依据题意,分别求出初始状态下按4次后A ,B 两区显示的代数式,再求A ,B 两区显示的代数式的和,判断能否为负数即可.【详解】解:(1)A 区显示结果为:22225+a +a =25+2a ,B 区显示结果为:163a 3a=166a ﹣--﹣-;(2)初始状态按4次后A 显示为:2222225+a +a +a a 254a +=+B 显示为:163a 3a 3a 3a=1612a ﹣----﹣-∴A+B=225+4a +(-1612a)-=24a 12a+9-=2(2a 3)-∵2(2a 3)0≥-恒成立,∴和不能为负数.【点睛】本题考查了代数式运算,合并同类项,完全平方公式问题,解题关键在于理解题意,列出代数式进行正确运算,并根据完全平方公式判断正负.22.(1)①见详解;②∠2=∠C+∠1;(2)CP 与小半圆相切,43π. 【分析】(1)①直接由已知即可得出AO=PO ,∠AOE=∠POC ,OE=OC ,即可证明;②由(1)得△AOE ≌△POC ,可得∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,即可得出答案;(2)当C ∠最大时,可知此时CP 与小半圆相切,可得CP ⊥OP ,然后根据222OC OA OP ===,可得在Rt △POC 中,∠C=30°,∠POC=60°,可得出∠EOD ,即可求出S 扇EOD .【详解】(1)①在△AOE 和△POC 中=AO PO AOE POC OE OC =⎧⎪⎨⎪=⎩∠∠,∴△AOE ≌△POC ;②∠2=∠C+∠1,理由如下:由(1)得△AOE ≌△POC ,∴∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,∴∠2=∠C+∠1;(2)在P 点的运动过程中,只有CP 与小圆相切时∠C 有最大值,∴当C ∠最大时,可知此时CP 与小半圆相切,由此可得CP ⊥OP ,又∵222OC OA OP ===,∴可得在Rt △POC 中,∠C=30°,∠POC=60°,∴∠EOD=180°-∠POC=120°,∴S 扇EOD =2120360R π⨯⨯=43π. 【点睛】本题考查了全等三角形的性质和判定,三角形的外角,切线的性质,扇形面积的计算,掌握知识点灵活运用是解题关键.23.(1)213W x =;(2)①124Q x =-;②2cm x =. 【分析】(1)设W=kx 2,利用待定系数法即可求解;(2)①根据题意列出函数,化简即可;②根据题意列出方程故可求解.【详解】(1)设W=kx 2,∵3x =时,3W =∴3=9k∴k=13 ∴W 与x 的函数关系式为213W x =; (2)①∵薄板的厚度为xcm ,木板的厚度为6cm∴厚板的厚度为(6-x )cm ,∴Q=2211(6)41233x x x ⨯=-+-- ∴Q 与x 的函数关系式为124Q x =-;②∵Q 是W 薄的3倍∴-4x+12=3×213x 解得x1=2,x2=-6(不符题意,舍去)经检验,x=2是原方程的解,∴x=2时,Q 是W 薄的3倍.【点睛】此题主要考查函数与方程的应用,解题的关键是根据题意找到等量关系列出函数或方程求解.24.(1)l :31y x ;(2;(3)a 的值为52或175或7 【分析】(1)根据待定系数法即可求解;(2)根据题意得到直线l ',联立两直线求出交点坐标,再根据两点间的距离公式即可求解;(3)分对称点在直线l ,直线l '和y 轴分别列式求解即可.【详解】(1)依题意把(-1,-2)和(0,1)代入y kx b =+,得21k b b-=-+⎧⎨=⎩, 解得31k b =⎧⎨=⎩, ∴直线l 的解析式为31y x ,(2)依题意可得直线l '的解析式为3y x , 作函数图像如下:令x=0,得y=3,故B (0,3),令313y x y x =+⎧⎨=+⎩,解得14x y =⎧⎨=⎩, ∴A (1,4),∴直线l '被直线l 和y 轴所截线段的长=(3)①当对称点在直线l 上时,令31a x ,解得x=13a -, 令3a x =+,解得x=3a -,∴2×13a -=a-3, 解得a=7;②当对称点在直线l '上时,则2×(a-3)=13a -, 解得a=175; ③当对称点在y 轴上时, 则13a -+(3a -)=0, 解得a=52; 综上:a 的值为52或175或7. 【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法、一次函数的图像与性质及坐标的对称性.25.(1)14P=;(2)256m n=-;当4n=时,距离原点最近;(3)3k=或5【分析】(1)对题干中三种情况计算对应概率,分析出正确的概率即可;硬币朝上为正面、反面的概率均为12,甲和乙猜正反的情况也分为三种情况:①甲和乙都猜正面或反面,概率为12,②甲猜正,乙猜反,概率为14,③甲猜反,乙猜正,概率为14,(2)根据题意可知乙答了10次,答对了n次,则打错了(10-n)次,再根据平移的规则推算出结果即可;(3)刚开始的距离是8,根据三种情况算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果;【详解】(1)题干中对应的三种情况的概率为:①11111+= 22222⨯⨯;②11111+= 24244⨯⨯;③11111+= 24244⨯⨯;甲的位置停留在正半轴上的位置对应情况②,故P=14.(2)根据题意可知乙答了10次,答对了n次,则打错了(10-n)次,根据题意可得,n次答对,向西移动4n,10-n次答错,向东移了2(10-n),∴m=5-4n+2(10-n)=25-6n,∴当n=4时,距离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对打错时,二者之间的距离缩小2,∴当加一位置相距2个单位时,共缩小了6个单位或10个单位,∴62=3÷或102=5÷,∴3k =或5k =.【点睛】本题主要考查了概率的求解,通过数轴的理解进行准确分析是解题的关键.26.(1)3;(2)43MP =;(3)当03x ≤≤时,24482525d x =+;当39x ≤≤时,33355d x =-+;(4)23t s =【分析】 (1)根据当点P 在BC 上时,PA ⊥BC 时PA 最小,即可求出答案;(2)过A 点向BC 边作垂线,交BC 于点E ,证明△APQ ∽△ABC ,可得2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,根据S S 上下=45可得 24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,可得23AP AB =,求出AB=5,即可解出MP ; (3)先讨论当0≤x ≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ ·sinC ,求解即可,再讨论当3≤x ≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,根据d=CP ·sinC 即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC ·2BC =34×4=3; (2)过A 点向BC 边作垂线,交BC 于点E ,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC , ∴APAQPQAB AC BC ==, ∴2APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭, 当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫=⎪⎝⎭,∴23AP AB =, AE=2BC·tan 3C =,根据勾股定理可得AB=5, ∴2253APMP AB +==,解得MP=43;(3)当0≤x ≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2, ∴25AP x PQAB BC +==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x ≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP ·sinC=35(11-x )=-35x+335, 综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时 CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B ∠=∠ ∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,ABBP PC CQ =,即51184yy =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,11 2÷14=22秒,∴点K被扫描到的总时长36-(22-10)-1=23秒.。
2023年河北省中考数学试卷
2023年河北省中考数学试卷一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)代数式7x-的意义可以是()A.7-与x的和B.7-与x的差C.7-与x的积D.7-与x的商2.(3分)淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向3.(3分)化简332()yx的结果是()xA.6xy B.5xy C.25x yx y D.26 4.(3分)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()A.(黑桃)B.(红心)C.(梅花)D.(方块)5.(3分)四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC ∆为等腰三角形时,对角线AC 的长为()A .2B .3C .4D .56.(3分)若k 为任意整数,则22(23)4k k +-的值总能()A .被2整除B .被3整除C .被5整除D .被7整除7.(2分)若2a =7b =2214(a b =)A .2B .4C 7D 28.(2分)综合实践课上,嘉嘉画出ABD ∆,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.(1)~(3)是其作图过程.(1)作BD 的垂直平分线交BD 于点O ;(2)连接AO ,在AO 的延长线上截取OC AO =;(3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A .两组对边分别平行B .两组对边分别相等C .对角线互相平分D .一组对边平行且相等9.(2分)如图,点18~P P 是O 的八等分点.若△137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A .a b <B .a b=C .a b>D .a ,b 大小无法比较10.(2分)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯,下列正确的是()A .12119.4610109.4610⨯-=⨯B .12129.46100.46910⨯-=⨯C .129.4610⨯是一个12位数D .129.4610⨯是一个13位数11.(2分)如图,在Rt ABC ∆中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF .若16AMEF S =正方形,则(ABC S ∆=)A .43B .83C .12D .1612.(2分)如图1,一个22⨯的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A .1个B .2个C .3个D .4个13.(2分)在ABC ∆和△A B C '''中,30B B '∠=∠=︒,6AB A B ''==,4AC A C '='=,已知C n ∠=︒,则(C ∠'=)A .30︒B .n ︒C .n ︒或180n ︒-︒D .30︒或150︒14.(2分)如图是一种轨道示意图,其中 ADC 和 ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y .则y 与x 关系的图象大致是()A .B .C .D .15.(2分)如图,直线12//l l ,菱形ABCD 和等边EFG ∆在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D 、E 、G 在同一直线上.若50α∠=︒,146ADE ∠=︒,则(β∠=)A .42︒B .43︒C .44︒D .45︒16.(2分)已知二次函数22y x m x =-+和22(y x m m =-是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A .2B .2mC .4D .22m 二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.(2分)如图,已知点(3,3)A ,(3,1)B ,反比例函数(0)ky k x=≠图象的一支与线段AB 有交点,写出一个符合条件的k 的整数值:.18.(4分)根据表中的数据,写出a 的值为,b 的值为.2n31x +7b21x x+a119.(4分)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)α∠=度;(2)中间正六边形的中心到直线l 的距离为(结果保留根号).三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(9分)某惯性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)312-在某一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.21.(9分)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图所示(1)a>.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如表2和表3,其面积S,2S.分别为1表2表3(1)请用含a 的式子分别表示1S ,2S ,当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.22.(9分)某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.(10分)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,其运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0,)B c 处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.24.(10分)装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50AB cm =,如图1和图2所示,MN 为水面截线,GH 为台面截线,//MN GH .计算:在图1中,已知48MN cm =,作OC MN ⊥于点.C (1)求OC 的长.操作将图1中的水槽沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动.如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究在图2中.(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.25.(12分)在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式;从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例点P 从原点O 出发连续移动2次:若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E.l经过上例中的点M、N,求1l的解析式,并直接写出将1l向上平移(1)设直线19个单位长度得到的直线l的解析式;2(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y.其中,按甲方式移动了m次.①用含m的式子分别表示x,y;l,在②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为3 l的图象;图中直接画出3l,2l,3l上分别有一个动点A,B,C,横坐标(3)在(1)和(2)中的直线1依次为a,b,c,若A,B,C三点始终在一条直线上,直接写出此时a,b,c 之间的关系式.26.(13分)如图1和图2,平面上,四边形ABCD中,8CD=,AB=,BC=,12DM=.将线段MA绕点M顺时针旋转∠=︒,点M在AD边上,且2ADA=.906︒<到MA',A MA∠'的平分线MP所在直线交折线AB BCn n(0180)-于点P,设点P 在该折线上运动的路径长为(0)x x>,连接A P'.(1)若点P在AB上,求证:A P AP'=;(2)如图2,连接BD.①求CBDn=时,x的值;∠的度数,并直接写出当180②若点P到BD的距离为2,求tan A MP∠'的值;(3)当08<时,请直接写出点A'到直线AB的距离(用含x的式子表示).x2023年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题,共38分,1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:代数式7x -的意义可以是7-与x 的积.故选:C .2.【解答】解:如图:由题意得:70ABC ∠=︒,//AB CD ,70ABC DCB ∴∠=∠=︒,∴淇淇家位于西柏坡的北偏东70︒方向,故选:D .3.【解答】解:332(y x x 632y x x =⋅6xy =,故选:A .4.【解答】解: 抽到黑桃的概率为17,抽到红心的概率为37,抽到梅花的概率为17,抽到方块的概率为27,∴抽到的花色可能性最大的是红心,故选:B .5.【解答】解:ABC ∆ 为等腰三角形,AB AC ∴=或AC BC =,当4AC BC ==时,4AD CD AC +==,此时不满足三角形三边关系定理,当3AC AB ==时.满足三角形三边关系定理,3AC ∴=.故选:B .6.【解答】解:22(23)4k k +-2241294k k k =++-129k =+3(43)k =+,k 为任意整数,22(23)4k k ∴+-的值总能被3整除,故选:B .7.【解答】解:a = ,b =,∴2==,故选:A .8.【解答】解:由作图得:DO BO =,QO CO =,∴四边形ABCD 为平行四边形,故选:C .9.【解答】解:连接45P P ,56P P .点18~P P 是O 的八等分点,34455667P P P P P P P P ∴===,171346PP PP P P ==,347613b a P P P P P P ∴-=+-,545646P P P P P P +> ,347613P P P P P P ∴+>,0b a ∴->,a b ∴<,故选:A .10.【解答】解:129.46109460000000000km km ⨯=是一个13位数.故选:D .11.【解答】解: 四边形AMEF 是正方形,又16AMEF S = 正方形,216AM ∴=,4AM ∴=,在Rt ABC ∆中,点M 是斜边BC 的中点,∴12AM BC =,即28BC AM ==,在Rt ABC ∆中,4AB =,∴AC ===,∴11422ABC S AB AC ∆=⋅=⨯⨯=,故选:B .12.【解答】解:平台上至少还需再放这样的正方体2个,故选:B .13.【解答】解:当BC B C =''时,ABC ∆≅△()A B C SSS ''',C C n ∴∠'=∠=︒,当BC B C ≠''时,如图,A C A C ''=''' ,A C C C n ∴∠''''=∠'=︒,180A C B n ∴∠''''=︒-︒,C n ∴∠'=︒或180n ︒-︒,故选:C .14.【解答】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是AM CN R ++,两个人机器人速度相同,∴同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A 、C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是半径R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除B ;故选:D .15.【解答】解:如图,延长BG ,146ADE ∠=︒ ,18034ADB ADE ∴∠=︒-∠=︒,ADB AHD α∠=∠+∠ ,5034AHD ADB α∴∠=∠-∠=︒-︒,16=︒,12//l l ,16GIF AHD ∴∠=∠=︒,EGF GIF β∠=∠+∠ ,601644EGF GIF β∴∠=∠-∠=︒-︒=︒,故选:C .16.【解答】解:令0y =,则220x m x -+=和220x m -=,0x ∴=或2x m =或x m =-或x m =,这四个交点中每相邻两点间的距离都相等,不妨假设0m >,则22m m =,2m ∴=,抛物线22y x m =-的对称轴0x =,抛物线22y x m x =-+的对称轴22m x =,∴这两个函数图象对称轴之间的距离222m ==.故选:A .二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.【解答】解:由图可知:0k >,反比例函数(0)k y k x=>的图象与线段AB 有交点,且点(3,3)A ,(3,1)B ,∴把(3,1)B 代入k y x =得,3k =,把(3,3)A 代入k y x=得,339k =⨯=,∴满足条件的k 值的范围是39k ,故4k =(答案不唯一),故答案为:4k =(答案不唯一).18.【解答】解:当2x =时,21221522x x +⨯+==,即52a =;当x n =时,211n n +=,解得:1n =-,经检验,1n =-是分式方程的解,那么当1x =-时,31312x +=-+=-,即2b =-,故答案为:52;2-.19.【解答】解:(1)作图如图所示,多边形是正六边形,60ACB ∴∠=︒,//BC 直线l ,90ABC ∴∠=︒,30α∴=︒;故答案为:30︒;(2)取中间正六边形的中心为O ,作图如图所示,由题意得,//AG BF ,//AB GF ,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,BAC FGH ∠=∠ ,90ABC GFH ∠=∠=︒,()ABC GFH SAS ∴∆≅∆,BC FH ∴=,在Rt PDE ∆中,1DE =,PE =,由图1知2AG BF PE ===OM PE ==,1()12BC BF CH =-=-,∴3tan BC AB BAC ===-∠,∴21BD AB =-=, 1212DE =⨯=,∴BE BD DE =+=,∴ON OM BE =+=.∴中间正六边形的中心到直线l的距离为,故答案为:.三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.【解答】解:(1)由题意可得:43214(2)6⨯+⨯+⨯-=(分),答:珍珍第一局的得分为6分;(2)由题意可得:331(103)(2)613k k +⨯+--⨯-=+,解得:6k =.21.【解答】解:(1)由图可知21(2)(1)32S a a a a =++=++,2(51)151S a a =+⨯=+,当2a =时,1246210123S S +=++++=;(2)12S S >,理由:22212325121(1)0S S a a a a a a -=++--=-+=- ,12S S ∴>.22.【解答】解:(1)由条形图可知,第10个数据是3分,第11个数据是4分,∴中位数为3.5分,由统计图可得平均数为3.5分,∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.(2)监督人员抽取的问卷所评分数为x 分,则有3.520 3.55201x ⨯+>+,解得 4.55x >,满意度从低到高为1分,2分,3分,4分,5分,共5档.∴监督人员抽取的问卷所评分数为5分,45< ,∴加入这个数据,客户所评分数按从小到大排列后,第11个数据不变还是4分,即加入这个数据后,中位数是4分,∴与(1)相比,中位数是发生了变化,由3.5分变成4分.23.【解答】解:(1) 抛物线21:(3)2C y a x =-+,1C ∴的最高点坐标为(3,2),点(6,1)A 在抛物线21:(3)2C y a x =-+上,21(63)2a ∴=-+,19a ∴=-,∴抛物线211:(3)29C y x =--+,当0x =时,1c =;(2) 嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,∴此时,点A 的坐标范围是(5,1)~(7,1),当经过(5,1)时,112551188n =-⨯+⨯++,解得:175n =,当经过(7,1)时,114971188n =-⨯+⨯++,解得:417n =,∴174157n ,n 为整数,∴符合条件的n 的整数值为4和5.24.【解答】解:(1)连接OM ,O 为圆心,OC MN ⊥于点C ,48MN cm =,1242MC MN cm ∴==,50AB cm = ,1252OM AB cm ∴==,在Rt OMC ∆中,7()OC cm ===;(2)GH 与半圆的切点为E ,OE GH ∴⊥,//MN GH ,OE MN ∴⊥于点D ,30ANM ∠=︒ ,25ON cm =,∴12522OD ON cm ==,∴操作后水面高度下降高度为:2511722cm -=;(3)OE MN ⊥ 于点D ,30ANM ∠=︒,60DOB ∴∠=︒,半圆的中点为Q ,∴AQ QB =,90QOB ∴∠=︒,30QOE ∴∠=︒,253tan ()3EF QOE OE cm ∴=∠⋅=, EQ 的长为302525()1806cm ππ⨯⨯=,2506π-=,EF EQ∴>.25.【解答】解:(1)设1l 的解析式为y kx b =+,由题意可得:4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,1l ∴的解析式为6y x =-+,将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;(2) 点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了(10)m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为(2,)m m ,∴点(2,)m m 按照乙方式移动(10)m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为2(10)20m m m +-=-,10x m ∴=+,20y m =-;②102030x y m m +=++-= ,∴直线3l 的解析式为30y x =-+;函数图象如图所示:(3) 点A ,B ,C ,横坐标依次为a ,b ,c ,∴点(,6)A a a -+,点(,15)B b b -+,点(,30)C c c -+,设直线AB 的解析式为y mx n =+,由题意可得:615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a a n b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为99(1)6a y x b a b a=-++---, 点A ,点B ,点C 三点始终在一条直线上,99(1)630a c c b a b a∴-++-=-+--,538a c b ∴+=,a ∴,b ,c 之间的关系式为538a c b +=.26.【解答】(1)证明: 将线段MA 绕点M 顺时针旋转n ︒(0180)n <得到MA ',A M AM ∴'=,A MAd ∠' 的平分线MP 所在的直线交折线AB BC -于点P ,A MP AMP ∴∠'=∠,PM PM = ,∴△()A MP AMP SAS '≅∆,A P AP ∴'=;(2)解:①8AB = ,6DA =,90A ∠=︒,10BD ∴==,又BC =,12CD =,2210044144BD BC ∴+=+=,2144CD =,222BD BC CD ∴+=,90CBD ∴∠=︒;如图2所示,当180n =时,PM 平分A MA ∠'.90PMA ∠=︒,//PM AB ∴,DNM DBA ∴∆∆∽,∴DN DM MN DB DA BA==,2DM = ,6DA =,∴21068DN MN ==,∴108,33DN MN ==,∴203BN BD DN =-=,90PBN MD ∠=∠=︒ ,PNB DNM ∠=∠,PBN DMN ∴∆∆∽,∴PB BN DM MN =,即2028PB =,5PB ∴=,8513x AB PB ∴=+=+=.②如图所示,当P 点在AB 上时,2PQ =,A MP AMP ∠'=∠,8AB ∴=,6DA =,90A ∠=︒,∴2810BD =+=,∴63sin 105AD DBA BD ∠===,∴210sin 53BQ BP DBA ===∠,∴1014833AP AB BP =-=-=,∴147tan tan 46AP AMP AMP AM ∠=∠===,如图所示,当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,90PQB CBD DAB ∠=∠=∠=︒ ,90QPB PBQ DBA ∴∠=︒-∠=∠,PQB BAD ∴∆∆∽,∴PQ QB PB BA AD BD ==,即8610PQQ QB PB ==,∴4855PQ PB ==,3655BQ PB ==,∴465AQ AB BQ =+=,PQ AB ⊥ ,DA AB ⊥,//PQ AD ∴,HPQ HMA ∴∆∆∽,∴HQ PQ HA AM =84645HQ HQ =+,解得:9215HQ =,tan tan tan AMP AMP ∴∠=∠=9223856HQ QPH PQ ∠===,综上所述,tan A MP ∠'的值为76或236;(3)解: 当08x <时,P ∴在AB 上,如图所示,过点A '作A E AB '⊥于点E ,过点M 作MF A E ⊥'于点F ,则四边形AMFE 是矩形,AE FM ∴=,4EF AM ==,△A MP AMP '≅∆,90PA M A ∴∠'=∠=︒,90PA E FA M ∴∠'+∠'=︒,又90A MF FA M '∠+∠'=︒,PA E A MF ∴∠'=∠',又90A E MFA '∠=∠=︒ ,∴△A PE '∽△MA F ',∴A P PE A E MA A F MF''=='',A P AP x '== ,4MA MA '==,设FM AE y ==,A E h '=,即44x x y h h y -==-∴4h y x=,4()(4)x y x h -=-,∴44()(4)h x x h x -=-,整理得22816x h x =+,即点A '到直线AB 的距离为22816x x +.。
2020河北省中考数学试题(精校word版,含答案)2套
河北中考数学试卷(一)第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( ) A .2(3)-B .32-÷C .0(2017)⨯-D .23-2.把0.0813写成10na ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1B .2-C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( )A .23n mB .23m nC .32m nD .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( ) A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A .北偏东55︒B .北偏西55︒C .北偏东35︒D .北偏西35︒11.如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的( )12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+-=B .004446++= C .34446++= D .14446-÷+=13.若321x x -=-( )11x +-,则( )中的数是( ) A .1-B .2-C .3-D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为m .18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3--= ;若{}22min (1),1x x -=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?CO=,求p.(2)若原点O在图中数轴上点C的右边,且2821.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.发现任意五个连续整数的平方和是5的倍数.验证(1)22222-++++的结果是5的几倍?(1)0123(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.AB=,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转23.如图,16270︒后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP BQ =;(2)当43BQ =时,求QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.月份n (月) 1 2 成本y (万元/件) 11 12 需求量x (件/月)120100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .河北中考数学试卷(二)本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题本试卷总分120分,考试时间120分钟.卷I(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:-(-1)=(D)A.±1 B.-2 C.-1 D.12.计算正确的是(D)A.(-5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a3.下列图形中,既是轴对称图形,又是中心对称图形的是(A)A B C D4.下列运算结果为x-1的是(B)A.11x-B.211x xx x-•+C.111xx x+÷-D.2211x xx+++5.若k≠0,b<0,则y=kx+b的图象可能是(B)6.关于ABCD的叙述,正确的是(C)A.若AB⊥BC,则ABCD是菱形B.若AC⊥BD,则ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD,则ABCD是正方形7.12..的是(A)A12B.面积为1212C123D128.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的○1○2○3○4某一位置,所组成的图形不能..围成正方体的位置是(A)图1 图2第8题图A .○1B .○2C .○3D .○49.图示为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( B )第9题图A .△ACD 的外心B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心10.如图,已知钝角△ABC ,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C 为圆心,CA 为半径画弧○1;步骤2:以B 为圆心,BA 为半径画弧○2,将弧○1于点D ;步骤3:连接AD ,交BC 延长线于点H .下列叙述正确的是( A )第10题图A .BH 垂直分分线段ADB .AC 平分∠BADC .S △ABC =BC ·AHD .AB =AD11.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:第11题图甲:b -a <0; 乙:a +b >0;丙:|a |<|b |; 丁:0ba .其中正确的是( C )A .甲乙B .丙丁C .甲丙D .乙丁12.在求3x的倒数的值时,嘉淇同学将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( B )A.11538x x=-B.11538x x=+C.1853xx=-D.1853xx=+13.如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为(C)第13题图A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是(B)A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是(C)第15题图16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有(D)第16题图A.1个B.2个C.3个D.3个以上卷II(非选择题,共78分)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根为____2___.18.若mn=m+3,则2mn+3m-5nm+10=___1___.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.第19题图当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__76___°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___6____°三、解答题(本大题有7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15)-999×21.(本小题满分9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.第21题图22.(本小题满分9分)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.(本小题满分9分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.图1 图2第23题图如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法...求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.(本小题满分10分)某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数第1个第2个第3个第4个…第n个调整前单价x(元)x1x2=6 x3=72 x4…x n调整后单价x(元)y1y2=4 y3=59 y4…y n(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为_x,_y,猜想_y与_x的关系式,并写出推导出过.25.(本小题满分10分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在AQ(弧)上且不.与A点重合,但Q点可与B点重合.发现AP(弧)的长与QB(弧)的长之和为定值l,求l;思考点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.探究当半圆M与AB相切时,求AP(弧)的长.(注:结果保留π,cos 35°=63,cos 55°=33)第25题图备用图26.(本小题满分12分)如图,抛物线L: 1()(4)2y x t x t =---+(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线(0,0)k y k x x =>>于点P ,且OA ·MP =12. (1)求k 值;(2)当t =1时,求AB 长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接..写出t 的取值范围.第26题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年河北省中考数学试卷及答案第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是()A.2(3)- B.32-÷ﻩC.0(2017)⨯-ﻩD.23-2.把0.0813写成10na⨯(110a≤<,n为整数)的形式,则a为( )A.1ﻩB.2-ﻩC.0.813ﻩD.8.133.用量角器测量MON∠的度数,操作正确的是( )4.23222333mn⨯⨯⨯=+++个个……( )A.23nmB.23mnC.32mnD.23mn5.图1-1和图1-2中所有的小正方形都全等,将图1-1的正方形放在图1-2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A.① B.②C.③D.④6.图2为张小亮的答卷,他的得分应是( )A.100分B.80分C.60分D.40分7.若ABC∆的每条边长增加各自的10%得'''A B C∆,则'B∠的度数与其对应角B∠的度数相比( )A.增加了10%B.减少了10%C.增加了(110%)+ D.没有改变8.图3是由相同的小正方体木块粘在一起的几何体,它的主视图是( )CBA姓名得分填空(每小题20分,共100分)① -1的绝对值是 .② 2的倒数是 .③ -2的相反数是 .④ 1的立方根是 .⑤ -1和7的平均数是 .张小亮?1-2213图3正面①②③④图1-1 图1-2图49.求证:菱形的两条对角线互相垂直.已知:如图4,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ﻩ ②∴AO BD ⊥,即AC BD ⊥. ﻩ ③∵四边形ABCD 是菱形, ④∴AB AD =. 证明步骤正确的顺序是( )A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.如图5,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A .北偏东55︒ B.北偏西55︒ C.北偏东35︒ D.北偏西35︒11.图6是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确...的( )12.图7是国际数学日当天淇淇和嘉嘉的微信对话,根据对话 内容,下列选项错误..的是( ) A.4446+-= B.004446++= C.34446++= D .14446-÷+= 13.若321x x -=-( )11x +-,则( )中的数是( ) D611C 9131010图6B 10 10A 8 15D北 东图535°图7嘉嘉,咱俩玩一个数学游戏,好吗?好啊!玩什么游戏?在4 4 4=6等号的左边添加合适的数学运算符号,使等式成立.淇淇淇淇嘉嘉4吨 5吨6吨 7吨60° 乙组12户家庭用水量统计图 A.1- B.2-ﻩC.3-ﻩD.任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图8,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A.甲组比乙组大ﻩB.甲、乙两组相同C.乙组比甲组大 D.无法判断15.如图9,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图10所示.按下列步骤操作: 将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M间的距离可能是( )A .1.4B .1.1C .0.8 D.0.5第Ⅱ卷(共78分) 二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图11,A ,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连用水量(吨) 4 5 6 9 户数 4 5 2 1 xy1 2 3 4 5 12 3 4 5 O xy1 2 3 4 5 12 3 4 5 O xy 1 2 3 4 5 12 3 4 5 O xy 1 2 3 4 5 12 3 4 5 O 图9xy· · O11 A(Q) F E D C N M B(K)图10甲组12户家庭用水量统计图8·接CA ,CB ,分别延长到点M,N ,使AM=AC,BN=BC,测得MN=200 m,则A,B 间的距离为m18.如图12,依据尺规作图的痕迹,计算∠a = °19.对于实数p ,q ,我们用符号}{q p ,m in 表示p ,q 两数中较小的数,如}{12 1m in =,. 因此,}{=--3 2min ,; 若}{1 )1(m in 22=-x ,x ,则=x . 三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)在一条不完整的数轴上从左到右有点A,B,C ,其中A B=2,BC =1,如图13所示.设点A ,B ,C 所对应数的和是p.(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值; 若以C 为原点,p 又是多少?(2)若原点O在图13中数轴上点C的右边,且CO =28,求p .图12ABCD68°α┓┛┏ 图11AB C MN AB C2 1 图1321.(本小题满分9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分....图14是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图14增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.(本小题满分9分)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)()2222232101++++-的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3除的余数是几呢?请写出理由.23.(本小题满分9分)如图15,AB=16,O为A B中点,点C 在线段OB上(不与点O,B 重合),将O C绕点O 逆时针旋转270°后得到扇形COD,AP,BQ 分别切优弧C D\s \up5(⌒) 于点P,Q,且点P,Q在AB 异侧,连接OP. (1)求证:AP=BQ;(2)当BQ=34时,求错误!的长(结果保留π);图14(3)若△A PO 的外心在扇形CO D的内部,求O C的取值范围.24.(本小题满分10分)如图16,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线83983--=x y 与x 轴及直线x =-5分别交于点C ,E .点B,E关于x轴对称,连接AB. (1)求点C,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+四边形,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB的位置,而△C DB与四边形ABD O拼接后可看成△AOC ,这样求S 便转化为直接求△A OC 的面积不更快捷吗?”但大家经反复验算,发现S S AOC ≠Δ,请通过计算解释他的想法错在哪里.ABCD P PQ图15xy 图1683983--=x y 5-=x AB CD E O25.(本小题满分11分)平面内,如图17,在□AB CD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ . (1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).图17ABCDP Q26.(本小题满分12分)某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .月份(月) 1 2 成本(万元/件)1112需求量x (件/月) 120 100B APCD Q备用图。