曲面积分习题课2

合集下载

曲面积分习题课(供参考)

曲面积分习题课(供参考)

第二十二章曲面积分习题课一 疑难问题与注意事项1.第一型曲面积分的计算方法:答 1)先把S 的方程代入,再利用SdS ⎰⎰为S 的表面积;例如,22⎰⎰+S yx dS其中S 为柱面222R y x =+被平面H z z ==,0所截取的部分; 解22221122SSdS H dS RH x y R R Rππ===+⎰⎰⎰⎰. 2)利用公式(1)设有光滑曲面:(,),(,)S z z x y x y D =∈,(,,)f x y z 为S 上的连续函数,则(,,)(,,(,SDf x y z dS f x y z x y =⎰⎰⎰⎰.注 一投------将曲面S 向xOy 面投影得D ;二代------将(,)z z x y =代入到(,,)f x y z 中; 三变换------dS.(2)类似地,如果光滑曲面S 由方程(,),(,)x x y z y z D =∈,则(,,)d ((,),,d SDf x y z S f x y z y z y z =⎰⎰⎰⎰,其中D 表示曲面S 在yOz 面上的投影.(3)如果光滑曲面S 由方程(,),(,)y y x z x z D =∈,则(,,)d (,(,),d SDf x y z S f x y x z z x z =⎰⎰⎰⎰.其中D 表示曲面S 在xOz 面上的投影.3)利用对称性(1)若曲面∑关于xoy 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑位于xoy 上部的曲面,则()()()()10,,,,,d 2,,d ,,,f x y z z f x y z S f x y z S f x y z z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.(2)若曲面∑关于yoz 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑中0x ≥的那部分曲面,则()()()()10,,,,,d 2,,d ,,,f x y z x f x y z S f x y z S f x y z x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.(3)若曲面∑关于xoz 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑中0y ≥的那部分曲面,则()()()()10,,,,,d 2,,d ,,,f x y z y f x y z S f x y z S f x y z y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.(4)若积分曲面∑关于,,x y z 具有轮换对称性,则有[]1(,,)(,,)(,,)3f x y z f y z x f z x y ds ∑=++⎰⎰. 2.第二型曲面积分的方法:答 1)公式:(1)设R 是定义在光滑曲面上的连续函数, 以S 的上侧为正侧,则有注一投-----曲面:(,)S z z x y =向xOy 面投影得D ;二代----将(,)z z x y =代入到(,,)R x y z 中;三定向—看S 的法线方向与z 轴的夹角,若夹角为锐角,则为正,否则为负. (2)类似地,当P 在光滑曲面 上连续时,有这里S 是以S 的法线方向与x 轴的正向成锐角的那一侧为正侧,(3)当Q 在光滑曲面 上连续时,有这里S 是以S 的法线方向与y 轴的正向成锐角的那一侧为正侧. 2)若(,)z z x y =,则 3)高斯公式注 高斯公式(),VSP Q R dxdydz Pdydz Qdzdx Rdxdy x y z∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰的适用条件是:1)函数(,,)P x y z ,(,,)Q x y z ,(,,)R x y z 在V 上具有一阶连续的偏导数. 2)S 封闭,若S 不封闭需要补面,让它封闭,假如补面S *后封闭,则有 3)S 取外侧;如果S 取内侧,则S -取外侧,则有 3.各种积分间的联系τ格林公式 n二 1.计算第一型曲面积分()Sx y z dS ++⎰⎰,其中S 是上半球面2222x y z a ++=(0)a >,0z ≥.解 把:S z=xoy 面投影得222:D x y a +≤(()SDx y z dS x y ++=+⎰⎰⎰⎰3a π=.注(0Dx y +=⎰⎰,因为222:D x y a +≤关于,x y 轴对称,且(x y +2.计算曲面积分2Sz dS ⎰⎰,其中S 是球面2222xy z a ++=.解: ∵球面2222x y z a ++=关于x ,y ,z 具有对称性, ∴222SSSx dS y dS z dS ==⎰⎰⎰⎰⎰⎰ ∴2Sz dS ⎰⎰=2221()3Sx y z dS ++⎰⎰ =22133S Sa a ds ds =⎰⎰⎰⎰22214.433a a a ππ==. 3.计算曲面积分⎰⎰∑-+zdxdy dydz x z )(2,其中∑是旋转抛物面)(2122y x z +=介于平面0=z 及2=z 之间部分的下侧.解 补平面2:1=∑z 的上侧,则1∑+∑为封闭曲面,在其上应用高斯公式:π82)11(=+-=⎰⎰⎰⎰⎰ΩxyD dxdy dxdydz .4.计算第二型曲面积分Sxdydz ydzdx zdxdy -+⎰⎰,其中曲面S为椭球面2222221x y z a b c ++=的上半部分,其方向为下侧. 解:为求1SI xdydz ydzdx zdxdy =-+⎰⎰ (S 取下侧),只须求2SI xdydz ydzdx zdxdy =-+⎰⎰(S 取上侧),那么12I I =-.为求2I ,将S 与底面'S (其中'S 是S 在xoy 坐标面上的投影)组成的封闭曲面记为total S ,即'total S SS =,其中S 方向取上侧,'S 方向取下侧.设total S 围成的区域为()222222,,|1,0x y z V x y z z a b c ⎧⎫=++≤≥⎨⎬⎩⎭,由高斯公式:213Vabcdxdydz π==⎰⎰⎰. 又由于'0S xdydz ydzdx zdxdy -+=⎰⎰,那么223I abc π=,从而 123SabcI xdydz ydzdx zdxdy π=-+=-⎰⎰. 5.计算Sxdydz ydzdx zdxdy ++⎰⎰,其中S是上半球面z =解:曲面S 不封闭,补上曲面2221:0()S z x y a =+≤,取下侧6.⎰⎰++Sdxdy z dzdx y dydz x 333,其中S 是单位球面1222=++z y x 的外侧. 解333222()SVx dydz y dzdx z dxdy x y z dxdydz ++=++⎰⎰⎰⎰⎰2140123sin 5d d r dr ππϕθϕπ==⎰⎰⎰.7.求222222()()()CI y z dx z x dy x y dz =-+-+-⎰,其中C 是立方体{0,0,0,}x a y a z a ≤≤≤≤≤≤的表面与平面32x y z a ++=的交线,取向从z 轴正向看去是逆时针方向. 解:可见交线若分为六段积分的计算量很大,且C 也不便于表示为一个统一的参数式,因C 为闭曲线,且22P y z =-,22Q z x =-,22R x y =-连续可微,故考虑用斯托克斯公式,令∑为32x y z a ++=被C 所围的一块,取上侧,则C 的取向与∑的取侧相容,应用斯托克斯公式得23394()242a x y z dS dS a a ∑∑=-++==-⋅=-⎰⎰⎰⎰. 8.计算()d ()d ()d I z y x x z y x y z Γ=-+-+-⎰,其中221:2x y x y z ⎧+=Γ⎨-+=⎩,从z 轴正向看为顺时针方向(图10-23).解 用斯托克斯公式取:2x y z ∑-+=以Γ为边界所围有限部分的下侧,它在xOy 面上的投影区域为22{(,)1}xy D x y x y =+≤,则d d d d d d y z z x x yI x y z z yx zx y∑∂∂∂=∂∂∂---⎰⎰2d d 2d d 2xyD x y x y π∑==-=-⎰⎰⎰⎰.。

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-曲面积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-曲面积分(圣才出品)

的上半部分并取外侧为正向;
其中 S 是球面
并取外侧
为正向。
解:(1)因
所以原积分 (2)由对称性知只需计算其中之一即可。 由于
因此原积分=3 × 8=24。 (3)由对称性知,
(4)作球坐标变换,令


4 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

(5)由轮换对称知只计算
面所围的立方体表面并取外侧为正向; 其中 S 是以原点为中心,边长为 2 的立方体
表面并取外侧正向; 其中 S 是由平面 x=y=z=0 和 x+y+z=1 所围的四面
3 / 19
圣才电子书

体表面并取外侧为正向;
十万种考研考证电子书、题库视频学习平台
其中 S 是球面
解:(1)因
从而
(2)面积 S 由两部分 组成,其中 面上的投影区域都是
由极坐标变换可得
它们在:xOy
1 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

2.求均匀曲面 解:设质心坐标为
x≥0,y≥0,z≥0 的质心。 ,由对称性有:
其中 S 为所求曲面的面积, 而
解:
十万种考研考证电子书、题库视频学习平台
由柱面坐标变换
z=z,0≤0≤2π,0≤r≤h,r≤z≤h
(5)原曲线不封闭,故添加辅助曲面

2.应用高斯公式计算三重积分
≤1 与
所确定的空间区域。
解:
其中 V 是由 x≥0,y≥0,0≤z
3.应用斯托克斯公式计算下列曲线积分: 其中 L 为 x+y+z=1 与三坐标面的交线,

D 为 S 在 xOy 面投影
所以质心坐标为

高数A(2)习题课(11)曲面积分

高数A(2)习题课(11)曲面积分



R( x, y, z )dxdy
D xy
R( x, y, z ( x, y) ) dxdy
Dxy
如果取下侧, 则


R( x, y, z)dxdy
R( x, y, z( x, y))dxdy
如果为x=x(y, z), (y, z)Dyz, P(x,y,z)C(), 则
2
2
2
2 a cos
0
r [cos sin cos sin ]rdr
2
o x
y
1 2 (cos sin cos sin ) (2a cos ) 4 d 2 4
8 2a
4

2
0
4 2 64 8 2a 2a 4 cos d 5 3 15

分记作2, 1在xoy面上投影为 1 2 于是, 2 2 Dx y {( x, y ) | x y a } 2
h
1


o
a
I ( x 2 y 2 )d S ( x 2 y 2 )d S
1 2
2 2
Dx y
ay
2
( x y )d S 0 D ( x y )
x
Dxy
y
2
R2 u 2 v2 dudv Dyz 2 所以, 2 2 2 3 u v R ,0v 2 3 R 类似地,有 ydzdx R I c R2 2 R3 3 3
(a R2 ( y b)2 ( z c)2 )dydz
课件制作:肖萍 赵庆华 李丹衡
一、 二、
内容总结 作业选讲

曲面积分-习题课2共35页文档

曲面积分-习题课2共35页文档
为O 点 (0,0,0)到平 Π 的 面 距 ,求S离 (x,zy,z)dS.
解 设(X,Y,Z)为上任意,一 则点 得 出的方程为
xX yYzZ1 22 由点O到平面的距离公式,得
(x, y,z)
1 x2 y2 z2 44
设 S为椭球 x2面 y2z21的上半部 22
由z 1 x2 y2
22
一、教学要求
1. 了解两类曲面积分的概念及高斯 Gauss) 斯托克斯(Stokes)公式, 并会 、 计算两类曲面积分.
2.了解散度、旋度的概念及其计算 方法.
3. 会用曲面积分求一些几何量与物 理量.
理论上的联系
1.定积分与不定积分的联系
b
a f ( x ) d F x ( b ) F ( a )( F ( x ) f ( x ))
牛顿--莱布尼茨公式
2.二重积分与曲线积分的联系
D( Q x P y)dx d L Py dQ xd (沿 y L 的)正向
格林公式
3.三重积分与曲面积分的联系
( P x Q y R z)d v P d Q yd d R zzd dx xd
高斯公式
4.曲面积分与曲线积分的联系
z
x
,
x
x2 y2
2 1
22

z
y
y 2 1 x2 y2
22
dS 1x z2 yz2dxdy 4 x2 y2 dxdy 2 1 x2 y2 22
所以
dS 4x2 y2 dxdy
z dS
S (x, y,z)
1 (4x2y2)dxdy
4 Dxy
2 1 x2 y2
22
(x, y,z)
(1 ) 若P,Q,R在闭曲面 所围成的空间 中域

第四章 曲线积分与曲面积分 习题课(二)

第四章 曲线积分与曲面积分 习题课(二)

R ( x , y , z ) dxdy

0
( x , y ) D xy
R ( x , y , z ) dxdy



D xy
R ( x , y , z ( x , y )) dxdy
上正下负
-5-
习 题 课(二)
Q ( x , y , z ) dzdx 的计算

第 十 章 曲 线 积 分 与 曲 面 积 分
d
1
dz
0
2
d
0
1
( cos 1 ) d
2 2

9 4
- 16 -
习 题 课(二)
例5 计算曲面积分
为柱面 x 2 y 2 1
第 十 章 曲 线 积 分 与 曲 面 积 分


x dydz y dzdx z dxdy
2 2 2
其中
zox 面 ,
: y y ( x , z ),
Q ( x , y , z ) dzdx

0
( x , z ) D zx
R ( x , y , z ) dzdx

R ( x , y ( x , z ), z ) dzdx
D zx
右正左负
三 两类曲面积分的关系
1 2
D xy
2
(1)
( x y ) dS ,
2 2
其中 为由锥面 z
z
2
x y
2
2

1
2
o x
y

D xy
( x y ) 2 dxdy
2 2
(1

高中数学(人教版)曲面积分习题课课件

高中数学(人教版)曲面积分习题课课件

z x2 y2
其中Σ 为柱面 被锥 面 割下的 部分.
z
o
y
x
二 题型练习 (一) 对面积的曲面积分的计算
(二) 对坐标的曲面积分的计算
二 题型练习 (一) 对面积的曲面积分的计算
(二) 对坐标的曲面积分的计算
(二) 对坐标的曲面积分的计算 1.用高斯公式计算
2.添加曲面后用高斯公式计算 3.分项直接计算

1
1



Σ
2
2
1
Σ22源自2Σ22
Σ
Σ
(一) 对面积的曲面积分的计算 1.简化计算
2.Σ方程的选择与确定 3.Σ的投影的求法
(一) 对面积的曲面积分的计算 1.简化计算
2.Σ方程的选择与确定 3.Σ的投影的求法
例计 : x y z 2az. 3 算 y 注 确定Σ的方程需考虑 x z 结合所给条件 是否分片; 1 计算曲 例 简化计算. o 4 其中 1 y 是 面积分 1 x 与坐标面所围成的 由平面 Σ的方程需考虑 Σ的 注确定 z 四面体的表面 . x y z 1 ( x z )dS , 计 例 其中 1 1 投影面积非零. C ( , 0, ) 、 5 上以 Σ 为2 2 算 A(1,0,0) B o y 为顶点的球面 B (0,1,0)、 A 确定Σ的方程需考虑Σ x 注
n



0
i 1
i
i
i
i

n
0
i 1
i
i
i
i xy





曲面积分习题课
一 、内容小结
二 、题型练习
曲面积分习题课

高等数学第十一章习题课(二)曲面积分

高等数学第十一章习题课(二)曲面积分

z
B
o
dS
n C

y
z
x
3 2
y A x : x y z 1
n 1 (1, 1, 1)
3
1 3

(3) d S
答: 第一类曲面积分的特例.
2) 设曲面 问下列等式是否成立?
不对 ! 对坐标的积分与 的侧有关
练习: P185 题4(3)
计算 x d y d z y d z d x z d x d y, 其中 为半球面

的上侧. 提示: 以半球底面 0 为辅助面, 且取下侧 , 记半球域为 , 利用 高斯公式有 原式 =
x , 2 2 x y y , 2 2 x y
D

x y I y , x , z 2 , 2 ,1dxdy 2 2 x y x y
2
z 2dxdy

( x 2 y 2 )dxdy
D xy
[ Dxy : 1 x 2 y 2 4 ]

用重心公式
利用对称性
2( x z ) d S

0
例7. 设L 是平面
与柱面
的交线
从 z 轴正向看去, L 为逆时针方向, 计算 解: 记 为平面
上 L 所围部分的上侧,
D为在 xoy 面上的投影. 由斯托克斯公式
z
L
I

1 3 x
2z x y z 2 (4 x 2 y 3z )dS 3
2 2
1 3 y 2
2
3x y 2
1 3 z 2
dS
D
o x
y

曲面积分习题课

曲面积分习题课
Σ Σ1
′x 2 + z ′y 2 dxdy = 1 + ( 2 x ) 2 + ( 2 y ) 2 dxdy dS = 1 + z 原式 = ∫∫ | xyz | dS = 4 ∫∫ xyz dS
= 4 ∫∫ xy ( x 2 + y 2 ) 1 + ( 2 x )2 + ( 2 y )2 dxdy
[ r 2 sin θ cos θ + r 2 (cos θ + sin θ )]rdr
=4
2 π 2a 4 2π (sin θ − 2

cos 5 θ + cos 5 θ + sin θ cos 4 θ )dθ
y
64 = 2a 4 15
o
2a
x
或 ∫ ∫ ( xy + yz + zx )dS = 2 ∫ ∫ [ xy + ( x + y ) x 2 + y 2 ]dxdy
1. 若曲面Σ :

z = z( x, y)
′x 2 + z′y 2 dxdy; 1+ z
∫∫ f ( x , y , z )dS Σ = ∫∫ f [ x , y , z ( x , y )]
D xy
2. 若曲面 Σ: y = y( x, z)

∫∫
Σ
′ 2 + y′ 2dxdz f ( x , y , z )dS = ∫∫ f [ x, y( x, z),z] 1 + yx z
∫∫ Pdydz+Qdzdx+ Rdxdy = ∫∫(Pcosα+Qcosβ+ Rcosγ)dS
Σ Σ

第六章--习题课(曲面积分)

第六章--习题课(曲面积分)

dzdx dxdy
=
cos dS
cosγdS
=
zy 1
dzdx
=
z y dxdy.
所以 dydz = zxdxdy, dzdx = z ydxdy
因此有 Pdydz + Qdzdx + Rdxdy = (Pcosα + Qcosβ + Rcosγ)dS
Σ
Σ
= zx P zyQ + Rdxdy.
(y z) Dyz{(y z)| 0 y1 0 z 3} 故
o 1y
x1
xdyz
1
y2dydz
31
0 dz 0
1 y2dy
D yz
1
30
1 y2dy
= 3 π. 4
可表示为: y 1 x2
z
(z x)Dzx{(z x)|0z3 0x1} 故
2
ydzdx 1 x2dzdx
用重心公式
利用对称性
(曲面关于xoz面对称)
2(x z) d S 0
逐个投影法计算二型面积分
例 7 zdxdy xdydz ydzdx 其中∑是柱面 x2y21 被平面
z0 及 z3 所截得的第一卦限内的部分的前侧.
z
解 在xOy面的投影为零 故 zdxdy 0
3
: x 1 y2
Dyz
2. 利用对称性计算一型面积分
设f x, y,z在闭区域D上连续,I = f(x, y,z)dS
1)若曲面∑关于yoz面对称,∑1 是∑∑的x ≥ 0 的部分, 则
(1)当f x, y,z = f x, y,z时, I 0.
(2)当f x, y,z = f x, y,z时, I = 2 f x, ydσ. 1

习题课曲线曲面积分练习题二

习题课曲线曲面积分练习题二

曲线、曲面积分练习题二(一)利用积分与路径无关的条件求解对坐标的曲线积分1、计算cos cos [sin ln()]x xx x L e e e e xy dx dy x y-+⎰,其中L 是圆周22(2)(2)2x y -+-=沿正向从点(1,1)A 到点(3,3)B 的一段圆弧.2、设()f x 在(,)-∞+∞有连续导数,求2221()[()1]L y f xy x dx y f xy dy y y++-⎰,其中,L 是从点2(3,)3A 到点(1,2)B 的直线段. 3、计算22L ydx xdy x y -+⎰,其中L 为: (1)圆周22(1)(1)1x y -+-=的正向;(2)正方形边界1x y +=的正向.4、设函数)(x f 在),(∞+-∞内具有一阶连续导数,L 是上半平面)0(>y 内的有向分段光滑曲线,起点为),,(b a 终点为),,(d c 记⎰++=L dx xy f y y I )](1[12,]1)([22dy xy f y yx - (1)证明曲线积分I 与路径无关;(2)当cd ab =时,求I 的值。

5、设函数)(y ϕ具有连续的导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++L y x xydydx y 4222)(ϕ的值恒为常数。

则(1)对右半平面0>x 内的任意分段光滑简单闭曲线C ,有022)(42=++⎰L y x xydy dx y ϕ;(2)求函数)(y ϕ的表达式。

(二)利用格林公式求解对坐标的曲线积分 6、设C 为曲线32y x =和直线y x =所围成的区域整个边界,沿逆时针方向,则曲线积分23C x ydx y dy +=⎰( )(A) 1;44 (B)1;44- (C)23;44 (D)23.44- 7、计算[sin ()](cos ),x x L I e y b x y dx e y ax dy =-++-⎰其中,a b 为正的常数,L 为从点(2,0)A a 沿曲线y =(0,0)O 的弧.8、计算下列曲线积分[()cos ][()sin ]AMB I y x y dx y x dy ϕπϕπ'=-+-⎰,其中AMB 为连接点(,2)A π与点(3,4)B π的线段AB 之下方的任意曲线段,且该曲线与线段AB 所围图形面积为2.9、已知平面区域},0,0),{(ππ≤≤≤≤=y x y x D L 为D 的正向边界,试证sin sin sin sin 22y x y x L L xedy ye dx xe dy ye dx π---=-≥⎰⎰.(三)利用斯托克斯公式求解空间曲线上对坐标的曲线积分10、 计算333,z dx x dy y dz Γ++⎰,其中Γ是222()z x y =+与223z x y =--的交线,从Oz 轴的正向看Γ是逆时针方向的.(四)利用四个等价命题求解有关问题11、确定常数λ,使在右半平面0x >上,422422()()xy x y dx x x y dy λλ+-+为某二元函数(,)u x y 的全微分,并求(,)u x y .(五)第一类曲面积分12、计算4(2)3z x y dS ∑++⎰⎰,其中∑为平面1234x y z ++=在第一卦限中的部分. 13、计算,zds ∑⎰⎰其中,∑为柱面222x y R +=被0,0,0x y z ===及1z =截得的第一卦限的部分. 14、计算2,z dS ∑⎰⎰其中∑为球面2222.x y z a ++= 15、计算,xdS ∑⎰⎰其中∑为圆柱面221x y +=被平面2z x =+及0z =所截得的部分. 16、计算22()x y dS ∑+⎰⎰,其中∑是线段(01)0z y z x =⎧≤≤⎨=⎩绕Oz 轴旋转一周所得到的旋转曲面. 17、计算曲面积分⎰⎰∑,zdS 其中∑为锥面22y x z +=在柱体x y x 222≤+内的部分。

第十章 曲面积分 习题课

第十章 曲面积分 习题课

3d x d y d z 0 xdydz ydzdx zdxdy
3 2 R3 0 2 R3
3
9
例. 设 是四面体 x y z 1 , x 0 , y 0 , z 0的表
面, 计算
z1
解: 在四面体的四个面上
平面方程
dS
1 o 1y 投影域 x
z 1 x y 3dx dy Dxy : 0 x 1, 0 y 1 x
59
和平面 z = y 下方的那部分的侧面积
解一 易见曲面对称于 yoz 面
A dS 2dS
1
:
x2 5
y2 9
1,x
1
0, y
0,0
z
y
1 在 yoz 面的投影
D : 0 y 3,0 z y
12
x 5 9 y2 3
A 2
1
x
2 y
xz2dydz
D
2 81 y2 dydz
6
关于对称性
对面积的曲面积分与侧无关,具有与三重积 分相类似的奇偶性
你对称,我奇偶
积分曲面对称于坐标面,被积函数关于另一个 变量具有奇偶性
对坐标的曲面积分的对称性比较复杂,一般 不直接使用,可利用两类曲面积分之间的关系 先化为对面积的曲面积分,再使用对称性
7
P184 题2. 设
一卦限中的部分, 则有( C ).
lim
0 i1
f (i ,i , i )Si
n
R(
x,
y,
z)dxdy
lim
0
i 1
R(i
,i
,
i
)(Si
)xy
分、粗、和、精
分、粗、和、精
背景 性质 计算

曲面积分习题课

曲面积分习题课

z
x
2
a2
y2 b2
z2 c2
1时,
应如何
提示: 在椭球面内作辅助小球面 x2 y2 z2 2 取
内侧, 然后用高斯公式(偏导数不连续) .
2021年4月28日星期三
5
例4. 计算曲面积分
中 是球面 x2 y2 z2 2x 2z .
解: I (x2 y2 z2 ) 2xy 2 yz dS
2021年4月28日星期三
15
解s
L
2
L: x3
2
y3
1,
参数方程为
x y
cos3 sin 3
t, t,
(0 t ) 2
2021年4月28日星期三
13
ds ( xt)2 ( yt)2dt 3sin t cos tdt,
S 8 2 1 cos6 t sin6 t 3sin t cos tdt 0
24 2 3sin2 t cos2 t sin t cos tdt 0
24 3 2 sin2 t cos2 tdt
3 3 .
0
2
2021年4月28日星期三
14
练习
1. 计算 1dydz 1 dzdx 1 dxdy ,
x
y
z
为球面 x2 y2 z2 R2 的外侧。
2. 计算 ( y z)dydz (z x)dxdz (x y)dxdy, 为 z 2 x 2 y 2 (0 z h) 的下侧。
的上侧。 解 利用两类曲面积分之间的关系
的法向量为
n
{1,1,1},
z
1
1
oy
cos 1 , cos 1 , cos 1 .
3
3

数学分析22.2第二型曲面积分(含习题及参考答案)

数学分析22.2第二型曲面积分(含习题及参考答案)

第二十二章曲面积分2 第二型曲面积分一、曲面的侧概念:设连通曲面S上到处都有连续变动的切平面(或法线),M为曲面S上的一点,曲面在M处的法线有两个方向:当取定其中一个指向为正方向时,则另一个指向是负方向。

设M0为S上任一点,L为S上任一经过点M0,且不超出S边界的闭曲线。

动点M在M0处与M0有相同的法线方向,且有:当M从M0出发沿L连续移动时,它的法线方向连续地变动,最后当M沿L回到M0时,若这时M的法线方向仍与M0的法线方向相一致,则称曲面S是双侧曲面;若与M0的法线方向相反,则称S是单侧曲面.默比乌斯带:这是一个典型的单侧曲面例子。

取一矩形长纸带ABCD,将其一端扭转180°后与另一端黏合在一起(即让A与C重合,B与D 重合(如图).注:通常由z=z(x,y)所表示的曲面都是双侧曲面,当以其法线正方向与z轴的正向的夹角成锐角的一侧为正侧(也称为上侧)时,另一侧为负侧(也称为下侧). 当S为封闭曲面时,通常规定曲面的外侧为正侧,内侧为负侧.二、第二型曲面积分的概念引例:设流体以一定的流速v=(P(x,y,z),Q(x,y,z),R(x,y,z))从给定的曲面S 的负侧流向正侧,其中P ,Q,R 为所讨论范围上的连续函数,求单位时间内流经曲面S 的总流量E.分析:设在曲面S 的正侧上任一点(x,y,z)处的单位法向量为 n=(cos α,cos β,cos γ). 这里α,β,γ是x,y,z 的函数,则 单位时间内流经小曲面S i 的流量近似地等于v(ξi ,ηi ,ζi )·n(ξi ,ηi ,ζi )△S i =[P(ξi ,ηi ,ζi )cos αi ,Q(ξi ,ηi ,ζi )cos βi ,R(ξi ,ηi ,ζi )cos γi ]△S i , 其中(ξi ,ηi ,ζi )是S i 上任意取定的一点,cos αi ,cos βi ,cos γi 分别是S i 正侧上法线的方向余弦, 又△S i cos αi ,△S i cos βi ,△S i cos γi 分别是S i 正侧在坐标面yz, zx 和xy 上 投影区域的面积的近似值, 并分别记作△S iyz ,△S izx ,△S ixy , 于是 单位时间内由小曲面S i 的负侧流向正侧的流量也近似地等于 P(ξi ,ηi ,ζi )△S iyz +Q(ξi ,ηi ,ζi )△S izx +R(ξi ,ηi ,ζi )△S ixy ,∴单位时间内由曲面S 的负侧流向正侧的总流量为: E=}),,(),,(),,({lim 10ixy i i i ni izx i i i iyz i i i T S R S Q S P ∆+∆+∆∑=→ζηξζηξζηξ.定义1:设P , Q, R 为定义在双侧曲面S 上的函数,在S 所指定的一侧作分割T ,它把S 分成n 个小曲面S 1,S 2,…,S n 组,分割T 的细度T =ni ≤≤1max {S i 的直径}, 以△S iyz ,△S izx ,△S ixy 分别表示S i 在三个坐标面上的投影区域的面积, 它们的符号由S i 的方向来确定.若S i 的法线正向与z 轴正向成锐角时, S i 在xy 平面的投影区域的面积 △S ixy 为正. 反之,若S i 的法线正向与z 轴正向成钝角时, △S ixy 为负. 在各小曲面S i 上任取一点(ξi ,ηi ,ζi ). 若存在以下极限∑∑∑=→=→=→∆+∆+∆ni ixy iiiT ni izx iiiT ni iyz iiiT S R S Q S P 111),,(lim),,(lim),,(limζηξζηξζηξ,且与曲面S 的分割T 和(ξi ,ηi ,ζi )在S i 上的取法无关,则称此极限为 函数P , Q, R 在曲面S 所指定的一侧上的第二型曲面积分,记作:⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(, 或⎰⎰⎰⎰⎰⎰++SSSdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.注:1、流体以v=(P ,Q,R)在单位时间内从曲面S 的负侧流向正侧的总流量E=⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.2、若空间磁场强度为(P(x,y,z),Q(x,y,z),R(x,y,z),), 则通过曲面S 的磁通量(磁力线总数) H=⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.性质:1、若⎰⎰++S i i i dxdy R dzdx Q dydz P(i=1,2,…,k)存在,则有dxdy R c dzdx Q c dydz P c k i i i k i i i S k i i i ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑⎰⎰∑===111=dxdy R dzdx Q dydz P c i i S i ki i ++⎰⎰∑=1,其中c i(i=1,2,…,k)是常数.2、若曲面S 是由两两无公共内点的曲面块S 1,S 2,…,S k 所组成,且⎰⎰++iS RdxdyQdzdx Pdydz(i=1,2,…,k)存在,则有⎰⎰++SRdxdy Qdzdx Pdydz =∑⎰⎰=++ki S Rdxdy Qdzdx Pdydz i1.三、第二型曲面积分的计算定理22.2:设连续函数R 定义在光滑曲面S :z=z(x,y), (x,y)∈D xy 上, 以S 的上侧为正侧(即S 的法线方向与z 轴正向成锐角),则有⎰⎰Sdxdy z y x R ),,(=⎰⎰xyD dxdy y x z y x R )),(,,(.证:由第二型曲面积分定义得⎰⎰Sdxdy z y x R ),,(=ixy ni iiiT S R ∆∑=→1),,(lim ζηξ=ixy ni i i i i d S z R ∆∑=→1)),(,,(lim ηξηξ,其中d=max{S ixy 的直径}. ∴由T =ni ≤≤1max {S i 的直径}→0, 可推得d →0, 又R 在S 上连续,z 在D xy 上连续(即曲面光滑),根据复合函数的连续性, R(x,y,z(x,y))在D xy 上也连续. 由二重积分的定义,有⎰⎰xyD dxdy y x z y x R )),(,,(=ixyni iiiid Sz R ∆∑=→1)),(,,(lim ηξηξ,∴⎰⎰Sdxdy z y x R ),,(=⎰⎰xyD dxdy y x z y x R )),(,,(.注:同理可得,当P 在光滑曲面S :x=x(y,z), (y,z)∈D yz 上连续时, 有 则有⎰⎰Sdydz z y x P ),,(=⎰⎰yzD dydz z y z y x P ),),,((.这里S 是以S 的法线方向与x 轴正向成锐角的那一侧为正侧. 当Q 在光滑曲面S :y=y(z,x), (z,x)∈D zx 上连续时, 有 则有⎰⎰Sdzdx z y x Q ),,(=⎰⎰zxD dzdx z x z y x Q )),,(,(.这里S 是以S 的法线方向与y 轴正向成锐角的那一侧为正侧.例1:计算⎰⎰Sxyzdxdy ,其中S 是球面x 2+y 2+z 2=1在x ≥0, y ≥0部分并取球面外侧.解:S 在第一、五卦限部分分别为:S 1:z 1=221y x --; S 2:z 2=-221y x --; D xy ={(x,y)|x 2+y 2≤1, x ≥0, y ≥0}, 依题意积分沿S 1上侧和S 2下侧进行, ∴⎰⎰Sxyzdxdy =⎰⎰1S xyzdxdy +⎰⎰2S xyzdxdy=⎰⎰--xyD dxdy y x xy 221-⎰⎰---xyD dxdy y x xy 221=2⎰⎰-201023cos sin 1πθθθdr r r d =⎰2022sin 151πθθd =152.注:如果光滑曲面S 由参量方程给出:S: ⎪⎩⎪⎨⎧===),(),(),(v u z z v u y y v u x x , (u,v)∈D.若在D 上各点的函数行列式),(),(v u y x ∂∂,),(),(v u z y ∂∂,),(),(v u x z ∂∂不同时为0,则有 ⎰⎰SPdydz =⎰⎰∂∂±Ddudv v u z y v u z v u y v u x P ),(),()),(),,(),,((, ⎰⎰SQdzdx =⎰⎰∂∂±Ddudv v u x z v u z v u y v u x Q ),(),()),(),,(),,((, ⎰⎰SRdxdy =⎰⎰∂∂±Ddudv v u y x v u z v u y v u x R ),(),()),(),,(),,((, 其中正负号分别对应S 的两个侧,特别当uv 平面的正方向对应于曲面S 的所选定的正向一侧时,取正号,否则取负号.例2:计算⎰⎰Sdydz x 3,其中S 为椭球面222222cz b y a x ++=1的上半部并选取外侧.解:把曲面表示为参数方程:x=asin φcos θ, y=bsin φsin θ, z=ccos φ, 0≤φ≤2π, 0≤θ≤2π. 则),(),(θϕ∂∂z y =sin cos sin sin cos ϕθϕθϕc b b -=bcsin 2φcos θ, 又积分在S 的正侧,∴⎰⎰Sdydz x 3=⎰⎰⋅20202333cos sin cos sin ππθθϕθϕϕd bc a d=⎰⎰2020453cos sin ππθθϕϕd d bc a =52πa 3bc.四、两类曲面积分的联系定理22.3:设S 为光滑曲面,正侧法向量为(cos α,cos β,cos γ), P(x,y,z), Q(x,y,z), R(x,y,z)在S 上连续,则⎰⎰++SRdxdy Qdzdx Pdydz =⎰⎰++SdS R Q P )cos cos cos (γβα.证:⎰⎰Sdxdy z y x R ),,(=ixy ni i i i T S R ∆∑=→1),,(lim ζηξ, 又△S i =dxdy ixyS ⎰⎰γcos 1. 由S 光滑知cos γ在区域S ixy 上连续. 应用中值定理,在S ixy 内必存在一点,使这点的法线方向与z 轴正向的夹角γi °满足 △S i =ixy i S ∆°cos 1γ,即△S ixy =cos γi °△S i .∴R(ξi ,ηi ,ζi )△S ixy =R(ξi ,ηi ,ζi )cos γi °△S i . 于是ixy ni i i i S R ∆∑=1),,(ζηξ=i ni i i i i S R ∆∑=1°cos ),,(γζηξ. 以cos γi 表示曲面S i 在点(x i ,y i ,z i )的法线方向与z 轴正向夹角的余弦,由cos γ的连续性,知当T →0时,i ni i i i i S R ∆∑=1°cos ),,(γζηξ的极限存在, ∴⎰⎰Sdxdy z y x R ),,(=⎰⎰SdS z y x R γcos ),,(. 同理可证:⎰⎰Sdydz z y x P ),,(=⎰⎰SdS z y x P αcos ),,(; ⎰⎰S dzdx z y x Q ),,(=⎰⎰SdS z y x Q βcos ),,(.∴⎰⎰++SRdxdy Qdzdx Pdydz =⎰⎰++SdS R Q P )cos cos cos (γβα.注:当改变曲面的侧时,左边积分改变符号,右边积分中的角要加减π以改变余弦的符号.定理22.4:设P , Q, R 是定义在光滑曲面S: z=z(x,y), (x,y)∈D 上的连续函数,以S 的上侧为正侧,则⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ),,(),,(),,(=⎰⎰+-+-Dy x dxdy y x z y x R z y x z y x Q z y x z y x P ))),(,,()))(,(,,()))(,(,,(.证:cos α=221yx x z z z ++-, cos β=221yx y z z z ++-, cos γ=1, dS=221y x z z ++dxdy.∴⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ),,(),,(),,(=⎰⎰++SdS z y x R z y x Q z y x P )cos ),,(cos ),,(cos ),,((γβα=⎰⎰+-+-Dy x dxdy y x z y x R z y x z y x Q z y x z y x P ))),(,,()))(,(,,()))(,(,,(.例3:计算⎰⎰++Szdxdy dydz z x )2(,其中S={(x,y,z)|z=x 2+y 2, z ∈[0,1]},取上侧.解:∵z x =2x, z y =2y,∴⎰⎰++Szdxdy dydz z x )2(=⎰⎰++++-Ddxdyy x y x x x )]()2(2[2222=⎰⎰++-+-Ddxdy y x x x )])(12(4[222=⎰⎰+-+-πθθθ2010323])1cos 2(cos 4[drr r r d=⎰+--πθθθ202)41cos 52cos (d =2π-.注:由于x(x 2+y 2)是奇函数,∴⎰⎰+Ddxdy y x x )(22=0,又由对称性有⎰⎰Ddxdy x 2=⎰⎰Ddxdy y 2,∴例3中也可化简⎰⎰++Szdxdy dydz z x )2(=⎰⎰++++-Ddxdyy x y xx x )]()2(2[2222=⎰⎰-Ddxdy x y )3(22=-⎰⎰Ddxdy x 22=-⎰⎰πθθ20123cos 2dr r d =-⎰πθθ202cos 21d =2π-. 习题1、计算下列第二型曲面积分:(1)⎰⎰+++-Sdxdy xz y dzdx x dydz z x y )()(22,其中S 为由x=y=z=0, x=y=z=a 六个平面围成的立方体表面并取外侧为正向; (2)⎰⎰+++++Sdxdy x z dzdx z y dydz y x )()()(,其中S 为以原点为中心,边长为2的立方体表面并取外侧为正向; (3)⎰⎰++Szxdxdy yzdzdx xydydz ,其中S 为由x=y=z=0, x+y+z=1所围的四面体表面并取外侧为正向; (4)⎰⎰Syzdzdx ,其中S 为球面x 2+y 2+z 2=1的上半部分并取外侧为正向;(5)⎰⎰++Sdxdy z dzdx y dydz x 222,其中S 为球面(x-a)2+(y-b)2+(z-c)2=R 2并取外侧为正向. 解:(1)∵⎰⎰-Sdydz z x y )(=⎰⎰⎰⎰+-aaaazdz ydy dz z a ydy 0000)(=24a ;⎰⎰Sdzdx x 2=⎰⎰⎰⎰-a aa a dx x dz dx x dz 002002=0;⎰⎰+Sdxdy xz y)(2=⎰⎰⎰⎰-+a aa a dy y dx dy ax y dx 022)(=24a .∴⎰⎰+++-S dxdy xz y dzdx x dydz z x y )()(22=24a +24a =a 4.(2)∵⎰⎰+Sdydz y x )(=⎰⎰⎰⎰----+--+11111111)1()1(dz dy y dz dy y =8,⎰⎰+Sdzdx z y )(=⎰⎰+Sdxdy x z )(=8,∴⎰⎰+++++Sdxdy x z dzdx z y dydz y x )()()(=24.(3)∵⎰⎰Sxydydz =⎰⎰---yydz z y dy 1010)1(=241,⎰⎰S yzdzdx =⎰⎰Szxdxdy =241. ∴⎰⎰++Szxdxdy yzdzdx xydydz =81.(4)令x=sin φcos θ, y=sin φsin θ, z=cos φ, 0≤φ≤2π, 0≤θ≤2π, 则),(),(θϕ∂∂x z =θϕθϕϕsin sin cos cos 0sin -=sin 2φsin θ, 又积分在S 的正侧,∴⎰⎰Syzdzdx =⎰⎰ππθθϕϕϕ202320sin sin cos d d =4π.(5)令x=Rsin φcos θ+a, y=Rsin φsin θ+b, z=Rcos φ+c, 0≤φ≤π, 0≤θ≤2π, 则),(),(θϕ∂∂z y =sin cos sin sin cos ϕθϕθϕR R R -=R 2sin 2φcos θ, 又积分在S 的正侧,∴⎰⎰Sdydz x 2=⎰⎰+ππθθϕθϕϕ202220cos sin )cos sin (d R a R d=⎰⎰++ππθθϕθϕθϕϕ202222333440)cos sin cos sin 2cos sin (d R a aR R d=⎰πϕϕπ033sin 2d aR=338aR π. 根据变换的对称性,可得:⎰⎰++Sdxdy z dzdx y dydz x 222=)(383c b a R ++π. 解法二:令x=rcos θ+a, y=rsin θ+b, 则⎰⎰Sdxdy z 2=rdr r R c d R ⎰⎰-+022220)(πθ-rdr r R c d R⎰⎰--022220)(πθ=4c dr r R r d R⎰⎰-02220πθ=338cR π. 根据变换的对称性,可得:⎰⎰++Sdxdy z dzdx y dydz x 222=)(383c b a R ++π.2、设某流体的流速为v=(k,y,0), 求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量.解:E=⎰⎰+Sydzdx kdydz , 又⎰⎰S kdydz =⎰⎰S dydz k -⎰⎰Sdydz k =0(注:球前+球后).∴E=⎰⎰Sydzdx =⎰⎰ππθθϕϕ20230sin sin 8d d =π332.3、计算第二型曲面积分I=⎰⎰++Sdxdy z h dzdx y g dydz x f )()()(, 其中S 是平行六面体0≤x ≤a, 0≤y ≤b, 0≤z ≤c 的表面并取外侧为正向, f(x),g(y),h(z)为S 上的连续函数.解:⎰⎰Sdydz x f )(=⎰⎰-cbdz f a f dy 00)]0()([=bc[f(a)-f(0)],同理有:⎰⎰Sdzdx y g )(=ac[g(b)-g(0)],⎰⎰Sdxdy z h )(=ab[h(c)-h(0)],∴I=bc[f(a)-f(0)]+ac[g(b)-g(0)]+ab[h(c)-h(0)].4、设磁场强度为E(x,y,z)=(x 2,y 2,z 2), 求从球内出发通过上半球面x 2+y 2+z 2=a 2, z ≥0的磁通量.解:设磁通量为φ, 则φ=⎰⎰++Szdxdy ydzdx xdydz .利用球坐标变换有⎰⎰Szdxdy =⎰⎰ππθϕϕϕ202320sin cos d a d =323a π.又由变换后的对称性,有φ=3zdxdy=2πa3.S。

对面积的曲面积分习题(2)

对面积的曲面积分习题(2)

1 2
O
3
x
2 3 4
y
xyzdS xyzdS xyzdS 0 0 0 xyzdS xyzdS
0 y 1 x 4 : z 1 x y , D xy : 0 x 1
dS 1 z x z y d 3dxdy
2 2

1
y
1
xyzdS xyzdS xy1 x y

3dxdy
O
6
3 xdx
0
1
4 1 x
0
y1 x y dy
D xy
3 120
1
x
dS , 其中 是介于平面 z 0 , z h 例3.计算 I 2 2 2 z x y z 2 2 2 之间的圆柱面 x y R . h 2 : x R2 y2 . 解 1 : x R 2 y 2 , y 2 1 1 2 , D yz : R y R ,0 z h.
1 2
2
4.计算方法—投影法 对面积的曲面积分
f x, y, z dS
若 : z zx , y

(1)将Σ投影到xOy平面,投影区域为 D xy
z z dxdy (2)求 dS 1 x y
2 2
2 2 x dS y dS .



1 2 2 2 2 所以 I 1 dS x dS y dS x y 2 2
1 2 1 1 2 3 2 R dS R dS R 2Rh R h 2 2 2

A11-曲线积分与曲面积分习题课习题课

A11-曲线积分与曲面积分习题课习题课

oC
A
y
x
3 x d z AB
1
30 (1 z)dz
方法2 利用斯托克斯公式 设三角形区域为 , 方向向上, 则
1
1
3
3

x
y
yz


1 3

(3)
d
S
1
3
z
dS
x
3 2
z
B n
oC
A
y
x
:x y z 1
n 1 (1, 1, 1)



f (x, y, z)ds

R(x, y, z)dxdy


f [x, y, z( x, y)]
1

z
2 x

z
2 y
dxdy
R[x, y, z(x, y)]dxdy
Dxy
Dxy
算 一代,二换,三投(与侧无关) 一代,二投,三定向 (与侧有关)
(二)各种积分之间的联系
提示: F 沿右半平面内任意有向路径 L 所作的功为

P


k

x
3
,
Q


k

y
3
易证
P246 11. 求力
沿有向闭曲线 所作的
功, 其中 为平面 x + y + z = 1 被三个坐标面所截成三
角形的整个边界, 从 z 轴正向看去沿顺时针方向.
提示: 方法1
z
B
利用对称性
3 y d x z d y xdz AB
Pdydz Qdzdx Rdxdy

曲面积分习题课_

曲面积分习题课_
Γ

x P
y Q
y Q
z R
dS z R
y
cosα cos β cosγ = ∫∫

x P
2. 旋度
i 称向量 x P j y Q k 为向量场的旋度 (rotA) . z R
R Q P R Q P = ( )i + ( ) j + ( )k. y z z x x y
2. 基本技巧 (1) 利用对称性及重心公式简化计算 (2) 利用高斯公式 注意公式使用条件
两类关系公式的另一种表达形式
向量点积法
设∑ : z = f ( x , y ), 法向量为 { f x′ , f y′ , 1},
I = ∫∫ Pdydz + Qdzdx + Rdxdy

= ∫∫ { P , Q , R} { f x′ , f y′ ,1}dxdy

′ ′ 将∑在xoy面投影± ∫∫ {P, Q, R} { fx , f y , 1}dxdy.
解 设( X , Y , Z )为∏ 上任意一点 , 则得出 ∏ 的方程为 则得出∏ xX yY + + zZ = 1 2 2 由点到平面的距离公式,得 由点到平面的距离公式 得 1 ρ ( x, y, z ) = x2 y2 2 + +z 4 4
x2 y2 由z = 1 2 2
z = x x x2 y2 2 1 2 2
∑ + ∑1 + ∑ 2
∫∫
ydydz xdzdx + z 2dxdy ,
= ∫∫∫ 2zdv
( = 柱坐标) dθ ∫ rdr ∫ 2 zdz + ∫ dθ ∫ rdr ∫ 2 zdz ∫
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.二重积分与曲线积分的联系
D
(Q x
P y
)dxdy
L
Pdx
Qdy
(沿L的正向)
格林公式
3.三重积分与曲面积分的联系
(P x
Q y
R z
)dv
Pdydz
Qdzdx
Rdxdy
高斯公式
4.曲面积分与曲线积分的联系
R Q
P R
Q P
(
y
z
)dydz ( z
)dzdx x
( x
)dxdy y
Pdx Qdy Rdz
2
2
例 计算
I [ f ( x, y, z) x]dydz [2 f ( x, y, z) y]dzdx
[ f ( x, y, z) z]dxdy, 其中 f ( x, y, z) 为连续函数,
为平面
x
y
z
1在第四卦限
部分的上侧.
z
解 利用向量的点积法
1
的法向量为n {zx ,zy ,1}
1)若曲面 : z z( x, y)
则 f ( x, y, z)dS f [ x, y, z( x, y)] 1 zx2 zy2dxdy; Dxy
2)若曲面 : y y( x, z)
则 f ( x, y, z)dS
f [ x, y( x, z), z] 1 yx2 yz2dxdz;
Dxz
பைடு நூலகம்)若曲面 : x x( y, z)
则 f ( x, y, z)dS
f [ x( y, z), y, z] 1 xy2 xz2dydz.
D yz
计算的关键是看所给曲面方程的形式!!!
曲面方程以哪两个变量为自变量,就向这两个 变量所确定的坐标平面投影,得到积分区域。
对坐标的曲面积分的计算法
22
(x, y, z)
1
x2 y2 z2
44
z 1 x2 y2 22
Dxy
:
x2 2
y2 2
1
例 求 x2dS,其中为柱面 x2 y2 a2, 0 z 6 解:由于 关于变量 x, y 轮换对称性
x2dS y2dS
x2dS 1 x2 y2 dS a2 dS 6 a3
zy
y, x2 y2
22

z
y
y 2 1 x2 y2
22
dS
1
z x
2
z y
2
dxdy
4 x2 y2 dxdy 2 1 x2 y2 22
所以
S
(
x
z ,
y,
z
dS )
1 4
(4
x2
y2
)dxdy
Dxy
1 2 dq 2 (4 r2 )rdr
40
0
3
2
dS 4 x2 y2 dxdy 2 1 x2 y2
I ( x y z)dxdy
1dxdy
Dxy
1. 2
y
1
D xy
x
-1 x y 1
例 计算 I ydydz xdzdx z2dxdy, 其中 为
锥面 z x2 y2 被平面 z 1, z 2 所截部分的外侧.
解 法一:利用向量点积法
zx
x, x2 y2
D
第十章 曲面积分
习题课 教学要求 场论初步 例题
一、教学要求
1. 了解两类曲面积分的概念及高斯 Gauss) 斯托克斯(Stokes)公式, 并会 、 计算两类曲面积分.
2.了解散度、旋度的概念及其计算 方法.
3. 会用曲面积分求一些几何量与物 理量.
理论上的联系
1.定积分与不定积分的联系
b
f ( x)dx F (b) F (a) (F( x) f ( x)) a 牛顿--莱布尼茨公式

离,

S
(
z x,
y,
z
dS )
.
解 设( X ,Y , Z )为上任意一点, 则得出的方程为
xX yY zZ 1 22 由点O到平面的距离公式,得
(x, y, z)
1 x2 y2 z2 44
设S为椭球面 x2 y2 z2 1的上半部分 22
由z
x2 y2 1
22
z
x
,
x 2 1 x2 y2
Dxy
注意 的确定!
3.
向量的点积法n0
(zx , zy ,1) 1 zx2 zy2
,
dS
设曲面的方程为z f ( x, y)
1 zx2 zy2dxdy
规定的法向量为(zx , zy ,1)
I 若题P设dy中dz曲 面Qdz的dx侧与Rd(xdzyx , zy ,1)相同, 取,否则取 . (P,Q, R) (dydz,dzdx,dxdy) A n0 dS
(P,Q, R) ( zx , zy ,1)dxdy
将在xOy面投影
(P,Q, R) (zx ,zy ,1)dxdy
Dxy
例 设S为椭球面 x2 y2 z2 1的上半部分, 22
点P( x, y, z) S,Π为S在点P处的切平面, ( x, y, z)

点O(0,0,0)到平面Π的
{1,1,1},
1
oy
1
x
I [ f ( x, y, z) x]1 [2 f ( x, y, z) y](1)
[ f ( x, y, z) z]1 dxdy
I [ f ( x, y, z) x]dydz [2 f ( x, y, z) y]dzdx
[ f ( x, y, z) z]dxdy, 其中 f ( x, y, z) 为连续函数, 为平面 x y z 1在第四卦限部分的上侧.
解法有三种
1. 利用高斯公式
(1)若P,Q, R在闭曲面 所围成的空间域中
具有一阶连续偏导数,则
Pdydz
Qdzdx
Rdxdy
(
P x
Q y
R z
)dv
其中取 外侧.
1. 利用高斯公式
(2) 若非闭而P,Q, R比较复杂, P,Q, R在 加面 后 ( 为闭)所构成的空间域中
具有一阶连续偏导数,则
斯托克斯公式
(三)场论初步
梯度
gradu
u
i
u
j
u
k
x y z
通量 散度
Pdydz Qdzdx Rdxdy
divA
P
Q
R
x y z
环流量 Pdx Qdy Rdz
旋度
rotA
(R
Q
)i
(P
R)
j
(Q
P
)k
y z z x x y
对面积的曲面积分的计算法
如果曲面方程为以下三种:
I
2. 通过投影化为二重积分
I P( x, y, z)dydz Q( x, y, z)dzdx R( x, y, z)dxdy
P( x( y, z), y, z)dydz Q( x, y(z, x),z)dzdx
D yz
Dzx
R( x, y, z( x, y))dxdy
相关文档
最新文档