高二数学-导数与切线方程
5.2.1基本初等函数的导数 课件高二下学期数学人教A版(2019)选择性必修第二册
![5.2.1基本初等函数的导数 课件高二下学期数学人教A版(2019)选择性必修第二册](https://img.taocdn.com/s3/m/26553269842458fb770bf78a6529647d272834f9.png)
当 > 0时,随着增加, ′ 越来越大, = 2 增加得越来越快;
若 = 2 表示路程关于时间的函数,则 ′ =2x可解释为某物体做变
速运动,它在时刻瞬时速度为2x。
新知学习
一、基本初等函数的求导公式
练习:求下列函数的导数.
π
1
x2
(1)y=x5;(2)y= ;(3)y=lg x;(4)y=5x;(5)y=cos2-x.
x
1
-
-
[解] (1)∵y=x5=x 5,∴y′=-5x 6
=
−
=
= , ∴ ′ =
1
(3)∵y=lg x,∴y′=xln 10.
=
∆( +∆+)
1
=
,
+∆+
∆
∆→0 ∆
1
= ∆→0
+∆+
所以 ′ =
=
1
2
知识梳理
基本初等函数的导数公式
知识梳理
说明:上面的方法中把x换x0即为求函数在点x0处的导数.
1. 函数f(x)在点x0处的导数 f ( x0 ) 就是导函数f (x ) 在x= x0处的函数值,
(3)利用导数研究曲线的切线方程.
用了哪些方法
方程思想、待定系数法.
可能出错的地方: 不化简成基本初等函数
∆
∆
所以 ′ =
∆
=
∆→0 ∆ ∆→0
1=1
若 = 表示路程关于
最新人教版高二数学选择性必修第二册第五章 5.2.2导数的四则运算法则5.2.3简单复合函数的导数
![最新人教版高二数学选择性必修第二册第五章 5.2.2导数的四则运算法则5.2.3简单复合函数的导数](https://img.taocdn.com/s3/m/327877f402020740bf1e9b4a.png)
所以f′(2)=a+b4 =47 .②
4a-b=1, 由①②得
4a+b=7,
a=1, 解得
b=3.
故f(x)=x-x3
.
(2)设P(x0,y0)为曲线上任一点,由f′(x)=1+
3 x2
知,曲线在点P(x0,y0)处的切线
方程为y-y0=1+x320
(x-x0),
即y-x0-x30
=1+x320
【拓展延伸】导数运算法则的推广 (1)导数的和(差)运算法则对三个或三个以上的函数求导数仍然成立.两个函数和 (差)的导数运算法则可以推广到有限个函数的情况,即[f1(x)±f2(x)±f3(x)±…±fn(x)]′ =f1′(x)±f2′(x)±f3′(x)±…±fn′(x). (2)积的导数公式的拓展,若 y=f1(x)f2(x)…fn(x),则有 y′=f1′(x)f2(x)…fn(x)+ f1(x)f2′(x)…fn(x)+…+f1(x)f2(x)…fn′(x).
y′x=y′u·u′x=eu·(-ax2+bx)′ =eu·(-2ax+b)=(-2ax+b)·e-ax2+bx .
(2)①f(x)+f′(x)=cos ( 3 x+φ)-sin ( 3 x+φ)( 3 x+φ)′
=cos (
3 x+φ)-
3 sin (
3
x+φ)=2sin
3x+φ+56π .
因为 0<φ<π,f(x)+f′(x)是奇函数,所以 φ=π6 .
′=
(1-x)2
cos x-sin x+x sin x
=
(1-x)2
.
【补偿训练】
x2+a2 当函数y= x (a>0)在x=x0处的导数为0时,那么x0等于( )
A.a
高二数学导数的概念和几何意义试题答案及解析
![高二数学导数的概念和几何意义试题答案及解析](https://img.taocdn.com/s3/m/16a041a9dc3383c4bb4cf7ec4afe04a1b071b09b.png)
高二数学导数的概念和几何意义试题答案及解析1.若曲线在点处的切线方程是,则.【答案】2【解析】,又在点处的切线方程是,.【考点】三角函数化简求值.2.函数在处的切线方程是()A.B.C.D.【答案】A【解析】,因此切线方程为,即.【考点】(1)导数的运算法则;(2)导数的几何意义.3.若曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”,下列方程:①x2﹣y2=1②x2﹣|x﹣1|﹣y=0③xcosx﹣y=0④|x|﹣+1=0其中所对应的曲线中存在“自公切线”的有()A.①②B.②③C.①④D.③④【答案】B【解析】①x2﹣y2=1是一个等轴双曲线,没有自公切线;②x2﹣|x﹣1|﹣y="0" ,由两圆相交,可知公切线,满足题意,故有自公切线;③xcosx﹣y=0的图象过(2π,2π ),(4π,4π),图象在这两点的切线都是y=x,故此函数有自公切线;④|x|﹣+1=0,其表示的图形为图中实线部分,不满足要求,故不存在.故选:B【考点】利用导数研究曲线上某点切线方程.4.抛物线在点处的切线的倾斜角是( )A.30B.45C.60D.90【答案】B【解析】设抛物线在点处的切线的倾斜角为,因为,由导数几何意义得:,故选B.【考点】导数几何意义.5.已知函数,若曲线存在与直线平行的切线,则实数的取值范围是()A.B.C.D.【答案】A【解析】对函数求导可得,存在与直线平行的切线,即有实数解,则,,则,得.故选A.【考点】导数的几何意义.6.函数是定义在R上的可导函数,则下列说法不正确的是()A.若函数在时取得极值,则B.若,则函数在处取得极值C.若在定义域内恒有,则是常数函数D.函数在处的导数是一个常数【答案】B.【解析】对于B,可以构造函数,则,而并不是的极值点,而A,C,D均正确,∴选B.【考点】导数的性质.7.函数的图像在点)处的切线与轴的交点的横坐标为()若,则= 。
高二数学导数试题答案及解析
![高二数学导数试题答案及解析](https://img.taocdn.com/s3/m/79ee65fac9d376eeaeaad1f34693daef5ef713b3.png)
高二数学导数试题答案及解析1.若曲线的一条切线l与直线垂直,则切线l的方程为 ( )A.B.C.D.【答案】A【解析】设切点为,因为,所以,由导数的几何意义可知切线的斜率为。
直线的斜率为。
由题意可得,解得,切点为,切线的斜率为4,所以切线的方程为,即。
故A正确。
【考点】1导数的几何意义;2两直线垂直时斜率的关系;3直线方程。
2.曲线在点(1,1)处的切线方程为 .【答案】【解析】∵y=lnx+x,∴,∴切线的斜率k=2,所求切线程为.【考点】导数的几何意义.3.已知是定义在上的非负可导函数,且满足,对任意正数,若,则的大小关系为A.B.C.D.【答案】A【解析】因为,是定义在上的非负可导函数,且满足,即,所以,在是增函数,所以,若,则的大小关系为。
选A。
【考点】导数的运算法则,应用导数研究函数的单调性。
点评:中档题,在给定区间,如果函数的导数非负,则函数为增函数,如果函数的导数非正,则函数为减函数。
比较大小问题,常常应用函数的单调性。
4.已知函数的导函数为,1,1),且,如果,则实数的取值范围为()A.()B.C.D.【答案】B【解析】由于,1,1),故函数在区间上为增函数,且为奇函数,由得:,则,解得。
故选B。
【考点】函数的性质点评:求不等式的解集,常结合到函数的单调性,像本题解不等式就要结合到函数的单调性。
5.已知函数在上是单调函数,则实数a的取值范围是()A.B.C.D.【答案】B【解析】因为,函数在上是单调函数,所以,=0无不等实数解,即,解得,,故选B。
【考点】利用导数研究函数的单调性。
点评:简单题,在某区间,导数非负,函数为增函数,导数非正,函数为减函数。
6.已知曲线方程,若对任意实数,直线,都不是曲线的切线,则实数的取值范围是【答案】【解析】把已知直线变形后找出直线的斜率,要使已知直线不为曲线的切线,即曲线斜率不为已知直线的斜率,求出f(x)的导函数,由完全平方式大于等于0即可推出a的取值范围解:把直线方程化为y=-x-m,所以直线的斜率为-1,且m∈R,所以已知直线是所有斜率为-1的直线,即曲线的斜率不为-1,由得:f′(x)=x2-2ax,对于x∈R,有x2-2ax≥,根据题意得:-1<a<1.故答案为【考点】求曲线上过某点曲线方程点评:此题考查学生会利用导数求曲线上过某点曲线方程的斜率,是一道基础题.7.曲线在点(1,2)处的切线方程是____________---------【答案】【解析】,直线斜率为1,直线方程为【考点】导数的几何意义点评:几何意义:函数在某一点处的导数值等于该点处的切线的斜率8.已知函数.(1)当时,求曲线在点处的切线方程;(2)对任意,在区间上是增函数,求实数的取值范围.【答案】(1)(2)【解析】(Ⅰ)解:当时,, 2分,又 4分所以曲线在点处的切线方程为即 6分(Ⅱ)= 8分记,则,在区间是增函数,在区间是减函数,故最小值为 -10分因为对任意,在区间上是增函数.所以在上是增函数, 12分当即时,显然成立当综上 15分【考点】导数的几何意义与函数单调性点评:第一问利用导数的几何意义:函数在某一点处的导数值等于该点处的切线斜率,可求得切线斜率,进而得到切线方程;第二问也可用参变量分离法分离,通过求函数最值求的取值范围9.已知函数,则()A.0B.1C.-1D.2【答案】C【解析】根据题意,由于,则可知-1+0=-1,故答案为C.【考点】导数的运算点评:主要是考查了导数的运算法则的的运用,属于基础题。
高二数学导数的概念和几何意义试题答案及解析
![高二数学导数的概念和几何意义试题答案及解析](https://img.taocdn.com/s3/m/0b860b65cbaedd3383c4bb4cf7ec4afe04a1b159.png)
高二数学导数的概念和几何意义试题答案及解析1.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为()A.2B.C.D.4【答案】D【解析】因为曲线在点处的切线方程为,所以;由可得所以曲线在点处切线的斜率为.【考点】导数的几何意义.2.函数f(x)在定义域R内可导,若f(x)=f(2-x),且(x-1)f ′(x)>0,a=f(0),b =f(),c=f(3),则a,b,c的大小关系是A.a>b>c B.c>a>b C.b>a>c D.c>b>a【答案】B【解析】由于函数,因此,,当,,函数在区间为增函数,因此,所以.【考点】函数的导数与单调性.3.曲线y=e2x在点(0,1)处的切线方程为().A.y=x+1B.y=﹣2x+1C.y=2x﹣1D.y=2x+1【答案】D.【解析】,,则切线斜率,切线方程为,即.【考点】导数的几何意义.4.已知曲线(1)求曲线在点处的的切线方程;(2)过原点作曲线的切线,求切线方程.【答案】(1);(2).【解析】解题思路:(1)求导,得到切线的斜率,利用直线的点斜式方程写出切线方程,再化成一般式即可;(2)设切点坐标,求切线斜率,写出切线方程,代入(0,0)求即可.规律总结:利用导数的几何意义求的切线方程:.注意点:要注意区分“在某点处的切线”与“过某点的切线”.试题解析:(1),,则,所以曲线在点处的的切线方程为,即;设切点为,切线斜率;则切线方程,又因为切线过原点,所以,即,所以,即切线斜率为,切线方程为,即.【考点】导数的几何意义.5.已知函数的导函数为,.求实数的取值范围。
【答案】或。
【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.6.抛物线在点处的切线的倾斜角是 ( )A.30B.45C.60D.90【答案】B.【解析】已知抛物线,对其进行求导,即,当时,,即切线的斜率为,从而问题解决.【考点】导数的几何意义;利用导数研究曲线上某点切线方程.7.已知函数.(1)若,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数,若在上至少存在一点,使得>成立,求实数的取值范围.【答案】(1);(2)实数的取值范围是;(3)实数的取值范围.【解析】(1)求的导数,找出处的导数即切线的斜率,由点斜式列出直线的方程即可;(2)求出函数的定义域,在定义域内利用导数与函数增减性的关系,转化为恒成立问题进行求解即可;(3)讨论在定义域上的最值,分情况讨论的增减性,进而解决存在成立的问题即可.(1)当时,函数,,曲线在点处的切线的斜率为从而曲线在点处的切线方程为,即 3分(2)令,要使在定义域内是增函数,只需在内恒成立由题意,的图象为开口向上的抛物线,对称轴方程为∴,只需,即时,∴在内为增函数,正实数的取值范围是 7分(3)∵在上是减函数∴时,;时,,即①当时,,其图象为开口向下的抛物线,对称轴在轴的左侧,且,所以在内是减函数当时,,因为,所以,此时,在内是减函数故当时,在上单调递减,不合题意②当时,由,所以又由(Ⅱ)知当时,在上是增函数∴,不合题意 12分③当时,由(Ⅱ)知在上是增函数,又在上是减函数,故只需,而,即,解得所以实数的取值范围是 15分.【考点】1.导数的几何意义;2.函数的单调性与导数;3.二次函数的图像与性质;4.分类讨论的思想.8.已知.(1)若曲线在处的切线与直线平行,求a的值;(2)当时,求的单调区间.【答案】(1);(2)单调递增区间为,;单调递减区间为【解析】(1)先求导,由直线方程可知此直线斜率为2,则曲线在处的切线的斜率也为2.由导数的几何意义可知。
高二数学导数试题答案及解析
![高二数学导数试题答案及解析](https://img.taocdn.com/s3/m/6efc334de55c3b3567ec102de2bd960590c6d9ca.png)
高二数学导数试题答案及解析1.若曲线的一条切线l与直线垂直,则切线l的方程为 ( )A.B.C.D.【答案】A【解析】设切点为,因为,所以,由导数的几何意义可知切线的斜率为。
直线的斜率为。
由题意可得,解得,切点为,切线的斜率为4,所以切线的方程为,即。
故A正确。
【考点】1导数的几何意义;2两直线垂直时斜率的关系;3直线方程。
2.已知函数在处有极大值,则=()A.6B.C.2或6D.-2或6【答案】A【解析】根据题意,由于函数在处有极大值,则可知f’(2)=0,12-8c+=0,c=4.则可知=6,当c=2不符合题意,故答案为A.【考点】函数的极值点评:主要是考查了函数极值的运用,属于基础题。
3.函数在区间上最大值与最小值的和为【答案】【解析】根据题意,由于,故可知当0<x<1,递增,在1<x<2时函数递减,故可知函数在区间上最大值与最小值分别是,-2,故可知和为,故答案为。
【考点】函数的最值点评:主要是考查了导数在研究函数最值中的运用,属于基础题。
4.函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)【答案】D【解析】,由得:,故函数的单调递增区间为(2,+∞)。
故选D。
【考点】函数的单调性点评:求函数的单调区间,常结合导数来求,过程要用到的结论是:若,则函数的增区间为;若,则函数的减区间为5.下列命题:①若存在导函数,则;②若函数,则;③若函数,则;④若三次函数,则“”是“f(x)有极值点”的充要条件;⑤函数的单调递增区间是.其中真命题为____.(填序号)【答案】③⑤【解析】①若f(x)存在导函数,则f′(2x)=2[f(2x)]′,故不正确;②若函数h(x)=cos4x-sin4x,则h′()=-2sin=-1,故不正确;③若函数g(x)=(x-1)(x-2)…(x-2012)(x-2013),则g'(x)中含(x-2013)的将2013代入都为0,则g′(2013)=2012!故正确;④若三次函数f(x)=ax3+bx2+cx+d,则f'(x)=0有两个不等的根即b2-3ac>0,故不正确;⑤∵,∴,令得,解得x∈,故正确.综上,真命题为③⑤【考点】本题考查了导数的运用及三角函数的单调性点评:此类问题主要考查复合函数的导数,以及函数的极值、求值等有关知识,属于综合题6.若,则等于()A.B.C.D.【答案】A【解析】因为,,所以,,=,选A。
高二数学导数的计算
![高二数学导数的计算](https://img.taocdn.com/s3/m/c2b3492b3968011ca300919e.png)
0
4.函数 y=f(x)在点x0处的导数的几何意义,就是曲线 y=f(x)在点P(x0 ,f(x0))处的切线的斜率. 5.求切线方程的步骤: ) (1)求出函数在点x0处的变化率 f ( x0,得到曲线 在点(x0,f(x0))的切线的斜率。 (2)根据直线方程的点斜式写出切线方程,即
'
表明:函数f(x)=x2图像上点(x,y)处的切线的斜率为2x
1 (3) : f ( x ) x
1 1 表明:函数 f ( x) 图像上的点 ( x, y )处的切线的斜率为 2 x x
探究:课本13探究2
1 求函数 y 图像在点 (1,1)处的切线方程 x
例 1 :已知函数f ( x) x,(1)求导数f ( x) (2)求曲线在点( 1 , 1)处的切线方程
y f ( x0 ) f ( x0 )( x x0 ).
二、新课——几种常见函数的导数
根据导数的定义可以得出一些常见函数的导数公式.
y 解 : y f ( x ) C , y f ( x x ) f ( x ) C C , 0, x y f ( x) C lim 0. x 0 x
1.2.1 几种常见函数的导数
一、复习
①解析几何中,过曲线某点的切线斜率的精确描述与求值; ②物体运动过程中,某时刻的瞬时速度的精确描述与求值等, 都是极限思想得到本质相同的数学表达式, 将它们抽象归纳为一个统一的概念和公式——导数, 导数源于实践,又服务于实践.
高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二
![高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二](https://img.taocdn.com/s3/m/0062ae75a0116c175e0e48b5.png)
1.1.3 导数的几何意义1.理解曲线的切线的含义.2.理解导数的几何意义.3.会求曲线在某点处的切线方程.4.理解导函数的定义,会用定义法求简单函数的导函数.1.导数的几何意义(1)切线的定义如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P 处的切线.(2)导数的几何意义当点P n无限趋近于点P时,k n无限趋近于切线PT的斜率.因此,函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=limΔx→0f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.此处切线定义与以前所学过的切线定义的比较(1)初中我们学习过圆的切线:直线和圆有唯一的公共点时,称直线和圆相切,唯一的公共点叫做切点,直线叫做圆的切线.但因为圆是一种特殊的曲线,所以圆的切线定义不适用于一般的曲线.如图中的曲线C ,直线l 1与曲线C 有唯一的公共点M ,但l 1不是曲线C 的切线;l 2虽然与曲线C 有不止一个公共点,但l 2是曲线C 在点N 处的切线.(2)此处是通过逼近方法,将割线趋近于确定的位置的直线定义为切线,适用于各种曲线.所以这种定义才真正反映了切线的本质.2.函数f (x )在x =x 0处的导数f ′(x 0)、导函数f ′(x )之间的区别与联系区别:(1)f ′(x 0)是在x =x 0处函数值的改变量与自变量的改变量之比的极限,是一个常数,不是变量.(2)f ′(x )是函数f (x )的导数,是对某一区间内任意x 而言的,即如果函数y =f (x )在开区间(a ,b )内的每点处都有导数,此时对于每一个x ∈(a ,b ),都对应着一个确定的导数f ′(x ),从而构成了一个新的函数——导函数f ′(x ).联系:函数f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.这也是求函数在x =x 0处的导数的方法之一.判断正误(正确的打“√”,错误的打“×”) (1)函数在一点处的导数f ′(x 0)是一个常数.( )(2)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( )(3)函数f (x )=0没有导数.( )(4)直线与曲线相切,则直线与该曲线只有一个公共点.( ) 答案:(1)√ (2)√ (3)× (4)×如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 12 B .3 C .4D .5解析:选A.根据导数的几何意义知f ′(4)是曲线y =f (x )在x =4处的切线的斜率k ,注意到k =5-34-0=12,所以f ′(4)=12.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B.由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选 B.曲线y =-2x 2+1在点(0,1)处的切线的斜率是________. 解析:因为Δy =-2(Δx )2,所以Δy Δx =-2Δx ,lim Δx →0Δy Δx =lim Δx →0(-2Δx )=0,由导数的几何意义知切线的斜率为0.答案:0探究点1 求曲线在定点处的切线方程求曲线y =2x -x 3在点(-1,-1)处的切线方程. 【解】 因为y ′=lim Δx →02(x +Δx )-(x +Δx )3-2x +x3Δx=lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.所以y ′|x =-1=2-3(-1)2=2-3=-1.所以切线方程为y -(-1)=-[x -(-1)], 即x +y +2=0.求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解:y ′=lim Δx →0Δy Δx =lim Δx →02(x +Δx )-(x +Δx )3-2x +x 3Δx =lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.设切点坐标为(x 0,2x 0-x 30),则切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0). 因为切线过点(-1,-2),所以-2-2x 0+x 30=(2-3x 20)·(-1-x 0), 即2x 30+3x 20=0,解得x 0=0或x 0=-32.所以切点坐标为(0,0)或⎝ ⎛⎭⎪⎫-32,38. 当切点坐标为(0,0)时,切线斜率k =-2-0-1-0=2,切线方程为y =2x ;当切点坐标为⎝ ⎛⎭⎪⎫-32,38时,切线斜率k =38-(-2)-32-(-1)=-194,切线方程为y +2=-194(x +1),即19x +4y +27=0.综上可知,过点(-1,-2)且与曲线y =2x -x 3相切的直线方程为y =2x 或19x +4y +27=0.解决曲线的切线问题的思路(1)求曲线y =f (x )在点P (x 0,f (x 0))处的切线方程,即点P 的坐标既满足曲线方程,又满足切线方程时,若点P 处的切线斜率存在,则点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0);若曲线y =f (x )在点P 处的切线斜率不存在(此时切线平行于y 轴),则点P 处的切线方程为x =x 0.(2)若切点未知,则需设出切点坐标,再根据题意列出关于切点横坐标的方程,最后求出切点纵坐标及切线的方程,此时求出的切线方程往往不止一个.已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由.解:(1)将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx =3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx 趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0, 解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 探究点2 求切点坐标在曲线y =x 2上取一点,使得在该点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.【解】 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx =limΔx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为点P 处的切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为点P 处的切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94. (3)因为点P 处的切线的倾斜角为135°,所以切线的斜率为tan 135°=-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.1.已知曲线y =x 24的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .4解析:选A.因为y ′=lim Δx →0Δy Δx =12x =12, 所以x =1,所以切点的横坐标为 1.2.已知曲线f (x )=x 2+6在点P 处的切线平行于直线4x -y -3=0,求点P 的坐标. 解:设切点P 坐标为(x 0,y 0).f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )2+6-(x 2+6)Δx=lim Δx →0(2x +Δx )=2x .所以点P 在(x 0,y 0)处的切线的斜率为2x 0. 因为切线与直线4x -y -3=0平行,所以2x 0=4,x 0=2,y 0=x 20+6=10,即切点为(2,10). 探究点3 导数几何意义的应用我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】 从函数图象上看,要求图象在[0,T ]上越来越陡峭,在各选项中,只有B 项中的切线斜率在不断增大,也即运输效率(单位时间内的运输量)逐步提高.【答案】 B(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的.(2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选B.从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),过此两点的割线的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.2.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h (t ),则函数h (t )的图象可能是( )解析:选B.由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,以后高度增加得越来越慢,仅有B 中的图象符合题意.1.下列说法中正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处没有切线B .若曲线y =f (x )在x =x 0处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处的切线斜率不存在D .若曲线y =f (x )在x =x 0处的切线斜率不存在,则曲线在该点处没有切线解析:选C.f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率,切线斜率不存在,但其切线方程可以为x =x 0,所以A ,B ,D 错误.2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选B.由题意可知,f ′(x 0)=-12.3.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于________.解析:易得切点P (5,3), 所以f (5)=3,k =-1, 即f ′(5)=-1.所以f (5)+f ′(5)=3-1=2. 答案:2 4.已知曲线y =1t -x 上两点P (2,-1),Q ⎝⎛⎭⎪⎫-1,12. (1)求曲线在点P ,Q 处的切线的斜率; (2)求曲线在点P ,Q 处的切线方程. 解:将点P (2,-1)代入y =1t -x, 得t =1,所以y =11-x.y ′=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →011-(x +Δx )-11-x Δx=limΔx →0Δx[1-(x +Δx )](1-x )Δx=limΔx →01(1-x -Δx )(1-x )=1(1-x )2,(1)曲线在点P 处的切线斜率为y ′|x =2=1(1-2)2=1;曲线在点Q 处的切线斜率为y ′|x =-1=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2, 即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.知识结构深化拓展导数与函数图象的关系在x =x 0附近各切线的斜率反映切线的升降变化情况,导数f ′(x 0)反映函数在x =x 0附近的增减情况,而在x =x 0处的切线斜率k =f ′(x 0),所以反映在图形上它们的变化情况是一致的,如图.曲线的升降、切线的斜率与导数符号的关系如下表:曲线f (x )在x =x 0附近切线的斜率k切线的倾斜角 f ′(x 0)>0上升k >0 锐角f ′(x 0)<0下降k <0 钝角 f ′(x 0)=0k =0零角(切线与x 轴平行)[注意] 导数绝对值的大小反映了曲线上升或下降的快慢.[A 基础达标]1.已知二次函数f (x )的图象的顶点坐标为(1,2),则f ′(1)的值为( ) A .1 B .0 C .-1D .2解析:选B.因为二次函数f (x )的图象的顶点坐标为(1,2),所以过点(1,2)的切线平行于x 轴,即切线的斜率为0,所以f ′(1)=0,选B.2.曲线f (x )=9x在点(3,3)处的切线的倾斜角等于( )A .45°B .60°C .135°D .120°解析:选C.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =9lim Δx →01x +Δx -1x Δx =-9limΔx →01(x +Δx )x=-9x2,所以f ′(3)=-1.又切线的倾斜角的范围为[0°,180°),所以所求倾斜角为135°.3.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B. 12 C .-12D .-1解析:选A.因为y ′|x =1=lim Δx →0a (1+Δx )2-a ×12Δx=lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a ,所以2a =2, 所以a =1.4.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -4=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0解析:选A.设切点为(x 0,y 0),因为f ′(x )=lim Δx →0(x +Δx )2-x2Δx =lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A.因为点(0,b )在直线x -y +1=0上,所以b =1.又y ′=lim Δx →0(x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a ,所以过点(0,b )的切线的斜率为y ′|x =0=a =1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________.解析:因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3. 答案:37.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:28.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx =-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为________.解析:limΔx →0f (1)-f (1-2Δx )2Δx=lim Δx →0f (1-2Δx )-f (1)-2Δx=f ′(x )=-1. 答案:-19.已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,求: (1)曲线在点P 处的切线方程; (2)过点P 的曲线的切线方程.解:(1)因为函数y =13x 3的导函数为y ′=lim Δx →0ΔyΔx =lim Δx →013(x +Δx )3-13x 3Δx =13lim Δx →03x 2Δx +3x (Δx )2+(Δx )3Δx =13lim Δx →0[3x 2+3x Δx +(Δx )2]=x 2, 所以y ′|x =2=22=4.所以曲线在点P 处的切线的斜率等于4.故曲线在点P 处的切线方程是y -83=4(x -2),即12x -3y -16=0.(2)设切点为(x 0,y 0),由(1)知y ′=x 2,则点(x 0,y 0)处的切线斜率k =x 20,切线方程为y -y 0=x 20(x -x 0).又切线过点P ⎝ ⎛⎭⎪⎫2,83,且(x 0,y 0)在曲线y =13x 3上,所以⎩⎪⎨⎪⎧83-y 0=x 2(2-x 0),y 0=13x 30,整理得x 30-3x 20+4=0,即(x 0-2)2(x 0+1)=0,解得x 0=2或x 0=-1.当x 0=2时,y 0=83,切线斜率k =4,切线方程为12x -3y -16=0;当x 0=-1时,y 0=-13,切线斜率k =1,切线方程为3x -3y +2=0.故过点P 的切线方程为12x -3y -16=0或3x -3y +2=0.10.已知曲线f (x )=ax-x 在x =4处的切线方程为5x +16y +b =0,求实数a 与b 的值.解:因为直线5x +16y +b =0的斜率k =-516,所以f ′(4)=-516.而f ′(4)=lim Δx →0(a 4+Δx -4+Δx )-(a4-4)Δx=limΔx →0(a 4+Δx -a4)-(4+Δx -2)Δx=lim Δx →0[-a 4(4+Δx )-14+Δx +2]=-a +416,所以-a +416=-516,解得a =1. 所以f (x )=1x -x ,所以f (4)=14-4=-74,即切点为(4,-74).因为(4,-74)在切线5x +16y +b =0上,所以5×4+16×(-74)+b =0,即b =8,从而a =1,b =8.[B 能力提升]11.曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( )A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)解析:选C.y =x +1x上任意一点P (x 0,y 0)处的切线斜率为k =y ′|x =x 0=lim Δx →0(x 0+Δx )+1x 0+Δx -⎝⎛⎭⎪⎫x 0+1x 0Δx=lim Δx →0⎝ ⎛⎭⎪⎫1-1x 20+x 0Δx =1-1x 20<1.即k <1.12.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.解析:y ′=limΔx →0ΔyΔx =2x -1,在点P 处切线的斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2,根据题意有-6+c2=-5,解得c =4.答案:413.已知直线l :y =4x +a 与曲线C :y =x 3-2x 2+3相切,求a 的值及切点坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0), 因为f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx=3x 2-4x , 由题意可知k =4, 即3x 20-4x 0=4, 解得x 0=-23或x 0=2,所以切点的坐标为(-23,4927)或(2,3).当切点为(-23,4927)时,有4927=4×(-23)+a ,a =12127.当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127时,切点为(-23,4927);当a =-5时,切点为(2,3).14.(选做题)已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,试分别求出这两条平行的切线方程.解:对于曲线y =x 2-1在x =x 0处,y ′|x =x 0=lim Δx →0[(x 0+Δx )2-1]-(x 20-1)Δx=lim Δx →02x 0·Δx +(Δx )2Δx=lim Δx →0(2x 0+Δx )=2x 0.对于曲线y =1-x 3在x =x 0处,y ′|x =x 0=lim Δx →0[1-(x 0+Δx )3]-(1-x 30)Δx=lim Δx →0-3x 20Δx -3x 0(Δx )2-(Δx )3Δx=lim Δx →0[-3x 20-3x 0·Δx -(Δx )2]=-3x 20,又y =1-x 3与y =x 2-1在x =x 0处的切线互相平行, 所以2x 0=-3x 20,解得x 0=0或x 0=-23.(1)当x 0=0时,两条切线的斜率k =0, 曲线y =x 2-1上的切点坐标为(0,-1), 切线方程为y =-1,曲线y =1-x 3上的切点坐标为(0,1),切线方程为y =1. 但直线y =1并不是曲线的切线,不符合题意. (2)当x 0=-23时,两条切线的斜率k =-43,曲线y =x 2-1上的切点坐标为⎝ ⎛⎭⎪⎫-23,-59,切线方程为y +59=-43⎝ ⎛⎭⎪⎫x +23,即12x +9y+13=0,曲线y =1-x 3上的切点坐标为⎝ ⎛⎭⎪⎫-23,3527,切线方程为y -3527=-43⎝ ⎛⎭⎪⎫x +23,即36x +27y-11=0.综上,两曲线的切线方程分别是12x+9y+13=0,36x+27y-11=0.。
高二数学导数的概念和几何意义试题答案及解析
![高二数学导数的概念和几何意义试题答案及解析](https://img.taocdn.com/s3/m/09b3a5385627a5e9856a561252d380eb63942357.png)
高二数学导数的概念和几何意义试题答案及解析1.我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得,两边对x求导数,得于是,运用此方法可以求得函数在(1,1)处的切线方程是 .【答案】【解析】:仿照题目给定的方法,所以,所以,所以,即:函数在处的切线的斜率为1,故切线方程为:,即,故答案为:.【考点】归纳推理.2.曲线y=e2x在点(0,1)处的切线方程为().A.y=x+1B.y=﹣2x+1C.y=2x﹣1D.y=2x+1【答案】D.【解析】,,则切线斜率,切线方程为,即.【考点】导数的几何意义.3.设函数的图像在点处切线的斜率为,则函数的部分图像为()【答案】B【解析】 =xcosx,所以k=g(t)=tcost,是奇函数,图像关于原点对称,所以排除A,C,在t>0时,cost的值是先正后负的连续变换,故选B.【考点】导数,函数图像.4.已知函数的导函数为,.求实数的取值范围。
【答案】或。
【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.5.已知函数在上可导,且,则函数的解析式为()A.B.C.D.【答案】B【解析】由得,当时,有,进而得,所以,故选择B.【考点】导数的应用.6.曲线y=-在点M处的切线的斜率为()A.-B.C.-D.【答案】B【解析】因为==,所以曲线在M处的切线的斜率为=,故选B.考点:常见函数的导数,导数的运算法则,导数的几何意义7.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.8.抛物线在点处的切线的倾斜角是 ( )A.30B.45C.60D.90【答案】B.【解析】已知抛物线,对其进行求导,即,当时,,即切线的斜率为,从而问题解决.【考点】导数的几何意义;利用导数研究曲线上某点切线方程.9.已知抛物线,和抛物线相切且与直线平行的的直线方程为()A.B.C.D.【答案】D【解析】由题得,与直线平行,则斜率为2,可得切点为,所以直线方程为.【考点】导数的几何意义,直线方程.10.曲线在点处切线的斜率为()A.B.C.D.【答案】B【解析】,则在点(1,-)处切线的斜率为,所以倾斜角为45°.【考点】导数的几何意义.特殊角的三角函数值.11.函数在点处的切线的斜率为()A.B.C.D.【答案】B【解析】令,则,所以。
导数中八大切线问题题型总结(学生版)--高中数学
![导数中八大切线问题题型总结(学生版)--高中数学](https://img.taocdn.com/s3/m/7c79d8c9b04e852458fb770bf78a6529647d3598.png)
导数中八大切线问题题型总结【考点预测】1.在点的切线方程切线方程y-f(x0)=f (x0)(x-x0)的计算:函数y=f(x)在点A(x0,f(x0))处的切线方程为y-f(x0)=f(x0)(x-x0),抓住关键y0=f(x0) k=f (x0) .2.过点的切线方程设切点为P(x0,y0),则斜率k=f (x0),过切点的切线方程为:y-y0=f (x0)(x-x0),又因为切线方程过点A(m,n),所以n-y0=f (x0)(m-x0)然后解出x0的值.(x0有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型目录】题型一:导数与切线斜率的关系题型二:在点P处切线(此类题目点P即为切点)题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)题型四:已知切线求参数问题题型五:切线的条数问题(判断切线条数以及由切线条数求范围)题型六:公切线问题题型七:切线平行、垂直、重合问题题型八:与切线相关的最值问题【典例例题】题型一:导数与切线斜率的关系【例1】(2022·全国·高三专题练习(文))函数y=f(x)的图像如图所示,下列不等关系正确的是( )A.0<f (2)<f (3)<f(3)-f(2)B.0<f (2)<f(3)-f(2)<f (3)C.0<f (3)<f(3)-f(2)<f (2)D.0<f(3)-f(2)<f (2)<f (3)【例2】函数y=f x 的图象如图所示,f′x 是函数f x 的导函数,则下列大小关系正确的是( )A.2f′4 <f4 -f2 <2f′2B.2f′2 <f4 -f2 <2f′4C.2f′4 <2f′2 <f4 -f2D.f4 -f2 <2f′4 <2f′2【题型专练】1.(2021·福建·泉州鲤城北大培文学校高三期中)(多选题)已知函数f x 的图象如图所示,f x 是f x 的导函数,则下列数值的排序正确的是()A.f 3 <f 2B.f 3 <f 3 -f 2C.f 2 <f 3 -f 2D.f 3 -f 2 <02.(2022·黑龙江齐齐哈尔·高二期末)函数y =f x 的图象如图所示,f x 是函数f x 的导函数,则下列数值排序正确的是( )A.2f 3 <f 5 -f 3 <2f 5B.2f 3 <2f 5 <f 5 -f 3C.f 5 -f 3 <2f 3 <2f 5D.2f 3 <2f 5 <f 5 -f 3题型二:在点P 处切线(此类题目点P 即为切点)【例1】【2019年新课标3卷理科】已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则A.a =e ,b =-1B.a =e ,b =1C.a =e -1,b =1D.a =e -1,b =-1【例2】(2022·全国·高三专题练习(文))已知函数f (x )是定义在R 上的奇函数,且f (x )=-2x 3+3ax 2-f (1)x ,则函数f (x )的图象在点(-2,f (-2))处的切线的斜率为( )A.-21B.-27C.-24D.-25【例3】(2022·河南省浚县第一中学模拟预测(理))曲线y =x ln (2x +5)在x =-2处的切线方程为( )A.4x -y +8=0B.4x +y +8=0C.3x -y +6=0D.3x +y +6=0【例4】过函数f (x )=12e 2x-x 图像上一个动点作函数的切线,则切线领斜角范围为( )A.0,3π4B.0,π2∪3π4,π C.3π4,π D.π2,3π4【例5】(2022·安徽·巢湖市第一中学模拟预测(文))曲线y =2x +ax +2在点1,b 处的切线方程为kx -y +6=0,则k 的值为( )A.-1B.-23C.12D.1【例6】(2022·江西·丰城九中高二期末(理))已知函数f x =f 2 3x 2−x ,x >0g x ,x <0图像关于原点对称,则f (x )在x=-1处的切线方程为( )A.3x-y+2=0B.3x-y-2=0C.3x+y+4=0D.3x+y-4=0【题型专练】1.【2018年新课标1卷理科】设函数f x =x3+a-1x2+ax.若f x 为奇函数,则曲线y=f x 在点0,0处的切线方程为( )A.y=-2xB.y=-xC.y=2xD.y=x2.【2021年甲卷理科】曲线y=2x-1x+2在点-1,-3处的切线方程为__________.3.【2019年新课标1卷理科】曲线y=3(x2+x)e x在点(0,0)处的切线方程为___________.4.【2018年新课标2卷理科】曲线y=2ln(x+1)在点(0,0)处的切线方程为__________.5.【2018年新课标3卷理科】曲线y=ax+1e x在点0,1处的切线的斜率为-2,则a=________.题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)【例1】【2022年新高考2卷】曲线y=ln|x|过坐标原点的两条切线的方程为____________,_____ _______.【例2】(2022·四川·广安二中二模(文))函数f x =x2e x过点0,0的切线方程为( )A.y=0B.ex+y=0C.y=0或x+ey=0D.y=0或ex+y=0【例3】(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点12,0的直线与函数f(x)=xe x的图象相切,则所有可能的切点横坐标之和为( )A.e+1B.-12C.1D.12【例4】(2022·广东·佛山市南海区九江中学高二阶段练习)直线y=12x-b与曲线y=-12x+ln x相切,则b的值为( )A.2B.-2C.-1D.1【题型专练】1.(2022·陕西安康·高三期末(文))曲线y=2x ln x+3过点-12,0的切线方程是( )A.2x+y+1=0B.2x-y+1=0C.2x+4y+1=0D.2x-4y+1=02.(2022·广东茂名·二模)过坐标原点作曲线y=ln x的切线,则切点的纵坐标为( )A.eB.1C.1eD.1e3.过点(0,-1)作曲线f(x)=x ln x的切线,则切线方程为()A.x+y+1=0B.x-y-1=0C.x+2y+2=0D.2x-y-1=04.已知f (x )=x 2,则过点P (-1,0)且与曲线y =f (x )相切的直线方程为( )A.y =0B.4x +y +4=0C.y =0或4x +y +4=0D.y =0或4x -y +4=0题型四:已知切线求参数问题【例1】(2022·湖南·模拟预测)已知P 是曲线C :y =ln x +x 2+3-a x 上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若π3≤θ<π2,则实数a 的取值范围是( )A.23,0B.22,0C.-∞,23D.-∞,22【例2】(2022·广东·石门高级中学高二阶段练习)若直线y =kx +1-ln2是曲线y =ln x +2的切线,则k =________.【例3】(2022·陕西·千阳县中学高三阶段练习(文))已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则b =_____【例4】(2022·江苏苏州·模拟预测)已知奇函数f x =x 2-2x ax +b a ≠0 在点a ,f a 处的切线方程为y =f a ,则b =( )A.-1或1B.-233或233C.-2或2D.-433或433【题型专练】1.(2022·云南·丽江市教育科学研究所高二期末)已知曲线f (x )=(x +a )e x 在点(-1,f (-1))处的切线与直线2x +y -1=0垂直,则实数a 的值为_________.2.(2022·云南昆明·模拟预测(文))若函数f x =a x +ln x 的图象在x =4处的切线方程为y =x +b ,则( )A.a =3,b =2+ln4B.a =3,b =-2+ln4C.a =32,b =-1+ln4D.a =32,b =1+ln43.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线C 1:y =x 1+ln x 和圆C 2:x 2+y 2-6x +n =0均相切,则n =( )A.-4B.-1C.1D.4题型五:切线的条数问题(判断切线条数以及由切线条数求范围)【例1】(2022·河南洛阳·三模(文))若过点P 1,0 作曲线y =x 3的切线,则这样的切线共有( )A.0条B.1条C.2条D.3条【例2】(2022·全国·高三专题练习)若过点(a ,b )可以作曲线y =ln x 的两条切线,则( )A.a <ln bB.b <ln aC.ln b <aD.ln a <b【例3】【2021年新高考1卷】若过点a ,b 可以作曲线y =e x 的两条切线,则( )A.e b <aB.e a <bC.0<a <e bD.0<b <e a【例4】(2022·河南洛阳·三模(理))若过点P 1,t 可作出曲线y =x 3的三条切线,则实数t 的取值范围是( )A.-∞,1B.0,+∞C.0,1D.0,1【例5】(2022·河北·高三阶段练习)若过点P (1,m )可以作三条直线与曲线C :y =xe x相切,则m 的取值范围为( )A.-∞,3e 2B.0,1eC.(-∞,0)D.1e ,3e 2【例6】(2022·黑龙江·哈尔滨市第六中学校高二期末)过直线y =x -1上一点P 可以作曲线f x =x -ln x 的两条切线,则点P 横坐标t 的取值范围为( )A.0<t <1B.1<t <eC.0<t <eD.1e<t <1【题型专练】1.(2022·内蒙古呼和浩特·二模(理))若过点P -1,m 可以作三条直线与曲线C :y =xe x 相切,则m 的取值范围是( )A.-3e 2,+∞ B.-1e,0 C.-1e ,-1e2 D.-3e2,-1e 2.(2022·广东深圳·二模)已知a >0,若过点(a ,b )可以作曲线y =x 3的三条切线,则( )A.b <0B.0<b <a 3C.b >a 3D.b b -a 3 =03.(2022·安徽·安庆市第二中学高二期末)若过点a ,b a >0 可以作曲线y =xe x 的三条切线,则()A.0<a <be bB.-ae a <b <0C.0<ae 2<b +4D.-a +4 <be 2<04.(2022·山东枣庄·高二期末)已知函数f x =x +1 e x ,过点M (1,t )可作3条与曲线y =f x 相切的直线,则实数t 的取值范围是( )A.-4e 2,0B.-4e 2,2eC.-6e 3,2e D.-6e 3,05.(2022·山东潍坊·三模)过点P 1,m m ∈R 有n 条直线与函数f x =xe x 的图像相切,当n 取最大值时,m 的取值范围为( )A.-5e 2<m <e B.-5e 2<m <0 C.-1e<m <0 D.m <e题型六:公切线问题【例1】(2023届贵州省遵义市新高考协作体)高三上学期入学质量监测数学(理)试题)若直线y =kx +b 是曲线y =e x +1的切线,也是y =e x +2的切线,则k =( )A.ln2B.-ln2C.2D.-2【例2】(2022·全国·高三专题练习)若函数f x =ln x 与函数g (x )=x 2+x +a (x <0)有公切线,则实数a 的取值范围是( )A.ln12e,+∞ B.-1,+∞C.1,+∞D.ln2,+∞【例3】(2022·河北石家庄·高二期末)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值可能是( )A.1.2B.4C.5.6D.2e【例4】(2022·全国·高三专题练习)已知曲线C 1:f x =e x +a 和曲线C 2:g x =ln (x +b )+a 2a ,b ∈R ,若存在斜率为1的直线与C 1,C 2同时相切,则b 的取值范围是( )A.-94,+∞B.0,+∞C.-∞,1D.-∞,94【例5】(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( )A.0,2eB.0,eC.2e ,+∞D.e ,2e【例6】(2022·重庆市育才中学高三阶段练习)若直线l :y =kx +b (k >1)为曲线f x =e x -1与曲线g x =e ln x的公切线,则l 的纵截距b =( )A.0B.1C.eD.-e【例7】(2022·河南·南阳中学高三阶段练习(理))若直线y =k 1x +1 -1与曲线y =e x 相切,直线y =k 2x +1 -1与曲线y =ln x 相切,则k 1k 2的值为( )A.12B.1C.eD.e 2【题型专练】1.已知函数f x =x ln x ,g x =ax 2-x .若经过点A 1,0 存在一条直线l 与曲线y =f x 和y =g x 都相切,则a =( )A.-1B.1C.2D.32.【2020年新课标3卷理科】若直线l 与曲线y =x 和x 2+y 2=15都相切,则l 的方程为( )A.y =2x +1B.y =2x +12C.y =12x +1D.y =12x +123.(2022·河北省唐县第一中学高三阶段练习)已知函数f x =a ln x ,g x =be x ,若直线y =kx k >0 与函数f x ,g x 的图象都相切,则a +1b 的最小值为( )A.2B.2eC.e 2D.e4.(2022·全国·高三专题练习)若两曲线y =ln x -1与y =ax 2存在公切线,则正实数a 的取值范围是( )A.0,2eB.12e -3,+∞C.0,12e -3 D.2e ,+∞5.(2022·全国·高三专题练习)若仅存在一条直线与函数f (x )=a ln x (a >0)和g (x )=x 2的图象均相切,则实数a =( )A.eB.eC.2eD.2e6.若曲线y =ln x 与曲线:y =x 2−k 有公切线,则实数k 的最大值为( )A.78+12ln2 B.78-12ln2 C.12+12ln2 D.12+12ln2题型七:切线平行、垂直、重合问题【例1】(2023·全国·高三专题练习)函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( )A.(-∞,2] B.-∞,2-1e ∪2-1e ,2C.2,+∞D.0,+∞【例2】(2022·安徽·合肥一中模拟预测(文))对于三次函数f (x ),若曲线y =f (x )在点(0,0)处的切线与曲线y=xf (x )在点(1,2)处点的切线重合,则f ′(2)=( )A.-34B.-14C.-4D.14【例3】(2022·全国·高三专题练习)若直线x =a 与两曲线y =e x ,y =ln x 分别交于A ,B 两点,且曲线y =e x 在点A 处的切线为m ,曲线y =ln x 在点B 处的切线为n ,则下列结论:①∃a ∈0,+∞ ,使得m ⎳n ;②当m ⎳n 时,AB 取得最小值;③AB 的最小值为2;④AB 最小值小于52.其中正确的个数是( )A.1 B.2C.3D.4【题型专练】1.(2022·山西太原·二模(理))已知函数f x =a sin x +b cos x +cx 图象上存在两条互相垂直的切线,且a 2+b 2=1,则a +b +c 的最大值为( )A.23B.22C.3D.22.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12B.1C.32D.23.(2022·全国·高三专题练习)已知函数f (x )=x 2+x +2a (x <0)-1x(x >0)的图象上存在不同的两点A ,B ,使得曲线y =f (x )在这两点处的切线重合,则实数a 的取值范围是( )A.-∞,-18B.-1,18C.(1,+∞)D.(-∞,1)∪18,+∞题型八:与切线相关的最值问题【例1】(2022·全国·高三专题练习)若点P 是曲线y =32x 2-2ln x 上任意一点,则点P 到直线y =x -3的距离的最小值为( )A.724B.332C.2D.5【例2】(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线y =2x -1,曲线y =32x 2-ln x 相交于A ,B 两点,则AB 的最小值为( )A.510B.55C.1D.5【例3】(2022·河南·许昌高中高三开学考试(理))已知函数y =e 2x +1的图象与函数y =ln x +1 +12的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A.2ln22B.2ln24C.24+ln22D.24+ln2【例4】(2022·山东聊城·二模)实数x 1,x 2,y 1,y 2满足:x 21-ln x 1-y 1=0,x 2-y 2-4=0,则x 1-x 2 2+y 1-y 22的最小值为( )A.0B.22C.42D.8【题型专练】1.(2022·山西·高二期末)已知点P 是曲线y =x 2-3ln x 上一点,若点P 到直线2x +2y +3=0的距离最小,则点P 的坐标为___________.2.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y =x -a 与曲线y =ln (x +b )相切,则a 22-b的取值范围是()A.(0,+∞)B.(0,1)C.0,12D.[1,+∞)3.(2022·全国·高三专题练习)曲线y =e 2x 上的点到直线2x -y -4=0的最短距离是( )A.5B.3C.2D.14.(2022·河北衡水·高三阶段练习)已知函数f(x)=ln x x-2x2在x=1处的切线为l,第一象限内的点P(a,b)在切线l上,则1a+1+1b+1的最小值为( )A.2+324 B.3+424 C.4+235 D.3+245.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y=kx+b是曲线y=x+1的切线,则k2+b2 -2b的最小值为( )A.-12B.0C.54D.3。
5.2.1基本初等函数的导数5.2.2导数的四则运算法则课件高二数学人教A版选择性
![5.2.1基本初等函数的导数5.2.2导数的四则运算法则课件高二数学人教A版选择性](https://img.taocdn.com/s3/m/999d4791db38376baf1ffc4ffe4733687f21fc0a.png)
=-2ex(sin x+cos x).故选D.
重难探究·能力素养全提升
重难探究·能力素养全提升
探究点一
导数公式与运算法则的简单应用
【例1】 [北师大版教材习题]求下列函数的导数:
x.
(4)y=(x-1)(x-2)(x-3);
解 因为y=x3-6x2+11x-6,所以y'=3x2-12x+11.
-1
(5)y= ;
解 因为 y= −
1
,所以
2
(6)y=+1.
2(+1)- 2
解 y'=
2
(+1)
=
2 +2
2
(+1)
.
y'=
1
2
+
1
2
3
=
+1
角度1.解析式中含f'(a)的导数问题
【例3】 已知函数f(x)的导函数是f'(x),且f(x)=2xf'(1)+ln
A.-e
B.2
C.-2
D.e
解析 因为
1
f(x)=2xf'(1)+ln =2xf'(1)-ln
解得 f'(1)=1.所以
x,所以
1
f(x)=2x+ln ,f(1)=2+ln
1
,则f(1)=( B )
……因为2 021=505×4+1,所以f2 021(x)=f1(x)=sin x+cos x,故选A.
高中导数知识点总结大全
![高中导数知识点总结大全](https://img.taocdn.com/s3/m/44f12fbd294ac850ad02de80d4d8d15abe230003.png)
高中导数知识点总结大全追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。
那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。
高中导数知识点总结1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。
4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
5.2.2导数的四则运算法则课件-高二下学期数学人教A版选择性必修第二册
![5.2.2导数的四则运算法则课件-高二下学期数学人教A版选择性必修第二册](https://img.taocdn.com/s3/m/f06b6e6eba68a98271fe910ef12d2af90242a8ad.png)
导数的运算法则1:
[ f ( x) g ( x)]' f '( x) g
继续以 = , = ,为例。′ = 2,
′ = 1.
你猜函数的积商关系和导数的积商关系是
怎样的?
已知 = 2 , = 。′ = 2,′ = 1.
课本P78
练习
3
课堂小结
本小节结束
F佳
′
′
=
3
′
=
2
3 ,
′
= 2 ⋅ 1 = 2,
′
所以[ ()]′ ≠ ′().
已知 = 2 , = 。′ = 2,′ = 1.
′
2 ′
=
所以
′
=
′()
≠
.
′()
′
′() 2
3
(1) = e ; (2) = 2 ;
解:
2.求下列函数的导数∶
(1)y=2x3-3x²-4;
(4)y=(x²+2x) ;
(2)y=3cosx+2x;
(5) =
;
(3)y=exln x;
(6)y=tan x.
课本P78
练习
2
3.求曲线
3
y=x²+ 在点(1,4)处的切线方程.
1
特别地 , 若f ( x ) = lnx, 则f' ( x ) = .
x
求切线方程的步骤:
导数的四则运算法则
F佳
() = , () = ,如何计算[() + ()]’与[() − ()]’?
高二文科数学选修1-1第三章导数的概念及运算带答案
![高二文科数学选修1-1第三章导数的概念及运算带答案](https://img.taocdn.com/s3/m/20a3871a376baf1ffc4fad97.png)
导数的概念及运算[必备知识]考点1 函数y =f (x )在x =x 0处的导数 1.定义称函数y =f (x )在x =x 0处的瞬时变化率lim Δ x →f (x 0+Δx )-f (x 0)Δx =lim Δ x →0 ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δ x →0ΔyΔx =lim Δ x →0 f (x 0+Δx )-f (x 0)Δx. 2.几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 考点2 基本初等函数的导数公式若y =f (x ),y =g (x )的导数存在,则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 考点4 复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [必会结论]1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”) 1.f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) 2.曲线的切线不一定与曲线只有一个公共点.( ) 3.与曲线只有一个公共点的直线一定是曲线的切线.( )4.对于函数f (x )=-x 2+3x ,由于f (1)=2,所以f ′(1)=2′=0.( )5.物体的运动方程是s =-4t 2+16t ,则该物体在t =0时刻的瞬时速度是0.( ) 6.若f (x )=f ′(a )x 2+ln x (a >0),则f ′(x )=2xf ′(a )+1x .( )答案 1.√ 2.√ 3.× 4.× 5.× 6.√ 二、例题练习1.已知函数()y f x =,那么下列说法错误的是( ) A.()()00y f x x f x +∆=∆-叫做函数值的增量 B.()()00f x x f x y x x+∆-∆=∆∆叫做函数在0x 到0x x +∆之间的平均变化率 C.()f x 在0x 处的导数记为y ' D.()f x 在0x 处的导数记为()0f x '【答案】C【解析】由导数的定义可知C 错误.故选C.2. 已知函数y =2+1x ,当x 由1变到2时,函数的增量Δy =________.【答案】 -12【解析】 Δy =⎝⎛⎭⎫2+12-(2+1)=-12. 3.设函数()f x 在1x =处可导,则()()11lim 2x f x f x∆→+∆--∆等于()A .()1f 'B .()112f '- C .()21f '-D .()1f '- 【答案】B【解析】函数()f x 在1x =处()()()0111limx f x f f x ∆→+∆-'=∆()()0112lim 2x f x f x∆→+∆-=--∆,所以()()()0111lim122x f x f f x ∆→+∆-'=--∆.4.若函数()y f x =在区间(),a b 内可导,且()0,x a b ∈,若0()f x '=4,则()()0002limh f x f x h h→--的值为( )A .2B .4C .8D .12 【答案】C【解析】由函数()y f x =在某一点处的导数的定义可知()()()()()000000022lim2lim 282h h f x f x h f x f x h f x h h→→----'===5.若()()0003lim1x f x x f x x∆→+∆-=∆,则()0f x '=__________.【答案】13【解析】由于()()()()()000000033lim 3lim 313x x f x x f x f x x f x f x x x∆→∆→+∆-+∆-'===∆∆,所以()013f x '=. 6.[课本改编]曲线y =x 2在(1,1)处的切线方程是( ) A .2x +y +3=0 B .2x -y -3=0 C .2x +y +1=0 D .2x -y -1=0答案 D 解析 ∵y ′=2x ,∴k =y ′| x =1=2;故所求切线方程为:y -1=2(x -1)即2x -y-1=0,故选D.7.函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,则f (5)+f ′(5)=( ) A .1 B .2 C .3 D .4 答案 B解析 由条件知f ′(5)=-1,又在点P 处切线方程为y -f (5)=-(x -5),∴y =-x +5+f (5),即y =-x +8,∴5+f (5)=8,∴f (5)=3,∴f (5)+f ′(5)=2. 8.函数y =x ·e x 在点(1,e)处的切线方程为( ) A .y =2e x B .y =x -1+eC .y =-2e x +3eD .y =2e x -e答案 D解析 函数y =x ·e x 的导函数是f ′(x )=e x +x e x ,在点(1,e)处,把x =1代入f ′(x )=e x +x e x ,得k =f ′(1)=2e ,点斜式得y -e =2e(x -1),整理得y =2e x -e.9.已知函数2()cos 3g x x x =+,则2()πg'=_______________.【答案】13. 【解析】因为2()sin 1g x x '=-+,所以2()πg'=2π21sin 113233-+=-=.故填13.10=')1(f _______________.【答案】e【解析】0x =得(0)1f =,∴(1)e f '=.11.已知函数()f x 的导函数为()f x ',且满足()(1)2ln xf f x x ='+,则(1)f '= A .e - B .1- C .1D .e【答案】B 【解析】∵函数()f x 的导函数为()f x ',且满足()(1)2ln (0)f x x xf x ='+>,1x =代入()f x '可得(1)2(1)1f f '='+,解得(1)1f '=-.故选B .12.若2()24ln f x x x x =--,则()0f x '>的解集为_______________. 【答案】(2,)+∞【解析】由()224ln f x x x x =--,得()()4220f x x x x'=-->,则由不等式()42200x x x-->>,得()2200x x x -->>,从而可解得2x >.故()0f x '>的解集为(2,)+∞.13.求下列函数的导数:(1)y =e x sin x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; (3)y =x -sin x 2cos x2;(3)=xx ln ;[解] (1)y ′=(e x )′sin x +e x (sin x )′=e x sin x +e x cos x . (2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3.(3)因为y =x -12sin x ,所以y ′=1-12cos x .14.[2015·天津高考]已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.答案 3解析 因为f (x )=ax ln x ,所以f ′(x )=a ln x +ax ·1x =a (ln x +1).由f ′(1)=3得a (ln1+1)=3,所以a =3.15.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 【答案】(-∞,0)【解析】曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解.又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x=0有正实数解.∴5ax 5=-1有正实数解.∴a <0.16.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( ) A .26 B .29 C .212 D .215 【答案】C【解析】因为f ′(x )=x ′·[]x -a 1x -a 2…x -a 8+[]x -a 1x -a 2…x -a 8′·x =(x -a 1)(x -a 2)…(x -a 8)+ []x -a 1x -a 2…x -a 8′·x ,所以f ′(0)=(0-a 1)(0-a 2)…(0-a 8)+0=a 1a 2…a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.17.[2016·襄阳调研]曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30° B .45° C .60°D .120°答案 B 解析 由y ′=3x 2-2得y ′| x =1=1,即曲线在点(1,3)处的切线斜率为1,所以切线的倾斜角为45°,故选B.18.[2016·大同质检]一点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )A.⎣⎡⎦⎤0,π2B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎝⎛⎦⎤π2,3π4 答案 B 解析 ∵y ′=3x 2-1,∴tan α=3x 2-1≥-1,∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 19.[2016·深圳中学实战考试]函数y =x 33-x 2+1(0<x <2)的图象上任意点处切线的倾斜角记为α,则α的最小值是( ) A.π4B.π6C.5π6D.3π4答案 D 解析 由于y ′=x 2-2x ,当0<x <2时,-1≤y ′<0,据导数的几何意义得-1≤tan α<0,当tan α=-1时,α取得最小值,即αmin =3π4. 20.[2016·山西师大附中质检]已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)根据已知得点P (2,4)是切点且y ′=x 2,所以在点P (2,4)处的切线的斜率为y ′| x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率为y ′| x =x 0=x 20.所以切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43, 即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以x 20(x 0+1)-4(x 0+1)(x 0-1)=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为x -y +2=0或4x -y -4=0.21.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上的任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0||2x 0=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6. 备用:1.函数f (x )=ln x -2xx 的图象在点(1,-2)处的切线方程为( )A .2x -y -4=0B .2x +y =0C .x -y -3=0D .x +y +1=0答案 C解析 f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0.2.[2014·江西高考]若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 答案 (e ,e)解析 令f (x )=x ln x ,则f ′(x )=ln x +1,设P (x 0,y 0),则f ′(x 0)=ln x 0+1=2,∴x 0=e ,此时y 0=x 0ln x 0=eln e =e ,∴点P 的坐标为(e ,e).[2014·江苏高考]在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________. 答案 -3解析 由曲线y =ax 2+b x 过点P (2,-5),得4a +b2=-5.①又y ′=2ax -b x 2,所以当x =2时,4a -b 4=-72,②由①②得⎩⎪⎨⎪⎧a =-1,b =-2,所以a +b =-3.3. [2016·沈阳模拟]若存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是( ) A .1 B.164C .1或164D .1或-164[正解] 易知点O (0,0)在曲线f (x )=x 3-3x 2+2x 上, (1)当O (0,0)是切点时,同上面解法.(2)当O (0,0)不是切点时,设切点为P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =f ′(x 0)=3x 20-6x 0+2.①又k =y 0x 0=x 20-3x 0+2,②由①,②联立,得x 0=32(x 0=0舍),所以k =-14,∴所求切线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0.依题意,Δ=116-4a =0,∴a =164.综上,a =1或a =164.[答案] C[2016·沈阳模拟]若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7答案 A解析 ∵y =x 3,∴y ′=3x 2.设过点(1,0)的直线与y =x 3相切于点(x 0,x 30),则在该点处的切线斜率为k =3x 20,所以切线方程为:y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,得a =-1. 综上,a =-1或a =-2564.故选A.。
高二数学导数的概念和几何意义试题
![高二数学导数的概念和几何意义试题](https://img.taocdn.com/s3/m/ebabf8b8336c1eb91b375dd7.png)
高二数学导数的概念和几何意义试题1.已知函数(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,若在区间上的最小值为,其中是自然对数的底数,求实数的取值范围;【答案】(Ⅰ)(Ⅱ).【解析】解题思路:(Ⅰ)求导,利用导数的几何意义求解;(Ⅱ)求导,讨论的取值范围求函数的最值.规律总结:(1)导数的几何意义求切线方程:;(2)求函数最值的步骤:①求导函数;②求极值;③比较极值与端点值,得出最值.试题解析:(Ⅰ)当时, ,因为.所以切线方程是(Ⅱ)函数的定义域是当时,令得当时,所以在上的最小值是,满足条件,于是;②当,即时,在上的最小最小值,不合题意;③当,即时,在上单调递减,所以在上的最小值是,不合题意.综上所述有,.【考点】1.导数的几何意义;2.利用导数研究函数的最值.2.函数上过点(1,0)的切线方程()A.B.C.D.【答案】B【解析】因为,在点(1,0)处的斜率为,所以在点(1,0)处的切线方程为y-0=3(x-1),即y=3x-3.【考点】导数的几何意义.3.设曲线在点(3,2)处的切线与直线垂直,则的值是A.2B.C.D.【答案】B【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:B.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.4.设曲线在点(3,2)处的切线与直线垂直,则A.2B.C.D.【答案】C【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:C.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.5.若,则()A.B.C.D.【答案】D【解析】,故选D.【考点】导数的定义6.已知函数(1)当时,求曲线在点处的切线方程;(2)求函数的极值.【答案】(1) ;(2)详见解析.【解析】(1)根据导数的几何意义,当时,,得出,再代入点斜式直线方程;(2)讨论,当和两种情况下的极值情况.试题解析:解:函数的定义域为,.(1)当时,,,,在点处的切线方程为,即.(2)由可知:①当时,,函数为上的增函数,函数无极值;②当时,由,解得;时,,时,在处取得极小值,且极小值为,无极大值.综上:当时,函数无极值当时,函数在处取得极小值,无极大值.【考点】1.导数的几何意义;2.利用导数求极值.7.若曲线f(x)=ax3+ln x存在垂直于y轴的切线,则实数a的取值范围是________.【答案】(-∞,0)【解析】f′(x)=3ax2+,∵f(x)存在垂直于y轴的切线,∴f′(x)=0有解,即3ax2+=0有解,∴3a=-,而x>0,∴a∈(-∞,0).8.抛物线y=x2在点P处的切线与直线2x-y+4=0平行,求点P的坐标及切线方程.【答案】2x-y-1=0【解析】设点P(x0,y),=d+2x,d→0时,d+2xo →2x.抛物线在点P处的切线的斜率为2x,由于切线平行于2x-y+4=0,∴2x0=2,x=1即P点坐标为(1,1)切线方程为y-1=2(x-1),即为2x-y-1=09.曲线y=2lnx在点(e,2)处的切线与y轴交点的坐标为_________.【答案】(0,0)【解析】有已知可知在处切线方程为,y轴交点的坐标即所求.【考点】在一点处切线方程.10.函数在点处的切线方程是()A.B.C.D.【答案】A【解析】曲线切线的斜率,等于在切点的导函数值。
高二数学基本初等函数的导数公式及导数的运算法则
![高二数学基本初等函数的导数公式及导数的运算法则](https://img.taocdn.com/s3/m/204c729d33d4b14e84246811.png)
人教版数学高二人教A版选修2-2第一章《导数及其应用》章末小结
![人教版数学高二人教A版选修2-2第一章《导数及其应用》章末小结](https://img.taocdn.com/s3/m/7b613fad168884868662d649.png)
章末小结知识点一导数的概念与几何意义求曲线的切线的方法求曲线的切线分两种情况(1)求点P(x0,y0)处的切线,该点在曲线上,且点是切点,切线斜率k =y′|x=x0.(2)求过点P(x1,y1)的切线方程,此点在切线上不一定是切点,需设出切点(x0,y0),求出切线斜率k=y′|x=x0,利用点斜式方程写出切线方程,再根据点在切线上求出切点坐标即可求出切线方程.已知函数y=x3-x,求函数图象(1)在点(1,0)处的切线方程;(2)过点(1,0)的切线方程.解析:(1)函数y=x3-x的图象在点(1,0)处的切线斜率为k=y′|x=1=(3x2-1)|x=1=2,所以函数的图象在点(1,0)处的切线方程为y=2x-2.(2)设函数y=x3-x图象上切点的坐标为P(x0,x30-x0),则切线斜率为k=y′|x=x0=3x20-1,切线方程为y-(x30-x0)=(3x20-1)(x-x0),由于切线经过点(1,0),所以0-(x30-x0)=(3x20-1)(1-x0),整理,得2x 30-3x 20+1=0,即2(x 30-1)-3(x 20-1)=0,所以2(x 0-1)(x 20+x 0+1)-3(x 0+1)(x 0-1)=0, 所以(x 0-1)2(2x 0+1)=0, 解得x 0=1或x 0=-12.所以P (1,0)或P ⎝ ⎛⎭⎪⎫-12,38,所以切线方程为y =2x -2或y =-14x +14.知识点二 导数与函数的单调性 求函数f (x )的单调区间的方法步骤 (1)确定函数f (x )的定义域; (2)计算函数f (x )的导数f ′(x );(3)解不等式f ′(x )>0,得到函数f (x )的递增区间;解不等式f ′(x )<0,得到函数f (x )的递减区间.提醒:求函数单调区间一定要先确定函数定义域,往往因忽视函数定义域而导致错误.(2014·高考大纲卷)函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论函数f (x )的单调性;(2)若函数f (x )在区间(1,2)是增函数,求a 的取值范围. 解析:(1)因为函数f (x )=ax 3+3x 2+3x , 所以f ′(x )=3ax 2+6x +3.令f ′(x )=0,即3ax 2+6x +3=0,则Δ=36(1-a )。
高二数学导数的定义及其几何意义的应用例题+方法总结+课后作业
![高二数学导数的定义及其几何意义的应用例题+方法总结+课后作业](https://img.taocdn.com/s3/m/d2183350d0d233d4b04e6960.png)
导数的概念及几何意义知识点一、导数的概念1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000lim lim=注意:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数. (4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示.知识点二、导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示:当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.注意:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.知识点三、导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.题型一、导数定义的应用例1. 用导数的定义,求函数()y f x==x =1处的导数.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - .【变式2】求函数 2()3f x x =在x =1处的导数.【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.例2. 已知函数()24f x x=,求()f x '.【变式1】求函数y =在(0,)+∞内的导函数. 【变式2】已知()f x =,求'()f x ,'(2)f .例3(1)若0'()2f x =,则000()()lim2k f x k f x k→--=________.()2若(3)2f '=,则1(3)(12)lim 1x f f x x →-+=-【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时,(1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.题型二、求曲线的切线方程方法总结:1.求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 2.求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程.例4.求曲线21y x =+在点()12P ,处的切线方程.【变式】求曲线215y x x=++上一点2x =处的切线方程.例5.求曲线()3f x x =经过点(1,1)P 的切线方程.例6.过点(1,-1)且与曲线y =x 3-2x 相切的直线方程为( )A .x -y -2=0或5x +4y -1=0B .x -y -2=0C .x -y -2=0或4x +5y +1=0D .x -y +2=0【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.题型三、导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率).课后作业1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 的值为( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是3.设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=A. 0B.1C.2D.34.若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=5.若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是6.在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b=7.设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2) 8.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 9.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 110.已知点P 在曲线y=14x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是。
[高二数学]数学选修2-2-导数及其应用
![[高二数学]数学选修2-2-导数及其应用](https://img.taocdn.com/s3/m/1897ed932e3f5727a4e96284.png)
三、函数的单调性与导数 1.导数与函数单调性 函数y=f(x)在某个区间(a,b)内可导,如果f′(x)>0,则 y=f(x)在这个区间内单调递增;如果f′(x)<0,则y=f(x)在 这个区间内单调递减.
2.讨论函数单调性应注意的问题 (1)在利用导数来讨论函数的单调区间时,首先要确定函数的 定义域,解决问题的过程只能在定义域内通过讨论导数的符号 来判断函数的单调区间. (2)一般利用使导数等于零的点来分函数的单调区间. (3)如果一个函数具有相同单调性的单调区间不止一个,那么 这些单调区间之间不能用“∪”连接,而只能用“,”或“和” 字隔开.
二、导数的计算
1.基本初等函数的导数公式
(1)(c)′=0,(c为常数).
(2)(xα)′=αxα-1(α∈Q*).
(3)(sinx)′=cosx.
(4)(cosx)′=-sinx.
(5)(ax)′=axlna(a>0且a≠1).
(6)(ex)′=ex.
(7)(logax)′=
1 x ln a
(a>0且a≠1).
(4)注意在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在 该区间上为增(或减)函数的充分不必要条件,而不是充要条件 (例如,f(x)=x3). (5)如果函数在某个区间内恒有f′(x)=0,则f(x)为常数函数. (6)利用导数的符号判断函数的增减性,这是导数的几何意义 在研究曲线变化规律中的一个应用,它充分体现了数形结合思 想. (7)若在某区间上有有限个点使f′(x)=0,在其余的点恒有 f′(x)>0,则f(x)在该区间上仍为增函数.
七、微积分基本定理
定理内容
符号表示
作用
如果f(x)是区间[a,b]上 的连续函数,并且 F′(x)=f(x),那么
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学-导数与切线方程
一、典型例题
(一)已知曲线方程和切点坐标,求切线方程;
例1、求43x
P处的切线方程;
y=在点()8,16
(二)已知曲线方程和切点斜率,求切线方程;
例2、已知x
y=,求与直线4
y垂直的切线方程;
=x
2-
-
(三)已知曲线方程和曲线外一点,求切线方程;
例3、过原点作曲线x e
y=的切线,求切线斜率和切线方程;
(四)已知曲线方程和曲线上一点,求过该点的切线方程;
例4、求曲线3
A的切线方程;
=过点()2,2-
x
3x
y-
随堂练习
1、求曲线x x
y +-=3在点()0,1处的切线方程;
2、求过曲线232
13
1x x y +=上一点()0,0的切线方程;
3、求经过原点且与曲线59++=x x y 相切的曲线方程;
4、若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值;。