2019北邮数分期中试题与答案
2019学年北京市八年级下学期期中数学试卷【含答案及解析】
(1)下列网格每个小正方形的边长都为 1,请你在网格中作出一个正方形 ABCD,使它的
边长 a=
,要求 A、 B、 C、 D四个顶点都在小正方形的格点上 .
(2)参考小强的思路,探究解决下列问题:作另一个正方形
EFGH,使它的四个顶点分别
在( 1)中所做正方形 ABCD的边上,并且边长 b 取得最小值 . 请你画出图形,并简要说明 b
四个顶点分别在已知正方形的四条边上,并且边长等于
b.
小强的思考是:如图,假设正方形 EFGH已作出 , 其边长为 b,点 E、F、 G、 H分别在 AD、
AB、 BC、 CD上,则正方形 EFGH的中心就是正方形 ABCD的中心 O(对角线的交点) .
∵正方形 EFGH的边长为 b,∴对角线 EG= HF= b, ∴OE= OF=OG=OH= b,进而点 E、 F、 G、 H可作出 . 解决问题 :
参考答案及解析
第 1 题 【答案】
第 2 题 【答案】
第 3 题 【答案】 第 4 题 【答案】 第 5 题 【答案】
第 6 题 【答案】 第 7 题 【答案】 第 8 题 【答案】
第 9 题 【答案】 第 10 题【答案】
第 11 题【答案】 第 12 题【答案】
第 13 题【答案】 第 14 题【答案】 第 15 题【答案】 第 16 题【答案】
(1)求证:四边形 DBFE是平行四边形; (2)当△ ABC满足什么条件时,四边形 DBFE是菱形 ?为什么 ?
21. 某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为
4 万元,
可变成本
逐年增长 . 已知该养殖户第 1 年的可变成本为 2.6 万元 . 设可变成本平均每年增长的百分率
北邮18-19数分下试题解答
xdy − ydx xdy − ydx
=
C 4x2 + y2 C1 4x2 + y2
(8 分)
xdy − ydx
=
C1
2
5
= 2 1 d = .
02
(10 分)
七(10 分).计算曲面积分 I = ( xy + yz + zx) dS ,其中 S 为锥面 z = x2 + y2
S
被曲面 x2 + y2 = 2ax (a 0) 所截得的部分。
北京邮电大学 2018-2019 学年第二学期 《数学分析(下)》期末考试试题 答案及参考评分标准
考试注意事项:学生必须将答题内容做在答题纸上,做在试题纸上均无效
一. 填空题(本大题共 10 小题,每小题 3 分,共 30 分)
1. 填:-2
2.
填:
f
x
(
0,
0
)
=
2
.
3. 填: dz = F1dx + F2dy aF1 + bF2
S
S
= x x2 + y2 2dxdy
Dxy
(4 分) (6 分)
=
2
2 d
2a cos
r cos r rdr =
2
2 d
2acos r3 cos dr
(8 分)
− 2
0
− 2
0
= 64 2a4. 15
(10 分)
八(10 分) 设 u = u(x, y, z)具有二阶连续偏导数,且
−
1 2
+
(
z
+
1)
=
0
2019级数分(上)期中试题答案
2019-2020学年数学分析(上)期中试题答案1. 当0b a >>时,34lim 57n nn nn a b a b →∞+=- . 答案:47- 2. 已知,,,a b p q均为大于零的常数,则n = .答案:max{,}a b3. 11lim(sin cos )x x x x→∞+= . 答案:e 4.111()111x x f x x x-+=--的可去型间断点为 . 答案:0,1x x ==5.已知()f x 在x a =可导,()0f a =,则3l i m ()=x x f a x→∞+ . 答案:3()f a '6.已知21,0(),0x x x x f x ae be x -⎧+>⎪=⎨+≤⎪⎩在(,)-∞+∞可导,则a = ,b = . 答案:12a b ==7. 已知()x y ϕ=是严格单调二阶可导函数()y f x =的反函数, (1)3f =,(1)4f '=,(1)1f ''=,则(3)ϕ''= . 答案:164- 8. 2sin 4(1)x y x e =++,则y '= . 答案:2sin 222sin (1)(cos ln(1))1x x x y x x x x'=++++ 9. 已知()f x 可导,()()x f x y f e e =,则dy = .答案:()()[()()()]x x f x x f x dy f e e f e e f x dx +''=+10.已知函数()y y x =由2220(0)xy x y e y +-=>确定,则(0)y '= . 答案:1211. )y x π=<<,则y '= . 答案:11cot ()41224x y y x '=++ 12.已知函数()y y x =由2arctan ln(1)x t y t =⎧⎪⎨=+⎪⎩确定,则224x d y dx π== .答案:413.x x x f 2sin )(=, ()()n fx = . 答案:1(1)2sin(2)2sin(2)22n n n n x x n x ππ--+++14.011lim()ln(1)x x x →-=+ . 答案:12- 15. x xe x f =)(, ()f x 的4阶带Lagrange 型余项的Maclaurin 公式为 . 答案:3425(5),012!3!5!x x x x x e xe x x x θθθ+=++++<< 16.)1ln()(2x x x f +=, (2019)(0)f = . 答案:2019!201717.已知0x →时,21cos )(2x x x f +-=与k ax 是等价无穷小,则a = , k = . 答案:1,44!a k == 18.设1ab >>,比较大小: b ae a be (填<或>).答案:<19.函数()f x =的极值点是 .答案:0,3x =±20.函数()x f x xe -=在(,)-∞+∞内的最大值是 . 答案:1e。
2019学年北京市八年级下学期期中考试数学试卷【含答案及解析】
2019学年北京市八年级下学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三四五六七总分得分一、单选题1. 请判别下列哪个方程是一元二次方程()A. B. C. D.2. 在四边形中,对角线互相平分,若添加一个条件使得四边形是菱形,则这个条件可以是()A. B. C. D. ∥3. 是一次函数图象上的两个点,则的大小关系是()A. B. C. D. 不能确定二、选择题4. 如图,在□ABCD中,AE⊥CD于点E,∠B=65°,则∠DAE等于().A.15° B.25° C.35° D.65°三、单选题5. 一次函数,其中<0,且随的增大而减小,则其图象为()A. B. C. D.6. 关于x的一元二次方程的一个根是0,则a的值是()A. 1B. -1C.D. 0四、选择题7. 汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,?则汽车距天津的路程S(千米)与行驶时间t(时)的函数关系及自变量的取值范围是( ? )A.S=120-30t(0≤t≤4) B.S=30t(0≤t≤4)C.S=120-30t(t>0) D.S=30t(t=4)五、单选题8. 如图,在正方形外侧,作等边三角形,与相交于,则∠为()A. 145°B. 120°C. 115°D. 105°9. 如图,已知矩形中,、分别是、上的点,、分别是、的中点,当点在上从向移动而不动时,那么线段的长的变化是()A. 逐渐增大B. 逐渐减小C. 长度不改变D. 不能确定10. 如图,在直角梯形中,∥,∠=90°,=28cm,=24cm,=4cm,点从点出发,以1cm/s的速度向点运动,点从点同时出发,以2cm/s的速度向点运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动。
2019学年度xxx大学第二学期《高等数学》期中考试试题参考答案
第二学期《高等数学》期中考试试题参考答案⑴求满足条件du =(,).u x y解:(,)(,)P x y Q x y ==而22322()P xy Q y x y x∂-∂==∂+∂,故(,)(0,1)10(,)x y yx y u x y dy y ==+⎰⎰⎰0xy =+=⑼ 求曲线积分22()(4),4L x y dx x y dy x y-+++⎰其中曲线L 方程为22(1)4,x y +-=逆时针方向. 解: 222222222448,,.44(4)x y x y P x y xy QP Q x y x y y x y x -+∂-+-∂====++∂+∂但在坐标原点,此条件不成立.记222:4l x y r +=,顺时针方向,则在()L l ++所围区域内,格林公式成立,即22()()(4)0,4L l x y dx x y dy x y ++-++=+⎰故2222()(4)()(4),44L lx y dx x y dyx y dx x y dyx yx y-++-++=++⎰⎰ 2cos sin 22(2cos sin )2(sin )(2cos 4sin )cos 4x r y r r r r r r r d r θθπθθθθθθθ==--++=⎰201.2d πθπ==⎰四. (10分)求解初值问题:2331,1(0),(0) 3.3y y y x y y '''--=+⎧⎪⎨'==⎪⎩解 齐次方程对应的特征方程为2230.λλ--=特征根为121, 3.λλ=-=因此齐次方程的通解为312.x x y C e C e -=+由于0不是特征方程的根,故设非齐次方程的特解为,y ax b =+代入原方程,比较系数,得11,.3a b =-=即原方程的通解为3121.3x xy C e C e x -=+-+由定解条件,得12120,313,C C C C +=⎧⎨-+-=⎩ 121,1.C C =-⎧⇒⎨=⎩初值问题的解为 31.3xxy e e x -=-+-+6. 2001(),()()().2aaa xf x f x dxf y dy f x dx ⎡⎤=⎢⎥⎣⎦⎰⎰⎰已知函数连续求证;2000()()()()()()().ax aaxaaaf x dx f y dy f x dx f y dyf x dx f y dy f x dx +⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰⎰⎰⎰证明;显然()()()()()()aa a y a xxf x dx f y dy f y dy f x dx f x dx f y dy==⎰⎰⎰⎰⎰⎰而变换积分次序后再换积分变量字母,有于是201()()().2aaaxf x dx f y dy f x dx ⎡⎤=⎢⎥⎣⎦⎰⎰⎰证毕.证法2: 0()(),xF x f y dy =⎰记则0()().af x dx F a =⎰于是()()()[()()]aa a xf x dx f y dy f x F a F x dx =-⎰⎰⎰0()()()()a aF a f x dx F x f x dx =-⎰⎰2222200111()()()()()()().222aa a F a F x dF x F a F x F a f x dx ⎡⎤=-=-==⎢⎥⎣⎦⎰⎰2222(1)(1)9.,1,.(1)2L xdy y dx y I L x x y ++---=+=+-⎰求曲线积分其中方程为逆时针方向 解: 2222(1)(,),(,),(1)(1)y x P x y Q x y x y x y --==+-+-22222(1),[(1)]P y x Qy x y x∂--∂==∂+-∂ 由于点(0,1)位于L +所围区域(记为D )内,作圆周C +: x 2+y 2=r 2,则由格林公式,22()(1)0,(1)L C xdy y dxI x y ++--==+-⎰22222222220(1)(1)cos sin 2.(1)(1)L C xdy y dx xdy y dxr r I d x y x y r πθθθπ++----+====+-+-⎰⎰⎰。
2019届北京高三上学期期中数学(文)试卷含解析
2019届北京高三上学期期中数学试卷数学(文)第I卷(选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,每小题只有一个正确答案)在每小题给出的四个选项中,只有一项是最符合题目要求的,选出正确的选项并将该选项在答题卡上涂黑。
1.已知集合,若,则的取值范围为A. B. C. D.【答案】C【解析】【分析】根据2∈A即可得出2﹣a≤0,从而可解出a的取值范围.【详解】∵2∈A;∴2﹣a≤0;∴a≥2;∴a的取值范围为[2,+∞).故选:C.【点睛】考查描述法表示集合的定义,元素与集合的关系.2.下列函数中,是奇函数且在上存在最小值的是A. B. C. D.【答案】D【解析】【分析】根据题意,依次分析选项中函数的奇偶性与(0,+∞)的最值情况,综合即可得答案.【详解】根据题意,依次分析选项:对于A,f(x)=x2﹣x,f(﹣x)=(﹣x)2﹣(﹣x)=x2+x≠﹣f(x),不是奇函数,不符合题意;对于B,f(x)=|lnx|,f(﹣x)=ln|﹣x|=lnx=f(x),为偶函数,不是奇函数,不符合题意;对于C,f(x)=x3,为幂函数,是奇函数,但在(0,+∞)上不存在最小值对于D,f(x)=sinx,为正弦函数,是奇函数,在(0,+∞)上存在最小值﹣1;故选:D.【点睛】本题考查函数的奇偶性以及最值的判断,关键是掌握常见函数的性质,属于基础题.3.函数满足,则的值是A. 0B.C.D. 1【答案】A【解析】【分析】由已知求得φ,进一步得到的值.【详解】由f(x)=sin(x+φ)满足,得sin(φ)=1,即φ=,k∈Z.则φ=,k∈Z.∴f(x)=sin(x+φ)=sin(x+)=sin(x+).∴=sinπ=0.故选:A.【点睛】本题考查三角函数的化简求值,考查由已知三角函数值求角,是基础题.4.已知向量,,则向量,夹角的大小为A. B. C. D.【答案】B【解析】【分析】由题意利用两个向量的夹角公式,求得向量,夹角的大小.【详解】设向量,夹角的大小为θ,θ∈[0,π],∵向量=(1,2),=(3,1),∴cosθ===,所以故选:B.【点睛】本题主要考查两个向量的夹角公式的应用,属于基础题.5.已知函数,,的图像都经过点,则的值为A. B. C. D.【答案】D【解析】【分析】函数f(x)=log a x,g(x)=b x,的图象都经过点,可得=2,=2,解得a,b 即可得出.【详解】函数f(x)=log a x,g(x)=b x,的图象都经过点,∴=2,=2,解得a=,b=16.则ab=8.故选:D.【点睛】本题考查了函数的性质、方程的解法,考查了推理能力与计算能力,属于基础题.6.在中,“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】当时,,所以,成立;当时,如取时,成立,此时,所以不成立;综上知“”是“”的”的充分不必要条件,选A.7.数列的通项公式为,若数列单调递增,则的取值范围为A. B. C. D.【答案】C【解析】【分析】数列{a n}单调递增⇔a n+1>a n,可得:n+1+>n+,化简解出即可得出.【详解】数列{a n}单调递增⇔a n+1>a n,可得:n+1+>n+,化为:a<n2+n.∴a<2.故选:C.【点睛】本题考查了等比数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.8.已知向量满足,且,则、、中最小的值是A. B. C. D. 不能确定的【答案】A【解析】【分析】可在的两边分别乘可得出,,,再根据即可得到,,这样整理即可得出.【详解】∵;∴,,;∴,,;∵;∴,;∴;∴.故选:A.【点睛】考查数量积的定义及运算,不等式的性质.二、填空题共6小题,每小题5分,共30分。
北京市2019学年高二下学期期中考试数学(理)试卷【含答案及解析】
北京市2019学年高二下学期期中考试数学(理)试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 复数 =A. + iB. + iC. 1-iD. 1+i2. 下列求导正确的是A. (3x 2 -2)'=3xB. (log 2 x)'=C. (cosx)'=sinxD. ()'=x3. 曲线y=x·e x 在x=1处切线的斜率等于A. 2eB. eC. 2D. 14. 等于A. B. C. D.5. 函数f(x)=3+xlnx的单调递增区间为A. (0,)________B. (e,+∞)________C. (,+∞)________D. (,e)6. 在复平面内,复数(i是虚数单位)的共轭复数对应的点位于A. 第四象限________B. 第三象限________C. 第二象限________D. 第一象限7. 函数f(x)= 在区间[0,3]的最大值为A. 3B. 4C. 2D. 58. 已知f(x)=1+(1+x)+(1+x) 2 +(1+x)3 +…+(1+x) n ,则f'(0)=A. nB. n-1C.D.9. 函数f(x)=x 3 +ax 2 +(a+6)x+1有极大值和极小值,则实数a的取值范围是A. (-1,2)________B. (-3,6)C. (-∞,-3)∪(6,+∞)________D. (-∞,-1)∪(2,+∞)10. 方程x 2 =xsinx+cosx的实数解个数是A. 3B. 0C. 2D. 1二、填空题11. 复数(2+i)·i的模为 ___________ .12. 由曲线y=x 2 ,y=x 3 围成的封闭图形的面积为 __________ .13. 若曲线y=x 3 +x-2上的在点P 0 处的切线平行于直线y=4x-1,则P 0 坐标为__________ .14. 如下图,由函数f(x)=x 2 -x的图象与x轴、直线x=2围成的阴影部分的面积为__________ .15. 已知S n = + +…+ ,n∈N*,利用数学归纳法证明不等式S n >的过程中,从n=k到n=k+l(k∈N*)时,不等式的左边S k+1 =S k + __________ .16. 对于函数y=f(x),x D,若对于任意x 1 D,存在唯一的x 2 D,使得,则称函数f(x)在D上的几何平均数为M. 那么函数f(x)=x 3 -x 2 +1,在x= [1,2]上的几何平均数M= ____________ .三、解答题17. 设函数f(x)=lnx-x 2 +x.(I)求f(x)的单调区间;(II)求f(x)在区间[ ,e]上的最大值.18. 已知函数f(x)= ,其中a∈R.(I)当a=1时,求曲线y=f(x)在原点处的切线方程;(II)求f(x)的极值.四、选择题19. 若f(x)=- x 2 +bln(x+2)在(-1,+∞)上是减函数,则实数b的取值范围是A. [-1,+∞)________B. (-1,+∞)________C. (-∞,-1]D. (-∞,-1)20. 观察()'=- ,(x 3 )'=3x 2 ,(sinx)'=cosx,由归纳推理可得:若函数f(x)在其定义域上满足f(-x)=-f(x),记g(x)为f(x)的导函数,则g (-x)=A. -f(x)________B. f(x)________C. g(x)________D. -g(x)21. 若i为虚数单位,设复数z满足| z |=1,则|z-1+i|的最大值为A. -1B. 2-C. +1D. 2+五、填空题22. 曲线y=x n 在x=2处的导数为12,则正整数n= __________ .23. 设函数y=-x 2 +l的切线 l 与x轴,y轴的交点分别为A,B,O为坐标原点,则△OAB的面积的最小值为 __________ .24. 对于函数①f(x)=4x+ -5,②f(x)=|log 2 x|-() x ,③f(x)=cos(x+2)-cosx,判断如下两个命题的真假:命题甲:f(x)在区间(1,2)上是增函数;命题乙:f(x)在区间(0,+∞)上恰有两个零点x 1 ,x 2 ,且x 1 x 2 <1.能使命题甲、乙均为真的函数的序号是 _____________ .六、解答题25. 已知函数f(x)=x 3 +ax 2 +bx+a 2 .(I)若f(x)在x=1处有极值10,求a,b的值;(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围26. 已知函数f(x)=x 3 -3ax+e,g(x)=1-lnx,其中e为自然对数的底数.(I)若曲线y=f(x)在点(1,f(1))处的切线与直线 l :x+2y=0垂直,求实数a 的值;(II)设函数F(x)=-x[g(x)+ x-2],若F(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求m的值;(III)用max{m,n}表示m,n中的较大者,记函数h(x)=max{f(x),g(x)}(x>0). 若函数h(x)在(0,+∞)上恰有2个零点,求实数a的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第20题【答案】第21题【答案】第22题【答案】第24题【答案】第25题【答案】第26题【答案】。
2019年高三数学下期中试题(含答案)(2)
2019年高三数学下期中试题(含答案)(2)一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1763.一个递增的等差数列{}n a ,前三项的和12312a a a ++=,且234,,1a a a +成等比数列,则数列{}n a 的公差为 ( ) A .2±B .3C .2D .14.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =5.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .66.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形7.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 48.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4B .5C .6D .4或59.已知{}n a 为等差数列,n S 为其前n 项和,若3572a a +=,则13S =( ) A .49B .91C .98D .18210.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .14011.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6612.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .28二、填空题13.已知数列{}n a ,11a =,1(1)1n n na n a +=++,若对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立,则实数t 的取值范围为________ 14.已知实数x ,y 满足不等式组2202x y y y x+-≥⎧⎪≤⎨⎪≥⎩,则1yx +的最大值为_______.15.已知等比数列{}n a 满足232,1a a ==,则12231lim ()n n n a a a a a a +→+∞+++=L ________________.16.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 17.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.18.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .19.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.20.若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______. 三、解答题21.已知数列中,,. (1)求证:是等比数列,并求的通项公式; (2)数列满足,求数列的前项和.22.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin 3sin sin A C B A C +-.(1)求角B ;(2)点D 在线段BC 上,满足DA DC =,且11a =,5cos()A C -=DC 的长.23.ABC V 的内角,,A B C 所对的边分别为,,a b c .已知ABC V 的面积21tan 6S b A = (1)证明: 3 b ccos A =; (2)若1,3c a ==求S .24.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S .25.若数列{}n a 是递增的等差数列,它的前n 项和为n T ,其中39T =,且1a ,2a ,5a 成等比数列.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若对任意*n N ∈,24n S a a ≤-恒成立,求a 的取值范围.26.设等差数列{}n a 的前n 项和为n S ,225+=-a S ,515=-S . (1)求数列{}n a 的通项公式; (2)求12231111+++⋯+n n a a a a a a .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.B解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996,设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.3.C解析:C 【解析】 【分析】 【详解】解:∵234,,1a a a +成等比数列, ∴,∵数列{}n a 为递增的等差数列,设公差为d , ∴,即,又数列{}n a 前三项的和,∴,即,即d =2或d =−2(舍去), 则公差d =2. 故选:C .4.B解析:B 【解析】分析:由等差数列的性质,即2852a a a +=,得5=0a ,又由545S S a =+,得54S S =. 详解:Q 数列{}n a 为等差数列, 2852a a a ∴+= 又286,6a a =-=Q ,5=0a ∴由数列前n 项和的定义545S S a =+,54S S ∴= 故选B.点睛:本题考查等差数列的性质与前n 项和计算的应用,解题时要认真审题,注意灵活运用数列的基本概念与性质.5.A解析:A 【解析】 【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值. 【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=. 故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.6.D解析:D【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.7.D解析:D 【解析】∵(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016(a 2 013-1)=-1, ∴(a 4-1)3+2 016(a 4-1)+(a 2 013-1)3+2 016(a 2 013-1)=0, 设a 4-1=m ,a 2 013-1=n , 则m 3+2 016m +n 3+2 016n =0, 化为(m +n )·(m 2+n 2-mn +2 016)=0, ∵2222132?0162016024m n mn m n n ⎛⎫=-++> ⎪⎝⎭+-+,∴m +n =a 4-1+a 2 013-1=0, ∴a 4+a 2 013=2, ∴()()1201642013201620162016201622a a a a S ++===.很明显a 4-1>0,a 2 013-1<0,∴a 4>1>a 2 013, 本题选择D 选项.8.B解析:B 【解析】由{}n a 为等差数列,所以95532495S S a a d -=-==-,即2d =-, 由19a =,所以211n a n =-+, 令2110n a n =-+<,即112n >, 所以n S 取最大值时的n 为5, 故选B .9.B【解析】∵3572a a +=,∴11272(4)a d a d ++=+,即167a d +=,∴13711313(6)13791S a a d ==+=⨯=,故选B .10.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x x =.所以1n a n n =++,所以11nn n a =+-,故1121n S n n n n =+-+--++-L 11n =+-,由1110n S n =+-=解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.11.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.12.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质二、填空题13.【解析】【分析】由题意可得运用累加法和裂项相消求和可得再由不等式恒成立问题可得恒成立转化为最值问题可得实数的取值范围【详解】解:由题意数列中即则有则有又对于任意的不等式恒成立即对于任意的恒成立恒成立 解析:(,1]-∞-【解析】 【分析】 由题意可得11111(1)1n n a a n n n n n n +-==-+++,运用累加法和裂项相消求和可得11n an ++,再由不等式恒成立问题可得232t a ≤-⋅恒成立,转化为最值问题可得实数t 的取值范围. 【详解】解:由题意数列{}n a 中,1(1)1n n na n a +=++, 即1(1)1n n na n a +-+=则有11111(1)1n n a a n n n n n n +-==-+++ 则有11111111n n nn n n a a a a a a n n nn n n ++--⎛⎫⎛⎫⎛=-+-+- ⎪ ⎪ ++--⎝⎭⎝⎭⎝2211122n a a a a n -⎫⎛⎫+⋯+-+ ⎪⎪-⎝⎭⎭(11111111121n n n n n n ⎛⎫⎛⎫⎛⎫=-+-+-+⋯+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭11)12221n -+=-<+ 又对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立, 即232t a ≤-⋅对于任意的[2,2]a ∈-恒成立,21t a ∴⋅≤,[2,2]a ∈-恒成立,∴2211t t ⋅≤⇒≤-, 故答案为:(,1]-∞- 【点睛】本题考查了数列递推公式,涉及数列的求和,注意运用裂项相消求和和不等式恒成立问题的解法,关键是将1(1)1n n na n a +=++变形为11111n n a a n n n n +-=-++. 14.2【解析】【分析】作出不等式组表示的平面区域根据目标函数的几何意义结合图象即可求解得到答案【详解】由题意作出不等式组表示的平面区域如图所示又由即表示平面区域内任一点与点之间连线的斜率显然直线的斜率最解析:2 【解析】 【分析】作出不等式组表示的平面区域,根据目标函数的几何意义,结合图象,即可求解,得到答【详解】由题意,作出不等式组表示的平面区域,如图所示, 又由()011y y x x -=+--,即1y x +表示平面区域内任一点(),x y 与点()1,0D -之间连线的斜率,显然直线AD 的斜率最大,又由2202x y y +-=⎧⎨=⎩,解得()0,2A ,则02210AD k -==--, 所以1y x +的最大值为2.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.15.【解析】【分析】求出数列的公比并得出等比数列的公比与首项然后利用等比数列求和公式求出即可计算出所求极限值【详解】由已知所以数列是首项为公比为的等比数列故答案为【点睛】本题考查等比数列基本量的计算同时 解析:323【解析】 【分析】求出数列{}n a 的公比,并得出等比数列{}1n n a a +的公比与首项,然后利用等比数列求和公式求出12231n n a a a a a a ++++L ,即可计算出所求极限值. 【详解】 由已知3212a q a ==,23112()()22n n n a --=⨯=,3225211111()()()2()2224n n n n n n a a ----+=⋅==⋅,所以数列{}1n n a a +是首项为128a a =,公比为1'4q =的等比数列,11223118[(1()]3214[1()]13414n n n n a a a a a a -+-+++==--L , 1223132132lim ()lim [1()]343n n n n n a a a a a a +→+∞→∞+++=-=L . 故答案为323. 【点睛】本题考查等比数列基本量的计算,同时也考查了利用定义判定等比数列、等比数列求和以及数列极限的计算,考查推理能力与计算能力,属于中等题.16.4【解析】已知等式利用正弦定理化简得:可得可解得余弦定理可得可解得故答案为解析:4【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴Q 可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =,故答案为4.17.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题 解析:1,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果【详解】 因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题. 18.【解析】【分析】【详解】由题意解得或者而数列是递增的等比数列所以即所以因而数列的前项和故答案为考点:1等比数列的性质;2等比数列的前项和公式解析:21n -【解析】【分析】【详解】由题意,14231498a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==, 而数列{}n a 是递增的等比数列,所以141,8a a ==, 即3418a q a ==,所以2q =, 因而数列{}n a 的前n 项和1(1)1221112n nn n a q S q --===---,故答案为21n -. 考点:1.等比数列的性质;2.等比数列的前n 项和公式.19.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC 构成其中作出直线显然点A 到直线的距离最近由其几何意义知区域内的点最短距离为点A 到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区【解析】作出不等式组所表示的可行域1Ω ,如图阴影部分,由三角形ABC 构成,其中(11),(30),(12)A B C -,,, ,作出直线20x y += ,显然点A 到直线20x y +=的距离最近,由其几何意义知,区域12,ΩΩ 内的点最短距离为点A 到直线20x y +=的距离的2倍,由点到直线的距离公式有:5d == ,所以区域1Ω 内的点与区域2Ω 内的点之,即5CD = .点睛:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题. 巧妙识别目标函数的几何意义是解答本题的关键.20.【解析】当且仅当时取等号点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才能应用否则会出现解析:8【解析】 12124412(2)()4428b a b a a b a b a b a b a b a b +=∴+=++=++≥+⋅=Q ,当且仅当2b a = 时取等号.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.三、解答题21.(1)答案见解析;(2).【解析】试题分析:⑴根据数列的递推关系,结合等比数列的定义即可证明是等比数列,并求的通项公式,⑵利用错位相减法即可求得答案; 解析:(1)∵∴∴,∵,, ∴是以为首项,以4为公比的等比数列 ∴, ∴, ∴, (2),∴①②①-②得∴. 22.(Ⅰ)6B π=;(Ⅱ)455AD =. 【解析】【试题分析】(1)运用正弦定理将已知中的222sin sin sin 3sin sin A C B A C +-=等式转化为边的关系,再借助运用余弦定理求解;(2)借助题设条件DA DC =,且11a =,()5cos A C -=,再运用正弦定理建立方程求解: (Ⅰ)由正弦定理和已知条件,2223a c b ac +-=所以3cos 2B =. 因为()0,B π∈,所以6B π=.(Ⅱ)由条件.由()()cos sin 55A C A C -=⇒-=.设AD x =,则CD x =,11BD x =-,在ABD ∆中,由正弦定理得sin sin BD AD BAD B=∠.故512x x =⇒=.所以5AD DC ==. 23.(1)证明解析,(2)2 【解析】【分析】(1)由正弦定理面积公式得:211sin tan 26S bc A b A ==,再将sin tan cos A A A =代入即可. (2)因为1c =,a =3b cosA =.代入余弦定理2222cos a b c bc A =+-得22cos 3A =,cos 3A=tan 2A ⇒=,b =⇒16622S =⨯⨯=. 【详解】 (1)由211sin tan 26S bc A b A ==,得3sin tan c A b A = 因为sin tan cos A A A =,所以sin 3sin cos b A c A A=, 又0A π<<,所以sin 0A ≠,因此3cos b c A =.(2)由(1)得3b ccosA =.因为1c =,a =3b cosA =.由余弦定理2222cos a b c bc A =+-得:2229cos 16cos A A =+-,解得:22cos 3A =. 因为3b cosA =,所以cos 0A >,cos A =.tan A ⇒=,b .211tan 66622S b A ==⨯⨯=. 【点睛】本题第一问主要考查正弦定理中的面积公式和边角互化,第二问考查了余弦定理的公式应用,属于中档题.24.(Ⅰ)3n n a =;(Ⅱ)()1121334n n S n +⎡⎤=-⋅+⎣⎦.【解析】【分析】(Ⅰ)由已知,当1n ≥时,()()()111211n n n n n a a a a a a a a ++-=-+-++-+L ,结合题意和等比数列前n 项和公式确定数列的通项公式即可;(Ⅱ)结合(Ⅰ)的结果可知3n n b n =⋅,利用错位相减求和的方法求解其前n 项和即可.【详解】(Ⅰ)由已知,当1n ≥时,()()()111211n n n n n a a a a a a a a ++-=-+-++-+L12323233n n L -=⨯+⨯++⨯+()1233311n n -=⋅+++++L()1123112n +⎡⎤=⋅-+⎢⎥⎣⎦13n +=∵13a =,即关系式也成立,∴数列{}n a 的通项公式3n n a =.(Ⅱ)由3n n n b na n ==⋅,得231323333n n S n =⨯+⨯+⨯++⋅L ,而()23413132333133n n n S n n +=⨯+⨯+⨯++-⋅+⋅L ,两式相减,可得()231233333n n n S n +-=++++-⋅L()111133322n n S n ++⎡⎤=---⋅⎢⎥⎣⎦ ∴()1121334n n S n +⎡⎤=-⋅+⎣⎦. 【点睛】 数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.25.(1) 21n a n =+ (2) 1a 2a ≤-≥或【解析】试题分析:(1)根据题目中所给的条件,用基本量来表示数列中的项,求出基本量,即可得到通项;(2)由第一问可得,11122121n b n n ⎛⎫=- ⎪-+⎝⎭,进而裂项求和,得到221n a a n ≤-+恒成立,求左式的最大值即可. 解析:(1)31239T a a a =++=Q ,13a d ∴+=又125,,a a a Q 成等比数列2215a a a ∴=11a ∴=`,221n d a n =∴=-(2)()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭ 1111111-++23352121n S n n ⎛⎫∴=-+⋅⋅⋅- ⎪-+⎝⎭ 111-221n =+() 21n n =+ 对任意的*n N ∈,24n S a a ≤-恒成立只需n S 的最大值小于或等于24a a -,而12n S < 22a a ∴-≥1a ∴≤-或2a ≥26.(1)n a n =-;(2)1n n +. 【解析】【分析】(1)利用方程的思想,求出首项、公差即可得出通项公式;(2)根据数列{}n a 的通项公式表示出11n n a a +,利用裂项相消法即可求解. 【详解】(1)设等差数列{}n a 的公差为d ,由221325+=+=-a S a d ,5151015=+=-S a d ,即123+=-a d ,解得11a =-,1d =-,所以()11=---=-n a n n .(2)由n a n =-,所以11111(1)1+==-++n n a a n n n n , 所以122311111111112231+⎛⎫⎛⎫⎛⎫++⋯+=-+-+⋯+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭n n a a a a a a n n 1111n n n =-=++. 【点睛】 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.。
北京市海淀区2019届高三4月期中练习(一模)数学文试题(解析版)
海淀区高三年级第二学期期中练习数学(文科)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题国要求的一项.1.已知集合,且,则可以是()A. B. C. D.【答案】A【解析】【分析】利用子集概念即可作出判断.【详解】∵∴故选:A【点睛】本题考查了子集的概念,考查了元素与集合的关系,属于基础题.2.若是函数的零点,则()A. B. C. D.【答案】C【解析】【分析】利用零点存在定理即可作出判断.【详解】解:因为f(1)=-1,f(2)=,即f(1)•f(2)<0,所以,函数在(1,2)内有零点,所以,故选:C【点睛】本题考查了零点所在区间的判断,考查了零点存在定理,属于基础题.3.若角的终边在第二象限,则下列三角函数值中大于零的是()A. B. C. D.【答案】D【解析】【分析】利用诱导公式化简选项,再结合角的终边所在象限即可作出判断.【详解】解:角的终边在第二象限,=<0,A不符;=<0,B不符;=<0,C不符;=>0,所以,D正确故选:D【点睛】本题主要考查三角函数值的符号判断,考查了诱导公式,三角函数的符号是解决本题的关键.4.已知,则下列结论中正确的是()A. B.C. D.【答案】D【解析】【详解】解:A不一定成立,如a=1,b=10,c=-1,不成立;B也不一定成立,如a=9.5,b=10,c=-1,不成立;C不成立,因为,,所以,恒成立,因此D必正确故选:D【点睛】本题考查不等式是否成立,考查了全程量词与特陈量词,不等式的性质,属于基础题.5.抛物线的焦点为,点在抛物线形上,且点到直线的距离是线段长度的2倍,则线段的长度为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】利用抛物线定义可得点到直线的距离是点A到准线x=-1的距离的2倍,从而可得结果.【详解】解:依题意,得F(1,0),抛物线的准线为x=-1,线段AF的长等于点A到准线x=-1的距离,因为点到直线的距离是线段长度的2倍,所以,点到直线的距离是点A到准线x=-1的距离的2倍设A点横坐标为,是+3=2(+1),解得:=1,所以,|AF|=1-(-1)=2故选:B【点睛】本题考查了抛物线定义,考查了数形结合的思想,属于中档题.6.某四棱锥的三视图如图所示,其中,且.若四个侧面的面积中最小的为,则的值为()A. B. C. D.【答案】B【解析】【分析】由题意还原几何体,表示最小面积即可得到a值.【详解】解:该几何体如下图所示,因为,所以,三角形APD的面积最小,即,所以,,解得:故选:B【点睛】本题考查了由三视图求几何体的表面积,根据三视图判断相关几何量的数据是解答问题的关键.7.设是公比为的等比数列,且,则“对任意成立”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据等比数列的定义和性质,结合充分条件和必要条件的定义即可得到结论.【详解】解:,因为,所以对任意成立,必有,反过来,若,又因为,所以,>1对任意成立,所以是充分必要条件,故选:C【点睛】本题主要考查充分条件和必要条件的判断,利用好等比数列的性质是解决本题的关键.8.某校实行选科走班制度,张毅同学的选择是地理、生物、政治这三科,且生物在层班级.该校周一上午选科走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法的种数为()化学化学生物化学生物历史物理生物物理生物物理生物物理物理A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据表格分类讨论即可得到结果.【详解】解:张毅不同的选课方法如下:(1)地理1班,生物B层1班,政治2班;(2)地理1班,生物B层1班,政治3班;(3)地理1班,生物B层2班,政治3班;(4)地理2班,生物B层1班,政治1班;(5)地理2班,生物B层1班,政治3班;共5种,故选B【点睛】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分9.已知是虚数单位,若,,则__________ .【答案】1【解析】【分析】利用复数乘法运算及复数相等概念可得结果.【详解】解:,所以,,解得: 1故答案为:1【点睛】本题考查了复数乘法运算,复数相等的概念,属于基础题.10.在中,,则_______;_________.【答案】(1). 6(2).【解析】【分析】利用余弦定理可得c值,由平方关系得到,借助可得结果.【详解】解:由余弦定理,得:=36,所以,c=6,由得:,所以,=【点睛】本题考查余弦定理,平方关系,以及三角形的面积公式的应用,熟练掌握公式是解题的关键.11.执行如图所示的程序框图,则输出的值为_________.【答案】48【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量T的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:第1步:T=2,x=4;第2步:T=8,x=6;第3步:T=48,x=8,退出循环,所以,T=48故答案为:48【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.12.已知向量,同时满足条件①,②的一个向量的坐标为_____ .【答案】(答案不唯一)【解析】【分析】设=(x,y),由∥得:y=-2x,结合,可得x的范围,进而可得结果.【详解】解:设=(x,y),由∥得:y=-2x,+=(1+x,-2+y),由,得:,把y=-2x代入,得:,化简,得:,解得:,取x=-1,得y=2,所以,=(-1,2)(答案不唯一)故答案为:=(-1,2)(答案不唯一)【点睛】本题考查向量共线的性质,考查平面向量的坐标运算,属于基础题.13.已知椭圆和双曲线.经过的左顶点和上顶点的直线与的渐近线在第一象限的交点为,且,则椭圆的离心率______;双曲线的离心率________ .【答案】(1). (2).【解析】【分析】根据椭圆标准方程可得椭圆的离心率,易知直线AB的方程为:,由,可知:B为AP的中点,求出P点坐标代入双曲线渐近线方程得到m值,从而得到双曲线的离心率.【详解】解:椭圆中:a=2,b=1,所以,c=,离心率为:,A(-2,0),B(0,1),直线AB的方程为:,因为,所以B为AP的中点,设P(x,y),则,解得:,即P(2,2)双曲线的渐近线为:,点P在渐近线上,所以,,所以,,双曲线中:a=1,b=1,所以,c=,离心率为:=,【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.14.设关于的不等式组表示的平面区域为.记区域上的点与点距离的最小值为,则 (1)当时,________;(2)若,则的取值范围是____.【答案】(1). 2(2).【解析】【分析】(1)当时,作出可行域,数形结合即可得到结果,(2)恒过定点(0,1),对k分类讨论,数形结合即可得到结果.【详解】解:(1)当时,不等式组为,表示的平面区域如下图1,区域上的点B与点距离的最小,最小值为|AB|=2,所以 2(2)恒过定点(0,1),(i)当k>0时,如图1,,符合题意(ii)当k=0时,如图2,,符合题意(iii)当k<0时,如图3,,解得:,与k<0不符,综上可知的取值范围是.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.三、解答题共6小题,共80分。
2019年高三数学下期中试题(含答案)
2019年高三数学下期中试题(含答案)一、选择题1.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,2.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C .78-D .18-3.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .34.已知等比数列{}n a 的各项都是正数,且13213,,22a a a 成等差数列,则8967a a a a +=+ A .6B .7C .8D .95.“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .157.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--8.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1229.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.10.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .14011.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4B .4C .14± D .1412.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c,若sin 2sin 0b A B +=,b =,则ca的值为( )A .1B.3CD.7二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N ,那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为______.15.已知数列{}n a 的首项12a =,且满足()*12n n n a a n N +=∈,则20a =________.16.已知递增等比数列{}n a 的前n 项和为n S ,且满足:11a =,45234a a a a +=+,则144S S a +=______. 17.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 18.等差数列{}n a 中,1351,14,a a a =+=其前n 项和100n S =,则n=__19.已知,x y 满足条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若目标函数=+z -ax y 取得最大值的最优解不唯一,则实数a 的值为__________.20.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = ________.三、解答题21.ABC △的内角,,A B C 的对边分别为,,a b c ,且cos )()cos a B C c b A -=-.(1)求A ;(2)若b =D 在BC 边上,2CD =,3ADC π∠=,求ABC △的面积. 22.设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .若2cos cos cos c C a B b A =+. (1)求角C .(2)若ABC V 的面积为S ,且224()S b a c =--,2a =,求S .23.已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求数列{}n b 的前n 项和公式. 24.D 为ABC V 的边BC 的中点.222AB AC AD ===. (1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V .25.已知向量()1sin 2A =,m 与()3sin A A =,n 共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC=2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状.26.C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量()m a =r与()cos ,sin n =A B r平行.(Ⅰ)求A ;(Ⅱ)若a =2b =求C ∆AB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】画出满足条件的平面区域,求出角点的坐标,结合2yz x =-的几何意义求出其范围,即可得到答案.【详解】由题意,画出满足条件的平面区域,如图所示:由358y x x y =⎧⎨+=⎩,解得11A (,),由1x y x =-⎧⎨=⎩,解得(11)B --,, 而2yz x =-的几何意义表示过平面区域内的点与0(2)C ,的直线斜率, 结合图象,可得1AC k =-,13BC k =, 所以2y z x =-的取值范围为113⎡⎤-⎢⎥⎣⎦,, 故选:A.【点睛】本题主要考查了简单的线性规划问题,其中解答中作出约束条件所表示的平面区域,结合图象确定出目标函数的最优解是解答的关键,着重考查了数形结合思想,以及计算能力,属于基础题.2.C解析:C 【解析】 【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果. 【详解】∵()cos 4cos a B c b A =-. ∴sin A cos B =4sin C cos A ﹣sin B cos A 即sin A cos B +sin B cos A =4cos A sin C ∴sin C =4cos A sin C ∵0<C <π,sin C ≠0.∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C 【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.3.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示, 由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.4.D解析:D 【解析】 【分析】设各项都是正数的等比数列{a n }的公比为q ,(q >0),由题意可得关于q 的式子,解之可得q ,而所求的式子等于q 2,计算可得. 【详解】设各项都是正数的等比数列{a n }的公比为q ,(q >0)由题意可得31212322a a a ⨯=+, 即q 2-2q-3=0, 解得q=-1(舍去),或q=3,故()26728967679a a qa a q a a a a .++===++ 故选:D . 【点睛】本题考查等差数列和等比数列的通项公式,求出公比是解决问题的关键,属基础题.5.C解析:C 【解析】先考虑充分性,当x>0时,12x x +≥=,当且仅当x=1时取等.所以充分条件成立. 再考虑必要性,当12x x+≥时,如果x>0时,22210(1)0x x x -+≥∴-≥成立,当x=1时取等.当x<0时,不等式不成立. 所以x>0. 故选C.6.A解析:A 【解析】试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=Q 即13log 1n n a a +=13n naa +∴= ∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.7.B解析:B 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.8.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a ab a b a a ==,=4312341233a a b b b a b b b a ∴=∴=,,=,,…101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.9.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===. 10.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x =所以n a =1na =1n S=L 1=,由110n S ==解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.11.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A . 【点睛】本题考查了等比中项的求法,属于基础题.12.D解析:D 【解析】分析:由正弦定理可将sin2sin 0b A B =化简得cosA 2=-,由余弦定理可得222227a b c bccosA c =+-=,从而得解.详解:由正弦定理,sin2sin 0b A B +=,可得sin2sin 0sinB A B +=,即2sin sin 0sinB AcosA B = 由于:0sinBsinA ≠,所以cosA =:, 因为0<A <π,所以5πA 6=.又b =,由余弦定理可得22222222337a b c bccosA c c c c =+-=++=.即227a c =,所以c a =. 故选:D .点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.二、填空题13.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅解析:4 【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当2224a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈ ,a b +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.14.6【解析】【分析】由题意公差d=1na1+=2668∴n(2a1+n-1)=5336=23×23×29得出满足题意的组数即可得出结论【详解】由题意公差d=1na1+=2668∴n(2a1+n-1)=解析:6 【解析】 【分析】由题意,公差d=1,na 1+()12n n -=2668,∴n (2a 1+n-1)=5336=23×23×29,得出满足题意的组数,即可得出结论. 【详解】由题意,公差d=1,na 1+()12n n -=2668,∴n (2a 1+n-1)=5336=23×23×29, ∵n <2a 1+n-1,且二者一奇一偶,∴(n ,2a 1+n-1)=(8,667),(23,232),(29,184)共三组; 同理d=-1时,也有三组. 综上所述,共6组. 故答案为6. 【点睛】本题考查组合知识的运用,考查等差数列的求和公式,属于中档题.15.512【解析】【分析】利用已知将n 换为n+1再写一个式子与已知作比得到数列的各个偶数项成等比公比为2再求得最后利用等比数列的通项公式即可得出【详解】∵anan+1=2n ()∴an+1a n+2=2n+解析:512 【解析】 【分析】利用已知将n 换为n +1,再写一个式子,与已知作比,得到数列{}n a 的各个偶数项成等比,公比为2,再求得2=1a ,最后利用等比数列的通项公式即可得出. 【详解】∵a n a n +1=2n ,(*n N ∈) ∴a n +1a n +2=2n +2.(*n N ∈)∴22n na a +=,(*n N ∈),∴数列{}n a 的各个奇数项513...a a a ,,成等比,公比为2, 数列{}n a 的各个偶数项246...a a a ,,成等比,公比为2, 又∵a n a n +1=2n ,(*n N ∈),∴a 1a 2=2,又12a =,∴2=1a , 可得:当n 为偶数时,1222n n a a -=⋅∴a 20=1•29=512. 故答案为:512. 【点睛】本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.16.2【解析】【分析】利用已知条件求出公比再求出后可得结论【详解】设等比数列公比为则又数列是递增的∴∴故答案为:2【点睛】本题考查等比数列的通项公式和前项和公式属于基础题解析:2 【解析】 【分析】利用已知条件求出公比q ,再求出144,,S S a 后可得结论. 【详解】设等比数列{}n a 公比为q ,则2454232(1)4(1)a a a q q a a a q ++===++,又数列{}n a 是递增的,∴2q =,∴44121512S -==-,111S a ==,3428a ==,14411528S S a ++==. 故答案为:2. 【点睛】本题考查等比数列的通项公式和前n 项和公式,属于基础题.17.4【解析】已知等式利用正弦定理化简得:可得可解得余弦定理可得可解得故答案为解析:4 【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴Q 可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =,故答案为4.18.10【解析】【分析】【详解】故则故n=10 解析:10 【解析】 【分析】 【详解】1351,14,a a a =+=故126d 14,2a d +=∴=,则()1n 21002n n n S -=+⨯=故n=1019.或【解析】【分析】先画出不等式组所代表的平面区域解释目标函数为直线在轴上的截距由目标函数取得最大值的最优解不唯一得直线应与直线或平行从而解出的值【详解】解:画出不等式组对应的平面区域如图中阴影所示将解析:2或1-. 【解析】 【分析】先画出不等式组所代表的平面区域,解释目标函数为直线=+y ax z 在y 轴上的截距,由目标函数=+z ax y -取得最大值的最优解不唯一,得直线=+y ax z 应与直线20x y +-=或220x y -+=平行,从而解出a 的值.【详解】解:画出不等式组20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩对应的平面区域如图中阴影所示将=+z ax y -转化为=+y ax z ,所以目标函数z 代表直线=+y ax z 在y 轴上的截距 若目标函数=+z ax y -取得最大值的最优解不唯一则直线=+y ax z 应与直线20x y +-=或220x y -+=平行,如图中虚线所示 又直线20x y +-=和220x y -+=的斜率分别为1-和2 所以2a =或1a =- 故答案为:2或1-.【点睛】本题考查了简单线性规划,线性规划最优解不唯一,说明目标函数所代表的直线与不等式组某条边界线平行,注意区分最大值最优解和最小值最优解.20.【解析】【分析】根据正弦定理将边化为角再根据两角和正弦公式以及诱导公式化简得cosB的值即得B角【详解】由2bcosB=acosC+ccosA及正弦定理得2sinBcosB=sinAcosC+sin解析:3【解析】【分析】根据正弦定理将边化为角,再根据两角和正弦公式以及诱导公式化简得cos B的值,即得B 角.【详解】由2b cos B=a cos C+c cos A及正弦定理,得2sin B cos B=sin A cos C+sin C cos A.∴2sin B cos B=sin(A+C).又A+B+C=π,∴A+C=π-B.∴2sin B cos B=sin(π-B)=sin B.又sin B≠0,∴cos B=.∴B=.∵在△ABC中,a cos C+c cos A=b,∴条件等式变为2b cos B=b,∴cos B=.又0<B<π,∴B=.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.三、解答题21.(1)23A π=;(2)ABC S V . 【解析】 【分析】(1)由正弦定理、三角函数恒等变换化简已知可得:1sin 62A π⎛⎫+= ⎪⎝⎭,结合范围()0,A π∈,可得7,666A πππ⎛⎫+∈ ⎪⎝⎭,进而可求A 的值. (2)在△ADC 中,由正弦定理可得sin 1CAD ∠=,可得2CAD =π∠,利用三角形内角和定理可求C B ∠∠,,即可求得AB AC ==解. 【详解】(1)∵)()cos cos aB C c b A -=-,sin sin cos sin cos sin cos A B A C C A B A --=,sin sin cos sin cos sin cos A B B A C A A C ++=,可得:)sin cos sin BA AB +=,∵sin 0B >,cos 2sin 16A A A π⎛⎫+=+= ⎪⎝⎭,可得:1sin 62A π⎛⎫+= ⎪⎝⎭, ∵()0,A π∈, ∴7,666A πππ⎛⎫+∈ ⎪⎝⎭, ∴566A ππ+=,可得:23A π=.(2)∵b =D 在BC 边上,23CD ADC π∠=,=,∴在ADC V 中,由正弦定理sin sin AC CD ADC CAD=∠∠2sin CAD =∠,可得:sin 1CAD =∠,∴2CAD =π∠,可得:6C CAD ADC ππ∠=-∠-∠=,∴6B AC ==ππ∠-∠-∠,∴AB AC ==∴11sin 22ABC S AB AC A ⋅⋅==V =. 【点睛】本题主要考查了正弦定理、三角函数恒等变换的应用,三角形内角和定理及三角形的面积公式在解三角形中的应用,考查了计算能力和转化能力,属于中档题.22.(1)3C π=;(2)S =【解析】 【分析】(1)利用正弦定理与两角和正弦公式可得到结果;(2)由题意及三角形面积公式可得2cos 22sin ac B ac ac B -+=,结合特殊角的三角函数值得到2B π=,从而得到结果.【详解】(1)由正弦定理得2sin cos sin cos sin cos C C A B B A =+, ∴2sin cos sin()sin C C A B C =+=, ∴1cos 2C =,∵(0,)C π∈, ∴3C π=.(2)222224()22sin S b a c b a c ac ac B =--=--+=,∴由余弦定理得2cos 22sin ac B ac ac B -+=,∴sin cos 1B B +=,∴sin 42B π⎛⎫+= ⎪⎝⎭, ∵20,3B π⎛⎫∈ ⎪⎝⎭,∴2B π=,∴S = 【点睛】本题考查了正弦、余弦定理,三角形的面积公式,以及三角恒等变换,考查计算能力与推理能力,属于中档题.23.(1)212n a n =-;(2)4(13)nn S =-.【解析】 【分析】 【详解】本试题主要是考查了等差数列的通项公式的求解和数列的前n 项和的综合运用.、 (1)设{}n a 公差为d ,由已知得1126{50a d a d +=-+=解得110{2a d =-=, 212n a n =-(2)21232324b a a a a =++==-Q ,∴等比数列{}n b 的公比212438b q b -===- 利用公式得到和8(13)4(13)13n n n S -⨯-==--.24.(1)=BC 2【解析】 【分析】(1)由题意知21AB AC AD ===,.设BD DC m ==,在ADB △与ADC V 中,由余弦定理即可解得m 的值.(2)在ACE △与BCE V 中,由正弦定理,角平分线的性质可得AE AC BE BC ==.可求BE =,215AE =().利用余弦定理可求cos BAC ∠的值,根据同角三角函数基本关系式可求sin BAC ∠的值,利用三角形的面积公式即可计算得解. 【详解】解:(1)由题意知21AB AC AD ===,.设BD DC m ==.在ADB V 与ADC V 中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.即:212cos 4m m ADB +-∠=,①212cos 1m m ADB ++∠=.②由①+②,得:232m =,所以m =BC = (2)在ACE V 与BCE V 中,由正弦定理得:,sin sin sin sin AE EC BE ECACE EAC BCE CBE==∠∠∠∠,由于ACE BCE ∠=∠,且sin sin BC ACBAC CBA=∠∠,所以AE AC BE BC ==所以BE =,所以215AE =().又222222121cos 22214AB AC BC BAC AB AC +-+-∠===-⋅⨯⨯,所以sin BAC ∠=,所以11211225420ACE S AC AE sin BAC =⋅⋅∠=⨯⨯⨯=V (). 【点睛】本题主要考查了余弦定理,正弦定理,角平分线的性质,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 25.(1)π3A =(2)△ABC 为等边三角形 【解析】分析:(1)由//m n u rr,得3sin (sin )02A A A ⋅-=,利用三角恒等变换的公式,求解πsin 216A ⎛⎫-= ⎪⎝⎭,进而求解角A 的大小; (2)由余弦定理,得224b c bc =+-和三角形的面积公式,利用基本不等式求得4bc ≤,即可判定当b c =时面积最大,得到三角形形状.详解:(1)因为m//n,所以()3sin sin 02A A A ⋅-=.所以1cos230222A A -+-=,即1sin2cos2122A A -=, 即 πsin 216A ⎛⎫-= ⎪⎝⎭. 因为()0,πA ∈ , 所以ππ11π2666A ⎛⎫-∈- ⎪⎝⎭,. 故ππ262A -=,π3A =. (2)由余弦定理,得 224b c bc =+-又1sin 2ABC S bc A ∆==, 而222424b c bc bc bc bc +≥⇒+≥⇒≤,(当且仅当b c =时等号成立)所以1sin 4244ABC S bc A bc ∆==≤=.当△ABC 的面积取最大值时,b c =.又π3A =,故此时△ABC 为等边三角形 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.26.(Ⅰ)3π;(Ⅱ)2. 【解析】 【分析】 【详解】试题分析:(1)根据平面向量//m n r r,列出方程,在利用正弦定理求出tan A 的值,即可求解角A 的大小;(2)由余弦定理,结合基本不等式求出bc 的最大值,即得ABC ∆的面积的最大值.试题解析:(1)因为向量()m a =r与()cos ,sin n =A B r平行,所以0asinB =,由正弦定理得sinAsinB -0sinBcosA =,又sin 0B ≠,从而tanA ,由于0<A<π,所以A =3π.(2)由余弦定理得a 2=b 2+c 2-2bccosA ,而a ,b =2,A =3π, 得7=4+c 2-2c ,即c 2-2c -3=0, 因为c>0,所以c =3.故△ABC 的面积为12bcsinA =2. 考点:平面向量的共线应用;正弦定理与余弦定理.。
2019届北京市高三上学期期中考试数学理试卷含解析
2019届北京市高三上学期期中考试数学理试卷数学试卷(理工类)第I卷(选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,每小题只有一个正确答案)在每小题给出的四个选项中,只有一项是最符合题目要求的,选出正确的选项并将该选项在答题卡上涂黑。
1.已知集合,,则()A. B. C. D.【答案】B【解析】【分析】先把集合A解出来,然后求A∪B即可.【详解】因为集合合,所以,故选:B.【点睛】本题主要考查集合的交集,属于基础题.2.执行如图所示的程序框图,输出的值为()A. -10B. -2C. 2D. 10【答案】C【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【详解】模拟程序的运行过程,第一次运行:,第二次运行:第三次运行:第四次运行:此时,推出循环,输出输出.故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.3.设平面向量,,,,则实数的值等于()A. B. C. 0 D.【答案】A【解析】【分析】根据平面向量的坐标运算与共线定理,列方程求出k的值.【详解】向量,,,∴=故选A.【点睛】本题考查了平面向量的坐标运算与共线定理的应用问题,是基础题.4.已知,则下列不等关系中正确的是()A. B. C. D.【答案】D【解析】【分析】利用指函数的单调性得出结论.【详解】A. ,显然不成立;B. 错误,因为函数在上为增函数,由,可得;同理C. ,因为函数在上为增函数,由,可得;D. ,正确,因为函数在上为减函数,由,可得;故选D.【点睛】本题考查函数单调性的应用,属基础题.5.“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】观察两条件的互推性即可求解.【详解】由“”可得到“”,但“”不一定得到“”,故“”是“”的充分而不必要条件.故応A.6.已知函数,若(),则的取值范围是()A. B. C. D.【答案】B【解析】【分析】由,可知由可得根据基本不等式可求的取值范围.【详解】若由,则与矛盾;同理也可导出矛盾,故而即【点睛】本题考查分段函数的性质以及基本不等式的应用,属中档题.7.已知函数当时,方程的根的个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】画出函数的图像,由图像可得结论.【详解】画出函数的图像,有图可知方程的根的个数为3个.故选C.【点睛】本题考查分段函数的性质、方程的根等知识,综合性较强,考查利用所学知识解决问题的能力,是中档题.8.将正奇数数列1,3,4,5,7,9,…依次按两项、三项分组,得到分组序列如下:,,,,…,称为第1组,为第2组,依此类推,则原数列中的2019位于分组序列中()A. 第404组B. 第405组C. 第808组D. 第809组【答案】A【解析】【分析】求出2019为第1010个证奇数,根据富足规则可得答案.【详解】正奇数数列1,3,4,5,7,9,的通项公式为则2019为第1010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2019位于分组序列中第404组【点睛】本题考查闺女是推理,属中档题.第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知,,则_________,__________.【答案】(1). (2). --【解析】【分析】利用同角三角函数基本关系式和诱导公式可解.【详解】由题,,则即答案为(1). (2).【点睛】本题考查同角三角函数基本关系式和诱导公式,属基础题.10.已知,满足则的最大值为__________.【答案】【解析】【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x+2y对应的直线进行平移,可得当x=3,y=1时,z=x+2y取得最大值为5.【详解】作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(1,1),B(-2,-2),C(4,-2)设z= x+2y,将直线l:z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值= 3故答案为:3【点睛】本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.11.已知函数满足下列条件:①定义域为;②函数在上单调递增;③函数的导函数有且只有一个零点,写出函数的一个表达式__________.【答案】【解析】【分析】利用已知条件,直接推出结果即可.【详解】①定义域为;②函数在上单调递增;③函数的导函数有且只有一个零点,满足条件一个函数可以为:.或+2等等.故答案为:.(答案不唯一)【点睛】本题考查函数的简单性质的应用,函数的解析式的求法,考查判断能力.12.如图,在平行四边形中,,分别为边,的中点,连接,,交于点,若(,),则__________.【答案】【解析】【分析】根据平行线分线段成比例解答即可.【详解】根据平行线分线段成比例可得而故即答案为.【点睛】本题考查平面向量基本定理的应用,属中档题.13.海水受日月的引力,在一定的时候发生的涨落现象叫潮.港口的水深会随潮的变化而变化.某港口水的深度(单位:米)是时刻(,单位:小时)的函数,记作.下面是该港口某日水深的数据:经长期观察,曲线可近似地看成函数(,)的图象,根据以上数据,函数的近似表达式为__________.【答案】【解析】【分析】设出函数解析式,据最大值与最小值的差的一半为A;最大值与最小值和的一半为h;通过周期求出ω,得到函数解析式.【详解】根据已知数据数据可以得出A=3,b=8,T=12,φ=0,由,得ω=,所以函数的近似表达式即答案为【点睛】本题考查通过待定系数法求函数解析式、属基础题.14.从标有数字,,,(,且,,,)的四个小球中任选两个不同的小球,将其上的数字相加,可得4种不同的结果;将其上的数字相乘,可得3种不同的结果,那么这4个小球上的不同的数字恰好有__________个;试写出满足条件的所有组,,,__________.【答案】(1). 3 (2). 1,2,2,4;1,3,3,9;2,4,4,8;4,6,6,9【解析】【分析】由,且个小球中任选两个不同的小球,将其上的数字相加,可得4种不同的结果;将其上的数字相乘,可得3种不同的结果,则必有两个数字相等,分析可得4个小球上的不同的数字恰好有3个,在逐一分析可得满足条件的所有组,,,.【详解】由,且个小球中任选两个不同的小球,将其上的数字相加,可得4种不同的结果;将其上的数字相乘,可得3种不同的结果,则必有两个数字相等,分析可得4个小球上的不同的数字恰好有3个,若两个相等的数为1,如1,1,2,4,则四个小球中任选两个不同的小球,将其上的数字相加,可得3种不同的结果,不符合题意,若若两个相等的数为2,则符合题意的为1,2,2,4;推理可得1,3,3,9;2,4,4,8;4,6,6,9符合题意.即答案(1). 3 (2). 1,2,2,4;1,3,3,9;2,4,4,8;4,6,6,9【点睛】本题考查归纳推理,属难题.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.设()是各项均为正数的等比数列,且,.(I)求的通项公式;(II)若,求.【答案】(I),.(II)【解析】【分析】(I)设为首项为,公比为(),则依题意,,解得,,即可得到的通项公式;(II)因为,利用分组求和法即可得到.【详解】(I)设为首项为,公比为(),则依题意,,解得,,所以的通项公式为,.(II)因为,所以【点睛】本题考查等比数列的基本量计算,以及分组求和法属基础题.16.已知函数.(I)求的最小正周期及单调递增区间;(II)若对任意,(为实数)恒成立,求的最小值.【答案】(I)最小正周期为,单调递增区间为,.(II)的最小值为2【解析】【分析】(I)根据二倍角公式及辅助角公式求得f(x)的解析式,根据正弦函数的性质即可求得f (x)的最小正周期及其单调递增区间;II)由.可得.由此可求的最小值.【详解】(I)由已知可得.所以最小正周期为.令,.所以,所以,即单调递增区间为,.(II)因为.所以,则,所以,当,即时,.因为恒成立,所以,所以的最小值为2【点睛】本题考查三角恒等变换,正弦函数的单调性及最值,考查转化思想,属于中档题.17.在中,角,,的对边分别为,,,,,.(I)求;(II)求的面积.【答案】证明见解析(II)【解析】【分析】(Ⅰ)利用同角三角函数基本关系式求得.,利用正弦定理可求;;(II)在中,由知为钝角,所以.利用,可求求的面积.【详解】证明:(I)因为,即,又,为钝角,所以.由,即,解得.(II)在中,由知为钝角,所以.,所以所以【点睛】此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.18.已知函数()(I)当时,求在区间上的最大值和最小值;(II)求证:“”的“函数有唯一零点”的充分而不必要条件.【答案】(I);.(II)“”是“有唯一零点”的充分不必要条件【解析】【分析】(Ⅰ)先求导,再由导函数为0,求出极值,列表解得即可;(Ⅱ)根据(Ⅰ)分类讨论,分别利用导数和函数的零点的关系以及充分不必要条件的定义即可证明.【详解】(I),当时,,当在内变化时,,的变化如下表:当时,;.(II)若,.当变化时,,的变化如下表:,因为,所以.即.且,所以有唯一零点.所以“”是“有唯一零点”的充分条件.又时,当变化时,,的变化如下表:又,,.所以此时也有唯一零点.从而“”是“有唯一零点”的充分不必要条件【点睛】本题考查了导数和函数的极值和零点的关系,考查了学生的运算能力和转化能力,属于难题.19.已知函数().(I)求曲线在点处的切线方程;(II)试判断函数的单调性并证明;(III)若函数在处取得极大值,记函数的极小值为,试求的最大值.【答案】(I).(II)函数在和上单调递增,在上单调递减.(III)函数的最大值为.【解析】【分析】函数的定义域为,且.(I)易知,,代入点斜式即可得到曲线在点处的切线方程;(II)令,得,,分类讨论可得函数的单调性,(III)由(II)可知,要使是函数的极大值点,需满足.此时,函数的极小值为.,利用导数可求的最大值.【详解】函数的定义域为,且.(I)易知,所以曲线在点处的切线方程为.即.(II)令,得,①当时,.当变化时,,变化情况如下表:所以函数在和上单调递增,在上单调递减.②当时,恒成立.所以函数在上单调递增.③当时,.当变化时,,变化情况如下表:所以函数在和上单调递增,在上单调递减.(III)由(II)可知,要使是函数的极大值点,需满足.此时,函数的极小值为.所以.令得.当变化时,,变化情况如下表:所以函数的最大值为.【点睛】本题考查函数的导数的应用,函数的单调性以及切线方程的求法,考查转化思想以及计算能力.20.设,为正整数,一个正整数数列,,…,满足,对,定义集合,数列,,…,中的()是集合中元素的个数.(I)若数列,,…,为5,3,3,2,1,1,写出数列,,…,;(II)若,,,,…,为公比为的等比数列,求;(III)对,定义集合,令是集合中元素的个数.求证:对,均有.【答案】(I)数列,,…,是6,4,3,1,1.(II)(III),【解析】【分析】(I)根据数列,,…,数列,,…,是6,4,3,1,1.(II)由题知,由于数列,,…,是项的等比数列,因此数列,,…,为,,…,2,利用反证法证明;(III)对,表示,,…,中大于等于的个数,首先证明.再证对,即可.【详解】(I)解:数列,,…,是6,4,3,1,1.(II)由题知,由于数列,,…,是项的等比数列,因此数列,,…,为,,…,2下面证明假设数列中有个,个,…,个2,个1,显然所以.由题意可得,,,…,,…,.所以故即(III)对,表示,,…,中大于等于的个数由已知得,,…,一共有项,每一项都大于等于1,故,由于故由于,故当时,即.接下来证明对,,则,即1,2,…,,从而故,从而1,2,…,,故,从而,故有设,即,根据集合的定义,有.由知,1,2,…,,由的定义可得,而由,故因此,对,【点睛】本题考查新定义数列的理解与求法,考查不等式的证明,是中档题,解题时要认真审题,注意反证法的合理运用.属难题.。
2019春大学物理上期中试题(答案)
πσ ⋅π R 2 2R 北京邮电大学 2018-2019 学年第二学期《大学物理(上)》期中考试答案和评分标准一. 解:F 较小时,B 有下落趋势,故 A 受到摩擦力向左,B 受到摩擦力向上设滑块共同加速度为 a ,受力分析可得T - f A = maT + f B = mgf A ≤ μ N A = μmgf B ≤ μ N B = μma……4 分 ……4 分……2 分 ……3 分 ∴mg - ma = f A + f B ≤ μmg + μma1- μ 可得a ≥ 1+ μg ……1 分F 较大时,A 有向左趋势,故 A 受到摩擦力向右,B 受到摩擦力向下设滑块共同加速度为 a ,受力分析可得T + f A = maT = mg + f B……4 分 ……4 分 ∴ma - mg = f A + f B ≤ μmg + μma1+ μ可得a ≤ 1- μg ……1 分 ∵ F = (M + 2m ) a1- μ1+ μ ∴ F 的大小范围为 (M + 2m ) g ≤ F ≤ 1+ μ1- μ (M + 2m ) g……2 分二. 解:(1)由对称性知,质心 x 坐标为 0,只需求 y 坐标 ……5 分设线圈线密度为 λ,则半圆弧质量m 1 = λ ⋅π R , 取与 x 轴呈 θ 角处对应圆心角为 d θ 的圆弧为微元 其质量 dm = λ ⋅ Rd θ ,其 y 坐标为 R sin θ,则半圆弧质心 y 坐标Ry c 1 = ⎰ y ⋅ dm = ⎰0m 1R sin θ ⋅ λ ⋅ Rd θλ ⋅π R = 2R π……5 分直径质量为 m 2 = λ ⋅ 2R ,其质心 y 坐标 y c 2 = 0线圈质心 y 坐标为y= m 1 y c 1 + m 2 y c 2 = 2R……5 分c m + m π + 21 1(2)解 1:取半径为 r ,宽度为 d r 的半圆环为微元,其质量为dm ' = σ ⋅π rdr由(1)可知,微元质心 y 坐标为 y ' =2r半圆盘质心 y 坐标为 c 1πy ' ⋅ dm '⎰2r⋅σ ⋅π rdry ' = ⎰ c 1 = =4R ……10 分cm '3π解 2:设圆盘面密度为 σ,取距 x 轴距离为 y ,宽为 d y 的长条形微元,其质量σ ⋅π R 2 2Rv t x tdm ' = σ ⋅ 2 半圆盘质心 y 坐标为R 2 - y 2 dyy ⋅ dm ' y ⋅σ ⋅ 2 R 2 - y 2 dyy ' = ⎰= ⎰= 4R (10)cm '3π分三. 解:(1) 以炮车与炮弹为系统,地面为参考系,水平方向动量守恒.设炮车相对于地面的速率为 V x ,则有-MV x + m (u cos α -V x ) = 0V x = mu cos α / (M + m )……4 分 ……1 分(2) 解法一:以炮车与炮弹为系统,地面为参考系,系统水平方向不受外力, 根据质心运动定理,质心水平速度为 0 不变,即质心水平坐标不变, 设发炮前炮车和炮弹坐标分别为 x 1 和 x 2,发炮过程中两者位移为 d 1 和 d 2,则Mx 1 + mx 2 = M ( x 1 + d 1 ) + m ( x 2 + d 2 )d 2 - d 1 = l cos α解得d 1 = -ml cos α / (M + m )……4 分 ……4 分 ……2 分炮车后退了 ml cos α /(M + m ) 的距离.解法二: 以 u (t )表示发炮过程中任一时刻炮弹相对于炮身的速度,该瞬时炮车的速度为V x(t ) = -mu (t ) cos α /(M + m )积分求炮车后退距离……4 分 tt∆x = ⎰V x (t ) d t = -m /(M + m )⎰u (t ) cos α d t……4 分 0∆x = -ml cos α /(M + m )即向后退了 ml cos α /(M + m ) 的距离. ……2 分(3) 由题意知,炮车所受阻力 f = -kv根据牛顿第二定律,质点加速度a =dv = - k v dt M移项,两边同时做定积分⎰ dv= ⎰ - k dtV x v 0 M-kt可得速度随时间变化公式v = V x e M 由于v = dx dt ,可得……4 分dx = V x e - k t Mdt两边同时做定积分⎰ dx = ⎰ V xe- kt MdtMV ⎛ - kt ⎫ 可得距离随时间变化公式 x = x 1- e Mdt ⎪……4 分k ⎝ ⎭当t =∞ 时,炮车有最大移动距离x = MV x = Mmu cos α ……2 分mk k (M + m )四. 解:机械能守恒:1 m v2 -GMm / R =1 m v 2 -GMm /(3R)……10 分2 0 2根据小球绕O 角动量守恒Rm v0 = 3Rm v sinθ……10 分可解得.sinθ=v0 ……5 分9v 2 -12GM / R。
2019年海淀高三年级第二学期数学期中练习试题-附答案(文)(精校版)
海淀区高三年级第二学期期中练习数 学 (文科) 2019.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}2 23x x x ≤-≤<或 B. {}32<<x x C. {}32<≤x x D. R2. 设0.5323, log 2, cos 3a b c π===,则A. c b a <<B. c a b <<C. a b c <<D. b c a << 3.函数1()x f x x+=图象的对称中心为 A .(0,0) B.(0,1)C. (1,0)D. (1,1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为A. 25 B .24 C. 23 D .225.从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为A . 29 B. 13 C. 49D. 596. 在同一个坐标系中画出函数,sin xy a y ax ==的部分图象,其中01a a >≠且,则下列所给图象中可能正确的是7.2a -≤≤A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是A .22(1)1x y -+= B ..2212x y += C. 2y x = D .221x y -=非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 计算21i=+__________________. 10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 . (用“>”连接)11. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_________.12. 已知函数()x f x xe =,则'()f x =________;函数()f x 图象在点(0,(0))f 处的切线方程为_______13. 已知向量(,2),(1,)a x b y ==,其中,0x y ≥.若4≤a b ,则y x -的取值范围为 .14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的PDCBA 1A 1D 1B 1C 左视主视乙丙甲定义域为________;()f x 的最大值为 ________.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为a b c 、、,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ) 求tan()B C +; (Ⅱ) 求a 的值.16. (本小题共13分)数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ;( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.17. (本小题共13分)如图:梯形ABCD 和正△PAB 所在平面互相垂直,其中//,AB DC 12AD CD AB ==,且O 为AB 中点.( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .18. (本小题共14分)已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.BACDOP19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点. 求O 到直线距离的l 最小值.20. (本小题共13分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i =,设j j k k k b +++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (II) 若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(文)答案及评分参考 2019.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.1i - 10. s 1>s 2>s 3 11. 1 12. (1)x x e +, y x = 13. [4,2]- 14. (2,4),三、解答题(本大题共6小题,共80分) 15. (共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=- …………………3分 代入得到,1123tan()111123B C ++==-⨯. …………………6分 (II )因为180A B C =-- …………………7分 所以tan tan[180()]tan()1A B C B C =-+=-+=- …………………9分又0180A <<,所以135A =. …………………10分 因为1tan 03C =>,且0180C <<,所以sin 10C = , …………………11分 由sin sin a c A C=,得a =. …………………13分16. (共13分)解:(I )因为12n n S S n -=+,所以有12n n S S n --=对2n ≥,*N n ∈成立 ………2分 即2n a n =对2n ≥成立,又1121a S ==⋅, 所以2n a n =对*N n ∈成立 …………………3分 所以12n n a a +-=对*N n ∈成立 ,所以{}n a 是等差数列, …………………4分 所以有212nn a a S n n n +=⋅=+ ,*N n ∈ …………………6分 (II )存在. …………………7分 由(I ),2n a n =,*N n ∈对成立所以有396,18a a ==,又12a =, ………………9分 所以由 112339, b a b a b a ===,,则23123b b b b == …………………11分 所以存在以12b =为首项,公比为3的等比数列{}n b ,其通项公式为123n n b -=⋅ . ………………13分17. (共13分)证明: (I) 因为O 为AB 中点, 所以1,2BO AB =…………………1分 又//,AB CD 12CD AB =, 所以有,//,CD BO CD BO = …………………2分所以ODCB 为平行四边形,所以//,BC OD …………………3分又DO ⊂平面,POD BC ⊄平面,POD所以//BC 平面POD . …………………5分BAC DOP(II)连接OC .因为,//,CD BO AO CD AO ==所以ADCO 为 平行四边形, …………………6分 又AD CD =,所以ADCO 为菱形,所以 AC DO ⊥, …………………7分 因为正三角形PAB ,O 为AB 中点,所以PO AB ⊥ , …………………8 分又因为平面A B C D ⊥平面PAB ,平面A B C D 平面P A B A B= , 所以PO ⊥平面ABCD , …………………10分 而AC ⊂平面ABCD ,所以 PO AC ⊥, 又PODO O =,所以AC ⊥平面POD . …………………12分又PD ⊂平面POD ,所以AC ⊥PD . …………………13分18. (共14分) 解:(I )因为2211'()a ax f x x x x-=-+= , …………………2分 当1a =, 21'()x f x x-=, 令'()0f x =,得 1x =,…………………3分又()f x 的定义域为(0,)+∞, ()f x ',()f x 随x 的变化情况如下表:所以时,的极小值为5分()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1); …………………6分(II )解法一: 因为2211'()a ax f x x x x-=-+= ,且0a ≠, 令'()0f x =,得到1x a=, 若在区间(0,]e 上存在一点0x ,使得0()0f x <成立,其充要条件是()f x 在区间(0,]e 上的最小值小于0即可. …………………7分BACDO P(1)当10x a=<,即0a <时,'()0f x <对(0,)x ∈+∞成立, 所以,()f x 在区间(0,]e 上单调递减, 故()f x 在区间(0,]e 上的最小值为11()ln f e a e a e e=+=+, 由10a e +<,得1a e <-,即1(,)a e∈-∞- …………………9分 (2)当10x a=>,即0a >时, ① 若1e a≤,则'()0f x ≤对(0,]x e ∈成立,所以()f x 在区间(0,]e 上单调递减, 所以,()f x 在区间(0,]e 上的最小值为11()ln 0f e a e a e e=+=+>, 显然,()f x 在区间(0,]e 上的最小值小于0不成立 …………………11分 ② 若10e a <<,即1a e>时,则有所以()f x 在区间(0,]e 上的最小值为()lnf a a a a=+, 由11()ln(1ln )0f a a a a a a=+=-<, 得 1ln 0a -<,解得a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知:1(,)(,)a e e∈-∞-+∞符合题意. …………………14分解法二:若在区间(0,]e 上存在一点0x ,使得0()0f x <成立, 即001ln 0a x x +<, 因为00x >, 所以,只需001ln 0ax x +< …………………7分 令()1ln g x ax x =+,只要()1ln g x ax x =+在区间(0,]e 上的最小值小于0即可因为'()ln (ln 1)g x a x a a x =+=+, 令'()(ln 1)0g x a x =+=,得1x e= …………………9分 (1)当0a <时:因为(0,)x e∈时,()1ln 0g x ax x =+>,而()1ln 1g e ae e ae =+=+, 只要10ae +<,得1a e <-,即1(,)a e∈-∞- …………………11分 (2)当0a >时:所以,当 (0,]x e ∈时,()g x 极小值即最小值为1()1ln1a g a e e e e=+⋅=-, 由10ae-<, 得 a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知,有1(,)(,)a e e∈-∞-+∞ . …………………14分19. (共14分)解:(Ⅰ)由已知,222214a b e a -==,所以2234a b =, ① …………………1分 又点3(1,)2M 在椭圆C 上,所以221914a b += , ② …………………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. …………………5分 (Ⅱ) 当直线l 有斜率时,设y kx m =+时,则由22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得,222(34)84120k x kmx m +++-=, …………………6分222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->, ③…………7分 设A 、B 、P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则:012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++,…………8分 由于点P 在椭圆C 上,所以2200143x y +=. ……… 9分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………10分 又点O 到直线l 的距离为:2d ===≥= ………11分 当且仅当0k =时等号成立 …………12分当直线l 无斜率时,由对称性知,点P 一定在x 轴上,从而P 点为(2,0),(2,0)-,直线l 为1x =±,所以点O 到直线l 的距离为1 ……13分所以点O 到直线l的距离最小值为2……14分 20. (共13分)解: (I) 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- . …………………3分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , ① …………………5分 当且仅当1100m b +=时取等号. 因为123100,,,,a a a a 中最大的项为50,所以当50m ≥时必有100m b =,所以(1)(2)(49)(50)(51)g g g g g >>>===即当149m <<时,有()(1)g m g m >+; 当49m ≥时,有()(1)g m g m =+ . …………………7分(III )设M 为{}12100,,,a a a 中的最大值.由(II )可以知道,()g m 的最小值为()g M . 下面计算()g M 的值.123()100M g M b b b b M =++++-1231(100)(100)(100)(100)M b b b b -=-+-+-++-_.__._ 233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++- 12312(23)()M M k k k Mk k k k =-++++++++ 123100()M a a a a b =-+++++ 123100()100a a a a =-+++++, ∵123100200a a a a ++++= , ∴()100g M =-, ∴()g m 最小值为100-.…………………13分说明:其它正确解法按相应步骤给分.。
北邮数字逻辑期中试题与参考答案
邮电大学《数字电路与逻辑设计》期中考试试题2015411注意:所有答案(包括选择题和计算题)一律写在试卷纸上,如果卷面位置不够,请写在试卷的背后,否则不计成绩。
一、(每题1分,共20分)判断(填"或X)、单项选择题(请先在本试卷上答题之后,将全部答案汇总到本题末尾的表格中。
)1. ECL逻辑门与TTL门相比,主要优点是抗干扰能力强。
(X )2. CMOS1电路在使用时允许输入端悬空,并且悬空的输入端相当于输入逻辑“ 1”。
(X )3. 若对4位二进制码(BsRBB)进行奇校验编码,则校验位C=B3 B2 B1 B o 10(V )4. 根据表1-1,用CMOS400系列的逻辑门驱动TTL74系列的逻辑门,驱动门与负载门之间的电平匹配不存在问题(V )5. 根据表1-1,用CMOS400系列的逻辑门驱动TTL74系列的逻辑门,驱动门与负载门之间的电流驱动能力不存在问题(X )表1-1常用的TTL和CMOST的典型参数6.当i j时,必有两个最小项之和rni j+m j 0。
7. CMOS门电路的静态功耗很低,但在输入信号动态转换时会有较大的电流,工作频率越高,静态功耗越大。
(X)8. 逻辑函数的表达式是不唯一的,但其标准的最小项之和的表达式是唯一的(V)9. 用数据分配器加上门电路可以实现任意的逻辑函数。
(V )10. 格雷BCD码具有单位距离特性(任意两个相邻的编码之间仅有一位不同)且是无权代码。
(V)11. 关于函数F TC BCD ABgC,下列说法中正确的有 B 。
A. 不存在冒险;B. 存在静态逻辑冒险,需要加冗余项A BD和ACD进行消除;C. 存在静态功能冒险,需要加冗余项A BD和ACD进行消除;D. 当输入ABCD从0001 —0100变化时存在静态逻辑冒险。
12. 逻辑函数F=Ae B和G=A O B满足关系D 。
A. F GB. F G 0C. FgG 1D. F Ge 013.若逻辑函数F(A,B,C)m(1,2,3,6), G(A, B,C) m(0,2,3,4,5,7),贝UF ?G A 。
北京邮电大学高等数学(全)答案解析
北京邮电大学高等数学答案一、单项选择题(共20道小题,共100.0分)设的定义域为则的定义域为___________.A.B.C.D.函数是定义域内的____________.E.周期函数F.单调函数G.有界函数H.无界函数设,则__________.I.J.K.L.函数的定义域是____________.M.N.O.P.设与分别是同一变化过程中的两个无穷大量,则是____________.Q.无穷大量R.无穷小量下列函数中当时与无穷小相比是高阶无穷小的是_________.U.V.W.X.时,与为等价无穷小,则__________.Y. 1BB.____________.CC.DD.EE.FF.1_________.GG.HH.II.JJ.1下列计算极限的过程,正确的是____________.KK.LL.MM.NN.设在处连续,则_________.RR.设 ,则()SS.TT.UU.VV.设且可导,则()WW.XX.YY.ZZ.已知,则()AAA.1CCC.DDD.设,则()EEE.FFF.设,且,则( ) III.1JJJ.设,则( )MMM.99NNN.PPP.曲线在点(0,1)处的切线方程为( )QQQ.RRR.SSS.TTT.设,且存在,则等于()UUU.VVV.WWW.XXX.设函数可导,则()YYY.ZZZ.AAAA.BBBB.一、单项选择题(共20道小题,共100.0分)函数的反函数是____________.A.B.C.D.函数的周期是___________.E.F.G.H.是____________.I.单调函数J.周期函数K.L.奇函数2.函数是___________.A.B.奇函数C.D.既是奇函数又是偶函数设(为常数),则___________.E.F.G.H.设,则__________.I.J.K.L.下列各对函数相同的是________.M.与N.与与P.与设与分别是同一变化过程中的两个无穷大量,则是____________.Q.无穷大量R.无穷小量S.T.不能确定____________.U.V.W.X. 1_________.Y.Z.AA.BB.1下列变量在给定的变化过程中为无穷小量的是_____________.CC.DD.EE.FF.存在是在处连续的_________.HH.必要条件JJ.无关的条件设在处连续,且时,,则_________.NN.2设函数,则的连续区间为______________.OO.PP.QQ.RR.设且可导,则()SS.TT.UU.VV.设,则()WW.XX.YY.ZZ.设则( )AAA.BBB.设,则()EEE.FFF.GGG.HHH.设,且,则( )III.1JJJ.KKK.LLL.设,且存在,则等于()MMM.NNN.OOO.PPP.一、单项选择题(共20道小题,共100.0分)设的定义域为则的定义域为___________.A.B.C.D.函数的周期是___________.E.F.G.H.函数是定义域内的____________.I.周期函数K.有界函数是____________.M.单调函数N.周期函数O.P.奇函数函数是___________.Q.R.奇函数S.T.既是奇函数又是偶函数下列函数中为奇函数的是__________.U.V.W.X.设(为常数),则___________.Y.Z.AA.BB.函数的定义域是____________.CC.DD.EE.FF._____________.GG.0II.2JJ.____________.KK.LL.MM.NN.1_________.OO.QQ.RR.1设在处连续,且时,,则_________.SS.TT.UU.VV.2设函数,则的连续区间为______________.WW.XX.YY.ZZ.设且可导,则()AAA.BBB.设则( )EEE.FFF.设,且,则( )III.1JJJ.KKK.LLL.设,则( )MMM.99NNN.PPP.曲线在点(0,1)处的切线方程为( )QQQ.RRR.SSS.TTT.设曲线在点M处的切线斜率为3,则点M的坐标为()VVV.(1,0)XXX.(1,1)设函数可导,则()YYY.ZZZ.AAAA.BBBB.一、单项选择题(共20道小题,共100.0分)1.若,,则___________.A.B.C.D.设的定义域为则的定义域为___________.E.F.G.H.2.函数的反函数是____________.A.B.C.D.函数是定义域内的____________.E.周期函数F.单调函数H.无界函数是____________.I.单调函数J.周期函数K.有界函数下列函数中为奇函数的是__________.A.B.C.D.4.(错误)当时,与比较是______________.A.高阶无穷小C.非等价的同阶无穷小D.低阶无穷小5._________.A.0B.C.D. 16.(错误)下列计算极限的过程,正确的是____________.A.B.C.D.下列变量在给定的变化过程中为无穷小量的是_____________.B.C.D.8.(错误)设,则_________________.A. 1B.0C. 29.(错误)存在是在处连续的_________.A.充分条件C.充分必要条件D.无关的条件10.(错误)设函数,则的连续区间为______________.A.B.C.D.11.(错误)函数的连续区间为___________.A.B.C.D.12.设且可导,则()A.B.C.D.13.14.(错误)设则()A.B.C.D.15.(错误)设则( )A.B.C.D.16.(错误)设曲线在点M处的切线斜率为3,则点M的坐标为()A.(0,1)C.(0,0)D.(1,1)17.(错误)设,且存在,则等于()A.B.C.D.18.设在点可导,则()A.B.C.D.一、单项选择题(共20道小题,共100.0分)1.(错误)若,,则___________.A.B.C.D.2.函数的反函数是____________.A.B.C.D.3.(错误)函数的周期是___________.A.B.C.D.4.(错误)函数是定义域内的____________.A.周期函数C.有界函数5.下列函数中为奇函数的是__________.A.B.C.D.6.(错误)设(为常数),则___________.A.B.C.D.7.(错误)函数的定义域是____________.A.B.C.D.8.(错误)函数的定义域为____________.A.B.C.D.9.(错误)下列各对函数相同的是________.A.与B.与与与10.(_____________.C. 2D.11.(错误)____________.A.B.C.D. 112.(错误)___________.A.B.C.D. 113.存在是在处连续的_________.B.必要条件D.无关的条件14.15.(错误)设 ,则()A.B.C.D.16.(错误)设则( )A.B.C.D.17.(错误)已知,则()A. 1B.C.D.18.(错误)设,则( )A.99B.C.D.19.(错误)曲线在点(0,1)处的切线方程为( )A.B.C.D.20.(错误)设曲线在点M处的切线斜率为3,则点M的坐标为()D.(1,1)21.(错误)设函数可导,则()word 格式整理版范文范例 学习指导 A.B.C.D.。
2019年11月海淀期中数学测试20题参考答案 (1)
阅卷给分简单说明填空题 两个空的前3后 2.第13题 ln 3+3,⎡⎫∞⎪⎢⎣⎭写成ln3(,+)3∞给3分. 第15题(Ⅰ)4q =-没舍,求出两个通项(其中有一个正确)扣1分;(Ⅱ)在(Ⅰ)的错误下,多求出一个n S (其中有一个正确)扣1分. 如果用列举法得出n的最大值为4,必须说明“n S 的单调性或()3n f n =的单调性”否则扣1分。
第16题 (Ⅰ)6分点处:用对一个二倍角公式给2分; (Ⅱ)没有写“12x π=时,()f x 最大值” 扣1分. 第一问结果错误,第二问不给分(如果第二问的步骤中,在一开始出现了等价转换的那句话,给1分). 第17题 没有列表说明取得极大值,每个表扣1分(最多扣2分).第18题 按照标准第19题 (Ⅰ)判断结论正确1分(前后均可);求导正确2分(代对公式就给分,不看化简结果);正确论述2分(无理由扣1分);(Ⅱ)所构造函数的导函数的单调性证明及判断2分证明零点存在2分列表求最值2分最后证明3分(有导函数零点方程给1分).第2问的典型错误:第20题 (Ⅰ) 两个判断各1分; 三个集合全对给2分且没有多写;三个集合全对且有多写给1分;三个集合仅有一个或两个写对给1分.(Ⅱ)1. 准确推出24,A A 不是关联子集2分(只写结论1分);2.准确推出135,,A A A 是关联子集2分(只写结论1分);3.准确推出125,,,a a a 是等差数列2分(三个等式都要写出); (Ⅲ)1. 出现2(1)C ()2n n n -得1分; 2. 出现232i j n n a a -+≤+得1分; 3. 分两类,准确证明,各1分.2019年海淀期中测试20题参考答案20. 解:(III )方法一:由于集合M 是独立的,所以1234{,,,}a a a a 不是关联子集,所以1423a a a a +≠+,即4321,a a a a --是不同的正整数;进而可得21436587,,,,a a a a a a a a ----⋅⋅⋅是不同的正整数,同理可得32547698,,,,a a a a a a a a ----⋅⋅⋅是不同的正整数.○1若n 为偶数,则有 121321()()()n n n a a a a a a a a -=+-+-+⋅⋅⋅+-[][]121431325412()()()()()()n n n n a a a a a a a a a a a a a ---=+-+-+⋅⋅⋅+-+-+-+⋅⋅⋅+-21(12)(12)22n n -≥+++⋅⋅⋅++++⋅⋅⋅+ 244n +=. 因为5且为偶数≥n n ,所以 224950444+-+--=>n n n n ,所以 294n n n a -+>, ○2若n 为奇数,则有 121321()()()n n n a a a a a a a a -=+-+-+⋅⋅⋅+-[][]121431232541 ()()()()()()n n n n a a a a a a a a a a a a a ---=+-+-+⋅⋅⋅+-+-+-+⋅⋅⋅+-11 1(12)(12)22n n --≥+++⋅⋅⋅++++⋅⋅⋅+ 234n += 当7时≥n , 223939604444+-++---==>n n n n n ,即294n n n a -+>; 当5=n 时,要使25374+==n a ,由上述讨论知集合M 只能为:{12357}{12467}{13457}{13567},,,,,,,,,,,,,,,,,,,四种情况, 而上述集合均不是“独立的”,所以57>a ,又因为5a 是整数,所以25299844n n a -+≥>= . 综上有294n n n a -+>,即存在,x M ∈ 满足294n n x -+>. 方法二:由于M 独立,对于其中n 个不同的元素,其两两求和应有(1)2n n -种不同的情况. ○1当121231,2a a a a +===即时, 若5n >,则由于M 独立,所以121n n a a a a -+≠+,即121n n a a a a --≠-. 同理可得12212321123,,n n n n n n n n a a a a a a a a a a a a --------≠--≠--≠- 所以有112232,2,2n n n n n n a a a a a a ------≥-≥-≥.进而有32226n n a a --≥++=.又因为M 中两个元素的和比3n n a a -+大的情况最多有1212,,n n n n n n a a a a a a ----+++三种, 所以312(1)(1)2613122n n n n n n n a a a a a ----≥+≥++--=-. 进而有2210944n n n n n a -+-+≥>; 若5n =,同上可得:5443322,2,1a a a a a a -≥-≥-≥.2555874a -+≥=,当且仅当M 为{1,2,3,5,7}时等号成立,此时M 不独立, 所以57a >,又因为5a 为整数,所以2529559844a -+≥>=; ○2当121241,3a a a a +===即时, 若5n >同○1理可得1122312,12,12n n n n n n a a a a a a ------≥-≥-≥且不为且不为且不为并且以上三个等号不同时成立,又因为M 中元素均为正整数, 所以31135n n a a --≥++=.又因为M 中两个元素的和比3n n a a -+大的情况最多有1212,,n n n n n n a a a a a a ----+++三种, 所以312(1)(1)251322n n n n n n n a a a a a ----≥+≥++--=. 进而有2210944n n n n n a -+-+≥>; 若5n =,同上可得:5443321,12,1a a a a a a -≥-≥-≥且不等于2且不等于, 并且以上三个等号不同时成立,又因为M 中元素均为正整数, 所以521124a a -≥++=.2555874a -+≥=,当且仅当M 为{1,3,5,6,7}时等号成立,此时M 不独立, 所以57a >,又因为5a 为整数,所以2529559844a -+≥>=; ○3当125a a +≥时,112(1)(1)211422n n n n n n n a a a a a ----≥+≥++-≥+. 进而有2210944n n n n n a -+-+≥> 综上有294n n n a -+>成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
答案: 2n x sin(2x n ) n2n1 sin(2x (n 1) )
2
2
14. lim(1 1 )
.
x0 x ln(1 x)
2
答案: 1 2
15. f (x) xex , f (x) 的 4 阶带 Lagrange 型余项的 Maclaurin 公
式为
.
答案: xex x x2 x3 x4 ( x 5)e x x5, 0 1
北京邮电大学 2019-2020 学年
数学分析(上)期中试题答案
1.
当
b
a
0
时,
lim
n
3an 5an
4bn 7bn
.
答案: 4 7
2. 已知 a,b, p, q 均为大于零的常数,则 lim n pan qbn
.
n
答案: max{a, b}
3. lim(sin 1 cos 1) x
.
,
x
在
0
(, ) 可导,则
a
,
b
.
答案: a b 1 2
7. 已知 x ( y) 是严格单调二阶可导函数 y f (x) 的反函数,
1
f (1) 3 , f (1) 4 , f (1) 1,则(3)
.
答案: 1 64
8. y (1 x2 )sin x e4 ,则 y
.
答案:
x
x
x
答案: e
1 1
4. f (x)
x 1
x 1 的可去型间断点为 1
.
x 1 x
答案: x 0, x 1
5. 已 知 f (x) 在 x a 可 导 , f (a) 0 , 则
lim xf (a 3)=
.
x
x
答案: 3 f (a)
6.已知
f
(x)
x2 1, x 0
ae
x
be x
y(0)
.
1
答案:
2
ห้องสมุดไป่ตู้
11. y 4 x 3 ex sin x (0 x ) ,则 y
.
答案: y y( 1 1 cot x) 4x 12 24
12.已知函数
y
y(x)
由
x arctan t
y
ln(1
t
2)
确定,则
d2y dx2
x 4
.
答案: 4
13. f (x) x sin 2x , f (n) (x)
y
(1
x2
)sin
x
(cos
x
ln(1
x2
)
2x sin x 1 x2
)
9. 已知 f (x) 可导, y f (ex )e f (x) ,则 dy
.
答案: dy [ f (ex )ex f (x) f (ex )e f (x) f (x)]dx
10.已知函数 y y(x) 由 2x2 y2 exy 0( y 0) 确定,则
2! 3!
5!
16. f (x) x2 ln(1 x) , f (2019) (0)
.
2019!
答案:
2017
17.已知 x 0 时, f (x) cos x 1 x2 与 axk 是等价无穷小,则 2
a
, k
.
答案: a 1 , k 4 4!
18.设 a b 1 ,比较大小: aeb 答案: 19.函数 f (x) 3 (x2 9)2 的极值点是
bea (填 或 ).
.
答案: x 0, 3
20.函数 f (x) xex 在 (, ) 内的最大值是
.
1
答案:
e
3