初中数学一元二次方程综合测试题二.doc

合集下载

(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试卷(有答案解析)(2)

(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试卷(有答案解析)(2)

一、选择题1.一元二次方程x 2=2x 的根是( ).A .0B .2C .0和2D .0和﹣2 2.一元二次方程x 2﹣2x +5=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等实数根C .只有一个实数根D .没有实数根3.某商品的售价为100元,连续两次降价%x 后售价降低了36元,则x 的值为( )A .60B .20C .36D .18 4.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .6 5.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( ) A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根6.用配方法解方程2420x x -+=,下列配方正确的是( ) A .()222x -= B .()222x += C .()222x -=- D .()226x -= 7.已知a 是方程2210x x --=的一个根,则代数式2245a a -+的值应在( ) A .4和5之间 B .3和4之间 C .2和3之间 D .1和2之间 8.某小区附近新建一个游泳馆,馆内矩形游泳池的面积为2300m ,且游泳池的宽比长短10m .设游泳池的长为xm ,则可列方程为( )A .()10300x x -=B .()10300x x +=C .()2210300x x -= D .()2210300x x +=9.若12,x x 是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于( )A .2020B .2019C .2029D .202810.某养殖户的养殖成本逐年增长,已知第1年的养殖成本为10万元,第3年的养殖成本为16万元,设每年平均增长的百分率为x ,则下面所列方程中正确的是( ) A .10(1﹣x )2=16 B .16(1﹣x )2=10C .16(1+x )2=10D .10(1+x )2=1611.受非洲猪瘟及其他因素影响,2020年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )A .23(1﹣x%)2=60B .23(1+x%)2=60C .23(1+x 2%)=60D .23(1+2x%)=6012.若关于x 的一元二次方程kx 2-3x +1=0有实数根,则k 的取值范围为( ) A .k ≥94 B .k ≤94且k ≠0 C .k <94且k ≠0 D .k ≤94二、填空题13.某电脑公司计划两年内将产品成本由原来2500元下降到1600元,则每年平均下降的百分率是________.14.已知关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根,则m 的取值范围是_____.15.某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x ,则可列方程为__.16.若x=2是一元二次方程x 2+x+c=0的一个解,则c 2=__.17.已知:(x 2+y 2)(x 2+y 2﹣1)=20,那么x 2+y 2=_____.18.有一个人患了流感,两轮传染后共有225人患了流感,则平均每轮传染______人. 19.一个农业合作社以64000元的成本收获了某种农产品80吨,目前可以以1200元/吨的价格售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.设储藏x 个星期再出售这批农产品,可获利122000元.根据题意,可列方程______.20.已知关于x 的二次方程(1﹣2k )x 2﹣2x ﹣1=0有实数根,则k 的取值范围是_______.三、解答题21.一个直角三角形的两条直角边的和是7cm ,面积是26cm ,求两条直角边的长. 22.解下列方程:2(1)3(1)x x x -=-23.解方程:(1)2(2)3(2)0x x ++=-;(2)2101x x-=+. 24.2020年年末,大丰迈入高铁时代,建设部门打算对高铁站广场前一块长为20m ,宽为8m 的矩形空地进行绿化,计划在其中间修建两块相同的矩形绿地(图中阴影部分),若它们的面积之和为102m 2,两块绿地之间及周边留有宽度相等的人行通道,问人行通道的宽度是多少米?25.用适当的方法解下列方程:(1)22210x x +-= (2)225(3)9x x +=-26.在ABC 中,90,10cm B AB BC ∠===,点P 、Q 分别从A 、C 两点同时出发,均以1cm/s 的速度作直线运动,已知点P 沿射线AB 运动,点Q 沿边BC 的延长线运动,设点P 运动时间为(s)t ,PCQ △的面积为()2cm S .当P 运动到几秒时625ABC S S =?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一元二次方程的性质,先提公因式,通过计算即可得到答案.【详解】移项得,x 2-2x =0,提公因式得,x (x-2)=0,解得,x 1=0,x 2=2,故选:C .【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.2.D【分析】根据根的判别式判断 .【详解】解:∵△=4﹣20=﹣16<0,∴方程没有实数根.故选:D .【点睛】本题考查一元二次方程的根的情况,熟练掌握根判别式的计算方法及应用是解题关键. 3.B解析:B【分析】起始价为100元,终止价为100-36=64元,根据题意列方程计算即可.【详解】∵起始价为100元,终止价为100-36=64元,∴根据题意,得1002(1-%)x =64,解得x=20或x=180(舍去),故选B .【点睛】本题考查了一元二次方程的增长率问题,熟练掌握增长率问题的计算方法,正确布列方程是解题的关键.4.D解析:D【分析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,结合图象可得△AOP 面积最大为6,得到AB 与BC 的积为24;当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,得到AB 与BC 的和为10,构造关于AB 的一元二方程可求解.【详解】解:当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为6. ∴12AB·12BC=6,即AB•BC=24. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,∴AB+BC=10.则BC=10-AB ,代入AB•BC=24,得AB 2-10AB+24=0,解得AB=4或6,因为AB >BC ,所以AB=6.【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.5.A解析:A【分析】根据新定义运算法则以及利用△>0可判断方程根的情况.【详解】解:由题意可知:1☆x=x2-x-1=0,∴△=1-4×1×(-1)=5>0,∴有两个不相等的实数根故选:A.【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.6.A解析:A【分析】先把方程变形为x2-4x=-2,再把两方程两边加上4,然后把方程左边用完全平方公式表示即可.【详解】解:x2-4x=-2,x2-4x+4=2,(x-2)2=2.故选:A.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.A解析:A【分析】先依据一元二次方程的定义得到a式的取值范围.【详解】解:∵a是方程2210--=的一个根,x x∴2210a a--=,即221-=,a a∴原式=2-=+a a2(2)2∵459,∴23<<, ∴425<+<,即224a a -+的值在4和5之间,故选:A .【点睛】本题考查一元二次方程的解得定义,估算.掌握整体代入法是解题关键.8.A解析:A【分析】因为游泳池的长为xm ,那么宽可表示为(x-10)m ,根据面积为300,即可列出方程.【详解】解:因为游泳池的长为xm ,那么宽可表示为(x-10)m ;则根据矩形的面积公式:x (x-10)=300;故选:A .【点睛】本题考查了一元二次方程的应用,掌握“矩形面积=长×宽”是关键.9.D解析:D【分析】先根据一元二次方程的解的概念和根与系数的关系得出21142020x x -=,124x x +=,代入原式计算即可.【详解】解:∵1x ,2x 是方程2420200x x --=的两个实数根,∴211420200x x --=,即21142020x x -=,由根与系数之间关系可知124x x +=,∴211222x x x -+=21112422x x x x -++=2020+122()x x +=2020+8=2028.所以选项D 正确.故答案为:D【点睛】本题主要考查了一元二次方程的解、根与系数之间的关系,本题解题的关键是将211222x x x -+进行等量变形,并代入求解.10.D解析:D【分析】根据第一年的养殖成本×(1+平均年增长率)2=第三年的养殖成本,列出方程即可.【详解】设增长率为x ,根据题意得210(1)16x +=. 故选:D .【点睛】本题考查了从实际问题中抽象出一元二次方程,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”). 11.B解析:B【分析】可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【详解】解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2. ∴23(1+x%)2=60.故选:B .【点睛】本题考查了一元二次方程的应用,要根据题意列出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于60即可.12.B解析:B【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程kx 2-3x+1=0有实数根,∴()203410k k ≠⎧⎪⎨--⨯⨯≥⎪⎩=, ∴k≤94且k≠0. 故选:B .【点睛】 本题考查了一元二次方程的定义以及根的判别式,利用二次项系数非零及根的判别式△≥0,找出关于k 的一元一次不等式组是解题的关键.二、填空题13.20【分析】新成本=原成本×(1-平均每月降低的百分率)2把相关数值代入即可求解【详解】∵原开支为2500元设平均每月降低的百分率为x∴第一个月的开支为2500×(1-x)元第二个月的开支为2500解析:20%【分析】新成本=原成本×(1-平均每月降低的百分率)2,把相关数值代入即可求解.【详解】∵原开支为2500元,设平均每月降低的百分率为x,∴第一个月的开支为2500× (1-x)元,第二个月的开支为2500×(1-x)×(1-x) =2500×(1-x)2元,可列方程为:2500(1-x)2= 1600,解得:x=0.2=20%或x =-1.8(舍去)故答案为:20%.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1土x) 2=b.14.m>0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n的任意性构造不等式求解即可【详解】∵关于x的一元二次方程m﹣nx﹣m﹣3=0对于任意实数n都有实数根∴△≥0且m≠0∴≥0∴≥0解析:m>0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n的任意性,构造不等式求解即可.【详解】∵关于x的一元二次方程m2x﹣nx﹣m﹣3=0,对于任意实数n都有实数根,∴△≥0,且m≠0,∴2()4(3)n m m-++≥0,∴22412n m m++≥0,∵对于任意实数n都有实数根,∴2412m m+≥0,∴30mm≥⎧⎨+≥⎩或30mm≤⎧⎨+≤⎩,∴m≥0或m≤-3,且m≠0,∴m>0或m≤-3,故答案为:m>0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.15.【分析】增长率问题一般用增长后的量=增长前的量×(1+增长率)由此可以求出2月份和3月份的营业额而第一季度的总营业额已经知道所以可以列出一个方程【详解】解:设平均每月营业额的增长率为x 则2月份的营业 解析:()()290190114490x x +++-=【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),由此可以求出2月份和3月份的营业额,而第一季度的总营业额已经知道,所以可以列出一个方程.【详解】解:设平均每月营业额的增长率为x ,则2月份的营业额为:90×(1+x ),3月份的营业额为:90×(1+x )2,则由题意列方程为:90(1+x )+90(1+x )2=144-90.故答案为:90(1+x )+90(1+x )2=144-90.【点睛】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程. 16.36【分析】根据一元二次方程的解的定义把x=2代入方程x2+x+c=0即可求得c 的值进而求得c2的值【详解】解:依题意得22+2+c=0解得c=-6则c2=(-6)2=36故答案为:36【点睛】本题解析:36【分析】根据一元二次方程的解的定义,把x=2代入方程x 2+x+c=0即可求得c 的值,进而求得c 2的值.【详解】解:依题意,得22+2+c=0,解得,c=-6,则c 2=(-6)2=36.故答案为:36.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.5【分析】应用换元法得到一元二次方程解方程问题可解【详解】解:设t =x2+y2(t≥0)则t (t ﹣1)=20整理得(t ﹣5)(t+4)=0解得t =5或t =﹣4(舍去)所以x2+y2=5故答案是:5【解析:5【分析】应用换元法,得到一元二次方程,解方程问题可解.【详解】解:设t =x 2+y 2(t ≥0),则t (t ﹣1)=20.整理,得(t ﹣5)(t +4)=0.解得t =5或t =﹣4(舍去).所以x 2+y 2=5.故答案是:5.【点睛】本题考查了换元法和解一元二次方程的知识,解答关键是根据题意选择合适未知量使用换元法法解题.18.14【分析】如果设每轮传染中平均每人传染了x 人那么第一轮传染中有x 人被传染第二轮则有x (x+1)人被传染已知共有225人患了流感那么可列方程然后解方程即可【详解】解:设每轮传染中平均每人传染了x 人则解析:14【分析】如果设每轮传染中平均每人传染了x 人,那么第一轮传染中有x 人被传染,第二轮则有x (x+1)人被传染,已知“共有225人患了流感”,那么可列方程,然后解方程即可.【详解】解:设每轮传染中平均每人传染了x 人,则第一轮传染中有x 人被传染,第二轮则有x(x+1)人被传染,又知:共有225人患了流感,∴可列方程:1+x+x(x+1)=225,解得,114x =,216x =-(不符合题意,舍去)∴每轮传染中平均一个人传染了14个人.故答案为14.【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是找准等量关系.19.【分析】设储藏x 星期出售这批农产品可获利122000元则需要支付费用1600x 元损失2x 吨价格为(1200+200x )元根据获利122000元列方程求解【详解】解:设储藏x 星期出售这批农产品可获利1解析:()()1200200802160064000122000x x x +⨯---=【分析】设储藏x 星期出售这批农产品可获利122000元,则需要支付费用1600x 元,损失2x 吨,价格为(1200+200x )元,根据获利122000元,列方程求解.【详解】解:设储藏x 星期出售这批农产品可获利122000元,由题意得(1200+200x )×(80-2x )-1600x-64000=122000,故答案为:()()1200200802160064000122000x x x +⨯---=.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系列方程.20.且【分析】根据二次项系数非零及根的判别式△≥0即可得出关于k 的一元一次不等式组解之即可得出k 的取值范围【详解】解:∵关于x 的一元二次方程(1﹣2k )x2﹣2x ﹣1=0有实数根解得且故答案为:且【点睛解析:1k ≤且12k ≠【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程(1﹣2k )x 2﹣2x ﹣1=0有实数根, 2120(2)4(1)(12)0k k -≠⎧∴⎨∆=--⨯-⨯-≥⎩解得1k ≤且12k ≠, 故答案为:1k ≤且12k ≠. 【点睛】本题考查了根的判别式以及一元二次方程的定义,利用二次项系数非零及根的判别式△≥0,找出关于k 的一元一次不等式组是解题的关键.三、解答题21.3cm ,4cm【分析】首先设一条直角边为xcm ,然后根据三角形的面积列出方程,从而求出x 的值,得出答案.【详解】解:设一条直角边为xcm ,则另一条直角边的长为(7)cm x -,根据题意得: 1(7)62x x -=,整理得: 27120x x -+=,解得:123,4x x ==,当3x =时,74x -=.当4x =时,73x -=.答:这两条直角边的长分别为3cm 和4cm .【点睛】本题考查一元二次方程在几何图形中运用,掌握根据面积列一元二次方程,及其解方程的方法.22.1231,2x x ==【分析】 移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:()()2131x x x -=-,移项得()()21310x x x ---=,因式分解得()()2310x x --=, 解得1231,2x x ==. 【点睛】本题考查了因式分解法解一元二次方程,正确理解因式分解法的基本思想是化成一元一次方程.23.(1)122=1x x =-,;(2)2x =-是原方程的解.【分析】(1)利用因式分解法解一元二次方程即可;(2)利用方程两边都乘以x(x+1)把分式方程转化为整式方程,解方程,检验即可.【详解】解:(1)2(2)3(2)0x x ++=-, 因式分解()(2)230x x ++-=,化为20-1=0x x +=,,∴122=1x x =-,;(2)2101x x-=+, 方程两边都乘以x(x+1)得()210x x +-=,去括号得:2+20x x -=,移项合并得:2x =-,检验当2x =-时,()()122120x x +=-⨯-+=≠,所以2x =-是原方程的解.【点睛】本题考查一元二次方程的解法与可化为一元一次方程的分式方程的解法,掌握一元二次方程的解法与可化为一元一次方程的分式方程的解法是解题关键.24.1【分析】根据矩形的面积和为102平方米列出一元二次方程求解即可.【详解】解:设人行通道的宽度为x 米,根据题意得,(20﹣3x )(8﹣2x )=102,解得:x 1=1,x 2293=(不合题意,舍去). 答:人行通道的宽度为1米.【点睛】本题考查了一元二次方程的应用,利用两块矩形的面积之和为102m 2得出等式是解题关键.25.(1)12x x ==2)1293,2x x =-=- 【分析】(1)根据公式法计算即可;(2)根据因式分解法计算即可;【详解】解:(1)22210x x +-=, 2242(1)12∆=-⨯⨯-=,222x -±=⨯,121122x x -+-∴==; (2)25(3)(3)(3)x x x +=+-,25(3)(3)(3)0x x x +-+-=,(3)[5(3)(3)]0x x x ++--=,即(3)(418)0x x ++=,1293,2x x ∴=-=-. 【点睛】本题主要考查了一元二次方程的求解,准确计算是解题的关键.26.4秒、6秒或12秒【分析】先根据三角形面积公式可得S△ABC,根据S=625S△ABC,可求△PCQ的面积,再分两种情况:P在线段AB上;P在线段AB的延长线上;进行讨论即可求得P运动的时间.【详解】解:∵S△ABC=12AB•BC=50cm2,625S△PCQ=12cm2,设当点P运动x秒时,S=625S△ABC,当P在线段AB上,此时CQ=x,PB=10-x,S△PCQ=12x(10-x)=12,化简得 x2-10 x+24=0,解得x=6或4,P在线段AB的延长线上,此时CQ=x,PB=x-10,S△PCQ=12x(x-10)=12,化简得 x2-10 x+24=0,x2-10 x-24=0,解得x=12或-2,负根不符合题意,舍去.所以当点P运动4秒、6秒或12秒时,S=625S△ABC.【点睛】此题主要考查了三角形面积公式和一元二次方程的应用,根据已知分两种情况进行讨论是解题关键.。

九年级上学期数学《一元二次方程》单元综合测试含答案

九年级上学期数学《一元二次方程》单元综合测试含答案

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、单选题(共10题;共30分)1.方程x2-2x=0的解为( )A . x1=0,x2=2B . x1=0,x2=-2C . x1=x2=1D . x=22.设x1、x2是方程2x2﹣4x﹣3=0的两根,则x1+x2的值是( )A . 2B . ﹣2C .D . ﹣3.用因式分解法解一元二次方程时,原方程可化为( )A .B .C .D .4.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( )A . 180(1+x%)=300B . 180(1+x%)2=300C . 180(1-x%)=300D . 180(1-x%)2=3005.用配方法解方程x2﹣8x+3=0,下列变形正确的是( )A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=196.一元二次方程(k﹣2)x2+kx+2=0(k≠2)的根的情况是()A . 该方程有两个不相等的实数根B . 该方程有两个相等的实数根C . 该方程有实数根D . 该方程没有实数根7.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()A . y2+5y-6=0B . y2+5y+6=0C . y2-5y+6=0D . y2-5y-6=08.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是( )A . x2﹣7x+12=0B . x2+7x+12=0C . x2﹣9x+20=0D . x2+9x+20=09.设A 是方程x2+2x﹣2=0的一个实数根,则2A 2+4A +2016的值为( )A . 2016B . 2018C . 2020D . 202110.如图,△A B C 是一块锐角三角形材料,高线A H长8 C m,底边B C 长10 C m,要把它加工成一个矩形零件,使矩形D EFG的一边EF在B C 上,其余两个顶点D ,G分别在A B ,A C 上,则四边形D EFG 的最大面积为( )A . 40 C m2B . 20C m2C . 25 C m2D . 10 C m2二、填空题(共10题;共30分)11.已知两个数的差为3,它们的平方和等于65,设较小的数为x,则可列出方程________.12.一元二次方程x2﹣4x+4=0的解是________.13.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=______.14.已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=_____________.15.一元二次方程x2+5x﹣6=0的两根和是________.16.若关于x的一元二次方程的两个根x1,x2满足x1+x2=3,x1x2=2,则这个方程是_____.(写出一个符合要求的方程)17.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.18.(3分)已知关于x的方程有两个实数根,则实数A 的取值范围是.19.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.20.已知A 、B 是一元二次方程的两个实数根,则代数式的值等于.三、解答题(共8题;共60分)21.解下列方程(1)2x2-x=0(2)x2-4x=422.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).23.在等腰△A B C 中,三边分别为A 、B 、C ,其中A =5,若关于x的方程x2+(B +2)x+6﹣B =0有两个相等的实数根,求△A B C 的周长.24.给定关于的二次函数,学生甲:当时,抛物线与轴只有一个交点,因此当抛物线与轴只有一个交点时,的值为3;学生乙:如果抛物线在轴上方,那么该抛物线的最低点一定在第二象限;请判断学生甲、乙的观点是否正确,并说明你的理由.25.阅读探索:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=_____,x2=_______,∴满足要求的矩形B 存在.(2)如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B .(3)如果矩形A 的边长为m和n,请你研究满足什么条件时,矩形B 存在?26.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?27.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A ,B 两种规格的自行车100辆,已知A 型的进价为500元/辆,售价为700元/辆,B 型车进价为1000元/辆,售价为1300元/辆。

九年级上学期数学《一元二次方程》单元综合测试附答案

九年级上学期数学《一元二次方程》单元综合测试附答案
25.如果x=-2是一元二次方程 的一个根,求它的另一根 .
26.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.
(1)求证:方程有两个不相等的实数根.
(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.
27.已知关于x 一元二次方程x2+(m+3)x+m+1=0.
(1)字母 的取值范围为_______________;
(2)若 为正整数,且该方程的根都是整数,那么 的值为________,此时方程的根为________.
17.关于x的一元二次方程Ax2+Bx+1=0有两个相等的实数根,写出一组满足条件的实数A、B的值:A=_____,B=_____.
18.如图,在直角三角形A B C中,∠C=90º,A C=6厘米,B C=8厘米,点P、Q同时由A、C两点出发,分别沿A C、C B方向匀速运动,它们 速度都是每秒1厘米,P点运动_______秒时,△PCQ面积为4平方厘米.
[解析]
[分析]
本题我们可以将一元二次标准方程两边都除以A,令二次项x2项的系数为1.则一次项系数和常数项系数分别 和 ,即为-( )和 ,可得出原方程.
[详解]解:设符合条件的方程为:x2+Ax+B=0.
=2, =-3,
A=-( )=1,B= =-6,
符合条件的方程可以是:x2+x﹣6=0.
因此,本题正确答案是:x2+x﹣6=0.
考点:一元二次方程的应用.
11.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )

浙教版七年级数学下册第二章一元二次方程测试卷(Word版含答案)

浙教版七年级数学下册第二章一元二次方程测试卷(Word版含答案)

浙教版七下第二章 一元二次方程测试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x -=+是二元一次方程,a 必须满足( ) A .0a ≠B .3a ≠-C .3a ≠D .2a ≠2.(3分)关于二元一次方程48x y +=的解,下列说法正确的是( ) A .任意一对有理数都是它的解 B .有无数个解 C .只有一个解D .只有两个解3.(3分)下列方程组中属于二元一次方程组的有( )(1)211x y y z -=⎧⎨=+⎩(2)03x y =⎧⎨=⎩(3)0235x y x y -=⎧⎨+=⎩(4)212 1.x y x y ⎧+=⎨+=-⎩.A .1个B .2个C .3个D .4个4.(3分)解方程组①216511y x x y =+⎧⎨+=-⎩;②2310236x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-6.(3分)由方程组43x m y m +=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .108.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x ,y ,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是.12.(3分)试写出一个关于x、y的的二元一次方程,使它的一个解为12xy=⎧⎨=⎩,这个方程为.13.(3分)已知x、y满足方程组52723x yx y+=⎧⎨-=⎩,则x y+的值为.14.(3分)若22(24)()|4|0x x y z y-+++-=,则x y z++等于.15.(3分)若21xy=⎧⎨=⎩是方程组75ax bybx cy+=⎧⎨+=⎩的解,则a与c的关系是.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有两.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A、B、C三种套餐的促销活动.已知A种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A种套餐需35元,那么小明同学要买2个A种套餐、1个B种套餐和2个C种套餐共需费用元.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表:收费标准:目的地起步价(元)超过1千克的部分(元/千克)上海7b北京104b+目的地质量(千克)费用(元)上海26a-北京37a+23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?浙教版七下第二章一元二次方程测试卷(含解析)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x-=+是二元一次方程,a必须满足() A.0a≠B.3a≠-C.3a≠D.2a≠【解答】解:方程236ax y x-=+变形为(3)260a x y---=,根据二元一次方程的定义,得30a-≠,解得3a≠.故选:C.2.(3分)关于二元一次方程48x y+=的解,下列说法正确的是() A.任意一对有理数都是它的解B.有无数个解C.只有一个解D.只有两个解【解答】解:对于二元一次方程48x y+=,有无数个解,故选:B.3.(3分)下列方程组中属于二元一次方程组的有()(1)211x yy z-=⎧⎨=+⎩(2)3xy=⎧⎨=⎩(3)235x yx y-=⎧⎨+=⎩(4)212 1.x yx y⎧+=⎨+=-⎩.A.1个B.2个C.3个D.4个【解答】解:(1)本方程组中含有3个未知数;故本选项错误;(2)有两个未知数,方程的次数是1次,所以是二元一次方程组;(3)有两个未知数,方程的次数是1次,所以是二元一次方程组;(4)第一个方程未知项2x的次数为2,故不是二元一次方程组.共2个属于二元一次方程组.故选:B.4.(3分)解方程组①216511y xx y=+⎧⎨+=-⎩;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法是()A.均用代入法B.均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法【解答】解:解方程组①216511y xx y=+⎧⎨+=-⎩比较简便的方法为代入法;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法加减法,故选:C.5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-【解答】解:2x y m =-⎧⎨=⎩是方程64nx y +=的一个解, ∴代入得:264n m -+=,32m n ∴-=, 31213m n ∴-+=+=,故选:A .6.(3分)由方程组43x m y m+=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-【解答】解:原方程可化为43x m y m +=⎧⎨-=⎩①②,①+②得,7x y +=. 故选:C .7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .10【解答】解:根据题意得:322222a b a b -=⎧⎨-+=⎩,解得:45a b =⎧⎨=⎩,将3x =,2y =-代入得:3148c +=, 解得:2c =-,则4527a b c ++=+-=. 故选:A .8.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-【解答】解:36x m y m +=⎧⎨-=⎩①②,把②代入①得,63x y +-=,整理得,9x y+=,故选:C.9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩【解答】解:设甲需持钱x,乙持钱y,根据题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:B.10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天【解答】解:设每支牙刷x元,每盒牙膏y元.第1天:137132x y+=;第2天:2614264x y+=;第3天:3921393x y+=;第4天:5228528x y+=.假设第1天的记录正确,则第2天、第4天的记录也正确;假设第1天的记录错误,则第2天、第4天的记录也错误.故选:C.二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是3.5y =⎩移项得:5318a -=-, 合并得:515a -=-, 解得:3a =. 故答案为:3.12.(3分)试写出一个关于x 、y 的的二元一次方程,使它的一个解为12x y =⎧⎨=⎩,这个方程为3x y +=(答案不唯一) .【解答】解:根据题意:3x y +=(答案不唯一), 故答案为:3x y +=(答案不唯一)13.(3分)已知x 、y 满足方程组52723x y x y +=⎧⎨-=⎩,则x y +的值为 1 .【解答】解:527(1)23(2)x y x y +=⎧⎨-=⎩,(1)-(2)得:444x y +=, 1x y ∴+=,故答案为:1.14.(3分)若22(24)()|4|0x x y z y -+++-=,则x y z ++等于 12- .【解答】解:22(24)()|4|0x x y z y -+++-=, ∴240040x x y z y -=⎧⎪+=⎨⎪-=⎩, 解得:2212x y z ⎧⎪=⎪=-⎨⎪⎪=-⎩,则112222x y z ++=--=-. 故答案为:12-.15.(3分)若21x y =⎧⎨=⎩是方程组75ax by bx cy +=⎧⎨+=⎩的解,则a 与c 的关系是 49a c -= .1y =⎩5bx cy +=⎩得2725a b b c +=⎧⎨+=⎩①②,①2⨯-②,得49a c -=. 故答案为:49a c -=.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为 355(1)x y x y =+⎧⎨=-⎩.【解答】解:设诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为: 355(1)x y x y =+⎧⎨=-⎩. 故答案为:355(1)x y x y =+⎧⎨=-⎩.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有 46 两. 【解答】解:设有x 人,银子y 两, 由题意得:7498y x y x =+⎧⎨=-⎩,解得646x y =⎧⎨=⎩,故答案为46.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A 、B 、C 三种套餐的促销活动.已知A 种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B 种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C 种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A 种套餐需35元,那么小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用 210 元.【解答】解:设1盒原味的价格为x 元,1盒果粒味的价格为y 元,1盒大红枣味的结果为z 元, 由题意得:34535x y z ++=,则小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用为: 2352882(546)x y z x y z ⨯++++++ 70121620x y z =+++ 704(345)x y z =+++ 70435=+⨯210=(元),故答案为:210.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.【解答】解:经验算41xy=⎧⎨=⎩是方程1352x y+=的解,再写一个方程,如3x y-=.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩【解答】解:(1)在1(1)24(2)x yx y+=⎧⎨-=-⎩中,(1)+(2)得:33x=-,解得:1x=-,把1x=-代入(1)得:2y=.∴方程组的解为12xy=-⎧⎨=⎩.(2)在1(1)234()5()38(2)x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩中,由(1)得:56x y+=(3),由(2)得:938x y-+=-,938x y∴=+,将938x y=+代入(3)得:46184y=-, 4y∴=-.把4y=-代入938x y=+,得2x=.∴方程组的解为24xy=⎧⎨=-⎩.21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.【解答】解:方程组27431x y x y +=⎧⎨-=-⎩①②, ①3⨯+②得:1020x =,即2x =,把2x =代入①得:3y =,把2x =,3y =代入方程得:63a =+,即3a =,则原式21791715a =-+=-+=.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表: 收费标准: 目的地起步价(元) 超过1千克的部分(元/千克) 上海7 b 北京10 4b + 目的地质量(千克) 费用(元) 上海2 6a - 北京3 7a +【解答】解:依题意得:7(21)610(31)(4)7b a b a +-=-⎧⎨+-+=+⎩, 解得:152a b =⎧⎨=⎩. 答:a 的值为15,b 的值为2.23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?【解答】解:(1)设甲种口罩购进了x 盒,乙种口罩购进了y 盒,依题意得:900202519000x y x y +=⎧⎨+=⎩, 解得:700200x y =⎧⎨=⎩,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)207002520014000500019000⨯+⨯=+=(个),29001018000⨯⨯=(个), 1900018000>,∴购买的口罩数量能满足市教育局的要求.24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【解答】解:(1)设该市一级水费的单价为x元,二级水费的单价为y元,依题意得:103212(1412)51.4xx y=⎧⎨+-=⎩,解得:3.26.5xy=⎧⎨=⎩.答:该市一级水费的单价为3.2元,二级水费的单价为6.5元.(2) 3.21238.4⨯=(元),38.464.4<,∴用水量超过312m.设用水量为a3m,依题意得:38.4 6.5(12)64.4a+-=,解得:16a=.答:当缴纳水费为64.4元时,用水量为316m.。

(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试题(包含答案解析)

(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试题(包含答案解析)

一、选择题1.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( )A .k ≥﹣14B .k ≥﹣14且k ≠0C .k <﹣14D .k >-14且k ≠0 2.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则a 2+b 2+a +b 的值是( ) A .0 B .2020 C .4040 D .4042 3.若关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,则a 的值可能为( )A .2-B .4-C .2D .44.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0B .211x x +=C .x 2+2x =y 2-1D .3(x +1)2=2(x +1) 5.一元二次方程20x x +=的根的情况为( ) A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 6.一人携带变异新冠状病毒,经过两轮传染后共有121人感染,设每轮传染中平均一个人传染了x 个人,则可列方程( )A .()1121x x x ++=B .()11121x x ++=C .()21121x +=D .()1121x x += 7.我国古代数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法.以方程22350x x +-=即(2)35x x +=为例说明,记载的方法是:构造如图,大正方形的面积是2(2)x x ++.同时它又等于四个矩形的面积加上中间小正方形的面积,即24352⨯+,因此5x =.则在下面四个构图中,能正确说明方程23100x x --=解法的构图是( )A .B .C .D .8.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( )A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+ 9.在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm ,宽40cm .中间镶有宽度相同的三条丝绸花边.若丝绸花边的面积为650cm ,设丝绸花边的宽为xcm ,根据题意,可列方程为( )A .()()60240650x x -⋅-=B .()()60402650x x -⋅-=C .2402650x x x ⋅+⋅=D .()240602650x x x ⋅+⋅-=10.关于x 的一元二次方程2430x x -+=的实数根有( ) A .0个 B .1个 C .2个D .3个 11.受非洲猪瘟及其他因素影响,2020年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )A .23(1﹣x%)2=60B .23(1+x%)2=60C .23(1+x 2%)=60D .23(1+2x%)=60 12.当3b c -=时,关于x 的一元二次方程220x bx c -+=的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定 二、填空题13.一个等腰三角形的腰和底边长分别是方程28120x x -+=的两根,则该等腰三角形的周长是________.14.已知m ,n 是一元二次方程230x x --=的两个实数根,则代数式2219m n +-的值为________.15.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个_____三角形.16.用换元法解方程时1321x x x x -=--,设1x y x-=,换元后化成关于y 的一元二次方程的一般形式为______.17.已知三角形的两边长分别是方程211300x x -+=的两个根,则该三角形第三边m 的取值范围是______.18.已知一元二次方程x 2-10x +21=0的两个根恰好分别是等腰三角形ABC 的底边长和腰长,则△ABC 的周长为_________.19.已知1x ,2x 是方程2310x x --=的两个根,则2212x x +=____.20.响应国家号召打赢脱贫攻坚战,小明家利用信息技术开了一家网络商店,将家乡的土特产销往全国,今年6月份盈利24000元,8月份盈利34560元,求6月份到8月份盈利的月平均增长率.设6月份到8月份盈利的月平均增长率为x ,根据题意,可列方程为______ .三、解答题21.已知x =2是方程280x mx +-=的一个根,求:(1)m 的值;(2)1211+x x 的值. 22.解方程:(1)2(2)3(2)0x x ++=-;(2)2101x x-=+. 23.在△ABC 中,BC =2,AB =AC =b ,且关于x 的方程x 2﹣4x +b =0有两个相等的实数根,求AC 边上的中线长及∠A 的度数.24.宋代数学家杨辉所著《杨辉算法》中有一题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”译文为:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?25.解下列方程:(1)24830x x --=; (2)2(3)5(3)x x +=+.26.某旅游景区今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,求该旅游景区9,10两个月游客人数的平均增长率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据一元二次方程的定义以及根的判别式的意义得出k 2≠0,且△=b 2-4ac ≥0,建立关于k 的不等式组,求出k 的取值范围.【详解】解:由题意知,k 2≠0,且△=b 2-4ac =(2k +1)2-4k 2=4k +1≥0.解得k ≥-14且k ≠0. 故选:B .【点睛】 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.D解析:D【分析】根据一元二次方程的解及根与系数的关系可得出a+b=-1,ab=-2021,将其代入a 2+b 2+a +b =(a+b )2+(a+b )-2ab 中即可求出结论.【详解】解:∵a ,b 是方程x 2+x-2020=0的两个实数根,∴a+b=-1,ab=-2021∴a 2+b 2+a +b =(a+b )2+(a+b )-2ab=1-1+4042=4042.故选:D .【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系找出a+b=-1,ab=-2021是解题的关键.3.B解析:B【分析】设220x x a ++=的两根分别为12,,x x 可得12122,,x x x x a +=-= 由关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,可得()()1211x x --<0, 再列不等式:()21a --+<0, 解不等式可得答案.【详解】解:设220x x a ++=的两根分别为12,,x x12122,,x x x x a ∴+=-=关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,()()1211x x ∴--<0,()12121x x x x ∴-++<0,()21a ∴--+<0,a ∴<3,-4a ∴=-符合题意,所以,,A C D 不符合题意,B 符合题意,故选:.B【点睛】本题考查的是一元二次方程根与系数的关系,一元一次不等式的解法,掌握以上知识是解题的关键.4.D解析:D【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2,二次项系数不为0,是整式方程,含有一个未知数;【详解】A 、20ax bx c ++=当a=0时,不是一元二次方程,故A 错误;B 、2112x x+= ,不是整式方程,故B 错误; C 、2221x x y +=- ,含有两个未知数,故C 错误; D 、()()23121x x +=+ 是一元二次方程,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,正确理解一元二次方程的概念是解题的关键. 5.D解析:D【分析】确定a 、b 、c 计算根的判别式,利用根的判别式直接得出结论;【详解】∵20x x += ,∴ △=1-0=1>0,∴ 原方程有两个不相等的实数根;故选:D .【点睛】本题考查了根的判别式、一元二次方程实数根的情况取决于根的判别式△,正确掌握△的值与根的个数的关系是解题的关键.6.C解析:C【分析】患变异新冠状病毒的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,根据共有121人感染列方程即可.【详解】解:设每轮传染中平均一个人传染了x个人,依题意得1+x+x(1+x)=121,即(1+x)2=121,故选:C.【点睛】本题考查了一元二次方程的应用-传播问题,要注意的是患变异新冠状病毒的人把病毒传染给别人,自己仍然是患者,人数应该累加.7.C解析:C【分析】根据题意,画出方程x2-3x-10=0,即x(x-3)=10的拼图过程,由面积之间的关系可得出答案.【详解】解:方程x2-3x-10=0,即x(x-3)=10的拼图如图所示;中间小正方形的边长为x-(x-3)=3,其面积为9,大正方形的面积:(x+x-3)2=4x(x-3)+9=4×10+9=49,其边长为7,因此,C选项所表示的图形符合题意,故选:C.【点睛】本题考查完全平方公式的几何背景,通过图形直观,得出面积之间的关系,并用代数式表示出来是解决问题的关键.8.A解析:A【分析】用含有x的代数式分别表示出每轮传染的人数和总人数即可得解.【详解】∵每轮传染平均1人会传染x个人,∴2人感染时,一轮可传染2x人,∴一轮感染的总人数为2x+2=2(1+x)人;∵每轮传染平均1人会传染x个人,∴2(1+x)人感染时,二轮可传染2(1+x)x人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()2+人;21x∴()2=+,21y x故选A.【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.9.D解析:D【分析】找出丝绸花边的总面积与丝绸花边的宽之间的关系式即可列出方程.【详解】解:由题意知:三条丝绸花边的面积和-两个重叠部分的面积=丝绸花边的总面积,∴设丝绸花边的宽为 xcm ,根据题意,可列方程为:2×40x+60x-2x×x=650,即2x⋅40+x⋅(60−2x)=650,故选D.【点睛】本题考查方程的列法,仔细分析题中含有未知数所表示的量之间的数量关系并把各数量正确地表示出来是解题关键.10.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:一元二次方程2430-+=的根的判别式为:x xb2-4ac=(-4)2-4×3×1=4>0,所以,方程有两个不相等的实数根,故选:C.【点睛】本题考查了一元二次方程根的判别式,求出根的判别式的值是解题关键.11.B解析:B【分析】可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【详解】解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2.∴23(1+x%)2=60.故选:B .【点睛】本题考查了一元二次方程的应用,要根据题意列出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于60即可.12.A解析:A【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解.【详解】解:3b c -=,3c b ∴=-, 220x bx c -+=,∴∆22()428b c b c =--⨯⨯=-28(3)b b =--2824b b =-+2(4)80b =-+>,∴方程有两个不相等的实数根,故选:A .【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题.二、填空题13.14【分析】运用因式分解法解一元二次方程求出两根因为三角形是等腰三角形分情况讨论:腰为2时和腰为6时再利用三角形三边关系验证是否符合题意即可求出周长;【详解】解:(x-2)(x-6)=0x1=2x2解析:14【分析】运用因式分解法解一元二次方程,求出两根,因为三角形是等腰三角形,分情况讨论:腰为2时和腰为6时,再利用三角形三边关系验证是否符合题意,即可求出周长;【详解】解:28120x x -+=,(x-2)(x-6)=0,x 1=2,x 2=6,当腰长为2时,三角形的三边为2,2,6,不符合三角形的三角关系,舍去;当腰长为6时,三角形的三边关系为6,6,2,符合三角形的三角关系,则周长为:6+6+2=14,故答案为:14.【点睛】本题考查因式分解解一元二次方程和三角形的三边关系,求解后验三角形的三边关系是解题的关键.14.【分析】根据m与n是方程的两个实数根得到根与系数关系式原式变形后代入计算即可求出值【详解】解:∵mn是一元二次方程x2﹣x﹣3=0的两个实数根∴m+n=1mn=-3∵(m+n)2=m2+n2+2mn解析:12【分析】根据m与n是方程的两个实数根,得到根与系数关系式,原式变形后代入计算即可求出值.【详解】解:∵m,n是一元二次方程x2﹣x﹣3=0的两个实数根,∴m+n=1,mn=-3,∵(m+n)2=m2+n2+2mnm2+n2=(m+n)2-2mn∴m2+n2=12-2×(-3)=7∴m2+n2-19=7-19=-12故答案为:-12.【点睛】本题考查了一元二次方程的解,根与系数的关系,熟练掌握根与系数的关系是解题的关键.15.直角【分析】利用因式分解法求出方程的解得到另两边长利用勾股定理的逆定理即可确定出三角形为直角三角形【详解】解:x2-14x+48=0分解因式得:(x-6)(x-8)=0解得:x=6或x=8∵62+8解析:直角【分析】利用因式分解法求出方程的解得到另两边长,利用勾股定理的逆定理即可确定出三角形为直角三角形.【详解】解:x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,∵62+82=102,∴这是一个直角三角形.故答案为:直角【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.16.【分析】将代入得出再化为一般形式即可【详解】根据题意原方程可化为故答案为:【点睛】本题考查利用换元法解分式方程正确的换元是解题的关键 解析:2230y y +-=【分析】 将1x y x-=代入得出32y y =-,再化为一般形式即可. 【详解】 根据题意原方程可化为32y y=-, 232y y =-,2230y y +-=.故答案为:2230y y +-=.【点睛】本题考查利用换元法解分式方程.正确的换元是解题的关键. 17.【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积经过变形得到两根差的值即可求得第三边的范围【详解】解:∵三角形两边长是方程x2−11x +30=0的两个根∴x1+x2=11x1x2=30∵解析:111<<m【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【详解】解:∵三角形两边长是方程x 2−11x +30=0的两个根,∴x 1+x 2=11,x 1x 2=30,∵(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=121−120=1,∴x 1−x 2=1,又∵x 1−x 2<m <x 1+x 2,∴1<m <11.故答案为:1<m <11.【点睛】本题主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.18.17【分析】先求出方程的解然后分两种情况进行分析结合构成三角形的条件即可得到答案【详解】解:∵一元二次方程x2-10x+21=0有两个根∴∴∴或当3为腰长时3+3<7不能构成三角形;当7为腰长时则周解析:17【分析】先求出方程的解,然后分两种情况进行分析,结合构成三角形的条件,即可得到答案.【详解】解:∵一元二次方程x 2-10x+21=0有两个根,∴210210x x -+=,∴(3)(7)0x x --=,∴3x =或7x =,当3为腰长时,3+3<7,不能构成三角形;当7为腰长时,则周长为:7+7+3=17;故答案为:17.【点睛】本题考查了解一元二次方程,等腰三角形的定义,构成三角形的条件,解题的关键是掌握所学的知识,注意运用分类讨论的思想进行解题.19.11【分析】根据根与系数的关系得出x1+x2=3x1x2=-1再根据x12+x22=(x1+x2)2-2x1x2即可求出答案【详解】解:根据题意x1+x2=3x1x2=-1则x12+x22=(x1+解析:11【分析】根据根与系数的关系得出x 1+x 2=3,x 1x 2=-1,再根据x 12+x 22=(x 1+x 2)2-2x 1x 2即可求出答案.【详解】解:根据题意x 1+x 2=3,x 1x 2=-1,则x 12+x 22=(x 1+x 2)2-2x 1x 2=32-2×(-1)=11,故答案为:11.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2= b a -,x 1x 2= c a.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法. 20.【分析】设该商店从6月份到8月份每月盈利的平均增长率为x 根据该商店6月份及8月份的利润可得出关于x 的一元二次方程;【详解】设该商店从6月份到8月份每月盈利的平均增长率为x 故答案为:【点睛】本题考查了 解析:()224000134560x +=【分析】设该商店从6月份到8月份每月盈利的平均增长率为 x ,根据该商店6月份及8月份的利润,可得出关于 x 的一元二次方程;【详解】设该商店从6月份到8月份每月盈利的平均增长率为 x()224000134560x +=故答案为:()224000134560x +=.【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程. 三、解答题21.(1)2;(2)14【分析】(1)由x =2是方程280x mx +-=的一个根,把x =2代入280x mx +-=即可得到关于m 的一元一次方程,求之即可;(2)将m=2代入280x mx +-=得到关于x 的一元二次方程,根据根与系数的关系求出两根之和与两根之积,将所求的式子通分并利用同分母分式的加法法则计算,将求出的两根之和与两根之积代入计算即可.【详解】解:(1)把x =2代入280x mx +-=,得 22280m +-=,解得m=2(2)将m=2代入280x mx +-=,得2280x x +-=,∴12122,8x x x x +=-=-, ∴121212112184x x x x x x +-+===-. 【点睛】本题考查了一元二次方程的解,解一元一次方程,分式的加法,以及根与系数的关系.方程的解即为能使方程左右两边相等的未知数的值,熟练掌握根与系数的关系是解题的关键,22.(1)122=1x x =-,;(2)2x =-是原方程的解.【分析】(1)利用因式分解法解一元二次方程即可;(2)利用方程两边都乘以x(x+1)把分式方程转化为整式方程,解方程,检验即可.【详解】解:(1)2(2)3(2)0x x ++=-,因式分解()(2)230x x ++-=,化为20-1=0x x +=,,∴122=1x x =-,;(2)2101x x-=+, 方程两边都乘以x(x+1)得()210x x +-=,去括号得:2+20x x -=,移项合并得:2x =-,检验当2x =-时,()()122120x x +=-⨯-+=≠,所以2x =-是原方程的解.【点睛】本题考查一元二次方程的解法与可化为一元一次方程的分式方程的解法,掌握一元二次方程的解法与可化为一元一次方程的分式方程的解法是解题关键.23.AC 边上的中线长为2,∠A =30°.【分析】根据一元二次方程x 2﹣4x +b =0有两个相等的实数根求出b 的值,再判断△ABC 为直角三角形,由直角三角形的性质可得结论.【详解】解:∵一元二次方程x 2﹣4x +b =0有两个相等的实数根,∴b 2﹣4ac =0,即(﹣4)2﹣4b =0,∴b =4.∴AC =4,∴AB 2+BC 2=AC 2,∵△ABC 为直角三角形,∵直角三角形斜边上的中线等于斜边的一半,∴AC 边上的中线长=2,∵AC =4,∴∠A =30°.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△=0,方程有两个相等的实数根;还考查了利用勾股定理判定直角三角形,三角形的内角和定理,并考查了直角三角形斜边上的中线等于斜边的一半的性质.24.长比宽多12步.【分析】选择合适的未知数,利用矩形这个桥梁构造一元二次方程求解即可.【详解】解:设矩形的长为x 步,则宽为60x -()步, 根据题意,得(60)864x x -=.解得 136x =,224x =(舍去)∴当36x =时,6024x -=,362412-=.答:长比宽多12步.【点睛】本题考查了一元二次方程与几何图形的关系,熟练运用一元二次方程解决几何图形的面积是解题的关键.25.(1)121,1x x =+=;(2)123,2x x =-= 【分析】(1)根据配方法,可得答案;(2)根据因式分解法,可得答案.【详解】解:(1)移项,得2483x x -=.方程两边都除以4,得2324x x -=. 方程两边都加1,得232114x x -+=+. 配方,得27(1)4x -=.开平方,得12x -=±.1x ∴=+,121,1x x ∴=+=. (2)移项,得(2(3)5(3)0x x +-+=.(3)(35)0x x ∴++-=,(3)(2)0x x ∴+-=,123,2x x ∴=-=.【点睛】本题考查了解一元二次方程,熟练掌握解方程的方法是解题关键.26.该旅游景区9,10两个月游客人数的平均增长率是56%【分析】根据增长后的游客人数=增长前的游客人数×(1+增长率),设9月、10月游客人数的平均增长率是x ,根据今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,据此即可列方程解出即可.【详解】解:设该旅游景区9,10两个月游客人数的平均增长率是x ,根据题意,得()()()21144%169%x +=+⨯+,解得10.5656%x ==,2 2.56x =-(不合实际,舍去).答:该旅游景区9,10两个月游客人数的平均增长率是56%.【点睛】考查了一元二次方程的应用.若原来的数量为a ,平均每次增长或降低的百分率为x ,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a×(1±x )(1±x )=a ()21a ±.增长用“+”,下降用“−”.。

数学七年级上册一元二次方程单元综合检测(附答案解析)

数学七年级上册一元二次方程单元综合检测(附答案解析)
7.下列各式中:①2x-1=5;②4+8=12;③5y+8;④2x+3=0;⑤2x2-5x-1=0;⑥2x2-5x-1;⑦|x|+1=2;⑧ ,是方程的有( )
A.①②④⑤⑧B.①②⑤⑦⑧C.①④⑤⑦⑧D.8个都是
[答案]C
[解析]
[分析]
根据方程是含有未知数的等式解答即可.
[详解]根据方程的概念可知①④⑤⑦⑧是方程,②③⑥不是方程.
12.下列方程中,是一元一次方程的是( )
A.0.3x=6B. C. D.x=3y-5
[答案]A
[解析]
[分析]
根据一元一次方程的定义解答即可.
[详解]选项A,是一元一次方程;选项B,未知数 最高次数是2,不是一元一次方程;选项C,等号左边不是整式,不是一元一次方程;选项D,含有两个未知数,不是一元一次方程.
[答案]B
[解析]
[分析]
设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.
[详解]设该服装标价为x元,
由题意,得0.6x﹣200=200×20%,
解得:x=400.
故选B.
[点评]本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.
3.已知 是关于 的方程 的解,则 的值是()
16.已知 是关于x 方程 的解,则 __________.
[答案]
[解析]
[分析]
将x=4代入方程 可得4+A=1-8A,解方程求得A的值即可.
[详解]把x=4代入 得,
4+A=1-8A,
解得A= .
故答案为 .
[点睛]本题考查了方程的解定义,把方程的解代入原方程,把原方程转化为关于字母A的方程进行求解是解决问题的关键.

人教版九年级数学一元二次方程章节综合测试(有答案)

人教版九年级数学一元二次方程章节综合测试(有答案)

人教版九年级数学一元二次方程章节综合测试(有答案)(时间:60分钟 满分:100分)一、选择题(每小题2分,共32分)1.关于x 的方程3x 2-5=2x 的二次项系数和一次项系数分别是( )A .3,-2B .3,2C .3,5D .5,22.一元二次方程x 2-x +10=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定3.若方程(m -3)xm 2-7-x +3=0是关于x 的一元二次方程,则m =( )A .9B .3C .-3D .3或-34.方程x 2+x -1=0的一个根是( )A .1- 5 B.1-52C .-1+ 5D.-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是( )A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( )A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是( )A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为( )A .60元B .80元C .60元或80元D .30元 9.若2-3是方程x 2-4x +c =0的一个根,则c 的值是( )A .1B .3- 3C .1+ 3D .2+ 310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时( )A .加14B .加12C .减14D .减1211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是( )A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A.x (x -1)2=930 B.x (x +1)2=930C .x(x +1)=930D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n的值是( )A.452B.152C.152或2 D.452或2 15.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么( )A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196 D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是( )A .①②B .①③C .②③D .①②③ 二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m = ,b = .18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k = .19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是 .20.方程(x +3)2=5(x +3)的解为 . 三、解答题(共56分) 21.(9分)解方程:(1)3(2x -1)2=27;(2)2x 2+4x -1=0;(3)3(x +2)2=x 2-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根; (2)求证:不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,则▱ABCD 的周长是多少?25.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少? (2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?答案一、选择题(每小题2分,共32分)1.关于x的方程3x2-5=2x的二次项系数和一次项系数分别是(A)A.3,-2 B.3,2 C.3,5 D.5,22.一元二次方程x2-x+10=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定3.若方程(m-3)xm2-7-x+3=0是关于x的一元二次方程,则m=(C) A.9 B.3 C.-3 D.3或-34.方程x 2+x -1=0的一个根是(D)A .1- 5 B.1-52C .-1+ 5D.-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是(D)A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为(A)A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是(B)A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为(C)A .60元B .80元C .60元或80元D .30元 9.若2-3是方程x 2-4x +c =0的一个根,则c 的值是(A)A .1B .3- 3C .1+ 3D .2+ 310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时(A)A .加14B .加12C .减14D .减1211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B)A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是(B)A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为(D)A.x (x -1)2=930 B.x (x +1)2=930C .x(x +1)=930D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n的值是(D)A.452B.152C.152或2 D.452或2 15.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么(C)A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196 D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是(A)A .①②B .①③C .②③D .①②③ 二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m =-3,b =16.18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k =-1.19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是k <2.20.方程(x +3)2=5(x +3)的解为x 1=-3,x 2=2. 三、解答题(共56分) 21.(9分)解方程:(1)3(2x -1)2=27;解:(2x -1)2=9,2x -1=3或2x -1=-3, ∴x 1=2,x 2=-1.(2)2x 2+4x -1=0;解:a =2,b =4,c =-1, b 2-4ac =16-4×2×(-1)=24>0,x =-4±264=-2±62,即x 1=-2+62,x 2=-2-62.(3)3(x +2)2=x 2-4.解:3(x +2)2-(x +2)(x -2)=0, (x +2)[3(x +2)-(x -2)]=0, x +2=0或3(x +2)-(x -2)=0, ∴x 1=-2,x 2=-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根; (2)求证:不论k 取何值,该方程都有两个不相等的实数根. 解:(1)将x =-1代入原方程,得 1+(k +2)+k -1=0,解得k =-1.当k =-1时,原方程为x 2-x -2=0, 解得x 1=-1,x 2=2. ∴方程的另一个根为2.(2)证明:∵a =1,b =-(k +2),c =k -1, ∴b 2-4ac =[-(k +2)]2-4×1×(k -1)=k 2+8>0. ∴不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.解:设AB 的长为x m ,则BC 的长为(30-3x)m.根据题意,得 x(30-3x)=72. 解得x 1=4,x 2=6.答:AB 的长为4 m 或6 m.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,则▱ABCD 的周长是多少? 解:(1)∵四边形ABCD 是菱形,∴AB =AD.又∵AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根,∴b 2-4ac =(-m)2-4(m 2-14)=(m -1)2=0.∴m =1.∴当m 为1时,四边形ABCD 是菱形.当m =1时,原方程为x 2-x +14=0,即(x -12)2=0,解得x 1=x 2=12.∴菱形ABCD 的边长是12.(2)把x =2代入原方程,得 4-2m +m 2-14=0.解得m =52.将m =52代入原方程,得x 2-52x +1=0,∴方程的另一根AD =1÷2=12.∴▱ABCD 的周长是2×(2+12)=5.25.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少? (2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得1 280(1+x)2=1 280+1 600.解得x 1=0.5=50%,x 2=-2.5(舍去).答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%. (2)设2018年该地有a 户享受到优先搬迁租房奖励,根据题意,得 8×1 000×400+5×400(a -1 000)≥5 000 000. 解得a ≥1 900.答:2018年该地至少有1 900户享受到优先搬迁租房奖励. 26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)(14-10)÷2+1=3(档次). 答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x 档次的产品,根据题意,得 (2x +8)(76+4-4x)=1 080.整理,得x 2-16x +55=0.解得x 1=5,x 2=11(不合题意,舍去). 答:该烘焙店生产的是第五档次的产品.。

一元二次方程与二次函数综合测试题及参考答案(精品范文).doc

一元二次方程与二次函数综合测试题及参考答案(精品范文).doc

【最新整理,下载后即可编辑】一、选择题1、设、是关于的一元二次方程的两个实数根,且,,则()A.B.C.D.2、下列命题:①若,则;②若,则一元二次方程有两个不相等的实数根;③若,则一元二次方程有两个不相等的实数根;④若,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④3、若一次函数的图象过第一、三、四象限,则函数()A.有最大值B.有最大值-C.有最小值D.有最小值-4、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A. 3个B. 2个C. 1个D. 0个5、关于的一元二次方程的两个实数根分别是,且,则的值是()A.1 B.12 C.13 D.25二、填空题6、设、是方程的两根,则代数式= 。

7、已知关于一元二次方程有一根是,则。

三、计算题8、已知:关于的方程(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是,求另一个根及值.9、解方程:四、综合题10、已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.11、如图:抛物线与轴交于A、B两点,点A的坐标是(1,0),与轴交于点C.(1)求抛物线的对称轴和点B的坐标;(2)过点C作CP⊥对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且∠BPD=∠BCP,求抛物线的解析式。

12、已知关于x的二次函数y=x2-(2m-1)x+m2+3m+4.(1)探究m满足什么条件时,二次函数y的图象与x轴的交点的个数. (2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且+=5,与y轴的交点为C,它的顶点为M,求直线CM的解析式.13、如图,已知点,直线交轴于点,交轴于点(1)求对称轴平行于轴,且过三点的抛物线解析式;(2)若直线平分∠ABC,求直线的解析式;(3)若直线产(>0)交(1)中抛物线于两点,问:为何值时,以为边的正方形的面积为9?14、如图,抛物线交轴于点、,交轴于点,连结,是线段上一动点,以为一边向右侧作正方形,连结,交于点.(1)试判断的形状,并说明理由;(2)求证:;(3)连结,记的面积为,的面积为,若,试探究的最小值.15、如图,抛物线y =-x2+bx +c 与x 轴交于A、B两点,与y 轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E 在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.五、简答题16、已知的两边,的长是关于的一元二次方程的两个实数根,第三边的长是.(1)为何值时,是以为斜边的直角三角形;(2)为何值时,是等腰三角形,并求的周长17、已知关于的一元二次方程:.(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为(其中).若是关于的函数,且,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量的取值范围满足什么条件时,.18、已知抛物线y = ax2-x + c经过点Q(-2,),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、B两点,如图.(1)求抛物线的解析式;(2)求A、B两点的坐标;(3)设PB于y轴交于C点,求△ABC的面积.19、如图,已知抛物线的顶点为A(1,4)、抛物线与y 轴交于点B (0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式.(2)当PA+PB的值最小时,求点P的坐标.20、已知二次函数的部分图象如图7所示,抛物线与轴的一个交点坐标为,对称轴为直线.(1)若,求的值;(2)若实数,比较与的大小,并说明理由.参考答案一、选择题1、C2、B3、B4、考点:二次函数图象与系数的关系。

九年级数学上册第2章一元二次方程单元综合测试题含解析

九年级数学上册第2章一元二次方程单元综合测试题含解析

第2章一元二次方程一、精心选一选,相信自己的判断!(每小题3分,共30分)1.方程2x2﹣3=0的一次项系数是( )A.﹣3 B.2 C.0 D.32.方程x2=2x的解是( )A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=3.方程x2﹣4=0的根是( )A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=44.若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是( )A.﹣1 B.0 C.1 D.25.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是( )A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=96.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=07.已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是( )A.6 B.8 C.10 D.128.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A.12 B.12或15 C.15 D.不能确定9.若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值范围是( )A.1 B.1或﹣1 C.﹣1 D.210.科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有( )名学生.A.12 B.12或66 C.15 D.33二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:__________.12.﹣1是方程x2+bx﹣5=0的一个根,则b=__________,另一个根是__________.13.方程(2y+1)(2y﹣3)=0的根是__________.14.已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=__________.15.用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是__________.三、按要求解一元二次方程:16.按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.四、细心做一做:20.有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?21.如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计﹣横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?22.某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?23.中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?24.如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.北师大新版九年级上册《第2章一元二次方程》2015年单元测试卷(广东省深圳市观澜中学)一、精心选一选,相信自己的判断!(每小题3分,共30分)1.方程2x2﹣3=0的一次项系数是( )A.﹣3 B.2 C.0 D.3【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:方程2x2﹣3=0没有一次项,所以一次项系数是0.故选C.【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有.2.方程x2=2x的解是( )A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=【考点】解一元二次方程-因式分解法;因式分解-提公因式法.【专题】因式分解.【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根.【解答】解:x2﹣2x=0x(x﹣2)=0∴x1=0,x2=2.故选C.【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根.3.方程x2﹣4=0的根是( )A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4【考点】解一元二次方程-直接开平方法.【分析】先移项,然后利用数的开方解答.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选C.【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;(2)运用整体思想,会把被开方数看成整体;(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4.若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是( )A.﹣1 B.0 C.1 D.2【考点】根的判别式;一元二次方程的定义.【分析】先把方程变形为关于x的一元二次方程的一般形式:(2k﹣1)x2﹣8x+6=0,要方程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数k.【解答】解:方程变形为:(2k﹣1)x2﹣8x+6=0,当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0,解得k>,则满足条件的最小整数k为2.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是( )A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案.【解答】解:移项得:x2﹣4x=5,配方得:x2﹣4x+22=5+22,(x﹣2)2=9,故选D.【点评】本题考查了解一元二次方程,关键是能正确配方.6.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【解答】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x﹣1400=0,即x2+65x﹣350=0.故选:B.【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.7.已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是( )A.6 B.8 C.10 D.12【考点】勾股定理.【分析】设这三边长分别为x,x+1,x+2,根据勾股定理可得出(x+2)2=(x+1)2+x2,解方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可.【解答】解:设这三边长分别为x,x+1,x+2,根据勾股定理得:(x+2)2=(x+1)2+x2解得:x=﹣1(不合题意舍去),或x=3,∴x+1=4,x+2=5,则三边长是3,4,5,∴三角形的面积=××4=6;故选:A.【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定理得出方程是解决问题的关键.8.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.9.若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值范围是( )A.1 B.1或﹣1 C.﹣1 D.2【考点】根的判别式.【分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可.【解答】解:根据题意得△=22﹣4(k+2)=0,解得k=﹣1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有( )名学生.A.12 B.12或66 C.15 D.33【考点】一元二次方程的应用.【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了132件,可得到方程,求解即可.【解答】解:设全组共有x名学生,由题意得x(x﹣1)=132解得:x1=﹣11(不合题意舍去),x2=12,答:全组共有12名学生.故选:A.【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:﹣3x2+2x﹣3=0.【考点】一元二次方程的一般形式.【专题】开放型.【分析】根据一元二次方程的一般形式和题意写出方程即可.【解答】解:由题意得:﹣3x2+2x﹣3=0,故答案为:﹣3x2+2x﹣3=0.【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中a,b,c分别叫二次项系数,一次项系数,常数项.12.﹣1是方程x2+bx﹣5=0的一个根,则b=﹣4,另一个根是5.【考点】一元二次方程的解.【分析】把x=﹣1代入方程得出关于b的方程1+b﹣2=0,求出b,代入方程,求出方程的解即可.【解答】解:∵x=﹣1是方程x2+bx﹣5=0的一个实数根,∴把x=﹣1代入得:1﹣b﹣5=0,解得b=﹣4,即方程为x2﹣4x﹣5=0,(x+1)(x﹣5)=0,解得:x1=﹣1,x2=5,即b的值是﹣4,另一个实数根式5.故答案为:﹣4,5;【点评】本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.方程(2y+1)(2y﹣3)=0的根是y1=﹣,y2=.【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得.【解答】解:∵(2y+1)(2y﹣3)=0,∴2y+1=0或2y﹣3=0,解得y1=,y2=.【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复杂问题的一个原则.14.已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=3.【考点】根与系数的关系.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,代入计算即可.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2,∴x1+x2=3,故答案为:3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.15.用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是y2﹣3y﹣1=0.【考点】换元法解分式方程.【专题】换元法.【分析】此题考查了换元思想,解题的关键是要把x2﹣2x看做一个整体.【解答】解:原方程可化为:﹣(x2﹣2x)+3=0设y=x2﹣2x﹣y+3=0∴1﹣y2+3y=0∴y2﹣3y﹣1=0.【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换元的整体.三、按要求解一元二次方程:16.按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.(2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解.(3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解.(4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)4x2﹣8x+1=0(配方法)移项得,x2﹣2x=﹣,配方得,x2﹣2x+1=﹣+1,(x﹣1)2=,∴x﹣1=±∴x1=1+,x2=1﹣.(2)7x(5x+2)=6(5x+2)(因式分解法)7x(5x+2)﹣6(5x+2)=0,(5x+2)(7x﹣6)=0,∴5x+2=0,7x﹣6=0,∴x1=﹣,x2=;(3)3x2+5(2x+1)=0(公式法)整理得,3x2+10x+5=0∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40,∴x===,∴x1=,x2=;(4)x2﹣2x﹣8=0.(x+4)(x﹣2)=0,∴x+4=0,x﹣2=0,∴x1=﹣4,x2=2.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.四、细心做一做:20.有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解.【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150解这个方程;x2=10当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去,当养鸡场的宽为x1=10m时,养鸡场的长为15m.答:鸡场的长与宽各为15m,10m.【点评】本题考查的是一元二次方程的应用,难度一般.21.如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计﹣横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解.【解答】解:设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米,由题意得(32﹣2x)(15﹣x)=32×15×(1﹣)即x2﹣31x+30=0解得x1=30 x2=1∵路宽不超过15米∴x=30不合题意舍去答:小路的宽应是1米.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.22.某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率).(1)可先求出增长率,然后再求2007年的盈利情况.(2)有了2008年的盈利和增长率,求出2009年的就容易了.【解答】解:(1)设每年盈利的年增长率为x,根据题意,得1500(1+x)2=2160.解得x1=0.2,x2=﹣2.2(不合题意,舍去).∴1500(1+x)=1500(1+0.2)=1800.答:2007年该企业盈利1800万元.(2)2160(1+0.2)=2592.答:预计2009年该企业盈利2592万元.【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.23.中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?【考点】一元二次方程的应用.【专题】销售问题.【分析】设涨价4x元,则销量为(500﹣40x),利润为(10+4x),再由每月赚8000元,可得方程,解方程即可.【解答】解:设涨价4x元,则销量为(500﹣40x),利润为(10+4x),由题意得,(500﹣40x)×(10+4x)=8000,整理得,5000+2000x﹣400x﹣160x2=8000,解得:x1=,x2=,当x1=时,则涨价10元,销量为:400件;当x2=时,则涨价30元,销量为:200件.答:当售价定为60元时,每月应进400件衬衫;售价定为80元时,每月应进200件衬衫.【点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题的关键,注意分情况讨论思想的应用.24.如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.【考点】一元二次方程的应用;相似三角形的判定.【专题】几何动点问题.【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ=S△ABC列出方程求解;(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ=∠B,则有=或=,分别代入可得到关于t的方程,可求得t的值;(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么=,依此列出比例式=,解方程即可.【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的,由题意得:PC=2xm,CQ=(6﹣x)m,则×2x(6﹣x)=××8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ的面积为△ACB的面积的;(2)设运动时间为ts,△PCQ与△ACB相似.当△PCQ与△ACB相似时,则有=或=,所以=,或=,解得t=,或t=.因此,经过秒或秒,△OCQ与△ACB相似;( 3)有可能.由勾股定理得AB=10.∵CD为△ACB的中线,∴∠ACD=∠A,∠BCD=∠B,又PQ⊥CD,∴∠CPQ=∠B,∴△PCQ∽△BCA,∴=,=,解得y=.因此,经过秒,PQ⊥CD.【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。

一元二次方程综合测试题+答案

一元二次方程综合测试题+答案

一元二次方程综合测试题+答案1.正确的选项为(D);正确的改写为:下列方程中是关于x的一元二次方程的是(D);2.正确的选项为(D);正确的改写为:方程4(x-3)+x(x-3)=0的根为(D);3.正确的选项为(D);正确的改写为:解下列方程:(1)(x-2)^2=5(2)x^2-3x-2=0(3)x^2+x-6=0,较适当的方法分别为(D);4.正确的选项为(B);正确的改写为:方程(x+1)(x-3)=5的解是(B);5.正确的选项为(D);正确的改写为:方程x^2+4x-2=0的正根为(D);6.正确的选项为(B);正确的改写为:方程x^2+2x-3=0的解是(B);7.正确的选项为(B);正确的改写为:某厂一月份的总产量为500吨,三月份的总产量达到为720吨。

若平均每月增率是x,则可以列方程(B);8.正确的选项为(B);正确的改写为:某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是(B);9.正确的选项为(D);正确的改写为:关于x的一元二次方程x^2+k=0有实数根,则(D);10.正确的选项为(C);正确的改写为:方程x^2=0的解的个数为(C);11.正确的选项为(A);正确的改写为:已知关于x的一元二次方程x^2-m=2x有两个不相等的实数根,则m的取值范围是(A);12.正确的选项为(A);正确的改写为:已知x=1是一元二次方程x^2-2mx+1=0的一个解,则m的值是(A)。

13.一元二次方程 $(m-2)x-4mx+2m-6$ 有两个相等的实数根,则 $m$ 等于 $\boxed{\text{C。

}-6\text{或}1}$。

1.把一元二次方程 $(1-3x)(x+3)=2x+1$ 化成一般形式是$5x^2+8x-2=0$;它的二次项系数是 $5$;一次项系数是 $8$;常数项是 $-2$。

2.已知关于 $x$ 的方程 $(m-1)x+(m+1)x+m-2$,当 $m\neq \pm 1$ 时,方程为一元二次方程;当 $m=1$ 时,方程是一元一次方程。

九年级上册数学《一元二次方程》单元综合测试题(含答案)

九年级上册数学《一元二次方程》单元综合测试题(含答案)
【点睛】本题可根据一元二次方程根与系数的关系(韦达定理)来解答.
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=﹣ ,x1x2= .
19.某水果批发市场要经销一批热带水果,如果每千克该水果盈利5元,每天可售出200千克;经市场调查发现,在进货价不变的情况下,如果每千克水果涨价1元,日销售量将减少10千克;现该市场要保证每天盈利1500元,同时又要使顾客得到实惠,那么每千克水果应涨价多少元?
【点睛】本题主要考查了一元二次方程根与系数的关系(韦达定理),解此题的关键在于利用韦达定理得到m,n的另一个方程,然后通过解m,n的方程组得到m,n的值.
18.已知关于x的方程x2+2(m-3)x+m2+9=0两根的平方和比两根的积小71,求m的值.
【答案】m=4或m=20
【解析】
【分析】
利用一元二次方程的根与系数的关系整理得到x1+x2=-2(m-3),x1x2=m2+9,再根据题意可得(x1+x2)2-3x1x2=-71,然后整体代入求解即可.
人教版数学九年级上学期
《一元二次方程》单元测试
(满分120分,考试用时120分钟)
一、选择题
1.一元二次方程 的解是()
A. B. C. D.
2.把方程 化成 的形式时, 的值为()
A. 19B. -1C. 11D. -21
3.如果有一台电脑被感染,经过两轮感染后就会有100台电脑被感染.若每一轮感染中平均一台电脑会感染 台电脑,则下列所列方程中正确的是()
【答案】每千克应涨价5元.
【解析】
【分析】
设每千克应涨价x元,由题意可列方程(5+x)(200-10x)=1500,然后求解方程取符合题意的答案即可.

一元二次方程综合测试(中考真题)(含答案)

一元二次方程综合测试(中考真题)(含答案)

一元二次方程综合测试(中考真题)(含答案)南外仙林分校九年级周测试卷班级姓名得分考试说明:1.本卷满分120分,考试时间15:50-17:102.请将选择题答案填入指定表格内,漏填或不填不得分.一、选择题(每小题2分,共30分)题号答案1234567891011121314151.下列方程中,关于x的一元二次方程有()①x2?0,②ax2?bx?c?0,③x2?3?5x,④a2?a?x?0⑤(m?1)x2?4x?1m12?0,⑥?1?,⑦x2?1?2,⑧(x?1)?x2?9.32xA.2个 B.3个 C.4个 D.5个 2. 若方程(m?2)x,m,?3mx?1?0是关于x的一元二次方程,则()A.m??2B.m=2C.m=—2D.m??23.一元二次方程2x-3x+1=0化为(x+a)=b的形式,正确的是()3?3?13?1A.?x16;B.2?x;C.?x;D.以上都不对2?4?164?164.(2023·山东泰安·7)一元二次方程x2?6x?6?0配方后化为()22A.(x?3)?15B.(x?3)?3C.(x?3)?15D.(x?3)?3222225.已知x?y?4x?6y?13?0,x、yA.-8B.8C.-9D.922为实数,则x的值是()y6. 已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是()A.1B.0C.0或1D.0或-127.(2023·江苏苏州·4)关于x的一元二次方程x?2x?k?0有两个相等的实数根,则k的值为()A.1B.?1C.2D.?2x2?x?68.若分式2的值为0,则x的值为()A.-3或2B.-3C.2D.3或-29. 已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为() A.(x+2)(x+3) B.(x-2)(x-3) C.(x-2)(x+3)D.(x+2)(x-3)10.(2023·江苏南京·5)若方程?x?5??19的两根为a和b,且a?b,则下列结论中正确的是()A.a是19的算术平方根C.a?5是19的算术平方根B.b是19的平方根D.b?5是19的平方根211.(2023·浙江温州·8)我们知道方程x2?2x?3?0的解是x1?1,x2??3,现给出另一个方程(2x?3)2?2(2x?3)?3?0,它的解是()A.x1?1,x2?3B.x1?1,x2??3C.x1??1,x2?3D.x1??1,x2??312.(2023·湖南益阳·6)关于x的一元二次方程ax2?bx?c?0(a?0)的两根为x1?1,x2??1,那么下列结论一定成立的是() A.b2?4ac?0 B.b2?4ac?0C.b2?4ac?0D.b2?4ac?0213.如果方程x?2x?m?0有两个同号的实数根,则m的取值范围是()A.m1B.0m?1C.0?m1D.m114.(2023·江苏无锡·7)商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%15.已知α,β是方程x2+2023x+1=0的两个根,则(1+2023?+?2)(1+2023?+?)的值为().A.1B.2C.3D.4二、填空题(每小题3分,共24分)16.已知实数x满足4x-4x+l=0,则代数式2x+21的值为_______________2x17.(2023·江苏盐城·13)若方程x2-4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为___________.18.代数式2x-x-12的最小值是.19.(2023·山东泰安·22)关于x的一元二次方程x?(2k?1)x?(k?1)?0无实数根,则k的取值范围为.22220.(2023·山东菏泽·10)关于x的一元二次方程(k?1)x?6x?k?k?0的一个根式0,则k的值是_____________.21.(2023·江苏南京·12)已知关于x的方程x?px?q?0的两根为-3和-1,则pq=. 22.(2023·四川内江·22,24)若实数x满足x2?2x?1?0,则2x3?7x2?4x?2023?__________ 23.(2023·江苏扬州·18)若关于x的方程?2x?m2023?x?4020?0存在整数解,则正整数m的所有取值的和为.三、解答题(共66分)24.用适当的方法解方程(每小题5分,共20分)2(1)(;2x?2)-8?0;(2)解方程:(x?3)(x?1)?3(2023·浙江丽水·18)2222(3)3x?6x-3;(4)(x?3)?(3x?3)-4?0.。

(完整版)一元二次方程单元综合测试题(含答案)

(完整版)一元二次方程单元综合测试题(含答案)
2〕根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率〔保存两个有效数字〕.
21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大
销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.
〔1〕假设商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?
〔3〕
3
2

3

2
〔x+3
〕-4=0.
x=6x
〔4〕〔x+3〕+3
四、解答题〔18,19,20,21题每题7分,22,23题各9分,共46分〕
x
18.如果x2-10x+y2-16y+89=0,求y的值.
19.阅读下面的材料,答复以下问题:鉀鈍鰩砻膿鞯滲饴諑败顯桠條繽恼。
-2-
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
3、如下列图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,
∠COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作
PD交AB于点D,(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,
求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,
3.把方程〔1-2x〕〔1+2x〕=2x2-1化为一元二次方程的一般形式为________.
1
2
1
4.如果x2
-x
-8=0,那么x的值是________.
5.关于x的方程〔m2-1〕x2+〔m-1〕x+2m-1=0是一元二次方程的条件是________.

九年级数学上学期第二章《一元二次方程》综合测试题(含答案)

九年级数学上学期第二章《一元二次方程》综合测试题(含答案)

九年级数学上学期第二章《一元二次方程》综合测试题(含答案)一、选择题(本大题共8小题,每小题3分,共24分)1.下列属于一元二次方程的是()-1=x2 D.x2-4=(x+2)2A.3x+2=5x-3B.x2=4C.x-2x+12.解方程3(2x-1)2=4(2x-1)最适当的方法是()A.直接开平方法B.配方法C.因式分解法D.公式法3.下列一元二次方程有两个相等实数根的是()A.x2-2x+1=0B.2x2-x+1=0C.4x2-2x-3=0D.x2-6x=04.若关于x的一元二次方程x2-x-m=0的一个根是x=1,则m的值是()A.1B.0C.-1D.25.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=8C.x-6=4D.x+6=-46.某中学课外兴趣活动小组准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图1所示).设这个苗圃垂直于墙的一边的长为x米.若苗圃的面积为72平方米,则x为()图1A.12B.10C.15D.87.已知等腰三角形的两边长分别是一元二次方程x2-6x+8=0的两根,则该等腰三角形的底边长为()A.2B.4C.8D.2或48.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2,则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=-1D.有两个相等的实数根二、填空题(本大题共8小题,每小题3分,共24分)9.一元二次方程(3x+1)(x-3)=2化为一般形式是.10.已知关于x的方程x2-mx+n=0的两个根是x1=0,x2=-3,则m= ,n= .11.当x= 时,代数式x2+4x与代数式2x+3的值相等.12.把一元二次方程x2-4x+3=0配方成(x+a)2=b(a,b为常数)的形式,则a+b= .13.关于x的一元二次方程(m-1)x2+2x-1=0有两个不相等的实数根,则m的取值范围是.14.若x2+x=1,则3x4+3x3+3x+1的值为.15.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x应满足的方程为 .16.规定:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15.若2⊗x=3,则x= .三、解答题(本大题共6小题,共52分)17.(12分)用适当的方法解下列方程:(1)3(x-1)2=27; (2)6x2-x-12=0;(3)(4-x)(20+3x)=100.18.(5分)已知关于x的一元二次方程x2+x+m2-2m=0有一个实数根为x=-1,求m的值及方程的另一个实数根.19.(7分)已知:关于x的一元二次方程x2+√m x-2=0有两个实数根.(1)求m的取值范围;(2)设方程的两实数根为x1,x2,且满足(x1-x2)2-17=0,求m的值.20.(8分)随着人民节能、环保意识的不断提高,我国电动汽车的年销售量逐年提高,某品牌电动汽车2018年的年销售量为30万辆,2020年的年销售量达到50.7万辆.如果每年比上一年销售量增长的百分率相同.(1)试求出该品牌电动汽车年销售量增长的百分率;(2)请你预测该品牌电动汽车2021年的年销售量能否突破100万辆大关.21.(10分)某地计划对矩形广场进行扩建改造.如图2,原矩形广场长50m,宽40m,要求扩建后的矩形广场长与宽的比为3∶2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用为642000元,扩建后广场的长和宽应分别是多少米?图222.(10分)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售价定为每个200元时,每天可售出300个;若销售价每个每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,则这种电子产品降价后的销售价为每个多少元时,公司每天可获利32000元?参考答案1.B2.C [解析] 先移项得到3(2x-1)2-4(2x-1)=0,然后利用因式分解法解方程.3.A [解析] 选项A 中,∵Δ=b 2-4ac=4-4=0,∴方程x 2-2x+1=0有两个相等的实数根;选项B 中,∵Δ=b 2-4ac=1-4×2=-7<0,∴方程2x 2-x+1=0无实数根;选项C 中,∵Δ=b 2-4ac=4+4×4×3=52>0,∴方程4x 2-2x-3=0有两个不相等的实数根;选项D 中,∵Δ=b 2-4ac=36>0,∴方程x 2-6x=0有两个不相等的实数根.故选A .4.B [解析] 把x=1代入x 2-x-m=0中,得1-1-m=0,解得m=0.故选B .5.D [解析] 开方得x+6=±4,∴另一个一元一次方程是x+6=-4.故选D .6.A [解析] 根据题意,得x (30-2x )=72,解得x 1=12,x 2=3.当x=12时,30-2x=6<18;当x=3时,30-2x=24>18(不合题意,舍去).故选A .7.A [解析]x 2-6x+8=0,(x-4)(x-2)=0,解得x 1=4,x 2=2.当等腰三角形的三边长为2,2,4时,不符合三角形三边关系定理,不能组成三角形;当等腰三角形的三边长为2,4,4时,符合三角形三边关系定理,能组成三角形,此时三角形的底边长为2.故选A .8.A [解析]∵小刚在解关于x 的方程ax 2+bx+c=0(a ≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,∴(-1)2-4+c=0,解得c=3,故原方程中c=5,则b 2-4ac=16-4×1×5=-4<0,则原方程的根的情况是不存在实数根.故选A .9.3x 2-8x-5=010.-3 0 [解析] 根据题意,得{n =0,9+3m +n =0,解得{m =−3,n =0.11.-3或1 [解析] 由题意,得x 2+4x=2x+3,解得x 1=-3,x 2=1.12.-1 [解析]x 2-4x=-3,x 2-4x+4=1,(x-2)2=1,所以a=-2,b=1,所以a+b=-2+1=-1.13.m>0且m ≠1 [解析] 根据题意得m-1≠0且Δ=22-4(m-1)×(-1)>0,解得m>0且m ≠1. 14.4 [解析]∵x 2+x=1, ∴3x 4+3x 3+3x+1=3x 2(x 2+x )+3x+1=3x 2+3x+1=3(x 2+x )+1=3+1=4.故答案为4.15.x(x -1)2=1016.1或-3 [解析] 依题意得(2+x )x=3,整理,得x 2+2x=3,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-3.故答案是1或-3.17.(1)x 1=4,x 2=-2(2)x 1=32,x 2=-43 (3)方程无实数根18.解:把x=-1代入x 2+x+m 2-2m=0,得(-1)2+(-1)+m 2-2m=0,即m (m-2)=0,解得m 1=0,m 2=2.经检验,m 的两个值均符合题意.设方程的另一个实数根为x 2,则 -1+x 2=-1,解得x 2=0.综上所述,m 的值是0或2,方程的另一个实数根是x=0.19.解:(1)∵关于x 的一元二次方程x 2+√m x-2=0有两个实数根, ∴Δ=(√m )2-4×1×(-2)=m+8≥0,且m ≥0,∴m ≥0.(2)∵关于x 的一元二次方程x 2+√m x-2=0有两个实数根x 1,x 2, ∴x 1+x 2=-√m ,x 1·x 2=-2,∴(x 1-x 2)2-17=(x 1+x 2)2-4x 1·x 2-17=0,即m+8-17=0,解得m=9.20.解:(1)设该品牌汽车年销售量增长的百分率为x.根据题意,得30(1+x )2=50.7.解得x 1=-2.3(不合题意,舍去),x 2=0.3=30%.答:该品牌电动汽车年销售量增长的百分率为30%.(2)由(1)得该品牌汽车年销售量增长的百分率为30%,所以该品牌电动汽车2021年的年销售量为50.7×(1+30%)=65.91(万辆)<100万辆.所以该品牌电动汽车2021年的年销售量不能突破100万辆大关.21.解:设扩建后广场的长为3x m,宽为2x m.依题意得3x·2x·100+30(3x·2x-50×40)=642000,解得x1=30,x2=-30(舍去).所以3x=90,2x=60.答:扩建后广场的长为90m,宽为60m.22.解:设这种电子产品降价后的销售价为每个x元,则降价后每天可售出[300+5(200-x)]个.依题意,得(x-100)[300+5(200-x)]=32000,整理,得x2-360x+32400=0,解得x1=x2=180.因为180<200,所以符合题意.答:这种电子产品降价后的销售价为每个180元时,公司每天可获利32000元.。

(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试题(有答案解析)(2)

(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试题(有答案解析)(2)

一、选择题1.关于x 的一元二次方程x 2﹣4x +2n =0无实数根,则一次函数y =(2﹣n )x +n 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 2.某产品成本价为100万元,由于改进技术,成本连续降低,每次降低x %,连续两次降低后成本为64万元,则x 的值为( )A .10B .15C .18D .20 3.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则a 2+b 2+a +b 的值是( )A .0B .2020C .4040D .4042 4.已知a ,b ,c 是1,3,4中的任意一个数(a ,b ,c 互不相等),当方程20ax bx c -+=的解均为整数时,以1,3和此方程的所有解为边长能构成的多边形一定是( )A .轴对称图形B .中心对称图形C .轴对称图形或中心对称图形D .非轴对称图形或中心对称图形 5.要组织一次足球联赛,赛制为双循环形式(每两队之间都进行两场比赛),共要比赛90场.设共有x 个队参加比赛,则x 满足的关系式为( )A .12x (x +1)=90B .12x (x ﹣1)=90 C .x (x +1)=90D .x (x ﹣1)=90 6.若关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,则a 的值可能为( )A .2-B .4-C .2D .47.欧几里得的《原本》记载,方程x 2+ax =b 2的图解法是:画Rt △ABC ,使∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =BC .则该方程的一个正根是( )A .AC 的长B .CD 的长C .AD 的长 D .BC 的长 8.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +=( ) A .2- B .3- C .4-D .6- 9.关于x 的方程2(3)(2)x x p -+=(p 为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根 10.关于x 的一元二次方程220x x m +-=有两个不相等的实数根,则m 的取值范围是( )A .1m >-B .1mC .1m ≥-D .1m >-且0m ≠ 11.方程220x x -=的根是( ) A .120x x == B .122x x ==C .120,2x x ==D .120,2x x ==- 12.一元二次方程2x =﹣3x 的根是( )A .x =﹣3B .x =0C .1x =0,2x =﹣3D .1x =0,2x =3二、填空题13.一个等腰三角形的腰和底边长分别是方程28120x x -+=的两根,则该等腰三角形的周长是________.14.若实数a 、b (a ≠b )满足2850a a -+=,2850b b -+=,则+a b 的值_______. 15.将23220x x --=配方成2()x m n +=的形式,则n =__________.16.用配方法解关于x 的一元二次方程2430x x --=,配方后的方程可以是__________.17.方程2(1)9x -=的根是___________.18.某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x ,则可列方程为__.19.如果一个直角三角形的两边长是一元二次方程27120x x -+=的两个根,那么这个直角三角形的斜边长为_______________.20.对于实数a b 、,定义新运算“⊗”:2a b a ab ⊗=-,如2424428⊗=-⨯=.若44x ⊗=-,则实数x 的值是_______.三、解答题21.解方程(1)2(3)5(3)60x x +-++= (2) x 2﹣6x ﹣9=022.解方程∶(1)213(1)x x -=-(2)241x x -=-23.解方程:(1)(x +2)2﹣25=0;(2)x 2+4x ﹣5=0.24.一商店销售某种商品,平均每天可售出12件,每件盈利20元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于15元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若每件商品降价2元,则平均每天盈利多少元?(2)当每件商品降价多少元时,该商店每天的盈利为320元?25.(1)解方程:2650x x +-=;(2)阅读下解方程的过程,并解决问题:解:方程右边分解因式,得3(5)2(5)-=-x x x …………………(第一步)方程变形为3(5)2(5)x x x -=--……………………………(第二步)方程两边都除以5x -,得32x =-…………………………………(第三步) 解,得23x =-.………………………………………………………(第四步) ①上述解方程的过程从第______步开始出错,具体的错误是______.②请直接写出方程的根______.26.文文以0.2元/支的价格购进一批铅笔,以0.4元/支的价格售出,每天销售量为400支,销售了两天后他决定降价,尽早销售完毕经调查得知铅笔单价每降0.01元,每天的销售量增加20支.(1)为了使笔每天的利润达到原利润的75%,文文应把铅笔定价多少元合适? (2)如果这批铅笔恰好一共在五天内全部销售完毕,请问这批铅笔有多少支?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由一元二次方程根的情况可以求出n 的范围,并可得到一次函数中参数的范围,从而得到问题解答.【详解】解:由已知得:△=b 2﹣4ac =(﹣4)2﹣4×1×(2n )=16﹣8n <0,解得:n >2,∵一次函数y =(2﹣n )x +n 中,k =2﹣n <0,b =n >0,∴该一次函数图象在第一、二、四象限,故选:C .【点睛】本题考查一次函数的综合应用,熟练掌握一元二次方程根判别式的计算和应用、一次函数的图象与性质是解题关键.2.D解析:D【分析】设平均每次降低成本的百分率为x%的话,经过第一次下降,成本变为100(1-x%)元,再经过一次下降后成本变为100(1-x%)(1-x%)元,根据两次降低后的成本是64元列方程求解即可.【详解】解:设平均每次降低成本的百分率为x%,根据题意得100(1-x%)(1-x%)=64,解得x=20或180(不合题意,舍去)故选:D .【点睛】考查了一元二次方程的应用的知识,是一道典型的数量调整问题,数量上调或下调x%后就变为原来的(1±x%)倍,调整2次就是(1±x%)2倍.3.D解析:D【分析】根据一元二次方程的解及根与系数的关系可得出a+b=-1,ab=-2021,将其代入a 2+b 2+a +b =(a+b )2+(a+b )-2ab 中即可求出结论.【详解】解:∵a ,b 是方程x 2+x-2020=0的两个实数根,∴a+b=-1,ab=-2021∴a 2+b 2+a +b =(a+b )2+(a+b )-2ab=1-1+4042=4042.故选:D .【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系找出a+b=-1,ab=-2021是解题的关键.4.C解析:C【分析】先根据一元二次方程有整数解,可得△≥0,然后对b ,a ,c 分别取值试算,从而得出b=4,a=1,c=3或b=4,a=3,c=1时方程有解;再分类计算出方程的根,两者均为整数时符合要求,则此时围成的多边形及其性质也可作出判断,从而问题得解.【详解】解:∵方程ax 2-bx+c=0的解均为整数∴△=b 2-4ac≥0∵已知a ,b ,c 是1,3,4中的任意一个数(a ,b ,c 互不相等),当b=1时,△=1-4×4×3<0,不符合题意;当b=3时,△=9-4×1×3<0,不符合题意;当b=4时,△=16-4×1×3=4>0,符合题意.∴b=4,a=1,c=3或b=4,a=3,c=1;当b=4,a=1,c=3时,方程ax 2-bx+c=0的解42x ±= ∴x 1=3,x 2=1,两个根均为整数,符合题意;当b=4,a=3,c=1时,方程ax 2-bx+c=0的解x =∴x 1=1,x 2=13,不符合题意,故舍去; ∴当b=4,a=1,c=3时,方程ax 2-bx+c=0的解为x 1=3,x 2=1,∵以1,3和此方程的所有解为边长能构成的多边形有两种情况:①1,1作对边,3.3作对边,此时多边形为平行四边形,为中心对称图形;②1,1作邻边,3.3作邻边,1与3也相邻此时多边形为筝形,为轴对称图形.∴以1,3和此方程的所有解为边长能构成的多边形一定是中心对称图形或轴对称图形. 故选:C .【点睛】本题考查了一元二次方程的解与直线型的综合,明确一元二次方程的根与判别式的关系及平行四边形和筝形的性质是解题的关键.5.D解析:D【分析】设有x 个队参赛,根据参加一次足球联赛的每两队之间都进行两场场比赛,共要比赛90场,可列出方程.【详解】解:设有x 个队参赛,则x (x ﹣1)=90.故选:D .【点睛】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.6.B解析:B【分析】设220x x a ++=的两根分别为12,,x x 可得12122,,x x x x a +=-= 由关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,可得()()1211x x --<0, 再列不等式:()21a --+<0, 解不等式可得答案.【详解】解:设220x x a ++=的两根分别为12,,x x12122,,x x x x a ∴+=-=关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,()()1211x x ∴--<0,()12121x x x x ∴-++<0,()21a ∴--+<0,a ∴<3,-4a ∴=-符合题意,所以,,A C D 不符合题意,B 符合题意,故选:.B【点睛】本题考查的是一元二次方程根与系数的关系,一元一次不等式的解法,掌握以上知识是解题的关键.7.C解析:C【分析】在Rt ABC 中,由勾股定理可得222AC BC AB +=,结合AB AD BD =+,,2a ACb BD BC ===,即可得出22AD aAD b +=,进而可得出AD 的长是方程22x ax b +=的一个正根.【详解】在Rt ABC 中,由勾股定理可得222AC BC AB +=,2a AC b BD BC === 22222222a a a b AD AD aAD ⎛⎫⎛⎫⎛⎫∴+=+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴22AD aAD b +=22AD aAD b +=与方程22x ax b +=相同,且AD 的长度是正数∴AD 的长是方程22x ax b +=的一个正根.故选:C .【点睛】本题考查了一元二次方程的应用以及勾股定理,利用勾股定理及各边的长得出22AD aAD b +=是解题关键.8.A解析:A【分析】把1x =代入方程,得到a 与b 的式子,整体代入即可.【详解】解:把1x =代入220x ax b ++=得,120a b ++=,∴21a b +=-,∴242a b +=-,故选:A .【点睛】本题考查了一元二次方程的解和求代数式的值,解题关键是明确方程解的意义,树立整体代入思想.9.C解析:C【分析】先把方程(x−3)(x +2)=p 2化为x 2−x−6−p 2=0,再根据△=25+4p 2>0可得方程有两个不相等的实数根,由−6−p 2<0即可得出结论.【详解】方程(x−3)(x +2)=p 2可化为x 2−x−6−p 2=0,∴b 2−4ac =25+4p 2>0,∴方程有两不相等的实数根,设方程两根为x 1、x 2,∵x 1•x 2=−6−p 2<0,∴方程有一个正根,一个负根,故选C .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=b a - ,x 1x 2=c a,也考查了根的判别式. 10.A解析:A【分析】根据一元二次方程220x x m +-=有两个不相等的实数根,得到440m +>,求解即可.【详解】∵一元二次方程220x x m +-=有两个不相等的实数根,∴0∆>,∴440m +>,∴1m >-,故选:A .【点睛】此题考查一元二次方程根的判别式,掌握一元二次方程根的三种情况是解题的关键. 11.C解析:C【分析】本题可用因式分解法,提取x 后,变成两个式子相乘为0的形式,让每个式子都等于0,即可求出x .【详解】解:∵x 2-2x=0∴x (x-2)=0,可得x=0或x-2=0,解得:x=0或x=2.故选:C .【点睛】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用12.C解析:C【分析】移项,利用因式分解求解即可.【详解】解:∵2x =﹣3x ,移项,得2x +3x =0,分解因式,得x (x+3)=0,∴x =0,或x+3=0,解得1x =0,2x =﹣3,故选:C .【点睛】本题考查了一元二次方程的解法,根据方程的特点,选择因式分解法求解是解题的关键.二、填空题13.14【分析】运用因式分解法解一元二次方程求出两根因为三角形是等腰三角形分情况讨论:腰为2时和腰为6时再利用三角形三边关系验证是否符合题意即可求出周长;【详解】解:(x-2)(x-6)=0x1=2x2解析:14【分析】运用因式分解法解一元二次方程,求出两根,因为三角形是等腰三角形,分情况讨论:腰为2时和腰为6时,再利用三角形三边关系验证是否符合题意,即可求出周长;【详解】解:28120x x -+=,(x-2)(x-6)=0,x 1=2,x 2=6,当腰长为2时,三角形的三边为2,2,6,不符合三角形的三角关系,舍去;当腰长为6时,三角形的三边关系为6,6,2,符合三角形的三角关系,则周长为:6+6+2=14,故答案为:14.【点睛】本题考查因式分解解一元二次方程和三角形的三边关系,求解后验三角形的三边关系是解题的关键.14.8【分析】直接用一元二次方程的韦达定理进行求解即可;【详解】∵a 是的解b 是的解∴ab 是方程的两个解∴故答案为:8【点睛】本题考查了一元二次方程的韦达定理正确理解公式的应用是解题的关键解析:8【分析】直接用一元二次方程的韦达定理进行求解即可 12b x x a +=-、12c x x a= ; 【详解】∵ a 是 2850a a -+= 的解,b 是2850b b -+=的解,∴ a 、b 是方程2850x x -+=的两个解, ∴ 881a b -+=-= , 故答案为:8.【点睛】 本题考查了一元二次方程的韦达定理,正确理解公式的应用是解题的关键.15.【分析】先将二次项系数化为1再利用配方法变形即可得出答案【详解】解:∵3x2-2x-2=0∴∴∴故答案为:【点睛】本题考查了配方法在一元二次方程变形中的应用熟练掌握配方法是解题的关键 解析:79【分析】先将二次项系数化为1,再利用配方法变形即可得出答案.【详解】解:∵3x 2-2x-2=0, ∴222033x x --=, ∴221213939x x -+=+, ∴217()39x -=,故答案为:79. 【点睛】 本题考查了配方法在一元二次方程变形中的应用,熟练掌握配方法是解题的关键. 16.【分析】移项后两边配上一次项系数一半的平方即可得【详解】解:故答案为:【点睛】本题考查一元二次方程的解法解题的关键是熟练运用配方法本题属于基础题型解析:()227x -=.【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:2430x x --= 243x x -=24+43+4x x -=()227x -=故答案为:()227x -=.【点睛】本题考查一元二次方程的解法,解题的关键是熟练运用配方法,本题属于基础题型. 17.【分析】把1-x 看作是一个整体直接开平方解方程即可【详解】即直接开平方得:移项得:∴故答案为:【点睛】本题考察解一元二次方程-直接开平方法掌握平方根性质及意义是解题的关键解析:1242x x ==-,【分析】把1-x 看作是一个整体,直接开平方解方程即可.【详解】()219x -=,即()219x -=,直接开平方得:13x -=±,移项得:13x =±,∴14x =,22x =-,故答案为:1242x x ==-,.【点睛】本题考察解一元二次方程-直接开平方法,掌握平方根性质及意义是解题的关键. 18.【分析】增长率问题一般用增长后的量=增长前的量×(1+增长率)由此可以求出2月份和3月份的营业额而第一季度的总营业额已经知道所以可以列出一个方程【详解】解:设平均每月营业额的增长率为x 则2月份的营业 解析:()()290190114490x x +++-=【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),由此可以求出2月份和3月份的营业额,而第一季度的总营业额已经知道,所以可以列出一个方程.【详解】解:设平均每月营业额的增长率为x ,则2月份的营业额为:90×(1+x ),3月份的营业额为:90×(1+x )2,则由题意列方程为:90(1+x )+90(1+x )2=144-90.故答案为:90(1+x )+90(1+x )2=144-90.【点睛】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程. 19.5或4【分析】解方程可得直角三角形的两边是34然后分这两边都是直角边和边长为4为直角边两种情况解答即可【详解】解:(x-3)(x-4)=0x-3=0x-4=0∴方程的根为34∴直角三角形的两边为34解析:5或4.【分析】解方程27120x x -+=可得直角三角形的两边是3、4,然后分这两边都是直角边和边长为4为直角边两种情况解答即可.【详解】解:27120x x -+=(x-3)(x-4)=0x-3=0,x-4=0∴方程的根为3、4∴直角三角形的两边为3、4;当两边有一条边是直角边时,斜边长为4.故答案为5或4.【点睛】本题主要考查勾股定理、解一元二次方程等知识点,正确的解一元二次方程和分类讨论成为解答本题的关键.20.【分析】根据新运算法则以及一元二次方程的解法解答即可【详解】解:由题意可知:∴即解得:x =2故答案为:2【点睛】本题以新运算的形式考查了一元二次方程的解法正确理解新运算法则熟练掌握解一元二次方程的方 解析:2【分析】根据新运算法则以及一元二次方程的解法解答即可.【详解】解:由题意可知:2a b a ab ⊗=-,∴2444x x x ⊗=-=-,即244x x -=-,解得:x =2.故答案为:2.【点睛】本题以新运算的形式考查了一元二次方程的解法,正确理解新运算法则、熟练掌握解一元二次方程的方法是解题关键.三、解答题21.(1)121,0x x =-=;(2) 1x ,2x【分析】(1)用因式分解法解得()()32330x x +-+-=,化为10,0x x +== 解一次方程即可;(2)用配方法配方得()2x-3=18,直接开平方得x-3=±【详解】解:(1)2(3)5(3)60x x +-++=, ()()32330x x +-+-=,10,0x x +==,121,0x x =-=;(2) x 2﹣6x ﹣9=0,()2x-3=18,x-3=±x=3±,1x ,2x【点睛】本题考查一元二次方程的解法,掌握一元二次方程的各种解法,并能灵活选择恰当方法解方程是解题关键.22.(1)11x =,22x =;(2)12x =22x =【分析】(1)移项后,运用因式分解法求解即可;(2)运用配方法求解即可.【详解】解:(1)213(1)x x -=-(1)(1)3(1)x x x +-=-(1)(1)3(1)0x x x +---=(1)(13)0x x -+-=(1)(2)0x x --=∴10x -=或20x -=11x ∴=,22x =;(2)241x x -=-24414x x -+=-+2(x 2)3-=2x ∴-=12x ∴=+22x =.【点睛】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.23.(1)x 1=3,x 2=-7;(2)x 1=1,x 2=-5.【分析】(1)用直接开方法解方程即可;(2)用配方法解方程即可.【详解】解:(1)(x +2)2﹣25=0;移项得,(x +2)2=25,两边开方得,x+2=±5,解得,x 1=3,x 2=-7;(2)x 2+4x ﹣5=0.移项得,x 2+4x =5.两边加4得,x 2+4x+4=9.配方得,(x+2)2=9.开方得,x+2=±3,解得,x 1=1,x 2=-5.【点睛】本题考查了一元二次方程的解法,解题关键是选择适当的方法解一元二次方程. 24.(1)288元;(2)4元【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元,则平均每天可多售出2×2=4(件),即平均每天销售数量为20+4=24(件);(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【详解】解:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元, 则平均每天可多售出2×2=4(件),即平均每天销售数量12+4=16(件),利润为:18×16=288,∴平均每天盈利288元;(2)设每件商品降价x 元时,该商品每天的销售利润为320元,由题意得:(20-x )(12+2x )=320,整理得:x 2-14x+40=0,∴(x-4)(x-10)=0,∴x 1=4,x 2=10,∵每件盈利不少于15元,∴x 2=10应舍去.答:每件商品降价4元时,该商品每天的销售利润为320元.【点睛】本题考查了一元二次方程在商品利润问题中的应用,明确商品平均每天售出的件数乘以每件盈利等于每天销售这种商品利润是解决本题的关键.25.(1)13x =-23x =-;(2)①三,方程两边都除以不能确定其值是否为零的代数式()5x -;②15=x ,223x =-. 【分析】(1)用公式法求解即可;(2)根据一元二次方程的解法逐步分析即可;【详解】解:(1)这里1a =,6b =,5c =-,∴224641(5)560-=-⨯⨯-=>b ac ,632-±∴===-±x13∴=-x 23x =-(2)①三,方程两边都除以不能确定其值是否为零的代数式()5x -,②方程右边分解因式,得3(5)2(5)-=-x x x ,移项,得3(5)2(5)0x x x ---=,分解因式,得()(5)320x x -+=,∴x-5=0,3x+2=0,∴15=x ,223x =-. 【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.26.(1)0.3元;(2)2600支【分析】(1)首先求出原利润,再由现在利润=销量×(销售单价-批发价),进而得出等式方程即可解答.(2)利用(1)中所求得出单价,进而求出销量,即可得出总销量.【详解】解:(1)设铅笔的单价降了x 元,则()()0.40.2400200.40.240075%0.01x x ⎛⎫--+⨯=-⨯⨯ ⎪⎝⎭解之,得:1110x =,2110x =-(舍去), ∴定价:0.40.10.3-=(元); (2)0.14002400203800180026000.01⎛⎫⨯++⨯⨯=+= ⎪⎝⎭(支). 答:这批铅笔有2600支.【点睛】此题主要考查了一元二次方程的应用,利用利润=销量×(销售单价-批发价)得出是解题关键.。

九年级上学期数学《一元二次方程》单元综合检测含答案

九年级上学期数学《一元二次方程》单元综合检测含答案
九年级上册数学《一元二次方程》单元测试卷
(满分120分,考试用时120分钟)
一、选择题(本题共计10小题,每题3分 ,共计30分 )
1.如果关于x 方程(m﹣3) ﹣x+3=0是关于x的一元二次方程,那么m的值为( )
A.±3B.3C.﹣3D.都不对
2.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为( )
D、方程x(x+2)(x-3)=0的实数根是x=0或x=-2或x=3,共3个.故本选项正确;
故选D.
[点睛]本题考查了解一元二次方程的方法,一元二次方程的一般形式.
一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式Ax2+Bx+C=0(A≠0).这种形式叫一元二次方程的一般形式.
其中Ax2叫做二次项,A叫做二次项系数;Bx叫做一次项;C叫做常数项.一次项系数B和常数项C可取任意实数,二次项系数A是不等于0的实数,这是因为当A=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.
16.已知 , 分别是一元二次方程 的两个实数根,则 ________.
17.已知关于 的一元二次方程 的一个根是 ,则 ________.
18.若把代数式 化为 形式,其中 , 为常数,则 ___.
19.把关于 的方程 配方成为 的形式,得___.
20.要给一幅长 ,宽 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占的面积为照片面积的四分之一,设镜框边的宽度为 ,则依据题意,列出的方程是:_____.
[详解]把x=2代入 得,4-6+k=0,
解得k=2.
故答案为B.
[点睛]本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.

人教版初中数学九年级上册同步测试 第21章 一元二次方程(共17页)

人教版初中数学九年级上册同步测试 第21章 一元二次方程(共17页)

第二十一章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+x x A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0,3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2. 2.x x 232-+_________=(x -_________)2. 3.+-px x 2_________=(x -_________)2.4.x abx -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题 7.用配方法解方程01322=--x x 应该先变形为( ). A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422D .mm m -±42 三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±- B .ac b 42-C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程23..2152x x =- 24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2 C .x =4 D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______.21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确 23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .b ax a b x 2,221==B .b ax a b x ==21,C .0,2221=+=x abb a xD .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x 27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx yx +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习必备欢迎下载
一元二次方程综合测试题二
一选择题
1. 已知 x、y 是实数,若 xy=0 ,则下列说法正确的是( )
A.x 一定是 0
B.y 一定是0
C.x=0 或 y=0
D.x=0 且 y=0
2. 配方法解方程x2 4x 2 0 ,下列配方正确的是()
A.( x 2)2 2 B.( x 2)2 2 C.( x 2)2 2 D.( x 2)2 6 3. 若 x1, x2是一元二次方程3x2 +x-1=0 的两个根,则 1 1 的值是().
x1 x2
A.- 1 B . 0 C .1 D.2
4. 方程 ( x 3)( x 2) 0 的根是()
A.x 3 B . x 2
C.x 3, x 2 D .x 3, x 2
5. 若 x=1是方程 ax2+bx+c=0的解,则()
A.
a + + =1 B. - +=0
b c a b c
C. a +b+c=0
D. a-b-c=0
6. 下列一元二次方程中,有实数根的是()
A、 x2-x+ 1=0 B 、 x2- 2x+3=0 C、 x2+x - 1=0 D 、x2+ 4=0
7.某农场粮食产量是: 2003 年为 1 200 万千克, 2005 年为 1 452 万千克, ?如果平均每年
增长率为x,则 x 满足的方程是().
A. 1200( 1+x)2 =1 452 B.2000(1+2x)=1 452
C. 1200( 1+x%)2 =1 452 D.12 00(1+x%)=1 452
8.三角形两边长分别为 2 和 4,第三边是方程x2-6x+8=0 的解, ?则这个三角形的周长是
().
A. 8 B .8或 10 C .10 D .8和 10
9. 已知 0和1都是某个方程的解,此方程是()
A. x2 10
B. x( x 1) 0
C. x 2 x 0
D. x x 1
10. 有两个连续整数,它们的平方和为25,则这两个数是()
A 3,4 B. -3 , -4 C. -3 ,4 D.3 ,4或 -3 ,-4
二、填空题。

1. 方程 ax 2 bx c 0(a 0) 的判别式是,求根公式是.
2. 方程 2 y 1 2 y 3 0 的根是;方程 x2 16 0的根是____ ;
方程 (2x 1) 2 9 的根是。

3. 方程 2x2+x+m=0 有两个不相等的实数根,则m 的取值范围是 _______.
4.乒乓球锦标赛上, 男子单打实行单循环比赛( 即每两个运动员都相互交手一次), 共进行
学习必备欢迎下载
66 场比赛 , 则参加比赛的运动员共人 .
5. 若方程kx 2 9x 8 0 的一个根为1,则k = ,另一个根为。

6. 代数式 x2+10x-5 的最小值是 _______________
7. 当 x= 时,x 2 xx
15 既是最简二次根式,被开方数又相同。

3 与
8. 已知一元二次方程x2- 6x+5- k=0?的根的判别式△ = 4 ,则这个方程的根为_______.
9.下列方程中,是关于 x 的一元二次方程的有 _________________ .
( 1) 2y2+y- 1=0;(2) x( 2x-1) =2x2;( 3)1
2- 2x=1 ;(4) ax2+bx+c=0;( 5)
1
x2=0.x 2
10. 如果x1、x2是方程2x2 3x 6 0 的两个根,那么 x1 x2= ,
x1 x2= , x12 x22=.
三、计算题
( 1)x2 3x 4 0 ( 2)(x 4)2 5( x 4) ( 3)x2 2x 3 5 ( 4) x2+4x-12=0(用配方法)(5)2y2+7y-3=0(6)(3x-5)(x-1)=1
四解答题
1.已知关于 x的方程x2(m 2) x 2m 10 .
(1)求证方程有两个不相等的实数根.
(2)当 m为何值时,方程的两根互为相反数?并求出此时方程的解。

2. 试证明关于x的方程(a2 8a 20) x 2 2ax 1 0无论 a 取何值,该方程都是一元二次方程;
3.某公司一月份营业额100 万元,第一季度总营业额为331 万元,求该公司二、三月份营业额平均增长率是多少?
4.某商场在“十一节”的假日里实行让利销售,全部商品一律按九折销售,这样每天所获
得的利润恰是销售收入的 20%,如果第一天的销售收入 4 万元,且每天的销售收入都有增长,
第三天的利润是 1.25 万元,
(1)求第三天的销售收入是多少万元?
(2)求第二天和第三天销售收入平均每天的增长率是多少?
5. 将进货单价为 40 元,其销售量就减少元的商品按 50 元售出时,就能卖出 500 个 . 已知这种商品每个涨价 10
个,问为了赚得 8000 元的利润,售价应定为多少?这时应进货多少
1
个?
6.从一块长 300cm、宽 200cm 的铁片中间截取一个小长方形,使剩下的长方框四周的宽度一样,并且小长方形的面积是原来铁片面积的三分之一,求这个宽度。

相关文档
最新文档