浙江省高考数学圆锥曲线历年高考真题版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
省高考数学圆锥曲线真题
04. 若椭圆122
22=+b
y a x (a >b >0)的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶
3的两段,则此椭圆的离心率为
(A)
1716 (B)17174 (C)5
4 (D)552
05.过双曲线)0,0(122
22>>=-b a b
y a x 的左焦点且垂直于x 轴的直线与双曲线相交于M 、
N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于 .
07. 已知双曲线22
221(0,0)x y a b a b -=>>的左、右焦点分别为12,F F ,P 是准线上一点,且
1212,||||4PF PF PF PF ab ⊥⋅=,则双曲线的离心率是
(A )2 (B )3 (C )2 (D )3
08.如图,AB 是平面α的斜线段...
,A 为斜足,若点P 在平面α运动,使得ABP △的面积为定值,则动点P 的轨迹是( )
A .圆
B .椭圆
C .一条直线
D .两条平行直线
09. 过双曲线
22
221(0,0)x y
a b a b
-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若1
2
AB BC =,则双曲线的离心率是( )
A 2
B 351010. (13)设抛物线)0(22
>=p px y 的焦点为F ,点)2,0(A 。若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为 。
11. 已知椭圆C 1:2222=1x y a b + (a >b >0)与双曲线C 2:22
14
y x -
=有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点, 若C 1恰好将线段AB 三等分,则( )
A .a 2
=
132 B .a 2=13 C .b 2=12
D .b 2
=2 11. 设F 1,F 2分别为椭圆2
213
x y +=的左、右焦点,点A ,B 在椭圆上.若125F A F B =,则点A 的坐标是________.
A B P α (第10题)
12. F 1,F 2分别是双曲线C :2
2
221x y a b
-=(a,b >0)的在左、右焦点,B 是虚轴的端点,直线F 1B 与C
的两条渐近线分别教育P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心
率是
A.
3
B 2
04. 已知双曲线的中心在原点,右顶点为A (1,0),点P 、Q 在双曲线的右支上,点M (m ,0)到直线AP 的距离为1,
(1)若直线AP 的斜率为k ,且|k |∈
], 数m 的取值围; (2)当m =2+1时,△APQ 的心恰好是点M ,求此双曲线的方程。
05. 如图,已知椭圆的中心在坐标原点,焦点F 1、F 2在x 轴上,长轴A 1A 2的长为4,左准线x l 与轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;
(Ⅱ)若直线11),1|(|:l P x m x l 为>=上的动点,使21PF F ∠最大的点P 记为Q ,求点Q 的坐标(用m 表示).
06.如图,椭圆b
y a x 2
22+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T ,且
椭圆的离心率e=
2
3
.(Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 1的中点,求证:∠ATM=∠AF 1T.
07如图,直线y kx b =+与椭圆2
214
x y +=交于A 、B 两点,记ABC ∆的面积为S 。 (Ⅰ)求在0k =,01b <<的条件下,S 的最大值; (Ⅱ)当||2,1AB S ==时,求直线AB 的方程。
08. 已知曲线C 是到点1328P ⎛⎫- ⎪⎝⎭
,和到直线5
8
y =-
距离相等的点的轨迹. l 是过点(10)Q -,
的直线,M 是C 上(不在l 上)的动点;A B ,在l 上,MA l ⊥,MB x ⊥轴(如图).
(Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得2
QB
QA
为常数.
09已知椭圆1C :22
221(0)y x a b a b
+=>>的右顶点为(1,0)A ,过1C 的
焦点且垂直长轴的弦长为1. (I )求椭圆1C 的方程;
(II )设点P 在抛物线2C :2
()y x h h =+∈R 上,2C 在点P 处
的切线与1C 交于点,M N .当线段AP 的中点与MN 的中 点的横坐标相等时,求h 的最小值.
A
B O
Q
y
x
l
M (第20题)
10.已知1>m ,直线,02:2
=--m my x l 椭圆21222,,1:F F y m
x C =+ 分别为椭圆C 的左、右焦点. (I )当直线l 过右焦点F 2时,求直线l 的方程;
(II )设直线l 与椭圆C 交于A ,B 两点,21F AF ∆,21F BF ∆的重心
分别为G ,H.若原点O 在以线段GH 为直径的圆,数m 的取值围.
11. 已知抛物线C 1:x 2
=y ,圆C 2 :x 2
+(y -4)2
=1的圆心为点M .
(1)求点M 到抛物线C 1的准线的距离;
(2)已知点P 是抛物线C 1上一点(异于原点),过点P 作圆C 2的两条切线,交抛物线C 1于A ,B 两点,若过M ,P 两点的直线l 垂直于AB ,求直线l 的方程.