试验二十五单缝衍射相对光强分布的测量
单缝衍射光强分布的测定
实验名称: 单缝衍射光强分布的测定 实验时间:实验者:院系: 学号:指导教师签字: 实验目的:1.测定单缝衍射的相对光强分布;2.测定半导体激光器激光的波长。
实验仪器设备:光具座 半导体激光器 可调单缝 硅光电池 光电检流器 移测显微镜 光屏实验原理:1. 夫琅禾费衍射当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。
衍射通常分为两类:一类是满足衍射屏离光源或接收屏的距离为有限远的衍射,称为菲涅耳衍射;另一类是满足衍射屏与光源和接收屏的距离都是无限远的衍射,也就是照射到衍射屏上的入射光和离开衍射屏的衍射光都是平行光的衍射,称为夫琅禾费衍射。
以波长为λ的单色平行光(实验用散射角极小的激光器产生激光束)垂直通过单缝,经衍射后,在屏上可以得到一组平行于单缝的明暗相间的条纹(夫琅禾费衍射条纹)。
如图所示。
根据惠更斯——菲涅耳原理,可知220sin ββθI I = 由θλπβsin a =得 220)s i n ()s i n (s i n λθπλθπθa a I I =0I I θ叫做相对光强 暗纹条件)0,,2,1(asin =±±==θλθI k k (θ很小,故θθθ≈≈tan sin ,)中央明纹两侧暗条纹之间的角宽a 2λθ=∆ 相邻两暗条纹之间角宽aλθ=∆’ 0=θ时,0I I =θ,此时光强最大,为主最大。
其两侧相邻两暗条纹间都有一个次最大,角位置分别为。
,、、 a47.3a 46.2a 43.1sin λλλθ±±±= 相应的 008.0017.0047.00、、=I I θ 得到单缝衍射相对光强分布曲线2.测入射光波波长在实验中,θ很小,设单缝距屏L ,屏上条纹距中心点为x ,Lx tan sin =≈θθ 由asin λθk=,得对应第一级暗条纹有Lb ∆==asin λθ 则可以测得入射光波波长Lb∆=a λ 操作步骤:1. 根据指导书上的装置图安装好实验仪器;2. 打开激光器,使激光束对准可调狭缝且垂直照射。
单缝衍射的光强分布测量
3—7 测量单缝衍射的光强分布衍射和干涉都是波动的重要特征,波在传播的过程中遇到障碍物时,能够绕过障碍物的边缘前进,这种偏离直线传播的现象称为波的衍射现象。
光在通过小孔或狭缝时,将出现明显衍射的现象,说明光具有波动性。
本实验旨在通过测量单缝夫琅和费衍射的光强分布,学会怎样用光电检测仪器测量相对光强的实验方法,进而加深对单缝衍射现象的理解。
一、[实验仪器]光具座、氦氖激光器及其电源、小灯泡、硅光电池、可调狭缝、灵敏检流计、白屏。
二、[实验原理]1.单狭缝夫琅和费衍射公式成立条件 平行光的衍射称为夫琅和费衍射,它的特点是只用简单的计算就可以得出准确的结果,便于和实验比较和实用。
如图3—7—1所示,从光源S 发出经透镜L 1形成的平行光束垂直照射到狭缝AB 根据惠更斯—菲涅耳原理,狭缝上各点可以看成是新的波源。
新波源向各方向发出球面波,次波在透镜L 2的后焦面叠加形成一组明暗相间的条纹。
和狭缝平面垂直的衍射光束会聚与屏上P 。
处,是中央亮纹的中心,其光强度设为0I 。
与OP 0成θ角的衍射光束则会聚于屏上θP 处。
计算得出θP 处的光强度220sin u u I I =θ,λθπsin a u = (3-7-1)其中a 为狭缝宽度,λ为单色光的波长。
当0=θ时,0=u ,这时光强最大,称为主极强。
主极强的强度决定于光源的亮度,还和狭缝宽a 的平方成正比。
当ak λθ=sin ,( 3,2,1±±±=k )时,πk u =,则有0=θI ,也就是暗条纹。
实际上θ往往是很小的,因此可以近似地认为暗纹在ak λθ=处。
由此可见,主极强两侧暗纹之间aλθ2=∆,而其他相邻暗纹之间aλθ=∆。
除了中央主极强以外,两相邻暗纹之间都有一次极强。
数学计算 得出,这些次极强在下列位置:aλθθ43.1sin ~±=,aλ46.2±, aλ47.3± (3-7-2)这些次极强的相对强度a46.2- a43.1-a43.1a46.2θ图3—7—2S P θP 0 图3—7—1008.0,017.0,047.00=I I θ(3-7-3) 以上是单缝夫琅和费衍射的主要结果。
单缝衍射光强的分布测量实验报告
竭诚为您提供优质文档/双击可除单缝衍射光强的分布测量实验报告篇一:衍射光强分布测量衍射光强分布测量***,物理学系摘要:本实验利用激光为光源研究激光经过单缝与单丝时的衍射光强度分布情况。
激光的高准直性符合夫琅和费远场条件,且高单色性保证测量时没有不同波长光的叠加影响。
光感应器方面使用光栅尺与电脑连接做0.02毫米/点的高精度自动扫描。
通过巴比涅原理迂回得到了没有直射光时单丝的衍射光强分布,完整验证了运用衍射光强分布来测量小微物体的长度的方法和可行性,并实际运用此法测量了铜丝和头发丝的直径。
关键词:衍射分布巴比涅原理单缝直径测量ThemeasurementoftheDistributionofLightDiffraction YixiongKeYiLin,DepartmentofphysicsAbstarct:Thisexperimentmadeuseoflaserasthelightsourcetoverif yaseriesofdiffractionpatternsof633nmlaserviadiffere ntsingleslitsandmonofilaments.Thecollimationfeature ofthelasermeetstheconditionofFraunhoferdiffraction, themonochromicfeatureoflaserprovideabetterexperimen talenvironmentthatthediffractionpatternwon`tbeinter ferebythelightofotherwavelength.weuselinearencorder connectedtopcviauLI(universalLaboratoryInterface)as thesensortoautomaticallyscanthediffractionpatternwi ththeratioof0.02mmperdot.weusebabinet’sprincipletogetthediffractionpatternofamonofilament p letelyverifiedthemethodandfeasibilityofmeasuringati nyobjectwithitsdiffractionpattern.Inaddition,wetryt omeasurethediameterofacopperwireandpeople’shairinthiswayKeywords:Diffractiondistributionbabinet`sprinciplesingleslitsmeasureDiameterofthewire1一、引言衍射是波遇到障碍物时便利直线传播的现象。
单缝衍射与光强测量
单缝衍射与光强分布测量【实验目的】1.观察单缝衍射现象。
2.学会测量单缝衍射现象的光强分布状况【实验仪器】氦氖激光器,单缝板,计算机,光强接收器。
【实验原理】衍射现象分为两种:夫琅禾费衍射与菲涅尔衍射,本实验研究的是夫琅禾费衍射1.夫琅禾费衍射现象夫琅禾费衍射是远场衍射,就是光源,成像光屏距离单缝无限远,在本实验中,只需近似远即可,就可以达到相同的效果,光屏上会出现明亮相间的条纹。
2.形成条纹的理论分析从光的本质上来讲,光是电磁波,因此光就会发生干涉,只要相位差固定相同,则就会形成明显的干涉现象,从而形成条纹。
现对单缝现象进行定量分析。
假设一束光找到一单缝上,缝宽为b,并设想,此缝就是光源,将此缝分成n等分,则有n个光源,光源间的间隔为∆,则有b(n=)1-∆相邻两个光源间的相位差为θλπϕsin 2∆=即如果在A1点发出的扰动为t a ωcos ,则在A2点发出的扰动为)cos(ϕω-t a ,由此可得P 点的合场强为E=]})1(cos[)cos({cos ϕωϕωω--+⋅⋅⋅+-+n t t t a通过计算可以得到上式的值为 E=])1(21cos[2sin 2sinϕωϕϕ--n t n b n →∆∞→∆∞→并保持,和n 当的极限情况下,有θλπθλπϕsin sin 2b n n →∆= 又有n b θλπθλπϕsin 2sin 2=∆=将趋近于零,则ββλθπλθπϕϕsin sin sin sin 22sin nA b b na n a E ==≈ 式中 λθπβsin A b na==因此,有)cos(sin E βωββ-=t A对应的强度分布为220sin ββI I =对应的图像为经计算,中央主极大光强约为次极大的20倍。
【实验步骤】1. 打开氦氖激光器。
2. 选取衍射效果较好的缝,一般是最窄的那一条,使得激光经过单缝产生衍射图样,此时的光强太强,需减弱光强,第一步是使用无焦系统,使得激光扩束,第二步是,使用偏振片,旋转偏振片,改变光强。
单缝衍射光强分布的测量实验报告
单缝衍射光强分布的测量实验报告物理实验报告5_测量单缝衍射的光强分布实验名称:测量单缝衍射的光强分布实验目的:a.观察单缝衍射现象及其特点;b.测量单缝衍射的光强分布;c.应用单缝衍射的规律计算单缝缝宽;实验仪器:导轨、激光电源、激光器、单缝二维调节架、小孔屏、一维光强测量装置、WJH型数字式检流计。
实验原理和方法:光在传播过程中遇到障碍物时将绕过障碍物,改变光的直线传播,称为光的衍射。
当障碍物的大小与光的波长大得不多时,如狭缝、小孔、小圆屏、毛发、细针、金属丝等,就能观察到明显的光的衍射现象,亦即光线偏离直线路程的现象。
光的衍射分为夫琅和费衍射与费涅耳衍射,亦称为远场衍射与近场衍射。
本实验只研究夫琅和费衍射。
理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。
单缝的夫琅和费衍射光路图如下图所示。
a. 理论上可以证明只要满足以下条件,单缝衍射就处于夫琅和费衍射区域:a2a2或L 88L式中:a为狭缝宽度;L为狭缝与屏之间的距离;?为入射光的波长。
可以对L的取值范围进行估算:实验时,若取a?1?10m,入射光是He?Ne激光,?4其波长为632.80nm,a21.6cm?2cm,所以只要取L?20cm,就可满足夫琅和费衍射的远场条件。
但实验证明,取L?50cm,结果较为理想。
b. 根据惠更斯-费涅耳原理,可导出单缝衍射的相对光强分布规律:I?(sinu/u)2 I0式中:u?(?asin?)/?暗纹条件:由上式知,暗条纹即I?0出现在u?(?asin?)/,??2?,?即暗纹条件为asin??k?,k??1,k??2,?明纹条件:求I为极值的各处,即可得出明纹条件。
令d(sin2u/u2)?0 du推得u?tanu此为超越函数,同图解法求得:u?0,?1.43?,?2.46?,?3.47?,?即asin??0,?1.43?,?2.46?,?3.47?,?可见,用菲涅耳波带法求出的明纹条件asin??(2k?1)?/2,k?1,2,3,?只是近似准确的。
单缝衍射光强的分布测量实验报告
单缝衍射光强的分布测量实验报告实验名称:单缝衍射光强的分布测量实验目的:1. 了解单缝衍射现象及其规律;2. 掌握测量单缝衍射光强的方法和步骤。
实验器材:1. 单缝光源2. 单缝衍射装置3. 光电探测器4. 数字多道分析器5. 电脑与连接线6. 实验支架7. 高精度尺子实验原理:当光传播到单缝上时,由于光的波动性,出现了衍射现象。
在单缝前方远离缝的一定距离处,出现一系列亮暗的条纹,即衍射图样。
衍射图样反映了波阵面在缝后的衍射情况,通过测量这些条纹的亮度,可以得到单缝衍射光强的分布。
实验步骤:1. 将实验装置搭建好,确保光路正常且稳定。
2. 将光电探测器放置在远离单缝的一定距离处,调整其位置使其刚好能接收到衍射光。
3. 将电脑与数字多道分析器连接。
4. 打开数据采集软件,设置好采集参数。
5. 开始采集数据,持续一段时间,确保得到足够多的数据点。
6. 关闭数据采集软件,保存数据并进行数据分析。
7. 根据采集到的数据绘制单缝衍射光强分布图。
实验结果分析:根据采集到的数据,可以得到每个位置上的光强数值。
通过绘制光强与位置的关系图,可以观察到一系列亮暗条纹的分布。
根据衍射理论可以推导出单缝衍射的光强分布公式:I(x) = (I_0 * sin(β)/β)^2 * (sin(α)/α)^2其中,I(x)为位置x处的光强,I_0为中央最大光强,β为sin(β) = (π* b * sin(α))/λ,b为单缝宽度,α为入射光与垂直方向的夹角,λ为入射光波长。
实验误差分析:1. 由于实验器材和环境的限制,实际测量中可能会存在一定的误差。
2. 光电探测器的位置调整可能不够精确,导致实际测量的位置与理论位置存在偏差。
3. 光源的稳定性对实验结果也有一定影响,光源的波动性会导致实际测量的数值偏差。
4. 数据采集时的误差也需要注意,包括噪声、干扰等。
实验结论:通过实验测量单缝衍射光强的分布,可以得到一系列亮暗条纹的分布情况。
单缝衍射光强分布的测定
单缝衍射光强分布的测定光的衍射现象是光的波动性又一重要特征。
单缝衍射是衍射现象中最简单的也是最典型的例子。
在近代光学技术中,如光谱分析、晶体分析、光信息处理等到领域,光的衍射已成为一种重要的研究手段和方法。
所以,研究衍射现象及其规律,在理论和实践上都有重要意义。
实验目的1. 观察单缝衍射现象及特点。
2. 测定单缝衍射时的相对光强分布3. 应用单缝衍射的光强分布规律计算缝的宽度α。
实验仪器光具导轨座,He-Ne 激光管及电源,二维调节架,光强分布测定仪,可调狭缝,狭缝A 、B 。
扩束镜与起偏听偏器,分划板,光电探头,小孔屏,数字式检流计(全套)等。
实验原理光在传播过程中遇到障碍时将绕过障碍物,改变光的直线传播,称为光的衍射。
光的衍射分为夫琅和费衍射与菲涅耳衍射,亦称为远场衍射与近场衍射。
本实验只研究夫琅和费衍射。
理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。
单缝的夫琅和费衍射如图二 所示。
当处于夫琅和费衍射区域,式中α是狭缝宽度,L 是狭缝与屏之间的距离,λ是入射光的波长。
实验时,若取α≤10-4m, L ≥1.00m ,入射光是He-Ne激光,其波长是632.8nm,就可满足上述条件。
所以,实验时就可以采用如图一装置。
λ<<L82α如图二 单缝衍射的光路图1、导轨2、激光电源3、激光器4、单缝或双缝二维调节架5、小孔屏6、一维光强测量装置7、WJF 型数字式检流计根据惠更斯-菲涅耳原理,可导出单缝衍射的光强分布规律为当衍射角ϕ等于或趋于零时,即ϕ=0(或ϕ→0),按式,有故I=I 0,衍射花样中心点P 0的光强达到最大值(亮条纹),称为主极大。
当衍射角ϕ满足时,u=k π 则I=0,对应点的光强为极小(暗条纹), k 称为极小值级次。
若用X k 表示光强极小值点到中心点P 0的距离,因衍射角ψ甚小,则故X k =L ϕ=k λL/α,当λ、L 固定时,X k 与α成反比。
缝宽α变大,衍射条纹变密;缝宽α变小,衍射条纹变疏。
大学物理实验实验25 光强分布的测定
实验目的
① 观察单缝衍射现象,加深对衍射理论的理解。
② 会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。
③ 学会用衍射法测量。
实验仪器
1 2 4 5
6
3
7
1—半导体激光器,2—可调宽狭缝,3—光导轨,4—小孔屏, 5—光电探头,6—一维光强测量装置,7—数字检流计。
实验原理
1.单缝衍射的光强分布 当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、 细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射 现象。如果障碍物的尺寸与波长相近,则衍射现象很容易观察 到。
实验内容与步骤
1.观察单缝衍射的光强分布
2.测量衍射条纹的相对强度分布
3.测量单缝的宽度(=635.0nm)
注意事项
① 实验中应避免硅光电池疲劳;避免强光直接照射加速老化。 ② 避免环境附加光强,实验应处于暗环境操作,否则应对数 据做修正。 ③ 测量时,应根据光强分布范围不同,选取不同的测量量程。
衍射现象是一切波所共有的特性,日常生活中声波、水波 、无线电波的衍射随时随地发生,易为人觉察,而光的衍 射却很难觉察,这是因为光的波长极短而普通光源又是非 相干光源。光的衍射现象是光的波动性的一种表现。衍射 现象的存在,深刻说明了光子的运动是受测不准关系制约 的,因此研究光的衍射,不仅有助于加深对光的本性的理 解,也是近代光学技术(如光谱分析、晶体分析、全息分 析、光学信息处理等)的实验基础。衍射导致光强在空间 的重新分布,利用光电传感器元件探测光强的相对变化, 是近代技术中常用的光强测量方法之一。
光强分布的测定
物理实验教学中心
实验背景
早在17世纪,意大利的F.M.格里马第就发现点光源照射物体时, 有时在该物体的影子边缘会出现彩带。格里马第称这种现象为 “衍射”。后来,英国科学家R.胡克也观察到类似的现象,但他们 都未能对衍射现象作出正确的解释。1818年,菲涅耳提出了今天 被称为惠更斯-菲涅耳原理的新理论,并创造了菲涅耳半波带法来 定量计算物体的衍射光强分布,菲涅耳的所有计算都与实验结果 相符。菲涅耳所做的衍射实验,其光源和观察屏距离衍射孔都不 是无限远,因而对衍射孔都有一个张角。而同一时期德国的夫琅 禾费采用入射光与出射光都是平行光来研究衍射现象,即光源和 光屏距离衍射物体都是无限远。我们把这种远场衍射方式产生的 衍射称为“夫琅禾费衍射”,而把前者称为“菲涅耳衍射”。可以看 夫琅禾费衍射是菲涅耳衍射的一种极限情形,数学上更容易处理。
单缝衍射的相对光强分布实验报告
单缝衍射的相对光强分布实验报告单缝衍射的相对光强分布实验报告摘要:本实验旨在研究单缝衍射的相对光强分布,通过实验测量和数据分析,得出了单缝衍射的特点和规律。
实验结果表明,单缝衍射的光强分布呈现明显的夫琅禾费衍射图样,且光强在中央最亮,两侧逐渐减弱。
实验结论对于理解光的衍射现象和光学理论具有重要意义。
引言:光学衍射是光通过物体边缘或孔径时发生偏折和干涉的现象。
其中,单缝衍射是研究光学衍射的基本实验之一。
通过研究单缝衍射的相对光强分布,可以了解光的波动性质以及光的传播规律。
本实验通过实验测量和数据分析,旨在探究单缝衍射的特点和规律。
实验装置:本实验使用的装置主要包括:激光器、单缝光栅、光屏、光电二极管、光电转换器等。
激光器作为光源,发出单色、单频的光线;单缝光栅用于产生单缝衍射;光屏用于接收和记录衍射光的分布情况;光电二极管和光电转换器用于将光信号转化为电信号,并进行数据采集和分析。
实验步骤:1. 将激光器置于实验台上,并调整角度,使激光束垂直射向单缝光栅。
2. 将光屏放置在激光束的远离光源的一侧,并调整光屏的位置,使得光屏与光源和单缝光栅之间保持一定的距离。
3. 打开激光器,使激光通过单缝光栅,产生衍射现象。
同时,将光电二极管和光电转换器连接到计算机上,进行数据采集。
4. 在计算机上打开数据采集软件,开始记录光强数据。
将光屏沿着水平方向移动,每隔一定距离记录一次光强数据,直到记录完整个衍射图样。
5. 关闭激光器,停止数据采集,保存数据。
实验结果与分析:通过数据采集软件记录的光强数据,我们得到了单缝衍射的相对光强分布图。
图中,横轴表示光屏上的位置,纵轴表示相对光强。
实验结果显示,单缝衍射的光强分布呈现明显的夫琅禾费衍射图样。
在中央位置,光强最强;而在两侧,光强逐渐减弱。
此外,光强分布图中还存在着一系列的明暗条纹,这是由于光的干涉现象所引起的。
根据实验结果,我们可以得出以下结论:1. 单缝衍射是光通过单缝光栅时产生的衍射现象,光线会在缝口处发生偏折和干涉。
单缝衍射与光强分布测量
一 实验目的1 观察单缝夫琅禾费衍射现象2 学习利用光电元件测量相对光强的实验方法,观察单缝衍射中相对光强分布规律,并测出单缝宽度 二 实验仪器氦—氖激光器及光源 可调单缝 硅光电池移动装置 数字万用表 示波器 光具座各种支架 三 实验原理1 产生夫琅禾费衍射的实验装置夫琅禾费衍射要求光源和接收屏都距离衍射屏无限远,即入射光和衍射光都是平行光。
在实际中,距离无限远是办不到的,下面介绍两种实验室中接收夫琅禾费衍射常采用的装置(1)“焦面接收”装置把光源S 放在凸透镜2L 的前焦面上,把接收屏放在凸透镜2L 的后焦面上,则由几何光学可知,P S ,及狭缝D 的距离相当于无限远。
(2)“远场接收”装置在满足一定条件时候,也可以不用上述两种透镜,而获得夫琅禾费衍射图样。
这个条件是:1 衍射屏透光部分线度很小而且离光源很远,即满足:其中,Z 为D 及接受屏P 的距离以上所说的两个条件叫做夫琅禾费远场条件 2 夫琅禾费衍射图样规律 振幅矢量叠加法 定量将缝宽a 划 分 为 N 个 等 宽() 的 狭 窄 波 带 设每个波带内能量集中于图 3中 所 示 光 线 两 相 邻 光线光程差 位相差θλπλδπϕsin 22Na ==∆每条光线在屏上引起光振动振 幅 相 等即N A A A =⋅⋅⋅==21 用 多边 形 法 则 进 行 N 个 大 小 相 等 两 两依次相差为 ϕ∆的光振动的叠加如图3 中所示分振动振幅合振动振幅两式中消去 R 得 0→∆ϕ条件22sin22sin 2sin 2sin 111ϕϕϕϕϕϕ∆∆=∆∆≈∆∆=NN NA N A N A A10NA A =即中央明纹中心处振幅当∞→N ,N 个相接的矢量将变为一个圆弧 (见图4)πλθϕφ2sin a N =∆=∆φ∆=R A 0,即中央明纹中心处振幅2sin2/2sin 200φφφφ∆∆=∆∆=A A A p 令λθπλπδφsin 222a N N u ==∆= 则 式中 210)(NA I =为中央明纹光强理论上计算得出夫琅和费单缝衍射图样的光强分布规律为 (1)当0=θ时,光强具有极大值:0I I =θ,称为中央主极大当 a K /sin λθ=)3,2,1(⋅⋅⋅±=K (2)πK u =时,0=θI ,此时出现暗条纹,及此对应的位置为暗条纹中心。
测量单缝衍射的光强分布
2.从光强分布曲线量出中央明纹的半宽度X1。 代入公式a=Lλ/X1计算单缝的宽度。 λ=650nm(半导体激光器,较小那种) 或632.8nm(氦氖激光器)
数据表格:
数据处理-坐标纸上画图
思考题 1.2.3
测量:
记录衍射条纹的光强度(光电流I )和相应的位置坐标x
注意(以下要在实验报告避免空程差; 3、测量范围?包含一级暗纹就可以了; 4、选择合适的测量步距(既不要使数据太繁杂;又要保 证结果的可靠性较高;条纹不同位置的测量步距可能不一样)
实验数据处理
1.作出单缝衍射的光强分布曲线(坐标纸上)。在直 角坐标纸上,以横轴表示位置x ; 纵轴表示光强度
测量单缝衍射的光强分布
梁广兴
实验内容和步骤:
1. 在导轨上装好实验装置,目测粗调,使各光学元件同轴。 2. 激光器与单缝之间的距离以及单缝与探测器之间的距离 均调在50cm左右。 3. 将光屏置于探测器之前,调二维调节架,选择所需的单缝 宽度a ,观察光屏上的衍射条纹;调整出一个图象清晰、对称、 条纹宽度适当(约0.5cm-1cm)的中央明条纹来。 4.使用检流计前一般先调零;选择量程的原则是在读数较稳 定的前提下使读数尽可能大。 5.本实验仪器问题较多,具体参考实验桌上的说明。
单缝衍射光强的分布测量实验报告
单缝衍射光强的分布测量实验报告一、实验目的1、观察单缝衍射现象,加深对光的波动性的理解。
2、测量单缝衍射的光强分布,验证衍射理论。
3、掌握光强测量的基本方法和数据处理技巧。
二、实验原理当一束平行光通过宽度为 a 的单缝时,会在屏幕上产生衍射条纹。
根据惠更斯菲涅尔原理,衍射光强分布可以用下式表示:\I = I_0 \left(\frac{\sin\beta}{\beta}\right)^2\其中,\(I_0\)是中央明纹中心的光强,\(\beta =\frac{\pi a \sin\theta}{\lambda}\),\(\theta\)是衍射角,\(\lambda\)是光波波长。
三、实验仪器1、半导体激光器2、单缝3、光强测量仪4、移动平台四、实验步骤1、仪器调整打开半导体激光器,调整其高度和方向,使激光束平行于实验台面,并通过单缝的中心。
将光强测量仪的探头放置在合适的位置,确保能够接收到衍射光。
2、测量光强分布移动光强测量仪的探头,从中央明纹中心开始,沿衍射方向逐点测量光强,并记录数据。
测量范围应包括中央明纹和若干级次的暗纹和明纹。
3、改变单缝宽度,重复测量更换不同宽度的单缝,重复上述测量步骤。
五、实验数据以下是在不同单缝宽度下测量得到的光强分布数据(单位:相对光强):|衍射角(度)|单缝宽度 a = 01mm |单缝宽度 a =02mm |单缝宽度 a = 03mm ||::|::|::|::||-15 | 002 | 0005 | 0002 ||-12 | 005 | 001 | 0005 ||-9 | 01 | 002 | 001 ||-6 | 02 | 005 | 002 ||-3 | 04 | 01 | 005 || 0 | 10 | 02 | 01 || 3 | 04 | 01 | 005 || 6 | 02 | 005 | 002 || 9 | 01 | 002 | 001 || 12 | 005 | 001 | 0005 || 15 | 002 | 0005 | 0002 |六、数据处理与分析1、绘制光强分布曲线以衍射角为横坐标,光强为纵坐标,分别绘制不同单缝宽度下的光强分布曲线。
单缝衍射与光强分布测量
姓名:易常瑞学号:5502211043 专业班级:应物111班班级编号:S008实验时间:第三周星期一13:00 座位号:6 教师编号:T023 成绩:单缝衍射与光强分布测量一、实验目的1.观察单缝衍射现象,加深对衍射理论的理解;2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律,测出单缝宽度。
二、实验仪器半导体激光器,狭缝,光阑,电源,调节光强的仪器,平行光管,CCD(电荷耦合元件),电脑一台(相关软件)和WGZ--IIA导轨。
三、实验原理1.单缝衍射强度分布公式。
N姓名:易常瑞学号:5502211043 专业班级:应物111班班级编号:S008实验时间:第三周星期一13:00 座位号:6 教师编号:T023 成绩:如图1、2,坐标取法。
按照惠更斯—菲涅尔原理,我们把缝内的波前AB分割成许多等宽的窄条,它们是振幅相等的次波源,朝多个方向发射次波,由于接收屏幕位于透镜,的像方焦面上,角度相同的衍射线汇聚于幕上同一点,设入射光与光轴平行,则在波面AB上无相位差,单缝上下边缘A、B到的衍射线间的光程差为,设缝宽为a。
在旁轴条件下,按菲涅尔—基尔霍夫公式:其中r是波前上坐标为x的点Q到场点的光程,由图3可知光程差为姓名:易常瑞学号:5502211043 专业班级:应物111班班级编号:S008实验时间:第三周星期一13:00 座位号:6 教师编号:T023 成绩:它与y无关。
在正入射情况下是与x、y无关的常量。
将(1)式先对y积分,并把所有与x无关的因子归并到一个常量C中,于是得到其中当式(2)中取0时,有,式(2)可写为两边取平方得:姓名:易常瑞学号:5502211043 专业班级:应物111班班级编号:S008 实验时间:第三周星期一13:00 座位号:6 教师编号:T023 成绩:要测出单缝衍射的光强分布只需测出即可。
而产生亮条纹的位置是:对应的数值为:对应的sin为在近轴条件下,,令,姓名:易常瑞 学号:5502211043 专业班级:应物111班 班级编号:S008 实验时间:第三周星期一13:00 座位号: 6 教师编号: T023 成绩:而(其中K=0,1,2,…),则四、 实验内容实验装置连接如下图:步骤:(1) 开启电源开关,调整激光器和光阑共轴(水平移动光阑,只要照在CCD上的光强不变,则可以认为已经共轴了),将平行光管放于导轨上,再把调节光强的装置放上去,最后把CCD 连上电脑;(2) 屏蔽背景光源开启电脑,打开软件,进行拍摄,调整缝数,直到单缝,再调整光强,直到看到清晰的单缝衍射图像;(3) 然后将图像保存为BMP 或IPJ 格式,然后打开图片,点击“水平”,再在出现的图像左上方点击“线模式”,再点击“制表”,保存为excel ,打开文件,利用excel 画出图像。
单缝衍射光强分布的测定
A
C
长为 A0 的圆弧,圆弧两端的切线夹角为
2
a sin
A0
A
四、实验原理
由几何关系可知,圆弧的曲率半径为
R
A0
A0
A
圆弧对应的弦长(即合矢量大小)为
1
sin 2
A 2 R sin
A0
2
2
I A2
a sin
半导体激光器
可调单缝
➢5. 光电检流计;
半导体激光器 可调单缝
光具座
光屏
硅光电池
硅光电池
四、实验原理
本实验的单缝衍射近似于夫琅禾费衍射(即“远场衍射”)。由Huygens-Fresnel原理,在缝宽足够
小的情况下,单缝可看作由“同相”的子波波源组成。
中央明纹 P0 的光强 I0 由各个子波同相叠加后的振幅决定,
观察检流计示数变化;
6. 测量光强分布,从k = -3 ~ +3 级暗纹每隔 0.5 mm记录一个点的光电流;
7. 用米尺测出单缝至光电池的距离 L,重复宽 a,重复测量五次。
六、注意事项
1. 当中央明纹正对光电池进光狭缝时,如果检流计示数为“9999”,则读数
作者Pierre-Jean David (1788-1856)
*图片来自Wikipedia网站
二、实验目的
➢1. 测定单缝衍射的相对光强分布;
➢2. 测定半导体激光器激光的波长。
三、实验仪器
➢1. 光具座;
➢6. 移测显微镜;
➢2. 半导体激光器;
➢7. 光屏。
➢3. 可调单缝;
单缝衍射
单缝衍射的相对光强分布
1.测定单缝衍射的相对光强分布
1)激光的衍射条纹的光强用激光功率计测量,在功率计前用一开有2mm宽狭缝的黑纸遮挡。
狭缝沿竖直方向放置。
2)将光功率计安装在二维(XZ方向)底座上,功率计的相对位置可通过二维底座X 方向调节器的螺旋测微计读出。
3)改变可调狭缝的宽度,使得主极大的宽度约为5mm,且两边对称,并落在功率计进光狭缝垂直的水平线上。
4)实验过程中需关闭日光灯和台灯。
测量前光功率计“调零”时,黑纸应挡在可调单缝前不应挡在功率计的进光狭缝,这样才能消除环境的影响。
5)为减小作图误差,测量光功率时在各级级值附近应减小测量间隔多测几个读数。
2.检测光功率计的读数与入射光强的线性关系
激光光强若超过光功率计的测量范围,测量将产生较大的误差。
检测时从较远处开始移动嗅钨灯,逐渐缩小与光功率的距离,直至检测到的光功率接近衍射条纹中央主级强对应的光功率为止。
选适当间隔10个数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当= 时,
I = I 0
射光经透镜 L2 会聚在其后焦平面处的屏 P 上,屏上将呈现出亮暗相间按一定规律分布的衍 射图样.
由惠更斯——菲涅耳原理可知,单缝衍射的光强分布公式为
I
I
0
(
sin u
u
)
2
,
u a sin
L1
单缝 L2
S
a
P
0
(1)
xk
L
图 1 单缝夫琅和费衍射光路
95
式中:a 为单缝的宽度,I0 为入射光光强,为衍射光与光轴的夹角——衍射角.在衍射角
97
d'
x
4.光栅线位移传感器原理 上述光强测定原理解决了衍射光强分布纵坐标数据测定,而分布谱的横坐标可采用一
种光栅尺(即光栅位移传感器)来测定,其基本原理是利用莫尔条纹的“位移放大”作用,
将两块光栅常数都是 d 的透明光栅,以一个微小角度重叠,光照它们可得到一组明暗相 间等距的干涉条纹,这就是莫尔条纹.莫尔条纹的间隔 m 很大(如图 5),从几何学角度 可得
(2)
这是平行于光轴的光线会聚处——中央亮条纹中心点的光强,是衍射图像中光强的极 大值,称为中央主极大.当
asin= k, k = ±1,±2,±3,……
(3)
则 u = kπ, I = 0, 即为暗条纹.与此衍射角对应的位置为暗条纹的中心.实际上角
很小,取正弦函数泰勒展开式的一级近似
【实验原理】
1.衍射光强分布谱 衍射现象分两大类:夫琅和费衍射(远场)和菲涅耳衍射(近场).本实验仅研究夫琅 和费衍射. 夫琅和费衍射要求光源和接受衍射图像的屏幕远离衍射物(如单缝等),即入射光和衍 射光都是平行光.夫琅和费衍射光路见图 1,其中,S 是波长为 的单色光源,置于透镜
L1 的焦平面上时,单色光经 L1 后形成平行光束投射到缝宽为 a 的单缝上,通过狭缝后的衍
m d 2sin / 2
(9)
从(9)式可知,较小时,m 有很大 的数值.若一块光栅相对另一块光栅 移动 d 的大小,莫尔条纹 M 将移动 m 的距离.即莫尔条纹有位移放大作用,
1' 2' 3' M1 M2 M3 M4
A
B
D
C
m
4' 5' d
6'
1 2 3 4 5
其放大倍数 k = m / d .用光探测器测 定两块光栅相对位移时产生莫尔条纹 的强度变化,经光电变换后,成为衍
sin k a
同理,由图 1 也可看出,k 级暗条纹对应的衍射角
(4)tgkFra bibliotek k
xk L
故
k xk aL
(6)
(5)
II
由以上讨论可知
(1)中央亮条纹的宽度被 k = ±1 的两
暗条纹的衍射角所确定,即中央亮条纹的角宽
度为 2 . a
(2)衍射角与缝宽 a 成反比,缝加宽
此超越方程,可求得
sin 1.430 , 2.459 , 3.470 ,
a
a
a
(7)
与它们相应的相对光强度分别为
I 0.04718,0.01694,0.00834, I0
(8)
2.光强测定原理 上述衍射光强分布谱测定要借助光探测仪器,此设备中关键的光探测元件称为光电传 感元件.光电传感器是一种将光强的变化转换为电量变化的传感器.本实验使用的硅光电 二极管是基于光生伏特效应的光电器件.当光照射到 pn 结时,如光子能量大于 pn 结禁带 宽度 Eg,就可使价带中的电子跃迁到导带,从而产生电子-空穴对,电子与空穴分别向相反 方向移动,形成光电动势.光电二极管的理想等效电路如图 3 所示.从理想等效电路来看, 光电二极管可看做是由一个恒流 IL 并联一个普通二极管所组成的电源,此电源的电流 IL 与 外照光源的光强成正比.无光照时,其电流-电压特性无异于普通二极管,而有光照时,其
实验十五 光衍射相对光强分布的测量
光的衍射现象是光的波动性的一种表现,它说明了光的直线传播规律只是衍射现象不 显著时的近似结果.衍射现象的存在,深刻地反映了光子(或电子等其他微观粒子)的运 动是受测不准关系制约的.因此研究光的衍射,不仅有助于加深对光的本性的理解,也是 近代光学技术(如光谱分析、晶体分析、全息分析、光学信息处理等)的实验基础.
时,衍射角减小,各级条纹向中央收缩;当缝
宽 a 足够大时(a>>).衍射现象就不显著,
以致可略去不计,从而可将光看成是沿直线传
96
-1.43a -2.46a
1.43a 2.46a
sin
-3a -2a -a 0 a 2a 3a
衍射导致了光强在空间的重新分布,利用光电传感元件测量和探测光强的相对变化, 是近代技术中常用的光强测量方法之一.
【实验目的】
1.掌握在光学平台上组装、调整光的衍射实验光路; 2.观察不同条件下产生的衍射,归纳总结单缝衍射现象的规律和特点; 3.学习利用光电元件测量相对光强的实验方法,研究单缝衍射中相对光强的分布规律; 4.学习微机自动控制测衍射光强分布谱和相关参数.
IL
RL
Rf IL
+A
U0 Ub
IL = U0 / Rf
图 3 光电二极管等效电路图
图 4 光电二极管与前置放大电路连接图
电流-电压特性符合 pn 结光生伏特效应.对于二极管的正向伏安特性,只有负载电阻接近 于零时,光电流才与光照成正比.按图 4 接线,由运算放大器构成的电流电压转换电路能 使输入电阻接近于零,所以是光电二极管的理想负载.
图 2 单缝衍射相对光强分布曲线
播的.
(3)对应任意两相邻暗条纹,其衍射光线的夹角为 ,即暗条纹是以点 P0 为中 a
心、等间隔、左右对称地分布的(其中 P0 为中央亮条纹的中心位置). (4)位于两相邻暗条纹之间的是各级亮条纹,它们的宽度是中央亮条纹宽度的 1/ 2.这
些亮条纹的光强极大值称为次极大.由方程 d (sin u )2 0 可得,tgu = u,再用图解法解 du u