九年级数学下册27.1圆的认识圆的基本元素专题练习题(新版)华东师大版【含解析】
华东师大版数学九年级下册第27章圆第1节 圆的认识 圆的基本元素专题练习题及答案
华东师大版数学九年级下册第27章圆第1节圆的认识圆的基本元素专题练习题1.下列说法中,正确的是( )A.直径是圆中最长的弦B.弦是圆上任意两点之间的部分C.过圆心的线段是直径D.弦的端点可以不在圆上2.下列说法中正确的个数有( )①大于半圆周的弧叫优弧,小于半圆周的弧叫劣弧;②优弧一定比劣弧长;③任意一条弦都把圆周分成两条弧,一条是优弧,一条是劣弧.A.1个B.2个C.3个D.0个3.下列命题正确的个数有( )①顶点在圆心的角为圆心角;②弦是直径;③直径是弦;④半圆是弧,但弧不一定是半圆.A.1个B.2个C.3个D.4个4.过圆内一点(非圆心)可以作出圆的最长弦有( )A.1条B.2条C.3条D.1条或无数条5.如图,MN为⊙O的弦,∠M=50°,则∠MON等于( )A.50°B.55°C.65°D.80°6.如图,AB是⊙O的直径,AC是弦,若∠A=30°,则∠BOC的度数是( )A.30°B.50°C.60°D.120°7.已知AB,CD是⊙O的两条直径,∠ABC=30°,则∠BAD=___.8. 如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是____.9.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处高出球面16 cm,那么钢丝大约需要加长( )A.102 cm B.104 cm C.106 cm D.108 cm10.下列命题中,正确的个数是( )①圆是由圆心唯一确定的;②半径相等的两个圆是等圆;③一条弦把圆分成的两段弧中,至少有一段是优弧.A.0个B.1个C.2个D.3个11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式中正确的是( )A.a>b>c B.a=b=c C.c>a>b D.b>c>a12.确定一个圆的条件是____和____,____决定圆的位置,____决定圆的大小.13.在同一平面内与已知点P的距离等于2.5 cm的所有点所组成的图形是____.14.如图,AB为⊙O的直径,点C,D在⊙O上,已知∠BOC=70°,AD∥OC,则∠AOD =____.15.如图所示,两个半径相等的⊙O1和⊙O2相交于A,B两点,且⊙O1经过点O2,则∠O1AB =____.16. 如图,C,D是⊙A的弦BE上的点,且BC=ED.求证:AC=AD.答案:1---6 AACADC7. 30°8. 60°9. A10. B11. B12. 圆心半径圆心半径13. 以点P为圆心,2.5_cm长为半径的圆_14. 40°15. 30°16. 解:连接AB,AE,则AB=AE,∴∠B=∠E.∵BC=ED,∴△ABC≌△AED,∴AC=AD。
2018年秋九年级数学下册 第27章 圆 27.1 圆的认识 27.1.1 圆的基本元素练习 (新版)华东师大版
第27章 圆元的基本元素1.如图,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,则圆中弦的条数为( ) A .2 B .3 C .4 D .52.如图所示,P 是⊙O 内的一点,P 到⊙O 的最小距离为4 cm ,最大距离为9 cm ,则该⊙O 的直径为( )A .6.5 c mB .2.5 cmC .13 cmD .不可求3.[2018·无锡]如图,点A 、B 、C 都在⊙O 上,OC ⊥OB ,点A 在劣弧BC ︵上,且OA =AB ,则∠ABC =______.4.一个圆的最大的弦长为10 cm ,则此圆的面积为__________. 5.已知点A 、B 和直线l ,作一个圆,使它过点A 、B ,并且圆心在l 上. (1)当l 与直线AB 不垂直时,可以作几个圆? (2)当l 与直线AB 垂直时,情况又怎样?6.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,CE ⊥AB 于E ,DF ⊥AB 于F ,且AE =BF ,AC 与BD 相等吗?为什么?7.如图,AB、CD是⊙O的两条互相垂直的直径.(1)试判断四边形ACBD是什么特殊的四边形,为什么?(2)若⊙O的半径r=2 cm,求四边形ACBD的面积.8.如图,MN为⊙O直径,四边形ABCD、EFGD是正方形,小正方形的面积为16,求⊙O 的半径.参考答案【分层作业】1. A 2. C 3. 15° 4. 25πcm 25. 解:(1)可以作一个圆,圆心为线段AB 的垂直平分线与直线l 的交点. (2)分两种情况:①当直线l 经过线段AB 的中点时,可以作无数个圆; ②当直线l 不经过线段AB 的中点时,这样的圆不能作出.6.答图解:AC 与BD 相等.理由如下: 如答图,连结OC 、OD . ∵OA =OB ,AE =BF , ∴OE =OF .∵CE ⊥AB ,DF ⊥AB , ∴∠OEC =∠OFD =90°. 在Rt △OEC 和Rt △OFD 中,⎩⎪⎨⎪⎧OE =OF ,OC =OD , ∴Rt △OEC ≌Rt △OFD (HL), ∴∠COE =∠DOF , ∴AC ︵=BD ︵, ∴AC =BD .7. 解:(1)∵OA =OC =OB =OD ,AB =CD ,AB ⊥CD , ∴四边形ACBD 是正方形.(2)S 正方形ACBD =12AB ·CD =12×4×4=8(cm 2).8.答图解:连结OC、OF,如答图.设AD=2x,∵CO2=DO2+CD2.∴x2+(2x)2=r2.∵OF2=OG2+FG2,∴r2=(x+4)2+42=x2+8x+32,∴x2+(2x)2=x2+8x+32,解得x1=4,x2=-2(舍去),∴r2=5×42,∴r=4 5.。
九年级数学下册27.1圆的认识圆周角专题练习题华东师大版
27.1 圆的认识圆周角1. 如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75° B.60° C.45° D.30°2.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()3.如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A=( )A.35° B.55° C.25° D.60°4.如图,在⊙O中,AB,AC是两条弦,延长CA到D,使AD=AB,若∠ADB=30°,则∠BOC的度数是()A.60° B.120° C.130° D.150°5.如图,AB是半圆的直径,D是错误!的中点,∠ABC=50°,则∠DAB等于()A.55° B.60° C.65° D.70°6。
如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=____°。
7.如图所示,在边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是____.8.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15° B.25° C.30° D.75°9.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED。
其中一定成立的是()A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥ D.①③④⑤10.如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠1+∠2=_______.11.如图,OA=OB=OC,且∠ACB=30°,则∠AOB的大小是_______.12.如图,在⊙O中,直径AB=10 cm,AC=8 cm,CD平分∠BCA,求BC和DB的长.13.如图,点A,B,C为圆上的三个点,且△ABC为等边三角形,P为错误!上一点.求证:PA=PB+PC。
华师大版初中数学九年级下册《27.1.1 圆的基本元素》同步练习卷
华师大新版九年级下学期《27.1.1 圆的基本元素》2019年同步练习卷一.选择题(共6小题)1.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1B.2C.3D.42.如图中正方形、矩形、圆的面积相等,则周长L的大小关系是()A.L A>L B>L C B.L A<L B<L C C.L B>L C>L A D.L C<L A<L B 3.现有两个圆,⊙O1的半径等于篮球的半径,⊙O2的半径等于一个乒乓球的半径,现将两个圆的周长都增加1米,则面积增加较多的圆是()A.⊙O1B.⊙O2C.两圆增加的面积是相同的D.无法确定4.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定5.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4B.5C.6D.106.如图,将大小两块量角器的零度线对齐,且小量角器的中心O2恰好在大量角器的圆周上.设它们圆周的交点为P,且点P在小量角器上对应的刻度为75°,那么点P在大量角器上对应的刻度为()A.75°B.60°C.45°D.30°二.填空题(共19小题)7.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.8.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.9.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于.10.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为.11.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)12.如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,可证:IG=FD.小云发现连接图中已知点得到两条线段,便可证明IG=FD.请回答:小云所作的两条线段分别是和;证明IG=FD的依据是矩形的对角线相等,和等量代换.13.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是.14.如图,直线y=x+3与坐标轴交于A、B两点,⊙O的半径为2,点P是⊙O上动点,△ABP面积的最大值为cm2.15.半径为5的⊙O中最大的弦长为.16.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的倍.17.圆既是轴对称图形,也是中心对称图形,是它的对称中心.18.已知线段AB=6cm,则经过A、B两点的最小的圆的半径为.19.课本上将绳的一端固定住,另一端系一支笔,将绳子绷直,用笔绕着另一端画一圈就是一个圆,于是我们定义:圆是由到一定点距离都等于定长的所有的点组成的图形.下面是一种画椭圆的方法:(1)在地平面上选两个点,钉上两个钉子;(2)测量两个钉子间距离;(3)选用大于两钉子间距离长度的绳子;(4)将绳子两端分别系在钉子上;(5)将绳子绷直,用笔在绷直的拐角地方划线;(6)将绳子绕一圈,椭圆就得到啦!(如图所示)根据这个过程请你给椭圆下一个定义:.20.圆中最长的弦是.21.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=74°,则∠E =.22.若⊙O的半径为6cm,则⊙O中最长的弦为厘米.23.如图,MN为⊙O的弦,∠M=50°,则∠MON等于.24.如图,平面直角坐标系xOy中,M点的坐标为(3,0),⊙M的半径为2,过M点的直线与⊙M的交点分别为A、B,则△AOB的面积的最大值为.25.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=度.三.解答题(共5小题)26.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).27.已知点P、Q,且PQ=4cm,(1)画出下列图形:到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合.(2)在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来.28.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.29.已知:如图,AB是⊙O的直径,AC是⊙O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠CAD的度数.30.如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.华师大新版九年级下学期《27.1.1 圆的基本元素》2019年同步练习卷参考答案与试题解析一.选择题(共6小题)1.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1B.2C.3D.4【分析】根据轴对称图形的性质、全等图形的性质即可一一判断;【解答】解:①关于一条直线对称的两个图形一定能重合;正确.②两个能重合的图形一定关于某条直线对称;错误.③两个轴对称图形的对应点一定在对称轴的两侧;错误,也可以在对称轴上.④一个圆有无数条对称轴.正确.故选:B.【点评】本题考查圆的认识、轴对称图形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图中正方形、矩形、圆的面积相等,则周长L的大小关系是()A.L A>L B>L C B.L A<L B<L C C.L B>L C>L A D.L C<L A<L B【分析】设相同的面积为未知数,进而判断出相应的周长,比较即可.【解答】解:设面积是S.则正方形的边长是,则周长L A=4==4;长方形的一边长x,则另一边长为,则周长L B=2(x+),∵(x+)2≥0∴x+≥2,∴L B≥4,即L B≥;圆的半径为,L C=2π×=,∵<,∴L C<L A<L B.故选:D.【点评】考查圆的认识的相关知识;应用(a+b)2≥0这个知识点进行解答是解决本题的难点.3.现有两个圆,⊙O1的半径等于篮球的半径,⊙O2的半径等于一个乒乓球的半径,现将两个圆的周长都增加1米,则面积增加较多的圆是()A.⊙O1B.⊙O2C.两圆增加的面积是相同的D.无法确定【分析】先由L=2πR计算出两个圆半径的伸长量,然后再计算两个圆增加的面积,然后进行比较大小即可.【解答】解:设⊙O1的半径等于R,变大后的半径等于R′;⊙O2的半径等于r,变大后的半径等于r′,其中R>r.由题意得,2πR+1=2πR′,2πr+1=2πr′,解得R′=R+,r′=r+;所以R′﹣R=,r′﹣r=,所以,两圆的半径伸长是相同的,且两圆的半径都伸长.∴⊙O1的面积=πR2,变大后的面积=,面积增加了﹣πR2=R+,⊙O2的面积=πr2,变大后的面积=,面积增加了=r+,∵R>r,∴R+>r+,∴⊙O1的面积增加的多.故选:A.【点评】本题考查圆的周长的计算公式及面积计算公式.分别求出两圆半径的伸长量进行比较是解题的关键.4.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定【分析】首先设出圆的直径,然后表示出半圆的周长与三个正三角形的周长和,比较后即可得到答案.【解答】解:设半圆的直径为a,则半圆周长C1为:aπ+a,4个正三角形的周长和C2为:3a,∵aπ+a<3a,∴C1<C2故选:B.【点评】本题考查了圆的认识及等边三角形的性质,解题的关键是设出圆的直径并表示出C1和C2.5.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4B.5C.6D.10【分析】因为五边形的各边长都和小圆的周长相等,所以小圆在每一边上滚动正好一周,由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,所以小圆在五个角处共滚动一周,可以求出小圆滚动的圈数.【解答】解:因为五边形的各边长都和小圆的周长相等,所以小圆在每一边上滚动正好一周,在五条边上共滚动了5周.由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,所以小圆在五个角处共滚动一周.因此,总共是滚动了6周.故选:C.【点评】本题考查的是对圆的认识,根据圆的周长与五边形的边长相等,可以知道圆在每边上滚动一周.然后由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,可以知道圆在五个角处滚动一周.因此可以求出滚动的总圈数.6.如图,将大小两块量角器的零度线对齐,且小量角器的中心O2恰好在大量角器的圆周上.设它们圆周的交点为P,且点P在小量角器上对应的刻度为75°,那么点P在大量角器上对应的刻度为()A.75°B.60°C.45°D.30°【分析】依题意,设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠P AB的度数.然后根据圆的知识可求出大量角器上对应不度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=75°,因而∠P AB=90°﹣75°=15°,在大量角器中弧PB所对的圆心角是30°,因而P在大量角器上对应的度数为30°.故选:D.【点评】本题主要考查了直径所对的圆周角是90度.能把实际问题转化为数学问题是解决本题的关键.二.填空题(共19小题)7.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是2cm.【分析】根据题意得到MN=BC,当正方形纸片卷成一个圆柱时,BC卷成一个圆,线段BC就是圆的周长,根据半径为2cm可计算BC的长,从而得的长,根据弧长公式可得所对的圆心角的度数,由勾股定理可得MN的长.【解答】解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.【点评】此题实质考查了圆的形成和正方形的性质,确定正方形纸片卷成一个圆柱后BC与半径的关系是关键.8.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有2个.【分析】以A为圆心,5cm长为半径作圆,与以AB为直径的圆交于2点,依此即可求解.【解答】解:如图所示:到点A的距离为5cm的点有2个.故答案为:2.【点评】此题考查了圆的认识,关键是熟悉圆可以看做是所有到定点O的距离等于定长r 的点的集合的知识点.9.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于半径.【分析】根据半径的含义:连接圆心和圆上任意一点的线段叫做半径;在同圆或等圆中,所有的半径都相等;由此判断即可.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:半径.【点评】此题考查了半径的含义,注意基础知识的积累.10.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为圆心.【分析】根据半径的含义:连接圆心和圆上任意一点的线段叫做半径;在同圆或等圆中,所有的半径都相等;由此判断即可.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:圆心【点评】此题考查了圆的认识,关键是根据半径的含义解答.11.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠P AB=20°,因而∠PBA=90°﹣20°=70°,在小量角器中弧PB所对的圆心角是70°,因而P在小量角器上对应的度数为70°.故答案为:70°;【点评】本题主要考查了直径所对的圆周角是90度.能把实际问题转化为数学问题是解决本题的关键.12.如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,可证:IG=FD.小云发现连接图中已知点得到两条线段,便可证明IG=FD.请回答:小云所作的两条线段分别是OH和OE;证明IG=FD的依据是矩形的对角线相等,同圆的半径相等和等量代换.【分析】连接OH、OE,由矩形OGHI和正方形ODEF的性质得出IG=OH,OE=FD,由OH=OE,即可得出结论.【解答】解:连接OH、OE,如图所示:∵在矩形OGHI和正方形ODEF中,IG=OH,OE=FD,∵OH=OE,∴IG=FD;故答案为:OH、OE,同圆的半径相等.【点评】本题考查了矩形的性质、正方形的性质、同圆的半径相等的性质;熟练掌握矩形和正方形的性质是解决问题的关键.13.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是28°.【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【解答】解:由AB=OC,得AB=OB,∠A=∠AOB.由BO=EO,得∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD,即∠A+2∠A=84°,∠A=28°.故答案为:28°.【点评】本题考查了圆的认识,利用了等腰三角形的性质,利用三角形外角的性质得出关于∠A的方程是解题关键.14.如图,直线y=x+3与坐标轴交于A、B两点,⊙O的半径为2,点P是⊙O上动点,△ABP面积的最大值为11cm2.【分析】先求出OA,OB,进而求出AB,再判断出△P AB的AB边上的高最大时必过⊙O的圆心O,最后利用面积求出OC即可得出CP即可.【解答】解:如图,∵直线y=x+3与坐标轴交于A、B两点,∴A(﹣4,0),B(0,3),∴OA=4,OB=3,在Rt△AOB中,根据勾股定理得,AB=5,∵△P AB中,AB=5是定值,∴要使△P AB的面积最大,即⊙O上的点到AB的距离最大,∴过点O作OC⊥AB于C,CO的延长线交⊙O于P,此时S△P AB的面积最大,∴S△AOB=OA•OB=AB•OC,∴OC===,∵⊙O的半径为2,∴CP=OC+OP=,∴S△P AB=AB•CP=×5×=11.故答案为11.【点评】此题考查了圆的性质,圆中最大的弦,一次函数图象上点的坐标特征,解本题的关键是确定出三角形P AB的AB边上的高.15.半径为5的⊙O中最大的弦长为10.【分析】直径是圆中最大的弦.【解答】解:半径为5的⊙O的直径为10,则半径为5的⊙O中最大的弦是直径,其长度是10.故答案是:10.【点评】本题考查了圆的认识.需要掌握弦的定义.16.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的16倍.【分析】设圆A的半径为a,圆B的半径为b.由2πa=4×2πb,得a=4b,由此即可解决问题.【解答】解:设圆A的半径为a,圆B的半径为b.由题意2πa=4×2πb,∴a=4b,∴⊙A的面积:⊙B的面积=π•(4b)2:πb2=16:1.故答案为16【点评】本题考查圆的有关知识,解题的关键是记住圆的周长公式、面积公式,属于基础题,中考常考题型.17.圆既是轴对称图形,也是中心对称图形,圆心是它的对称中心.【分析】根据中心对称图形和轴对称图形的概念:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫轴对称图形.结合圆的特点,可以知道它的对称中心和对称轴.【解答】解:圆是绕着它的圆心旋转180°后能与原来的图形重合,所以圆心是圆的对称中心.故答案为:圆心.【点评】本题考查的是对圆的认识,结合中心对称图形和轴对称图形的概念,可以得到圆的对称中心和对称轴.18.已知线段AB=6cm,则经过A、B两点的最小的圆的半径为3cm.【分析】经过线段AB最小的圆即为以AB为直径的圆,求出半径即可.【解答】解:根据题意得:经过线段AB最小的圆即为以AB为直径的圆,则此时半径为3cm.故答案为:3cm.【点评】本题考查的是圆的认识,熟知经过线段AB最小的圆即为以AB为直径的圆是解答此题的关键.19.课本上将绳的一端固定住,另一端系一支笔,将绳子绷直,用笔绕着另一端画一圈就是一个圆,于是我们定义:圆是由到一定点距离都等于定长的所有的点组成的图形.下面是一种画椭圆的方法:(1)在地平面上选两个点,钉上两个钉子;(2)测量两个钉子间距离;(3)选用大于两钉子间距离长度的绳子;(4)将绳子两端分别系在钉子上;(5)将绳子绷直,用笔在绷直的拐角地方划线;(6)将绳子绕一圈,椭圆就得到啦!(如图所示)根据这个过程请你给椭圆下一个定义:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹.【分析】根据椭圆的定义,可得答案.【解答】解:椭圆下一个定义:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹,故答案为:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹.【点评】本题考查了圆的认识,利用椭圆的画法获得有效信息是解题关键.20.圆中最长的弦是直径.【分析】根据圆的性质直接回答即可.【解答】解:圆中最长的弦是直径,故答案为:直径.【点评】本题考查了圆的认识,解题的关键是了解圆中最长的弦是直径,难度不大.21.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=74°,则∠E =()°.【分析】利用半径相等得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,∵OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×74°=()°.故答案是:()°.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.22.若⊙O的半径为6cm,则⊙O中最长的弦为12厘米.【分析】根据直径为圆的最长弦求解.【解答】解:∵⊙O的半径为6cm,∴⊙O的直径为12cm,即圆中最长的弦长为12cm.故答案为12.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).23.如图,MN为⊙O的弦,∠M=50°,则∠MON等于80°.【分析】利用等腰三角形的性质可得∠N的度数,根据三角形的内角和定理可得所求角的度数.【解答】解:∵OM=ON,∴∠N=∠M=50°,∴∠MON=180°﹣∠M﹣∠N=80°,故答案为80°.【点评】考查圆的认识;利用圆的半径相等这个知识点是解决本题的突破点.24.如图,平面直角坐标系xOy中,M点的坐标为(3,0),⊙M的半径为2,过M点的直线与⊙M的交点分别为A、B,则△AOB的面积的最大值为6.【分析】由于AB=4为定值,根据三角形面积公式,当点O到AB的距离最大时,△AOB 的面积的最大值,即OM⊥AB时,△AOB的面积的最大值,然后根据三角形面积公式计算即可.【解答】解:∵AB为圆的直径,∴AB=4,∴当点O到AB的距离最大时,△AOB的面积的最大值,即OM⊥AB时,△AOB的面积的最大值,最大值为×3×4=6.故答案为6.【点评】本题考查了圆的认识:圆可以看做是所有到定点O的距离等于定长r的点的集合;掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了坐标与几何图形.25.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=25度.【分析】解答此题要作辅助线OB,根据OA=OB=BD=半径,构造出两个等腰三角形,结合三角形外角和内角的关系解决.【解答】解:连接OB,∵BD=OA,OA=OB所以△AOB和△BOD为等腰三角形,设∠D=x度,则∠OBA=2x°,因为OB=OA,所以∠A=2x°,在△AOB中,2x+2x+(105﹣x)=180,解得x=25,即∠D=25°.【点评】此题主要考查了等腰三角形的基本性质,以及三角形内角和定理,难易程度适中.三.解答题(共5小题)26.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).【分析】根据圆的定义解答即可.【解答】解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:【点评】本题考查了圆的认识,关键是了解圆的定义,灵活运用所学知识解决问题.27.已知点P、Q,且PQ=4cm,(1)画出下列图形:到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合.(2)在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来.【分析】根据圆的定义即可解决问题;【解答】解:(1)到点P的距离等于2cm的点的集合图中⊙P;到点Q的距离等于3cm的点的集合图中⊙Q.(2)到点P的距离等于2cm,且到点Q的距离等于3cm的点有2个,图中C、D.【点评】本题主要考查了勾股定理及圆的集合定义,就是到定点的距离等于定长的点的集合.28.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.【分析】由直径AB=5cm,可得半径OC=OA=AB=cm,分别利用勾股定理计算AD、AC的长.【解答】解:连接OC,∵AB=5cm,∴OC=OA=AB=cm,Rt△CDO中,由勾股定理得:DO==cm,∴AD=﹣=1cm,由勾股定理得:AC==,则AD的长为1cm,AC的长为cm.【点评】本题考查了同圆的半径相等、勾股定理,在圆中常利用勾股定理计算边的长,本题熟练掌握勾股定理是关键.29.已知:如图,AB是⊙O的直径,AC是⊙O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠CAD的度数.【分析】利用圆周角定理、圆弧、弧所对的弦的关系,进而得出∠DAB=∠B=60°,进而得出答案.【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴BC=AB=1,∠B=60°,以A圆心BC长为半径画弧可得点D,再连接AD即可;∵AD=BC,∴=,∴∠DAB=∠B=60°,∴∠DAC=60°﹣30°=30°;同理可得:∠D′AC=60°+30°=90°;综上所述:∠CAD的度数为30°或90°.【点评】此题主要考查了圆周角定理以及圆有关的概念,得出∠DAB=∠B=60°是解题关键.30.如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.【分析】(1)由AB=O得到AB=BO,则∠AOB=∠1=∠A=20°;(2)∠1=∠E,因此∠EOD=3∠A,即可求出∠EOD.【解答】解:(1)连OB,如图,∵AB=OC,OB=OC,∴AB=BO,∴∠AOB=∠1=∠A=20°;(2)∵∠2=∠A+∠1,∴∠2=2∠A,∵OB=OE,∴∠2=∠E,∴∠E=2∠A,∴∠DOE=∠A+∠E=3∠A=60°.【点评】本题考查了圆的认识,等腰三角形的性质和三角形外角定理,解题的关键是能从图形中发现每个角之间的关系.。
华东师大版九年级数学下册《27.1圆的认识》同步练习题带答案
华东师大版九年级数学下册《27.1圆的认识》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________垂径定理1.如图,已知AB、AC都是☉O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,若MN=√5,则BC等于()A.5B.√5C.2√5D.√102.如图,在☉O中,直径AB=10,弦DC⊥AB于点E.若OE∶OB=3∶5,则CD的长为()A.3B.4C.5D.83.如图,在☉O中,AB是弦,∠E=30°,半径为4,OE=6,则AB的长为()A.√7B.√5C.2√7D.2√54.如图,A、B、C是☉O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为.5.(2024南京开学)如图,AB、AC是☉O的两条弦,且AB=AC.求证:AO⊥BC.垂径定理的推论6.如图,OA、OB、OC都是☉O的半径,AC、OB交于点D.若AD=CD=8,OD=6,则BD的长为()A.5B.4C.3D.27.如图,在半径为5 cm的☉O中,弦AB的长为8 cm,D是AB的中点,连结OD,则OD的长为.1.如图,AB为半圆O的一条弦(非直径),连结OA、OB,分别以A、B为圆心,大于AB一半的长为半径画弧,两弧交于点P,连结OP,交AB于点Q,下列结论不一定正确的是()A.AB⊥OQB.AQ=BQC.∠ABO=60°D.∠AOB=2∠AOQ2.如图,☉O的半径为10,若OP=8,则经过点P的弦长可能是()A.10B.6C.19D.223.(2024西安模拟)人们经常将圆柱形竹筒改造成生活用具,图1是一个竹筒水容器,图2是该竹筒水容器的截面.已知截面的半径为10 cm,开口AB宽为12 cm,则这个水容器所能装水的最大深度是()图1图2A.12 cmB.18 cmC.16 cmD.14 cm4.如图,CD是圆O的弦,直径AB⊥CD,垂足为点E,若AB=12,BE=3,则四边形ACBD的面积为()A.36√3B.24√3C.18√3D.72√35.(2024瑞安二模)如图1是圆形置物架,示意图如图2所示.已知置物板AB∥CD∥EF,且点E是BD的中点.测得AB=EF=12 cm,CD=18 cm,∠BAC=90°,∠ABG=60°,则该圆形置物架的半径为cm.图1图26.小明在学习圆的相关知识时,看到书本上提到可以用一把丁字尺(如图1)来找圆心,他想到爸爸的工具箱里有丁字尺,于是想利用丁字尺还原一个破损的圆,已知尺头AB =4 cm,尺身刻度线l 垂直平分AB ,他摆出的情况如图2,发现两次测量丁字尺的尺身刻度线交于刻度为6 cm 的位置,则这个破损的圆的直径是 cm.图1 图27.如图,在☉O 中,弦AB 的长为8,点C 在BO 延长线上,且cos ∠ABC =45,OC =12OB . (1)求☉O 的半径; (2)求∠BAC 的正切值.8.(几何直观)如图,已知OC 是☉O 的半径,点P 在☉O 的直径BA 的延长线上,且OC ⊥PC ,垂足为C ,弦CD 垂直平分半径OA ,垂足为E ,P A =6. (1)求☉O 的半径; (2)求弦CD 的长.参考答案课堂达标1.C2.D3.C4.75.证明:如图所示,过O 作OM ⊥AB 于M ,ON ⊥AC 于N则∠AMO =∠ANO =90° ∵OM 、ON 过O ∴AM =12AB ,AN =12AC .∵AB =AC ∴AM =AN .在Rt △AMO 和Rt △ANO 中,由勾股定理得OM =ON ∵OM ⊥AB ,ON ⊥AC ∴AO 平分∠BAC . ∵AB =AC ∴AO ⊥BC . 6.B 7.3 cm 课后提升1.C 解析:由作法得OQ ⊥AB ,故A 选项不符合题意; ∴AQ =BQ ,故B 选项不符合题意; ∵AB 不一定等于OA∴△OAB 不一定为等边三角形∴∠ABO 不一定为60°,故C 选项符合题意; ∵OA =OB ,OQ ⊥AB ∴OQ 平分∠AOB∴∠AOB =2∠AOQ ,故D 选项不符合题意. 故选C.2.C 解析:如图,过点P 作弦CE ⊥OP ,连结OC ,由勾股定理,得CP =√OC 2-OP 2=6,则CE =2CP =12∴过点P 的最短的弦长为12.∵☉O 的半径为10,∴☉O 的直径为20,即过点P 的最长的弦长为20.∴12≤过点P 的弦长≤20.故选C.3.B 解析:如图,连结AB 、OB ,过点O 作OC ⊥AB 于点C ,延长CO 交☉O 于点D∵OC ⊥AB ∴AC =CB =6 cm. 由题意可知,OB =10 cm在Rt △OBC 中,OC =√OB 2-BC 2=√102-62=8(cm) ∴CD =OC +OD =8+10=18(cm)即这个水容器所能装水的最大深度是18 cm. 故选B.4.A 解析:如图,连结OC .∵AB =12,∴OB =OC =6. 又∵BE =3 ∴OE =3. ∵AB ⊥CD∴EC =√OC 2-OE 2=√36-9=3√3. ∴CD =2EC =6√3.∴S 四边形ACBD =12AB ·CD =12×12×6√3=36√3. 故选A.5.14 解析:如图,延长FE 交AC 于点J ,过点B 作BH ⊥CD 于点H .∵AB ∥EJ ∥CD ,BE =ED∴AJ =JC ,∠CJO =∠CAB =90°. ∴FJ 垂直平分线段AC .∴圆心O 在EJ 上,连结AO ,设AO =OF =r cm. ∵EJ =12(AB +CD )=12×(12+18)=15(cm) ∴FJ =EJ +EF =15+12=27(cm). ∵∠CAB =∠ACD =∠BHC =90° ∴四边形ACHB 是矩形. ∴AB =CH =12 cm.∴DH =CD -CH =18-12=6(cm). ∵AB ∥CD∴∠BDH =∠ABG =60°. ∴BH =√3DH =√3×6=6√3(cm). ∴AC =BH =6√3 cm. ∴AJ =CJ =3√3 cm.在Rt △AOJ 中,r 2=(3√3)2+(27-r )2 ∴r =14.6.4√10 解析:如图,设两次测量丁字尺的尺身刻度线的交点为O ,则O 为圆心,连结OA ,设l 与AB 交于点C ,∵尺身刻度线l 垂直平分AB∴AC =12AB =2 cm.∵在Rt △AOC 中,OA 2=AC 2+OC 2∴OA =√AC 2+OC 2=√22+62=2√10(cm). ∴这个破损的圆的直径是4√10 cm. 7.解:(1)如图,过点O 作OD ⊥AB ,垂足为点D . ∵AB =8,∴AD =BD =12AB =4. 在Rt △OBD 中,cos ∠ABC =BDOB ∴OB =BD cos∠ABC =445=5.∴☉O 的半径为5.(2)如图,过点C 作CE ⊥AB ,垂足为点E . ∵OC =12OB ,OB =5 ∴BC =32OB =7.5.∵OD ⊥AB ,CE ⊥AB ∴OD ∥CE .∴BOBC =BDBE ,即57.5=4BE . ∴BE =6.∴AE =AB -BE =8-6=2.在Rt △BCE 中,CE =√BC 2-BE 2=√7.52-62=4.5. 在Rt △ACE 中,tan ∠BAC =CEAE =4.52=94∴∠BAC 的正切值为94.8.解:(1)设OC =x .∵弦CD 垂直平分半径OA ∴OE =12OA =12x . ∵PC ⊥OC ,CD ⊥OP ∴∠PCO =∠CEO =90°.∴∠P +∠COP =90°,∠ECO +∠COP =90°. ∴∠P =∠ECO .∴△CEO ∽△PCO ∴OCOP =OEOC .∴x6+x =12x x.∴x =6,经检验x =6是方程的解 ∴☉O 的半径为6.(2)由(1),得OC =6,OE =3,∠OEC =90°.在Rt △COE 中,由勾股定理,得CE =√62-32=3√3. ∵CD ⊥OA ,∴CD =2CE =6√3.。
华师版九年级下册数学27.1.1 圆的基本元素同步练习
第27章 圆
27.1 圆的认识 1.圆的基本元素
1.下列说法中,正确的是( )
A 、弦是直径
B 、半圆是弧
C 、过圆心的线段是直径
D 、圆心相同半径相同的两个圆是同心圆
2、如图,在⊙O 中,点B 、O 、C 和点A 、O 、D 分别在同一条直线上,则图中有( )条弦
A. 2
B. 3
C. 4
D. 5 3、过圆内一点可以做圆的最长弦( )
A. 1条
B.2条
C. 3条
D. 4条 4.下列说法正确的是( )
A 、两个半圆是等弧
B 、同圆中优弧与半圆的差必是劣弧
C 、长度相等的弧是等弧
D 、同圆中优弧与劣弧的差必是优弧
5.如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B ,且AB=OC , 求∠A 的度数.
6.如图,在△ABC 中,∠ACB=90°,∠A=40°;以C 为圆心、CB 为半径的圆交AB•于点D ,求∠ACD 的度数.
A
7.如图,C 是⊙O 直径AB 上一点,过C 作弦DE ,使DC=OC ,∠AOD=40°,求∠BOE•的度数.
8.已知:如图,OA 、OB 为⊙O 的半径,C 、D 分别为OA 、OB 的中点, 求证:AD=BC .
9.已知:如图点O 是∠EPF 的角平分线上的一点,以点O 为圆心的圆和∠EPF 的两边交于点A 、B 、C 、D ,求证:∠OBA=∠OCD
B
A。
华师大版初中数学九年级下册《27.1.1 圆的基本元素》同步练习卷(含答案解析
华师大新版九年级下学期《27.1.1 圆的基本元素》同步练习卷一.填空题(共42小题)1.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.2.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于.3.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为.4.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)5.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A 的度数是.6.半径为5的⊙O中最大的弦长为.7.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的倍.8.已知线段AB=6cm,则经过A、B两点的最小的圆的半径为.9.课本上将绳的一端固定住,另一端系一支笔,将绳子绷直,用笔绕着另一端画一圈就是一个圆,于是我们定义:圆是由到一定点距离都等于定长的所有的点组成的图形.下面是一种画椭圆的方法:(1)在地平面上选两个点,钉上两个钉子;(2)测量两个钉子间距离;(3)选用大于两钉子间距离长度的绳子;(4)将绳子两端分别系在钉子上;(5)将绳子绷直,用笔在绷直的拐角地方划线;(6)将绳子绕一圈,椭圆就得到啦!(如图所示)根据这个过程请你给椭圆下一个定义:.10.圆中最长的弦是.11.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=74°,则∠E=.12.若⊙O的半径为6cm,则⊙O中最长的弦为厘米.13.如图,MN为⊙O的弦,∠M=50°,则∠MON等于.14.如图,一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为厘米.15.⊙O1与⊙O2的半径之比为2:3,则⊙O2与⊙O1的周长之比为:;⊙O2与⊙O1的面积之比为:.16.一个塑料文具胶带如图所示,带宽为1cm,内径为4cm,外径为7cm,已知30层胶带厚1.5mm,则这卷胶带长m.(π≈3.14,结果保留4位有效数字)17.如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010π cm后才停下来.则这只蚂蚁停在点.18.如图所示,1条直线最多能将圆的内部分成2部分,2条直线最多能将圆的内部分成4部分.那么3条直线最多能将圆的内部分成部分,5条直线最多能将圆的内部分成部分.(每部分不要求全等)19.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成部分;圆的十九条弦最多可将圆分成部分.20.如图,一个人握着板子的一端,另一端放在圆柱上,某人沿水平方向推动板子带动圆柱向前滚动,假设滚动时圆柱与地面无滑动,板子与圆柱也没有滑动.已知板子上的点B(直线与圆柱的横截面的切点)与手握板子处的点C 间的距离BC的长为Lm,当手握板子处的点C随着圆柱的滚动运动到板子与圆柱横截面的切点时,人前进了m.21.线段AB=10cm,当AB绕它的旋转一周时,它所“扫描”经过的平面面积最小,此时面积为.22.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.23.到点O的距离是5cm的所有点构成的图形是.24.圆周上有6个点,任两点间连一条线段,则这些线段在圆内的交点最多有个.25.如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积为.26.如图是比例尺为1:200的铅球场地的示意图,铅球投掷圈的直径为2.135m,体育课上,某生推出的铅球落在投掷区的点A处,他的铅球成绩约为m (精确到0.1m).27.如图,两个半径都是4cm的圆外切于点C,一只蚂蚁由点A开始依ABCDEFCGA 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断地爬行,直到行走2006πcm后才停下来,请问这只蚂蚁停在哪一个点?答:停在点.28.已知⊙O的半径为4cm,以O为圆心的小圆与⊙O组成的圆环的面积等于小圆的面积,则这个小圆的半径是cm.29.如果把人的头顶和脚底分别看作一个点,把地球赤道看作一个圆,那么身高2m的小赵沿着赤道环行一周,他的头顶比脚底多行m.30.在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+2=4个部分,3个圆把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14个部分,那么10个圆把平面最多分成个部分.31.如右图中有条直径,有条弦,以点A为端点的优弧有条,有劣弧条.32.圆既是对称图形,又是对称图形.33.如图,圆中以A为一个端点的优弧有条,劣弧有条.34.若圆的半径为r,则圆的周长公式C=,圆的面积公式S=.35.到点O的距离等于4的点的集合是.36.有以下结论:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相等的两个半圆是等弧;⑤长度相等的两条弧是等弧.其中错误的有(填序号).37.如图,圆中有条直径,条弦,圆中以A为一个端点的优弧有条,劣弧有条.38.某校计划在校园内修建一座周长为20m的花坛,同学们设计出正三角形,正方形和圆三种图案,通过计算说明使花坛面积最大的图案是(填图形).39.圆上各点到圆心的距离都.40.牛牛和壮壮在沙滩上玩游戏,需要画一个圆,而他们手中没有任何工具,请你帮他们想一个办法,怎样可以得到一个圆?41.以已知点O为圆心,可以画个圆.42.圆是轴对称图形,它有条对称轴,是直线;圆还是中心对称图形,对称中心是华师大新版九年级下学期《27.1.1 圆的基本元素》同步练习卷参考答案与试题解析一.填空题(共42小题)1.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有2个.【分析】以A为圆心,5cm长为半径作圆,与以AB为直径的圆交于2点,依此即可求解.【解答】解:如图所示:到点A的距离为5cm的点有2个.故答案为:2.【点评】此题考查了圆的认识,关键是熟悉圆可以看做是所有到定点O的距离等于定长r的点的集合的知识点.2.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于半径.【分析】根据半径的含义:连接圆心和圆上任意一点的线段叫做半径;在同圆或等圆中,所有的半径都相等;由此判断即可.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:半径.【点评】此题考查了半径的含义,注意基础知识的积累.3.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为圆心.【分析】根据半径的含义:连接圆心和圆上任意一点的线段叫做半径;在同圆或等圆中,所有的半径都相等;由此判断即可.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:圆心【点评】此题考查了圆的认识,关键是根据半径的含义解答.4.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器中弧PB所对的圆心角是70°,因而P在小量角器上对应的度数为70°.故答案为:70°;【点评】本题主要考查了直径所对的圆周角是90度.能把实际问题转化为数学问题是解决本题的关键.5.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A 的度数是28°.【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【解答】解:由AB=OC,得AB=OB,∠A=∠AOB.由BO=EO,得∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD,即∠A+2∠A=84°,∠A=28°.故答案为:28°.【点评】本题考查了圆的认识,利用了等腰三角形的性质,利用三角形外角的性质得出关于∠A的方程是解题关键.6.半径为5的⊙O中最大的弦长为10.【分析】直径是圆中最大的弦.【解答】解:半径为5的⊙O的直径为10,则半径为5的⊙O中最大的弦是直径,其长度是10.故答案是:10.【点评】本题考查了圆的认识.需要掌握弦的定义.7.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的16倍.【分析】设圆A的半径为a,圆B的半径为b.由2πa=4×2πb,得a=4b,由此即可解决问题.【解答】解:设圆A的半径为a,圆B的半径为b.由题意2πa=4×2πb,∴a=4b,∴⊙A的面积:⊙B的面积=π•(4b)2:πb2=16:1.故答案为16【点评】本题考查圆的有关知识,解题的关键是记住圆的周长公式、面积公式,属于基础题,中考常考题型.8.已知线段AB=6cm,则经过A、B两点的最小的圆的半径为3cm.【分析】经过线段AB最小的圆即为以AB为直径的圆,求出半径即可.【解答】解:根据题意得:经过线段AB最小的圆即为以AB为直径的圆,则此时半径为3cm.故答案为:3cm.【点评】本题考查的是圆的认识,熟知经过线段AB最小的圆即为以AB为直径的圆是解答此题的关键.9.课本上将绳的一端固定住,另一端系一支笔,将绳子绷直,用笔绕着另一端画一圈就是一个圆,于是我们定义:圆是由到一定点距离都等于定长的所有的点组成的图形.下面是一种画椭圆的方法:(1)在地平面上选两个点,钉上两个钉子;(2)测量两个钉子间距离;(3)选用大于两钉子间距离长度的绳子;(4)将绳子两端分别系在钉子上;(5)将绳子绷直,用笔在绷直的拐角地方划线;(6)将绳子绕一圈,椭圆就得到啦!(如图所示)根据这个过程请你给椭圆下一个定义:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹.【分析】根据椭圆的定义,可得答案.【解答】解:椭圆下一个定义:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹,故答案为:平面内与两个定点的距离的和等于常数(大于两定点的距离)的点的轨迹.【点评】本题考查了圆的认识,利用椭圆的画法获得有效信息是解题关键.10.圆中最长的弦是直径.【分析】根据圆的性质直接回答即可.【解答】解:圆中最长的弦是直径,故答案为:直径.【点评】本题考查了圆的认识,解题的关键是了解圆中最长的弦是直径,难度不大.11.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=74°,则∠E=()°.【分析】利用半径相等得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,∵OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×74°=()°.故答案是:()°.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.12.若⊙O的半径为6cm,则⊙O中最长的弦为12厘米.【分析】根据直径为圆的最长弦求解.【解答】解:∵⊙O的半径为6cm,∴⊙O的直径为12cm,即圆中最长的弦长为12cm.故答案为12.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).13.如图,MN为⊙O的弦,∠M=50°,则∠MON等于80°.【分析】利用等腰三角形的性质可得∠N的度数,根据三角形的内角和定理可得所求角的度数.【解答】解:∵OM=ON,∴∠N=∠M=50°,∴∠MON=180°﹣∠M﹣∠N=80°,故答案为80°.【点评】考查圆的认识;利用圆的半径相等这个知识点是解决本题的突破点.14.如图,一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为20厘米.【分析】设大圆半径为R,小圆半径分别为r1,r2,…,r n,根据题意得2r1+2r2+…+2r n=2R,两边都乘以π得到2πr1++2πr2+…+2πr n=2πR,然后根据圆的周长公式求解.【解答】解:设大圆半径为R,小圆半径分别为r1,r2,…,r n,∵小圆的圆心都在大圆的一个直径上,∴2r1+2r2+…+2r n=2R,∴2πr1++2πr2+…+2πr n=2πR,而2πR=20cm,∴2πr1++2πr2+…+2πr n=20cm.故答案为20.【点评】本题考查了圆的认识:在一个平面内,线段OA绕它固定的一个端点O 旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”;圆的周长=2πr (r为圆的半径).15.⊙O1与⊙O2的半径之比为2:3,则⊙O2与⊙O1的周长之比为:3:2;⊙O2与⊙O1的面积之比为:9:4.【分析】设⊙O1与⊙O2的半径分别为R1与R2,则R1:R2=2:3,然后根据圆的周长和面积公式计算即可.【解答】解:设⊙O1与⊙O2的半径分别为R1与R2,∵R1:R2=2:3,∴⊙O2与⊙O1的周长之比=2πR2:2πR1=3:2,⊙O2与⊙O1的面积之比=πR22:πR12=9:4.故答案为3:2,9:4.【点评】本题考查了圆的认识:圆的周长=2πR(R为圆的半径);圆的面积=πR2(R为圆的半径).16.一个塑料文具胶带如图所示,带宽为1cm,内径为4cm,外径为7cm,已知30层胶带厚1.5mm,则这卷胶带长51.81m.(π≈3.14,结果保留4位有效数字)【分析】首先求出胶带的体积,用胶带的体积除以一米长的胶带的体积即可求得.【解答】解:胶带的体积是:π(72﹣42)•1=33πcm3=33π×10﹣6m3一米长的胶带的体积是:0.01×1×5×10﹣4=5×10﹣6m3因而胶带长是:(33π×10﹣6)÷(5×10﹣6)≈51.81m.【点评】把求长的问题转化为求体积的问题是解决本题的关键.17.如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010π cm后才停下来.则这只蚂蚁停在点E.【分析】首先求得蚂蚁由点A开始ABCDEFCGA的顺序走一周的路线长,然后确定走2010π cm是走了多少周,即可确定.【解答】解:A开始ABCDEFCGA的顺序转一周的路径长是:8π+4π=12πcm,蚂蚁直到行走2010π cm所转的周数是:2010π÷12π=167…6π.即转167周以后又走了6πcm.从A到B得路长是:2π,再到C的路线长也是2π,从C到D,到E的路线长是2π,则从A行走6πcm到E点.故答案是:E.【点评】本题主要考查了圆的周长的计算,正确而理解蚂蚁行走一周以后又回到A,是一个循环的过程,是解决本题的关键.18.如图所示,1条直线最多能将圆的内部分成2部分,2条直线最多能将圆的内部分成4部分.那么3条直线最多能将圆的内部分成7部分,5条直线最多能将圆的内部分成16部分.(每部分不要求全等)【分析】n条直线最多能将圆的内部分成多少部分?有(n2)部分.需要动手画图,观察,找规律.【解答】解:3条直线最多能将圆的内部分成4+3=7部分;4条直线最多能将圆的内部分成7+4=11条;5条直线最多能将圆的内部分成11+5=16条.n条直线最多能将圆的内部分成(n2)部分.【点评】本题考查画图观察找规律的能力.19.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成11部分;圆的十九条弦最多可将圆分成191部分.【分析】根据每增加一条弦,增加了多少个部分,由易到难,寻找变化规律.【解答】解:一条弦将圆分成1+1=2部分,二条弦将圆分成1+1+2=4部分,三条弦将圆分成1+1+2+3=7部分,四条弦将圆分成1+1+2+3+4=11部分,…n条弦将圆分成1+1+2+3+…+n=1+部分,当n=19时,1+=191部分.【点评】本题是规律探讨性题型,由基本图形,逐步寻找一般规律.20.如图,一个人握着板子的一端,另一端放在圆柱上,某人沿水平方向推动板子带动圆柱向前滚动,假设滚动时圆柱与地面无滑动,板子与圆柱也没有滑动.已知板子上的点B(直线与圆柱的横截面的切点)与手握板子处的点C 间的距离BC的长为Lm,当手握板子处的点C随着圆柱的滚动运动到板子与圆柱横截面的切点时,人前进了2L m.【分析】人在向前运动时,圆也向前运动,人运动的距离就是杆子减少的长度与圆柱向前运动的距离的和.【解答】解:因为圆向前滚动的距离是Lm,所以人前进了2Lm.【点评】理解人运动的距离就是杆子减少的长度与圆柱向前运动的距离的和是解题的关键.21.线段AB=10cm,当AB绕它的中点旋转一周时,它所“扫描”经过的平面面积最小,此时面积为25πcm2.【分析】若该线段扫描经过的面积最小,即它旋转所形成的圆的面积最小,即半径最小,可确定,当线段AB绕着其中点旋转时经过的面积最小.【解答】解:当绕AB的中点旋转一周时,所形成的圆的半径最小,即其面积最小:S=52π=25π.故答案为中点、其面积为25cm2.【点评】本题考查了对圆的认识,知道圆的旋转定义及圆的面积公式是解题的关键.22.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是π.【分析】理解A到A′的距离是圆的周长,根据周长公式即可求解.【解答】解:将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A'重合,则转过的距离是圆的周长是π,因而点A'对应的实数是π.故答案为:π.【点评】本题主要考查了圆的周长公式的掌握.23.到点O的距离是5cm的所有点构成的图形是以O为圆心,5cm为半径的圆形.【分析】根据圆的定义即可得到答案.【解答】解:到点O的距离是5cm的所有点构成的图形是:以O为圆心,5cm 为半径的圆形.【点评】本题主要考查了圆的集合定义.24.圆周上有6个点,任两点间连一条线段,则这些线段在圆内的交点最多有15个.【分析】要求最多的交点数,本题等价于将6个点4个分组共有多少组,进而得出答案.【解答】解:每4个圆周上点就可以有一个内部交点,所以当这些交点不重合的时候,圆内交点最多,所以,本题等价于将6个点4个分组共有多少组,显然应该是:=15.故答案为:15.【点评】求交点的最多数,得出即将6个点4个分组共有多少组是解题关键.25.如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积为.【分析】剩下的纸板面积即阴影部分的面积.大圆的面积减去两个小圆的面积就是阴影部分的面积.【解答】解:S=πab.阴故答案为:πab.【点评】考查了不规则图形式面积的求法.不规则图形的面积求法一般采用转化为规则图形的面积和(或差).26.如图是比例尺为1:200的铅球场地的示意图,铅球投掷圈的直径为2.135m,体育课上,某生推出的铅球落在投掷区的点A处,他的铅球成绩约为 6.1m (精确到0.1m).【分析】首先量得图上距离,投掷圈的圆心到A点的距离大约3.6厘米,再根据实际距离=比例尺÷图上距离进行计算.【解答】解:∵3.6÷≈720cm=7.2m,∴7.2﹣2.135÷2=7.2﹣1.0675=6.1325≈6.1m.故答案为:6.1m.【点评】利用刻度尺量出圆心到A得图上距离,根据比例尺得到实际距离是解题的基本思路,正确进行测量是解决本题的关键.27.如图,两个半径都是4cm的圆外切于点C,一只蚂蚁由点A开始依ABCDEFCGA 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断地爬行,直到行走2006πcm后才停下来,请问这只蚂蚁停在哪一个点?答:停在D点.【分析】利用周长公式计算,再根据相邻两点间的路程计算走了整圈后,又走了几个点.【解答】解:根据行走一圈的周长是16π,每相邻两点间的路程是2π,2006π=16π×125+6π,则最后停在了第4个点,即D点.故选D.【点评】这里首先要计算一共走了多少圈,还余多少路程,再根据相邻两点间的路程计算走了整圈后,又走了几个点.28.已知⊙O的半径为4cm,以O为圆心的小圆与⊙O组成的圆环的面积等于小圆的面积,则这个小圆的半径是cm.【分析】由题意可求得大圆的面积及小圆的面积,再根据面积公式即可求得小圆的半径.【解答】解:∵⊙O的半径为4cm,∴圆的面积是16cm2,∴小圆的面积是8cm2,设小圆的半径是r,则πr2=8,∴r=2cm.【点评】本题主要考查圆的面积的计算公式.29.如果把人的头顶和脚底分别看作一个点,把地球赤道看作一个圆,那么身高2m的小赵沿着赤道环行一周,他的头顶比脚底多行4πm.【分析】根据圆的周长公式进行分析即可得到答案.【解答】解:设地球的半径是R,则人头绕地球环形时,人头经过的圆的半径是(R+2)m.地球的周长是2πRm,人头环形一周的周长是2π(R+2)m,因而他的头顶比脚底多行2π(R+2)﹣2πR=4πm.【点评】本题主要考查了圆的周长的计算方法.30.在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+2=4个部分,3个圆把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14个部分,那么10个圆把平面最多分成92个部分.【分析】根据例题可以得到n个圆分成的部分有:(n﹣1)•n+2个部分.进而就可以得到结果.【解答】解:10个圆把平面最多分成9×10+2=92个部分.【点评】此题注意发现规律是解决本题的关键.31.如右图中有1条直径,有4条弦,以点A为端点的优弧有2条,有劣弧2条.【分析】根据直径、弦、优弧及劣弧的概念解答即可得.【解答】解:图中直径只有AB这1条,弦有AC、AB、CD、BC这4条,以点A 为端点的优弧有、这2条,劣弧有、这2条,故答案为:1、4、2、2.【点评】本题主要考查圆的认识,解题的关键是掌握连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.32.圆既是轴对称图形,又是中心对称图形.【分析】根据轴对称图形、中心对称图形的定义即可判断.【解答】解:圆既是轴对称图形,又是中心对称图形.故答案为轴、中心;【点评】本题考查圆的认识,轴对称图形,中心对称图形等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.33.如图,圆中以A为一个端点的优弧有3条,劣弧有3条.【分析】根据优弧和劣弧的定义写出答案即可.【解答】解:圆中以A为一个端点的优弧有、、这3条,以A为一个端点的劣弧有、、这3条,故答案为:3、3.【点评】本题考查了圆的认识,解题的关键是能够了解优弧和劣弧的定义.34.若圆的半径为r,则圆的周长公式C=2πr,圆的面积公式S=πr2.【分析】根据圆的面积和周长公式即可解决问题;【解答】解:若圆的半径为r,则圆的周长公式C=2πr,圆的面积公式S=πr2.故答案为2πr,πr2.【点评】本题考查圆的认识,圆的面积和周长公式等知识,解题的关键是记住圆的面积公式和周长公式.35.到点O的距离等于4的点的集合是以点O为圆心,以4为半径的圆.【分析】根据圆的定义即可解答.【解答】解:到点O的距离等于8的点的集合是:以点O为圆心,以4为半径的圆.故答案是:以点O为圆心,以4为半径的圆.【点评】本题考查了圆的定义:圆是到定点距离等于定长的点的集合.36.有以下结论:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相等的两个半圆是等弧;⑤长度相等的两条弧是等弧.其中错误的有②⑤(填序号).【分析】根据弦和直径的定义对①②进行判断;根据弧的定义对③进行判断;根据等弧的定义对④⑤进行判断.【解答】解:直径是最长的弦,所以①为真命题;弦不一定是直径,所以②为假命题;半圆是弧,但弧不一定是半圆,所以③为真命题;半径相等的两个半圆是等弧,所以④为真命题;长度相等的两条弧不一定是等弧,所以⑤为假命题.故答案为②⑤.【点评】本题考查了圆的认识,掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)是解题的关键.37.如图,圆中有一条直径,三条弦,圆中以A为一个端点的优弧有四条,劣弧有四条.【分析】根据直径、弦、优弧和劣弧的定义写出答案即可.【解答】解:圆中有AB一条直径,AB、CD、EF三条弦,圆中以A为一个端点的优弧有四条,劣弧有四条,故答案为:一,三,四,四.【点评】本题考查了圆的认识,解题的关键是能够了解圆内有关的定义,难度不大.38.某校计划在校园内修建一座周长为20m的花坛,同学们设计出正三角形,正方形和圆三种图案,通过计算说明使花坛面积最大的图案是圆(填图形).【分析】根据周长相等的所有图形中圆的面积最大求解.【解答】解:∵周长相等的所有图形中圆的面积最大,∴同学们设计出正三角形,正方形和圆三种图案,通过计算说明使花坛面积最大的图案是圆,。
2022春九年级数学下册 第27章 圆27.1 圆的认识 1圆的基本元素习题课件华东师大版
14.如图,在等腰梯形ABCD中,AB∥CD,AD=BC.将 △ACD沿对角线AC翻折后,点D恰好与边AB的中点M 重合.
(1)点C是否在以AB为直径的圆上?请说明理由. 解:点C在以AB为直径的圆上. 理由:如图,连结MC、MD.由折叠的性质知 ∠DAC=∠BAC,AD=AM.
∵AB∥CD,∴∠DCA=∠BAC, ∴∠DAC=∠DCA,∴AD=CD. ∵AD=AM,∴CD=AM, ∴四边形AMCD是平行四边形,∴MC=AD. ∵AM=BM,∴CD=BM, ∴四边形BCDM是平行四边形,∴MD=BC.
A.2条 ) A.长度相等的两条弧是等弧 B.直径是圆中最长的弦 C.面积相等的两个圆是等圆 D.半径相等的两个半圆是等弧
6.如图,点A、B、C在⊙O上,∠A=36°,∠C=28°, 则∠B等于( C )
A.100° B.72° C.64° D.36°
谢谢观赏
You made my day!
A.3 B.4 C.5 D.6
【点拨】∵CH⊥AB,垂足为H,∴∠CHB=90°.
∵点 M 是 BC 的中点,∴MH=12BC. ∵BC的最大值是直径的长,⊙O的半径是3, ∴MH的最大值为3. 【答案】A
*9.如图,在以原点为圆心,2 为半径的⊙O 上有一点 C, ∠COA=45°,则点 C 的坐标为( ) A.( 2, 2) B.( 2,- 2) C.(- 2, 2) D.(- 2,- 2)
HS版九年级下
第27章 圆
27.1 圆的认识 27.1.1 圆的基本元素
提示:点击 进入习题
1D 2A 3 见习题 4B
5A 6C 7C 8A
答案显示
提示:点击 进入习题
9C
10 C
11 见习题
九数下册第27章圆27.1圆的认识同步练习(附答案华东师大版)
九数下册第27章圆27.1圆的认识同步练习(附答案华东师大版)九年级数学下册第27章圆27.1圆的认识同步练习(附答案华东师大版)27.1 圆的认识第1课时1.下列结论正确的是( )A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径2.如图,在半圆的直径上作4个正三角形,若半圆周长为C1,4个正三角形的周长和A.C1>C2B.C 1C.C1=C2D.不能确定3.如图,在☉ O中,弦的条数是( )A.2B.3C.4D.以上均不正确4.如图,以坐标原点O为圆心的圆与y轴交于点A,B,且OA=1,则点B的坐标是A.(0,1)B.(0,-1)C.(1,0)D.(-1,0)5.如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是( )A.15B.15+5√2C.20D.15+5 √56.如图,AB是☉O的直径,点C,D在☉O上,且点C,D在AB的异侧,连结AD,OD,OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为.7.已知,如图,OA,OB为☉O的半径,C,D分别为OA,OB的中点.求证:(1)∠A=∠B;(2)AE=BE.8.已知:如图, AB是☉O的直径,点C,D在☉O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?参考答案1.C2.B3.C4.B5.B6. 40°7. 证明:(1)因为C,D分别是OA,OB的中点,所以OC=OD=AC=BD,在△AOD和△BOC中,OC=OD,∠AOD=∠BOC,OA=OB,所以△AOD≌△BOC(S.A.S.),所以∠A=∠B.(2)在△ACE和△BDE中,AC=BD,∠A=∠B,∠AEC=∠BED,所以△ACE≌△ BDE(A.A.S.),所以AE=BE.8. 解:AC与BD相等.理由如下:如图,连结OC,OD.因为OA=OB,AE= BF,所以OE=OF.因为CE⊥AB,DF⊥AB,所以∠OEC=∠OFD=90°.在Rt△OEC和R t△OFD中,{■(OE=OF”,” @OC=OD”,” )┤所以Rt△OEC≌Rt△OFD(H.L.),所以∠COE=∠DOF.在△AOC和△BOD中,{■(AO=BO”,” @∠AOC=∠BOD”,” @OC=OD”,” )┤所以△AOC≌△BOD(S.A.S.),所以AC=BD.第2课时1.下列说法中,正确的是( )A.等弦所对的弧相等B.等于半径的弦所对的圆心角为60°C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.如图,AB,CD是☉ O的直径,⏜AE=⏜BD,若∠AOE=32°,则∠COE 的度数是( )A.32°B.60°C.68°D.64°3.如图,AB是圆O的直径,BC,CD,DA是圆O的弦,且BC=CD=DA,则∠BCD等于( )A,1 00° B.11 0°C.120°D.135°4.如图,已知点A,B,C均在☉O上,并且四边形OABC是菱形,那么∠AOC与2∠OAB 之间的关系是( )A.∠AOC>2∠OABB.∠AOC=2∠OABC.∠AOC5.如图,弦AC,BD相交于E,并且⏜AB=⏜BC=⏜CD,∠BEC=110°,则∠ACD的度数是.6.如图,AB是☉O的直径,已知AB=2,C,D是☉O上的两点,且⏜BC+⏜BD=2/3 ⏜AB,M是AB上一点,则MC+MD的最小值是.7.如图所示,在☉O中,AB,CD为直径,判断AD与BC的位置关系.8.如图,已知AB为☉O的直径,点C为半圆ACB上的动点(不与A,B两点重合),过点C作弦CD⊥AB,∠OCD的平分线交圆于点P,则点P的位置有何规律?请证明你的结论.参考答案7. 解:AD∥BC.理由:因为AB,CD为☉O的直径,所以OA=OD=O C=OB.又∠ AOD=∠BOC,所以△AOD≌△BOC.所以∠A=∠B.所以AD∥BC,即AD与BC的位置关系为平行.8. 解:点P为半圆ADB的中点.理由如下:连结OP,如图,因为∠OCD的平分线交圆于点P,所以∠PCD=∠PCO,因为OC=OP,所以∠PCO=∠OPC,所以∠PCD=∠OPC,所以OP∥CD,因为CD⊥AB,所以O P⊥AB,所以⏜PA=⏜PB,即点P为半圆ADB的中点.第3课时1.如图,在☉O中,⏜AB=⏜AC,∠AOB=40°,则∠ADC的度数是( )A.40°B.30°C.20°D.15°2.如图,BC是☉O的直径,A是☉O上一点,∠OAC=32°, 则∠B的度数是( )A.58°B.60°C.64°D.68°3.如图,点A,B,C,D都在☉O 上,且四边形OABC是平行四边形,则∠D的度数为( )A.45°B.60°C.75°D.不能确定4.如图,在半径为5的☉O中,弦AB=6,点C是优弧⏜ACB上一点(不与A,B重合),则cos C的值为( )A.4/3B.3/4C.3/5D.4/55.如图,☉C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内☉C上一点,∠BMO=120°,则☉C的半径为( )A.6B.5C.3D.√(2 2/3)6. AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.7.如图,圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D ,则∠BOD=.8.如图,已知☉O的内接四边形ABCD两组对边的延长线分别交于点E,F,若∠E+∠F=70°,则∠A的度数是.9.如图,已知A,B,C,D是☉O上的四点,延长DC,AB相交于点E,若BC=BE.10.如图所示,☉O的直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交☉O于D,求BC,AD,BD的长.11. A,B是圆O上的两点,∠AOB=60°,C是圆O上不与A,B重合的任一点,求∠ACB 的度数是多少?12.如图,在☉O中,AB 是直径,CD是弦(不过圆心),AB⊥CD .(1)E是优弧CAD上一点(不与C,D重合),求证:∠CED=∠COB;(2)点E′在劣弧CD上(不与C,D重合)时,∠ CE′D与∠COB有什么数量关系?请证明参考答案1.C2.A3.B4.D5.C6. √27. 30°8. 55°9. 证明:因为A,D,C,B四点共圆,所以∠A+∠BCD=180°,因为∠BCD+∠BCE=180°,所以∠A=∠BCE,因为BC=BE,所以∠BCE=∠E,即△ADE是等腰三角形.10. 解:因为AB是直径,所以∠ACB=∠ADB=90°,在Rt△ABC中,AB2=AC2+BC2, AB=10 cm,AC=6 cm,所以BC2=AB2-AC2=102-62=64, 所以BC=√64=8(cm),所以⏜AD=⏜DB,所以AD=BD,又在Rt△ABD中,AD2+BD2=A B2,所以AD2+BD2=102,所以AD=BD=√(100/2)=5√2(cm).11. 解:分两种情况:(1)当C点在劣弧AB上时,如图所示,A,B是圆O上两点,∠AOB=60°,所以弧AB的度数为60°,优弧ADB的度数为300°,所以∠ACB=150°.(2)当点C在优弧ADB上时, ∠ACB=1/2∠AOB=30°.综上所述∠ACB为30°或150°.12. (1)证明:如图所示,连结OD. 因为AB是直径,AB⊥CD,所以⏜BC=⏜BD,所以∠COB=∠DOB=1/2∠COD.又因为∠CED=1/2∠COD,所以∠CED=∠COB.(2)解:∠CE′D与∠COB的数量关系是∠CE′D+∠COB=180°.理由:因为∠CED=1/2∠COD,∠CE′D=180°-∠CED,由(1)知,∠CED=∠COB,所以∠CE′D+∠COB=180°.。
九年级数学下册第27章圆27.1圆的认识27.1.1圆的基本元素练习(新版)华东师大版
第27章 圆元的基本元素1.如图,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,则圆中弦的条数为( ) A .2 B .3 C .4 D .52.如图所示,P 是⊙O 内的一点,P 到⊙O 的最小距离为4 cm ,最大距离为9 cm ,则该⊙O 的直径为( )A .6.5 c mB .2.5 cmC .13 cmD .不可求3.[2018·无锡]如图,点A 、B 、C 都在⊙O 上,OC ⊥OB ,点A 在劣弧BC ︵上,且OA =AB ,则∠ABC =______.4.一个圆的最大的弦长为10 cm ,则此圆的面积为__________. 5.已知点A 、B 和直线l ,作一个圆,使它过点A 、B ,并且圆心在l 上. (1)当l 与直线AB 不垂直时,可以作几个圆? (2)当l 与直线AB 垂直时,情况又怎样?6.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,CE ⊥AB 于E ,DF ⊥AB 于F ,且AE =BF ,AC 与BD 相等吗?为什么?7.如图,AB、CD是⊙O的两条互相垂直的直径.(1)试判断四边形ACBD是什么特殊的四边形,为什么?(2)若⊙O的半径r=2 cm,求四边形ACBD的面积.8.如图,MN为⊙O直径,四边形ABCD、EFGD是正方形,小正方形的面积为16,求⊙O 的半径.参考答案【分层作业】1. A 2. C 3. 15° 4. 25πcm 25. 解:(1)可以作一个圆,圆心为线段AB 的垂直平分线与直线l 的交点. (2)分两种情况:①当直线l 经过线段AB 的中点时,可以作无数个圆; ②当直线l 不经过线段AB 的中点时,这样的圆不能作出.6.答图解:AC 与BD 相等.理由如下: 如答图,连结OC 、OD . ∵OA =OB ,AE =BF , ∴OE =OF .∵CE ⊥AB ,DF ⊥AB , ∴∠OEC =∠OFD =90°. 在Rt △OEC 和Rt △OFD 中,⎩⎪⎨⎪⎧OE =OF ,OC =OD , ∴Rt △OEC ≌Rt △OFD (HL), ∴∠COE =∠DOF , ∴AC ︵=BD ︵, ∴AC =BD .7. 解:(1)∵OA =OC =OB =OD ,AB =CD ,AB ⊥CD , ∴四边形ACBD 是正方形.(2)S 正方形ACBD =12AB ·CD =12×4×4=8(cm 2).8.答图解:连结OC、OF,如答图.设AD=2x,∵CO2=DO2+CD2.∴x2+(2x)2=r2.∵OF2=OG2+FG2,∴r2=(x+4)2+42=x2+8x+32,∴x2+(2x)2=x2+8x+32,解得x1=4,x2=-2(舍去),∴r2=5×42,∴r=4 5.。
27.1 圆的认识 华东师大版九年级数学下册同步练习(含答案)
华师大版九下 27.1 圆的认识一、选择题(共13小题)1. 如图所示的四个图形的阴影部分面积之间的关系是( )A. S甲>S乙>S丙>S丁B. S甲>S乙(=S丙)>S丁C. S甲(=S丁)>S乙(=S丙)D. 无法判断2. 在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为( )A. 6B. 9C. 12D. 153. 如图,AB是⊙O的直径,C,D是圆上两点,连接AC,BC,AD,CD.若∠CAB=55∘,则∠ADC的度数为( )A. 55∘B. 45∘C. 35∘D. 25∘4. 如图所示,半径为1的小圆在半径为9的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为( )A. 17πB. 32πC. 49πD. 80π5. 图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看做正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近于( )A. 45B. 34C. 23D. 126. 一个圆的半径增加2 cm,则这个圆( )A. 周长增加4 cmB. 周长增加4π cmC. 面积增加4 cm2D. 面积增加4π cm27. 下列图形中的角,是圆心角的是( )A. B.C. D.8. 同圆中扇形甲的弧长是扇形乙的弧长的16,那么扇形乙的面积是扇形甲面积的( )A. 36倍B. 12倍C. 6倍D. 3倍9. 下列说法正确的是( )A. 弦是直径B. 弧是半圆C. 一条弦把圆分成两条弧,这两条弧可能是等弧D. 半圆是圆中最长的弧10. 圆的面积扩大到原来的16倍,半径扩大到原来的( )A. 4倍B. 8倍C. 16倍D. 32倍11. 如图,AB,AC,CD,BD分别为四个圆的直径,甲、乙两人分别沿图示方向从A到B,结果是( )A. 甲、乙走的路程一样多B. 甲走的路程多C. 乙走的路程多D. 无法比较12. 在⊙O中,弦AB,CD的弦心距分别是3,4,如果AB∥CD,则AB,CD之间的距离为( )A. 7B. 1C. 7或1D. 不能确定13. 下列选项中,∠ACB是圆心角的是( )A. B.C. D.二、填空题(共8小题)14. 圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆.其中,定点称为,定长称为.15. 下列图形中的角,是圆心角的是,不是圆心角的是.(写图形编号)⊙O于点D,则CD的最大值为.17. 如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E,F分别是AD,BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18. 如图,ABCD是围墙,AB∥CD,∠ABC=120∘,一根6 m长的绳子,一端拴在围墙一角的柱子B处,另一端E处拴着一只羊,这只羊活动区域的最大面积为.19. 某海关大钟钟面的直径是5.8米,该大钟钟面的面积是平方米.(结果保留一位小数)20. 已知:如图,在⊙O中,AB=BC=CD,OB,OC分别交AC,BD于E,F,则下列结论:①OE=BE;②OC⊥BD;③AE=DF;④OE=OF中正确的有.(填序号)21. 如图,在锐角△ABC中,∠A=45∘,BC=2 cm,能够将△ABC完全覆盖的最小圆形纸片的直径是cm.三、解答题(共5小题)22. 如图,已知CD,BE是⊙A的弦,CD=EB.请在图中的圆心角及其所对的弧、所对的弦之间,至少找出5对相等关系.23. 如图,已知⊙O的半径OA,OB,C在AB上,CD⊥OA于点D,CE⊥OB于点E,且CD=CE,求证:AC=BC.24. 某开发区的大标记牌上,要用油漆漆出如图所示(图中阴影部分)的三种标点符号:句号、逗号、问号.已知大圆半径为R,小圆半径为r,且R=2r.如果均匀用料.那么哪一个标点符号的油漆用得多?25. 如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.26. 有一个周长为62.8米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌.现有射程为20米,15米,10米的三种装置,你认为选哪种比较合适?安装在什么地方?答案一选择题1. C2. C【解析】如图所示,∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC=DO2―CO2=6,∴DE=2DC=12.3. C【解析】∵AB是⊙O的直径,∴∠ACB=90∘,又∵∠CAB=55∘,∴∠B=35∘,∴∠ADC=∠B=35∘.4. B5. C【解析】如图,连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90∘,∴AC为圆的直径,∴AC =2AB =2a ,则正方形桌面与翻折成的圆形桌面的面积之比为2=2π≈23,故选C .6. B7. C8. C9. C 10. A【解析】圆的面积与半径的平方成正比,面积扩大 16 倍,则半径扩大 4 倍.11. A【解析】甲走的路程:12πAB ,乙走的路程:12πAC +12πCD +12πBD =12π(AC +CD +BD )=12πAB , ∴ 甲、乙走的路程一样多.12. C 13. B 二 填空题14. 圆心,半径15. (1),(2),(3),(4),(5),(6)【解析】根据圆心角的定义可得(1),(2)是圆心角;(3),(4),(5),(6)不是圆心角.16. 12【解析】连接 OD ,如图,∵CD ⊥OC , ∴∠DCO =90∘,∴CD =OD 2―OC 2,当 OC 的值最小时,CD 的值最大,当 OC ⊥AB 时,OC 最小,此时 D ,B 两点重合,∴CD =CB =12AB =12×1=12,即 CD 的最大值为 12.17. π―1【解析】延长 DC ,CB 交 ⊙O 于 M ,N ,则 图中阴影部分的面积=14×(S 圆O ―S 正方形ABCD )=14×(4π―4)=π―1.18.38π3【解析】(1)如图,扇形 BFG 和扇形 CGH 为羊活动的区域;(2)S 扇形GBF =120π×62360=12π m 2,S 扇形HCG =60π×22360=23π m 2,∴ 羊活动区域的面积为:12π+23π=38π3 m 2.19. 26.420. ②③④21. 22【解析】由题意可知,锐角 △ABC 的最小覆盖圆为 △ABC 的外接圆,则作 △ABC 的外接圆,如图,作圆的直径 CH ,连接 BH ,由圆周角定理的推论得∠H =∠A =45∘,∠HBC =90∘,∵BC=2 cm,∴CH=2BC=22 cm.三解答题22. CD=EB,∠DAC=∠EAB,DE=CB,∠DAE=∠CAB,S△ADC=S△ABE.23. ∵CD=CE,CD⊥OA,CE⊥OB,∴∠AOC=∠BOC,∴AC=BC.24. 问号的面积最大,油漆用得最多(提示:S句号=π(R2―r2)=3πr2,S逗号=12πR2=2πr2,S问号=πR2―2―12πr2=134πr2).25. (1)连接AC,如图(1)所示,∵C是弧BD的中点,∴∠DBC=∠BAC.在△ABC中,∠ACB=90∘,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90∘,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB.∴∠BCE=∠DBC.∴CF=BF.(2)连接OC交BD于G,如图(2)所示.∵AB是⊙O的直径,AB=2OC=10,∴∠ADB=90∘.∴BD=AB2―AD2=102―62=8.∵C是弧BD的中点,∴OC⊥BD,DG=BG=1BD=4,2∵OA=OB,∴OG是△ABD的中位线.∴OG=1AD=3,2∴CG=OC―OG=5―3=2,在Rt△BCG中,由勾股定理得BC=CG2+BG2=22+42=25.26. 选10米的装置合适,安装在圆形草坪中心位置.。
(华师大版)九年级数学下:27.1.1圆的基本元素(含答案)
27.1.1圆的基本元素一.选择题(共8小题)1.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.102.下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧1题图3题图4题图5题图3.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°4.如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是()A.15 B.15+5C.20 D.15+55.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定6.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C 作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B . C . D .7.车轮要做成圆形,实际上就是根据圆的特征()A.同弧所对的圆周角相等B.直径是圆中最大的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形8.如图,以坐标原点O为圆心的圆与y轴交于点A、B,且OA=1,则点B的坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)6题图8题图9题图10题图二.填空题(共6小题)9.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_________.10.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是_________.11.如图,AB为⊙O直径,点C、D在⊙O上,已知∠AOD=50°,AD∥OC,则∠BOC=_________度.11题图12题图13题图12.如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD=_________.13.如图①是半径为1的圆,在其中挖去2个半径为的圆得到图②,挖去22个半径为()2的圆得到图③…,则第n(n>1)个图形阴影部分的面积是_________.14.如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=_________.14题图三.解答题(共7小题)15.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.16.如图,CD是⊙O的直径,E是⊙O上一点,∠EOD=48°,A为DC延长线上一点,且AB=OC,求∠A的度数.17.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.18.如图,点O是同心圆的圆心,大圆半径OA,OB分别交小圆于点C,D,求证:AB∥CD.19.已知AB为⊙O的弦,C、D在AB上,且AC=CD=DB,求证:∠AOC=∠DOB.20.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA延长线于E,交半圆于C,且CE=AO,求∠E的度数.21.如图,点B是线段AC上的一点,分别以AB、BC、CA为直径作半圆,求证:半圆AB的长与半圆BC的长之和等于半圆AC的长.27.1.1圆的基本元素参考答案与试题解析一.选择题(共8小题)1.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A. 4 B.5 C.6 D.10考点:圆的认识;多边形内角与外角.专题:压轴题.分析:因为五边形的各边长都和小圆的周长相等,所有小圆在每一边上滚动正好一周,另外五边形的外角和为360°,所有小圆在五个角处共滚动一周,可以求出小圆滚动的圈数.解答:解:因为五边形的各边长都和小圆的周长相等,所有小圆在每一边上滚动正好一周,在五条边上共滚动了5周.由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,所以小圆在五个角处共滚动一周.因此,总共是滚动了6周.故选:C.点评:本题考查的是对圆的认识,根据圆的周长与五边形的边长相等,可以知道圆在每边上滚动一周.然后由多边形外角和是360°,可以知道圆在五个角处滚动一周.因此可以求出滚动的总圈数.2.下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧考点:圆的认识.分析:利用圆的有关定义进行判断后利用排除法即可得到正确的答案;解答:解:A、直径相等的两个圆是等圆,正确,不符合题意;B、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C、圆中最长的弦是直径,正确,不符合题意;D、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选B.点评:本题考查了圆的认识,了解圆中有关的定义及性质是解答本题的关键.3.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°考点:圆的认识;平行线的性质.分析:首先由AD∥OC可以得到∠BOC=∠DAO,又由OD=OA得到∠ADO=∠DAO,由此即可求出∠AOD的度数.解答:解:∵AD∥OC,∴∠AOC=∠DAO=70°,又∵OD=OA,∴∠ADO=∠DAO=70°,∴∠AOD=180﹣70°﹣70°=40°.故选D.点评:此题比较简单,主要考查了平行线的性质、等腰三角形的性质,综合利用它们即可解决问题.4.如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是()A.15 B.15+5C.20 D.15+5考点:圆的认识;等边三角形的性质;等腰直角三角形.专题:计算题.分析:连结ADBP,PA,由于弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,可得到△ABD为等腰直角三角形,则AD=BD,由于△ABC 为等边三角形,所以AC=BC=AB=5,BD=BP=5,当点P与点D重合时,AP最大,四边形ACBP周长的最大值,最大值为AC+BC+BD+AD=15+5.解答:解:连结AD,BP,PA,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠ABD=90°,∴AD=AB,∵△ABC为等边三角形,∴AC=BC=AB=5,∴BD=BP=5,当点P与点D重合时,四边形ACBP周长的最大值,最大值为AC+BC+BD+AD=5+5+5+5=15+5.故选B.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等边三角形的性质和等腰直角三角形的性质.5.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定考点:圆的认识;等边三角形的性质.分析:首先设出圆的直径,然后表示出半圆的弧长和三个正三角形的周长和,比较后即可得到答案.解答:解:设半圆的直径为a,则半圆周长C1为:aπ,4个正三角形的周长和C2为:3a,∵aπ<3a,∴C1<C2故选B.点评:本题考查了圆的认识及等边三角形的性质,解题的关键是设出圆的直径并表示出C1和C2.6.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C 作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B .C .D.考点:圆的认识.专题:压轴题.分析:首先根据AB、AC的长求得S1+S3和S2+S4的值,然后两值相减即可求得结论.解答:解:∵AB=4,AC=2,∴S1+S3=2π,S2+S4=,∵S1﹣S2=,∴(S1+S3)﹣(S2+S4)=(S1﹣S2)+(S3﹣S4)=π∴S3﹣S4=π,故选:D.点评:本题考查了圆的认识,解题的关键是正确的表示出S1+S3和S2+S4的值.7.车轮要做成圆形,实际上就是根据圆的特征()A.同弧所对的圆周角相等B.直径是圆中最大的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形考点:圆的认识.分析:根据车轮的特点和功能进行解答.解答:解:车轮做成圆形是为了在行进过程中保持和地面的高度不变,是利用了圆上各点到圆心的距离相等,故选C.点评:本题考查了对圆的基本认识,即墨经所说:圆,一中同长也.8.如图,以坐标原点O为圆心的圆与y轴交于点A、B,且OA=1,则点B的坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)考点:圆的认识;坐标与图形性质.分析:先根据同圆的半径相等得出OB=OA=1,再由点B在y轴的负半轴上即可求出点B的坐标.解答:解:∵以坐标原点O为圆心的圆与y轴交于点A、B,且OA=1,∴点B的坐标是(0,﹣1).故选B.点评:本题考查了对圆的认识及y轴上点的坐标特征,比较简单.二.填空题(共6小题)9.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.专题:几何图形问题.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.解答:解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.10.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是60°.考点:圆的认识;等腰三角形的性质.分析:利用等边对等角即可证得∠C=∠DOC=20°,然后根据三角形的外角等于不相邻的两个内角的和即可求解.解答:解:∵CD=OD=OE,∴∠C=∠DOC=20°,∴∠EDO=∠E=40°,∴∠EOB=∠C+∠E=20°+40°=60°.故答案为:60°.点评:本题主要考查了三角形的外角的性质和等腰三角形的性质,正确理解圆的半径都相等是解题的关键.11.如图,AB为⊙O直径,点C、D在⊙O上,已知∠AOD=50°,AD∥OC,则∠BOC=65度.考点:圆的认识;平行线的性质.专题:计算题.分析:根据半径相等和等腰三角形的性质得到∠D=∠A,利用三角形内角和定理可计算出∠A,然后根据平行线的性质即可得到∠BOC的度数.解答:解:∵OD=OC,∴∠D=∠A,而∠AOD=50°,∴∠A=(180°﹣50°)=65°,又∵AD∥OC,∴∠BOC=∠A=65°.故答案为:65.点评:本题考查了有关圆的知识:圆的半径都相等.也考查了等腰三角形的性质和平行线的性质.12.如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD= 40°.考点:圆的认识;平行线的性质;三角形内角和定理.专题:计算题.分析:根据三角形内角和定理可求得∠AOC的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD的度数.解答:解:∵∠BOC=110°,∠BOC+∠AOC=180°,∴∠AOC=70°,∵AD∥OC,OD=OA,∴∠D=∠A=70°,∴∠AOD=180°﹣2∠A=40°.故答案为:40.点评:本题考查平行线性质、圆的认识及三角形内角和定理的运用.13.如图①是半径为1的圆,在其中挖去2个半径为的圆得到图②,挖去22个半径为()2的圆得到图③…,则第n(n>1)个图形阴影部分的面积是(1﹣)π.考点:圆的认识.专题:规律型.分析:先分别求出图②与图③中阴影部分的面积,再从中发现规律,然后根据规律即可得出第n(n>1)个图形阴影部分的面积.解答:解:图②中阴影部分的面积为:π×12﹣π×()2×2=π﹣π=(1﹣)π=π;图③中阴影部分的面积为:π×12﹣π×[()2]2×22=π﹣π=(1﹣)π=π;图④是半径为1的圆,在其中挖去23个半径为()3的圆得到的,则图④中阴影部分的面积为:π×12﹣π×[()3]2×23=π﹣π=(1﹣)π=π;…,则第n(n>1)个图形阴影部分的面积为:π×12﹣π×[()n﹣1]2×2n﹣1=π﹣π=(1﹣)π.故答案为:(1﹣)π.点评:本题考查了对圆的认识及圆的面积公式,从具体的图形中找到规律是解题的关键.14如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=5.考点:圆的认识;等边三角形的判定与性质.分析:由OA=OB,得△OAB为等边三角形进行解答.解答:解:∵OA=OB=5,∠AOB=60°,∴△OAB为等边三角形,故AB=5.故答案为:5.点评:同圆或等圆的半径相等在解题中是一个重要条件.三.解答题(共7小题)15.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.考点:圆的认识;全等三角形的判定.专题:证明题;压轴题.分析:根据等边对等角可以证得∠A=∠B,然后根据SAS即可证得两个三角形全等.解答:证明:∵OA=OB,∴∠A=∠B,∵在△OAC和△OBD中:,∴△OAC≌△OBD(SAS).点评:本题考查了三角形全等的判定与性质,正确理解三角形的判定定理是关键.16.如图,CD是⊙O的直径,E是⊙O上一点,∠EOD=48°,A为DC延长线上一点,且AB=OC,求∠A的度数.考点:圆的认识;等腰三角形的性质.分析:根据圆的半径,可得等腰三角形,根据等腰三角形的性质,可得∠A 与∠AOB,∠B与∠E的关系,根据三角形的外角的性质,可得关于∠A的方程,根据解方程,可得答案.解答:解:如图,连接OB,由AB=OC,得AB=OC,∠AOB=∠A.由三角的外角等于与它不相邻的两个内角的和,得∠EBO=∠A+∠AOB=2∠A.由OB=OE,得∠E=∠EBO=2∠A.由∠A+∠E=∠EOD,即∠A+2∠A=48°.解得∠A=16°.点评:本题考查了圆的认识,利用了圆的性质,等腰三角形的性质,三角形外角的性质.17.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.考点:圆的认识;等腰三角形的性质.专题:计算题.分析:连接OD,如图,由AB=2DE,AB=2OD得到OD=DE,根据等腰三角形的性质得∠DOE=∠E=20°,再利用三角形外角性质得到∠CDO=40°,加上∠C=∠ODC=40°,然后再利用三角形外角性质即可计算出∠AOC.解答:解:连接OD,如图,∵AB=2DE,而AB=2OD,∴OD=DE,∴∠DOE=∠E=20°,∴∠CDO=∠DOE+∠E=40°,而OC=OD,∴∠C=∠ODC=40°,∴∠AOC=∠C+∠E=60°.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.18.如图,点O是同心圆的圆心,大圆半径OA,OB分别交小圆于点C,D,求证:AB∥CD.考点:圆的认识;平行线的判定.专题:证明题.分析:利用半径相等得到OC=OD,则利用等腰三角形的性质得∠OCD=∠ODC,再根据三角形内角和定理得到∠OCD=(180°﹣∠O),同理可得∠OAB=(180°﹣∠O),则∠OCD=∠OAB,然后根据平行线的判定即可得到结论.解答:证明:∵OC=OD,∴∠OCD=∠ODC,∴∠OCD=(180°﹣∠O),∵OA=OB,∴∠OAB=∠OBA,∴∠OAB=(180°﹣∠O),∴∠OCD=∠OAB,∴AB∥CD.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).19.已知AB为⊙O的弦,C、D在AB上,且AC=CD=DB,求证:∠AOC=∠DOB.考点:圆的认识;全等三角形的判定与性质.专题:证明题.分析:先根据等腰三角形的性质由OA=OB得到∠A=∠B,再利用“SAS”证明△OAC≌△OBD,然后根据全等三角形的性质得到结论.解答:证明:∵OA=OB,∴∠A=∠B,在△OAC和△OBD中,,∴△OAC≌△OBD(SAS),∴∠AOC=∠DOB.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了全等三角形的判定与性质.20.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA延长线于E,交半圆于C,且CE=AO,求∠E的度数.考点:圆的认识;等腰三角形的性质.专题:计算题.分析:如图,由CE=AO,OA=OC得到OC=EC,则根据等腰三角形的性质得∠E=∠1,再利用三角形外角性质得∠2=∠E+∠1=2∠E,加上∠D=∠2=2∠E,所以∠BOD=∠E+∠D,即∠E+2∠E=75°,然后解方程即可.解答:解:如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.21.如图,点B是线段AC上的一点,分别以AB、BC、CA为直径作半圆,求证:半圆AB的长与半圆BC的长之和等于半圆AC的长.考点:圆的认识.专题:证明题.分析:根据圆的周长公式可计算出半圆AB的长=πAB,半圆BC的长=πBC,半圆AC的长=πAC,则半圆AB的长+半圆BC的长=π•(AB+BC)=π•AC,即半圆AB的长与半圆BC的长之和等于半圆AC的长.解答:证明:∵半圆AB的长=•2π•=πAB,半圆BC的长=•2π•=πBC,半圆AC的长=•2π•=πAC,∴半圆AB的长+半圆BC的长=πAB+πBC=π•(AB+BC),∵AB+BC=AC,∴半圆AB的长+半圆BC的长=π•AC,∴半圆AB的长与半圆BC的长之和等于半圆AC的长.点评:本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).。
华东师大版九年级数学下册《27.1.1圆基本元素》同步练习〔含答案解析〕
直径把圆分成两个半圆,它们相等,所以 C 错误;
2x)°,∠C=∠ODC=()°. ∵∠AOB+∠C=180°,∴180-2x+=180,
应地在 x 轴正半轴上滑动,当∠OAB=n°时,半圆片上的点 D 与原点 O 的 27-1-14 详解详析 1.B [解析] 圆是一条封闭的曲线,它是由圆
距离最大,则 n 的值为( ) 图 27-1-12 A.64 B.52 C.38 D.26 心和半径确定的,圆心确定圆的位置,半径确定圆的大小,圆是到定点的
④弦 AC 所对的弧是劣弧;
⑤AB=2OB.其中正确的选项是( ) 图 27-1-9 A.①⑤ B.③④
第1页共4页
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
C.④⑤ D.②⑤ 14.如图 27-1-10,AB 是⊙O 的直径,D,C 在⊙O (2)到点 A 的距离小于 1.5 cm,且到点 B 的距离小于 1 cm 的全部点组成
示,以下说法中正确的选项是( )
图 27-1-6 A.线段 AB,AC,
CD 都是⊙O 的弦 B.线段 AC 经过圆心 O,所以线段 AC 是直径 C.弦 AC
把⊙O 分成了两条不相等的弧 D.弦 AB 把圆分成两条弧,其中是劣弧
11.如图 27-1-7 所示,在△ABC 中,∠ACB=90°,∠A=40°,以点 C
的图形;
项是正确的. 9.A [解析] ∵OM=ON,∴∠N=∠M=40°. 应选 A. 10.B
[解析] 因为弦的两个端点都在圆上,所以线段 CD 不是弦,所以 A 错误;
第2页共4页
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
经过圆心的弦是圆的直径,所以 B 正确;
九年级数学下册第27章圆27.1圆的认识1圆的基本元素同步练习新版华东师大版
1. 圆的基本元素一、选择题1.以下语句中正确的个数是()链接听课例 2归纳总结(1)过圆上一点可以作圆的无数条最长弦;(2)等弧的弧长必定相等;(3)圆上的点到圆心的距离都相等;(4)同圆或等圆中,优弧必定比劣弧长.A.1B.2C.3D.42.如图 K- 12-1 所示,以坐标原点O为圆心的圆与y 轴交于点 A, B,且 OA=1,则点 B 的坐标是()图 K-12-1A.(0,1)B.(0,- 1)C.(1,0)D.( -1,0)3. ,是⊙上的两点,已知= 3 cm,那么必定有 ()M N O OMA.MN> 6 cm B. MN=6 cmC.MN< 6 cm D. MN≤6 cm4.如图 K- 12- 2,OA,OB是⊙O的两条半径,点C在⊙O上.若∠A=∠B= 22.5 °,则∠ACB 的度数为 ()图 K-12-2A.45°B.35°C.25°D.20°5.如图 K- 12- 3,直线l1∥l2,点A在直线l1上,以点 A 为圆心,合适长为半径画弧,分别交直线 l 1, l 2于 B, C两点,连结AC, BC.若∠ ABC=54°,则∠1的大小为()图 K-12-3A. 36°B. 54°C. 72°D. 73°6.如图 K- 12- 4,四边形PAOB是扇形OMN的内接矩形,极点︵M,N重P 在 MN上,且不与点︵PAOB的形状、大小随之变化,则AB的长度()合,当点 P 在MN上挪动时,矩形图 K-12-4A.不变B.变小C.变大D.不可以确立二、填空题7. (1) 过圆内一点可以作圆的最长弦——直径,可以作____________条;(2)如图 K- 12- 5 所示,在⊙O中, ______是直径, ________是弦, ____________是劣弧,____________ 是优弧 . 链接听课例 2归纳总结图 K-12-58.如图 K- 12- 6 所示,CD是⊙O的直径,若AB⊥ CD,垂足为 B,∠ OAB=40°,则∠ C等于________度.图 K-12-69.如图 K- 12- 7,AB是⊙O的直径,点C, D 在⊙ O上,∠ BOC=110°, AD∥ OC,则∠ AOD=________° .图 K-12-710.在平面直角坐标系中,以点(3 , 0) 为圆心, 2 为半径画圆,则圆与x 轴的交点坐标为____________ .11.如图 K- 12- 8,AB是⊙O的直径,点C在⊙O上,OD∥BC. 若OD= 1,则BC的长为 ________.图 K-12-812.如图 K- 12- 9 所示,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连结OD,OE.若∠ A=65°,则∠ DOE=________°.图 K-12-9三、解答题13.已知:如图K-12-10,OA,OB,OC是⊙O的三条半径,∠AOC=∠BOC,M,N分别为OA,OB的中点.求证:MC= NC.图 K-12-1014.已知:如图K-12-11,BD,CE是△ABC的高,M为BC的中点.试说明点B, C, D,E 在以点 M为圆心的同一个圆上.图 K-12-1115.如图K- 12-12 所示,在平面直角坐标系中,以点A(3 , 0) 为圆心, 5 为半径画圆,交x 轴于 B, C 两点,交y 轴于 D, E 两点.求点B, C, D,E 的坐标.图 K-12-1216.有一块长为8 米,宽为 6 米的长方形草地,现要安装自动旋转喷水装置,这类装置喷水的半径为 5 米,则安装几个最节约开销?如何安装?请说明原由.17.如图K- 12- 13,已知两个齐心圆的圆心为O,大圆的半径OA,OB分别交小圆于点C,D,则 AB与 CD有如何的地点关系?为何?链接听课例 3归纳总结图 K-12-131.[答案]C2.[答案]B3. [ 解析 ] D∵OM= 3 cm,∴⊙ O的半径为 3 cm,∴⊙ O的直径为 6 cm,即在⊙O 中的最长弦的长度为 6 cm,∴ MN最长为 6 cm,∴ MN≤ 6 cm.4.[答案]A5.[答案]C6.[ 解析 ] A连结OP.∵四边形PAOB是扇形 OMN的内接矩形,∴AB= OP=⊙O的半径.当点︵P 在MN上挪动时,⊙O的半径必定,∴AB的长度不变.应选A.7. [ 答案 ] (1)1条或无数(2)AD AC和 AD ︵︵︵︵AC和CDADC和DAC8.[ 答案 ] 25[ 解析 ] ∵∠ BOC= 110°,∠ BOC+∠ AOC= 180°,∴∠ AOC= 70° . ∵ AD∥OC, OD=OA,∴∠ D =∠ A=∠ AOC= 70°,∴∠ AOD= 180°- 2∠A= 40° .10.[ 答案 ] (1 , 0) 和(5,0)11.[ 答案 ] 212.[ 答案 ] 50[ 解析 ]∵∠ A=65°,∴∠ B+∠ C= 180°- 65°= 115° .∵OB=OD, OC=OE,∴∠ BDO=∠ DBO,∠ OEC=∠ OCE,∴∠ BDO+∠ DBO+∠ OEC+∠ OCE=2×115°=230°,∴∠ BOD+∠ EOC=2×180°- 230°= 130°,∴∠ DOE= 180°- 130°= 50° .13. [ 解析 ]要证MC=NC,可以证明MC和 NC所在的两个三角形全等.证明:∵ OA, OB都是⊙ O的半径,∴OA=OB.∵ M, N 分别为 OA, OB的中点,∴OM=ON.又∵∠ AOC=∠ BOC, OC=OC,∴△ OMC≌△ ONC,∴MC=NC.14.解:连结ME, MD.∵ BD,CE是△ ABC的高, M为 BC的中点,1∴ME=MD= MC=MB=2BC,∴点 B, C, D,E 在以点 M为圆心的同一个圆上.15.解:由于点 A 的坐标为 (3 , 0) ,而 AB=AC= 5,因此点 B 的坐标为 ( - 2,0) ,点 C 的坐标为 (8 , 0) .如图,连结AD, AE.在 Rt△AOD中,AD=5,AO=3,因此 OD=2222 AD- AO=5-3 =4.同理 OE= 4,因此点 D 的坐标为 (0 , 4) ,点 E 的坐标为 (0 ,- 4) .16.解:安装一个最节约开销,安装在这块长方形草地的对角线交点处.由于以对角线的交点为圆心,以 5 米为半径的圆可以把这块长方形草地完满覆盖.17.解: AB∥ CD.原由以下:∵OA= OB, OC= OD,∴∠ OAB=∠ OBA,∠ OCD=∠ ODC,11∴∠ OAB= (180 °-∠ O),∠ OCD= (180 °-∠ O),22∴∠ OAB=∠ OCD,∴ AB∥CD.。
华师大版九年级下册数学(圆)单元练习题课件精选全文
8.如图,已知⊙O 中,AB,CD 是弦,根据条件填空: (1)若 AB=CD,则_A︵_B__=__C︵_D___,__∠__A_O_B_=__∠__C__O_D___;
13.如图,在⊙E 中,如果A︵B=2C︵D,那么( C )
A.AB=2CD B.AB>2CD C.AB<2CD D.以上答案都不对 14.如图,AB 是⊙O 的直径,BC,CD,DA 是⊙O 的弦,且 BC =CD=DA,则∠BCD=__1_2_0_°____.
15.如图,AB,CD 是⊙O 的两条直径,CE∥AB.求证:B︵C=A︵E =A︵D.
18.如图,在△ABC中,∠ACB=90°,∠A=40°,以点C为圆 心,CB长为半径的圆交AB于点D,求∠ACD的度数. 解:∵∠A=40°,∠ACB=90°,∴∠B=50°,∵CD=CB, ∴∠CDB=∠B=50°,∴∠ACD=∠CDB-∠A=50°-40° =10°
19.如图,AB,AC为⊙O的弦,连结CO,BO并延长分别交弦 AB,AC于点E,F,∠B=∠C. 求证:CE=BF. 解 : 先 用 “ ASA” 证 △ BOE≌△COF , 从 而 得 到 OE = OF , 由 于 OB=OC,则可证得CE=BF
华东师大版九年级下册 精品课件
使络本 用只课
供件 免来 费源 交于 流网
第27章 圆
27.1 圆的认识 27.1.1 圆的基本元素
1.如图: (1)以点O为圆心的圆叫做“____圆__O_”,记为“_____⊙__O”. (2)半径:线段____O_A_,_____O_B_,_____O__C都是⊙O的半径. (3)直径:线段____A_B_是⊙O的直径. (4)弦:线段____A__B_,_____A_C,_____B__C都是⊙O的弦.
九年级数学下册 27.1 圆的认识 圆的基本元素专题练习题1 (新版)华东师大版
圆的基本元素1.以已知点O 为圆心,线段a 的长为半径作圆,可以作( )A .1个B .2个C .3个D .无数个2.如图所示,下列说法中正确的是( )A .线段AB ,AC ,CD 都是⊙O 的弦 B .线段AC 经过圆心O ,所以线段AC 是直径C .弦AC 把⊙O 分成了两条不等弧D .弦AB 把圆分成两条弧,其中ACB ︵是劣弧3.下列说法中,正确的是( )①弦是直径;②半圆是弧;③过圆心的线段是直径;④半圆是最长的弧;⑤直径是圆中最长的弦.A .②③B .③⑤C .④⑤D .②⑤4.(2016·重庆)如图,CD 是⊙O 的直径,若AB ⊥CD ,垂足为点B ,∠OAB =40°,则∠C 等于____度.5.如图,AB 是⊙O 的直径,点C 在⊙O 上,OD ∥BC ,若OD =1,则BC 的长为____.6.如图,在⊙O 中,点B 在⊙O 上,四边形AOCB ,ODEF 是矩形,对角线AC 的长为5,则⊙O 的半径长为____,对角线DF 的长为____.7.下列四个点在同一个圆上的是( )A .菱形的四个顶点B .矩形四边的中点C .等腰梯形四边的中点D .菱形四边的中点8.如图,小明顺着大半圆从A 地到B 地,小红顺着两个小半圆从A 地到B 地,设小明、小红走过的路程分别为a ,b ,则a 与b 的大小关系是( )A .a =bB .a <bC .a >bD .不能确定9.如图,以点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连结OP ,设∠POB =α,则点P 的坐标是( )2A .(sin α,sin α)B .(cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)10.如图,AB ,MN 是⊙O 的互相垂直的直径,且AB =6,点P 在AM ︵上,不与点A ,M 重合,过点P 作AB ,MN 的垂线,垂足分别是点D ,C.当点P 在AM ︵上移动时,则PC 2+PD 2=____.11.如图,过A ,C ,D 三点的圆的圆心为E ,过B ,F ,E 三点的圆的圆心为D ,如果∠A =63°,那么∠ABC =____.12.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于点E ,已知AB =2DE ,∠E =18°,求∠AOC 的度数.13.已知:如图,OA ,OB ,OC 是⊙O 的三条半径,∠AOC =∠BOC ,点M ,N 分别为OA ,OB 的中点.求证:MC =NC.14.已知:如图,在四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,对角线AC ⊥BD.求证:E ,F ,G ,H 四点在同一个圆上.15.如图,⊙O 的半径OA =5 cm ,点C 是弦AB 上一点,CO ⊥OA 且OC =BC ,求AB 的长度.答案:1. A2. B3. D4. 255. 26. 5 57. D8. A9. C10. 911. 18°12. 解:连结OD ,∵AB =2DE ,∴OC =OD =DE ,∴∠C =∠ODC =2∠E =36°,∴∠AOC =∠C +∠E =54°13. 解:∵OA =OB ,∴OM =ON ,又∵∠AOC =∠BOC ,OC =OC ,∴△OMC ≌△ONC ,∴MC =NC14. 解:连结EF ,FG ,GH ,EH 证四边形EFGH 为矩形15. 解:∵OA =OB ,∴∠A =∠B ,又∵OC =BC ,∴∠B =∠BOC ,∴∠OCA =∠B +∠BOC =2∠B =2∠A ,又∵CO ⊥OA ,∴∠COA =90°,∴∠A =30°,∵OA =5,∴OC =533,AC =1033,∴AB =BC +AC =533+1033=53(cm)。
华东师大版九年级数学下册《27.1.1圆的基本元素》同步练习(含答案解析)
《华东师大版九年级数学下册《27.1.1圆的基本元素》同步练习(含答案解析)》摘要:B.线段圆心所以线段是直径.弦把⊙分成了两条不相等弧.弦B把圆分成两条弧其是劣弧.如图7--7所示△B∠B=90°∠=0°以圆心B长半径圆交B∠数.图7--7 .如图7--8B是⊙上三B平分∠B证B=B 图7--8 3.如图7--9所示B是⊙直径芳给出以下判断①是优弧,详详析.B [析] 圆是条封闭曲线它是由圆心和半径确定圆心确定圆位置半径确定圆圆是到定距离等定长集合故错误.. 3.(0-) . B 5 5.5 [析] 圆长弦是直径. 6.09 [析] 因=B∠B=60°所以△B等边三角形所以B=09 7. 8.[析] 根据“圆心角顶是圆心”判断出选项是正确. 9.[析] ∵=∴∠=∠=0° 故选 0.B [析] 因弦两端都圆上所以线段不是弦所以错误,.R△B∠B=90°∠=0° ∴∠B=50° ∵B=∴∠B=∠B=50° ∵∠B是△外角∴∠B=∠+∠∴∠=0° .证明如图连结∵=BB=∴∠B=∠B ∠B=∠B ∵B平分∠B ∴∠B=∠B ∴∠B=∠B又∵B=B ∴△B≌△B ∴B=B 3.[析] ①弧B是半圆7.圆基元素知识圆定义.下面关圆叙述正确是() .圆是面 B.圆是条封闭曲线.圆是由圆心唯确定.圆是到定距离等或定长集合.以已知圆心线段长半径作圆可以作() . B..3 .无数 3.如图7--所示以坐标原圆心圆与轴交B且=则B坐标是________.图7--知识圆基元素.如图7--B是圆直径则圆弦有______条分别是________________________________________________________________________ 劣弧有________条分别是________________.图7-- 5.圆长弦长30 则圆半径是________________________________________________________________________. 6.如图7--3⊙半径09∠B=60°则弦长B=________.图7--3 7.下列说法正确是() .圆心线段是直径 B.半圆弧是优弧.弦是直径.半圆是弧 8.图7--∠是圆心角是() 图7-- 9.如图7--5所示⊙弦∠=0°则∠等() 图7--5 .0° B.60° .00° .0° 0.如图7--6所示下列说法正确是()图7--6 .线段B都是⊙弦 B.线段圆心所以线段是直径.弦把⊙分成了两条不相等弧.弦B把圆分成两条弧其是劣弧.如图7--7所示△B∠B=90°∠=0°以圆心B长半径圆交B∠数.图7--7 .如图7--8B是⊙上三B平分∠B证B=B 图7--8 3.如图7--9所示B是⊙直径芳给出以下判断①是优弧;②是劣弧;③图有四条弦;④弦所对弧是劣弧;⑤B=B其正确是() 图7--9 .①⑤ B.③④ .④⑤ .②⑤ .如图7--0B是⊙直径⊙上∥∠B=60°连结则∠等() 图7--0 .5° B.30° .5° .60° 5.如图7--直线l∥l以直线l上圆心、适当长半径画弧与直线ll分别交B连接B若∠B=5°则∠数() 图7--.36° B.5° .7° .73° 6.07·义乌考模拟有半圆片(其圆心角∠=5°)平面直角坐标系按图7--所示位置放置若可以沿轴正半轴上下滑动B相应地x轴正半轴上滑动当∠B =°半圆片上与原距离则值() 图7--.6 B.5 .38 .6 7.如图7--3B是⊙两条弦若∠B+∠=80°∠=∠则∠B=________.图7--3 8.教材练习题变式设B=作出满足下列要图形 ()到距离等5 且到B距离等所有组成图形; ()到距离5 且到B距离所有组成图形; (3)到距离5 且到B距离所有组成图形. 9.如图7--直线B⊙圆心与⊙相交B⊙上且∠=30°是直线B上动(不与重合)直线与⊙相交Q直线B上什么位置Q=Q?这样共有几?并相应地出∠数.图7--详详析.B [析] 圆是条封闭曲线它是由圆心和半径确定圆心确定圆位置半径确定圆圆是到定距离等定长集合故错误.. 3.(0-) . B 5 5.5 [析] 圆长弦是直径. 6.09 [析] 因=B∠B=60°所以△B等边三角形所以B=09 7. 8.[析] 根据“圆心角顶是圆心”判断出选项是正确. 9.[析] ∵=∴∠=∠=0° 故选 0.B [析] 因弦两端都圆上所以线段不是弦所以错误;圆心弦是圆直径所以B正确;直径把圆分成两半圆它们相等所以错误;半圆周弧称优弧所以错误..R△B∠B=90°∠=0° ∴∠B=50° ∵B=∴∠B=∠B=50° ∵∠B是△外角∴∠B=∠+∠∴∠=0° .证明如图连结∵=BB=∴∠B=∠B ∠B=∠B ∵B平分∠B ∴∠B=∠B ∴∠B=∠B又∵B=B ∴△B≌△B ∴B=B 3.[析] ①弧B是半圆;③图有三条弦BB;④弦所对弧有两条分别是劣弧和优弧所以正确是②⑤ .B [析] ∵=∴∠=∠∵∥∴∠=∠∴∠=∠∵∠B=60°∴∠=∠B=30°故选B 5. 6.[析] 连结如图.当共线半圆片上与原距离.因=B 所以==B 所以∠=∠ 则∠=∠+∠ 所以∠=∠=6°所以=6 7.08°[析] 设∠=∠=x°则∠B=(80-x)°∠=∠=()° ∵∠B+∠=80°∴80-x+=80得x=36∴∠B=(80-x)°=08°故答案08° 8.[析] ()分别以和B圆心5 和半径作⊙与⊙B则它们交所; ()分别以和B圆心5 和半径作⊙与⊙B则它们公共部分所(边界除外); (3)分别以和B圆心5 和半径作⊙与⊙B则⊙B除它们公共部分所(边界除外). ()如图①和Q所. ()如图②阴影部分所(不含边界). (3)如图③阴影部分所(不含边界). 9.()当线段上(如图①) △Q=Q∴∠Q=∠Q △QQ=Q∴∠Q=∠Q 又∵∠Q=∠Q+∠∠=30°∠Q+∠Q+∠Q=80° ∴3∠=0°∴∠=0° ()当线段延长线上(如图②) ∵=Q∴∠Q=① ∵Q=Q ∴∠Q=②△Q30°+∠Q+∠Q+∠Q=80°③ 把①②代入③得∠Q=0°则∠Q=80° ∴∠=00° (3)当线段B延长线上(如图③) ∵=Q ∴∠=∠Q ∵Q=Q ∴∠Q=∠Q ∴∠Q=∠=∠Q ∵∠=30°∴∠Q+∠Q=30° ∴∠Q=0° ∴∠=∠Q=0° ()当线段B上Q<Q合要不存.综上可知这样共有3当线段上∠=0°;当线段延长线上∠=00°;当线段B延长线上∠=0°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.1 圆的认识 圆的基本元素
1.以已知点O 为圆心,线段a 的长为半径作圆,可以作( )
A .1个
B .2个
C .3个
D .无数个
2.如图所示,下列说法中正确的是( )
A .线段A
B ,A
C ,C
D 都是⊙O 的弦 B .线段AC 经过圆心O ,所以线段AC 是直径
C .弦AC 把⊙O 分成了两条不等弧
D .弦AB 把圆分成两条弧,其中ACB ︵
是劣弧
3.下列说法中,正确的是( )
①弦是直径;②半圆是弧;③过圆心的线段是直径;④半圆是最长的弧;⑤直径是圆中最长的弦.
A .②③
B .③⑤
C .④⑤
D .②⑤
4.(2016·重庆)如图,CD 是⊙O 的直径,若AB ⊥CD ,垂足为点B ,∠OAB =40°,则∠C 等于____度.
5.如图,AB 是⊙O 的直径,点C 在⊙O 上,OD ∥BC ,若OD =1,则BC 的长为____.
6.如图,在⊙O 中,点B 在⊙O 上,四边形AOCB ,ODEF 是矩形,对角线AC 的长为5,则⊙O 的半径长为____,对角线DF 的长为____.
7.下列四个点在同一个圆上的是( )
A .菱形的四个顶点
B .矩形四边的中点
C .等腰梯形四边的中点
D .菱形四边的中点
8.如图,小明顺着大半圆从A 地到B 地,小红顺着两个小半圆从A 地到B 地,设小明、小红走过的路程分别为a ,b ,则a 与b 的大小关系是( )
A .a =b
B .a <b
C .a >b
D .不能确定
9.如图,以点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵
上一点(不与A ,B 重合),连结
OP ,设∠POB =α,则点P 的坐标是( )
A .(sin α,sin α)
B .(cos α,cos α)
C .(cos α,sin α)
D .(sin α,cos α)
10.如图,AB ,MN 是⊙O 的互相垂直的直径,且AB =6,点P 在AM ︵
上,不与点A ,M 重合,过点P 作AB ,
MN 的垂线,垂足分别是点D ,C.当点P 在AM ︵
上移动时,则PC 2+PD 2=____.
11.如图,过A ,C ,D 三点的圆的圆心为E ,过B ,F ,E 三点的圆的圆心为D ,如果∠A =63°,那么∠ABC =____.
12.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于点E ,已知AB =2DE ,∠E =18°,求∠AOC 的度数.
13.已知:如图,OA ,OB ,OC 是⊙O 的三条半径,∠AOC =∠BOC ,点M ,N 分别为OA ,OB 的中点.
求证:MC =NC.
14.已知:如图,在四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,对角线AC ⊥BD.求证:E ,F ,G ,H 四点在同一个圆上.
15.如图,⊙O 的半径OA =5 cm ,点C 是弦AB 上一点,CO ⊥OA 且OC =BC ,求AB 的长度.
答案:
1. A
2. B
3. D
4. 25
5. 2
6. 5 5
7. D
8. A
9. C
10. 9
11. 18°
12. 解:连结OD ,∵AB =2DE ,∴OC =OD =DE ,∴∠C =∠ODC =2∠E =36°,∴∠AOC =∠C +∠E =54°
13. 解:∵OA =OB ,∴OM =ON ,又∵∠AOC =∠BOC ,OC =OC ,∴△OMC ≌△ONC ,∴MC =NC
14. 解:连结EF ,FG ,GH ,EH 证四边形EFGH 为矩形
15. 解:∵OA =OB ,∴∠A =∠B ,又∵OC =BC ,∴∠B =∠BOC ,∴∠OCA =∠B +∠BOC =2∠B =2∠A ,
又∵CO ⊥OA ,∴∠COA =90°,∴∠A =30°,∵OA =5,∴OC =533,AC =1033,∴AB =BC +AC =533+1033
=53(cm)。