电磁感应-单棒(长度变化)

合集下载

电磁感应单双棒问题

电磁感应单双棒问题
计算公式:E=BLv,其中B为磁感应强度,L为导体棒的长度,v为导体棒的速度。
应用:单棒问题在实际应用中广泛存在,如发电机、变压器等。
电流方向:由右手定则确定 磁场方向:由左手定则确定 电磁感应定律:E=BLv 电阻定律:R=ρl/S
PART FOUR
电磁感应现象: 双棒在磁场中 运动时,会产 生感应电动势, 导致电流的产
生。
运动规律:双棒 在磁场中的运动 规律与单棒类似, 但需要考虑两棒 之间的相互作用
力。
动态平衡:双棒 在磁场中的运动 达到动态平衡时, 两棒的速度和电 流相等,方向相
反。
磁场对双棒的 影响:磁场对 双棒的运动产 生影响,改变 运动轨迹和速
度。
添加项标题
定义:双棒问题是指两个相同或不同的导体棒在磁场中以相同 的速度或加速度运动,通过切割磁感线产生感应电动势。
通过改变初级和次级线圈的匝数比,可以实现电压的升高或降低,以满足不同电路的需求。Βιβλιοθήκη 感应电动机的构造和工作原理
电磁感应在感应电动机中的应 用
感应电动机的优缺点
感应电动机的应用场景和实例
利用电磁感应 原理,将电能
转化为热能
通过高频磁场 变化,使铁质 锅具产生涡流,
将锅具加热
电磁炉具有高 效、节能、环
保等优点
广泛应用于家 庭和商业烹饪
汇报人:
应用领域:广泛应 用于发电机、变压 器、电机等领域。
楞次定律的定义:感应电流的磁场总是阻 碍引起感应电流的磁通量的变化。
楞次定律的表述方式:感应电流产生的磁 场总是阻碍原磁场的变化。
楞次定律的应用:在电磁感应现象中,可 以利用楞次定律来判断感应电流的方向和 感应电动势的方向。
楞次定律的意义:楞次定律是电磁学中 的基本定律之一,它反映了电磁相互作 用的规律,是分析解决电磁感应问题的 关键。

2019年高考物理双基突破:专题32-电磁感应中的“单杆”模型(精练)(附答案解析)

2019年高考物理双基突破:专题32-电磁感应中的“单杆”模型(精练)(附答案解析)

1.如图所示,用天平测量匀强磁场的磁感应强度。

下列各选项所示的载流线圈匝数相同,边长MN 相等,将它们分别挂在天平的右臂下方。

线圈中通有大小相同的电流,天平处于平衡状态。

若磁场发生微小变化,天平最容易失去平衡的是【答案】A2.如图,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω。

一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。

在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T 。

将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)A .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W【答案】B【解析】小灯泡稳定发光说明棒做匀速直线运动。

此时:F 安=B 2l 2v R 总对棒满足:mg sin θ-μmg cos θ-B 2l 2vR 棒+R 灯=0因为R 灯=R 棒则:P 灯=P 棒再依据功能关系:mg sin θ·v -μmg cos θ·v =P 灯+P 棒 联立解得v =5 m/s ,P 灯=1 W ,所以B 项正确。

6.(多选)半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0。

圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B 。

杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示。

则A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为2B 2av(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2av(5π+3)R 0【答案】AD7.(多选)水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,如图所示,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和粗糙两种情况比较,这个过程A .产生的总内能相等B .通过ab 棒的电荷量相等C .电流所做的功相等D .安培力对ab 棒所做的功不相等 【答案】AD【解析】两过程中产生的总内能等于金属棒减少的动能,选项A 正确;两种情况下,当金属棒速度相等时,在粗糙导轨滑行时的加速度较大,所以导轨光滑时金属棒滑行的较远,根据q =It =ΔΦRt ·t =ΔΦR =B ·ΔSR 可知,导轨光滑时通过ab 棒的电荷量较大,选项B 错误;两个过程中,金属棒减少的动能相等,所以导轨光滑时克服安培力做的功等于导轨粗糙时克服安培力做的功与克服摩擦力做功之和,选项D 正确;因为电流所做的功等于克服安培力做的功,所以选项C 错误。

高中物理:电磁学中的导体单棒模型

高中物理:电磁学中的导体单棒模型

高中物理:电磁学中的导体单棒模型在电磁学中,“导体棒”因涉及受力分析、牛顿定律、动量定律、动量守恒定律、能量守恒定律、闭合电路的欧姆定律、电磁感应定律等主干知识,综合性强。

导体单棒有“棒生电”或“电动棒”两种形式,但主要以“棒生电”为主。

“棒生电”指导体棒在运动过程中切割磁感应线产生感应电动势,因此“导体棒”在电路中相当于电源,与其他元件构成回路。

一、力学思路与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。

例1、水平面上两根足够长的金属导轨平行固定放置,间距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆(见图1),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下。

用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动。

当改变拉力的大小时,相对应的匀速运动速度v也会变化,v与F的关系如图1(取重力加速度 g=10m/s2)图1(1)金属杆在匀速运动之前做什么运动?(2)若m=0.5kg,L=0.5m,R=0.5Ω,磁感应强度B为多大?(3)由V-F图线的截距可求得什么物理量?其值为多少?解析:(1)变速运动(或变加速运动、加速度减小的加速运动、加速运动)。

(2)感应电动势ε=BLv,感应电流,安培力。

因金属杆受拉力、安培力和阻力作用,匀速时合力为零,有,解出,由图线可以得到直线的斜率k=2,所以。

(3)由直线的截距可以求得金属杆受到的阻力f,f=2(N)。

若金属杆受到的阻力仅为滑动摩擦力,由截距可求得动摩擦因数μ=0.4。

总结:导体单棒在轨道上的情况,有“水平导轨”、“斜面导轨”“竖直导轨”,有受力分析、运动过程,极值问题(如加速度极值、速度极值、功率极值、能量转换)等问题。

对于“斜面导轨”突出导体单棒的重力分解、摩擦力等问题,对于“竖直导轨”突出空间想象判断安培力。

单棒电阻简谐运动

单棒电阻简谐运动

单棒电阻简谐运动(一)单棒模型1. 基本结构- 在电磁感应的单棒模型中,通常有一根导体棒在磁场中运动。

这根导体棒一般放置在导轨上,导轨可能是光滑的或者存在摩擦力等情况。

- 例如,在水平放置的平行导轨间有一垂直导轨平面的匀强磁场,导体棒垂直于导轨放置。

2. 涉及的力- 安培力:当导体棒中有电流通过时,在磁场中会受到安培力的作用。

安培力的大小F = BIL,其中B是磁场的磁感应强度,I是电流强度,L是导体棒在磁场中的有效长度。

- 重力:如果导轨不是水平放置,导体棒还会受到重力的作用。

重力G = mg,m为导体棒的质量,g为重力加速度。

- 支持力和摩擦力(如果存在):当导轨存在时,导体棒会受到导轨对它的支持力N,如果导轨不光滑,还会受到摩擦力f=μ N,μ为摩擦因数。

(二)电阻在电路中的作用1. 欧姆定律- 根据欧姆定律I = (U)/(R),在单棒电阻模型中,导体棒运动切割磁感线产生感应电动势E,如果电路中只有导体棒的电阻R(忽略导轨等其他电阻),则电路中的电流I=(E)/(R)。

2. 能量转化- 当导体棒在磁场中运动时,由于有电阻的存在,会有电能转化为热能。

根据焦耳定律Q = I^2Rt,其中Q为产生的热量,t为时间。

这部分热量的产生是由于电流通过电阻时,电阻对电流的阻碍作用导致电能的损耗。

(三)简谐运动1. 定义与特征- 简谐运动是一种最简单、最基本的机械振动。

物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。

- 回复力F=-kx,其中k为比例系数,x为偏离平衡位置的位移。

例如,弹簧振子在光滑水平面上的振动就是简谐运动,弹簧的弹力提供回复力。

2. 运动方程与能量- 简谐运动的运动方程为x = Asin(ω t+φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。

- 在简谐运动中,系统的机械能守恒,动能和势能相互转化。

动能E_{k}=(1)/(2)mv^2,势能对于弹簧振子是弹性势能E_{p}=(1)/(2)kx^2。

专题67 电磁感应现象中的单棒问题(解析版)

专题67 电磁感应现象中的单棒问题(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题67 电磁感应现象中的单棒问题特训目标 特训内容目标1 阻尼式单棒问题(1T —5T ) 目标2 电动式单棒问题(6T —10T ) 目标3发电式单棒问题(11T —15T )一、阻尼式单棒问题1.如图所示,左端接有阻值为R 的定值电阻且足够长的平行光滑导轨CE 、DF 的间距为L ,导轨固定在水平面上,且处在磁感应强度为B 、竖直向下的匀强磁场中,一质量为m 、电阻为r 的导体棒ab 垂直导轨放置且静止,导轨的电阻不计。

某时刻给导体棒ab 一个水平向右的瞬时冲量I ,导体棒将向右运动,最后停下来,则此过程中( )A .导体棒做匀减速直线运动直至停止运动B .电阻R 上产生的焦耳热为22I mC .通过导体棒ab 横截面的电荷量为I BLD .导体棒ab 运动的位移为22IRB L 【答案】C【详解】A .导体棒获得向右的瞬时初速度后切割磁感线,回路中出现感应电流,导体棒ab受到向左的安培力,向右减速运动,由22B L vma R r =+可知,由于导体棒速度减小,则加速度减小,所以导体棒做的是加速度越来越小的减速运动直至停止运动,A 错误;B .导体棒减少的动能22211()222k I I E mv m m m ===根据能量守恒定律可得k E Q =总又根据串并联电路知识可得22()R R I R Q Q R r m R r ==++总,B 错误; C .根据动量定理可得0BIL t mv -=-;I mv =;q I t =可得Iq BL=,C 正确; D .由于E BLxq I t t R r R r R rΦ====+++将I q BL =代入可得,导体棒ab 运动的位移22()I R r x B L +=,D 错误。

故选C 。

2.如图所示,一根直导体棒质量为m 、长为L ,其两端放在位于水平面内、间距也为L 的光滑平行金属导轨上,并与之接触良好,导体棒左侧两导轨之间连接一可控电阻,导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面。

重点内容回味无穷_电磁感应中导体棒运动问题归类解析

重点内容回味无穷_电磁感应中导体棒运动问题归类解析

27
试题研究
B
2
L2 R
v
0
,
则当
ma -
B
2L 2v R
0>
0
时,

v0<
maR B2L2
=
10 m/ s
时, F > 0, 方向 F 方向与 x 轴方向相反.
当 ma-
B
2L 2 R
v
0
<
0 时,
即 v 0>
L
maR B2L 2
=
10 m/ s 时,
F< 0, 方向与 x 轴方向相同.
二、双导棒问题
较宽部分, 此后两棒运动情况同例 3, 动 量守恒, 且最终 同向匀速前进.
3. 导轨宽度均匀, 两棒所受的合外力不为零 例 5 如图 8, 在相
距 L= 0. 5 m 的 两条水 平 放置 无 限 长 的金 属 导 轨
上, 放 置 两 根 金 属 棒 ab 和 cd, 两棒质量均为 m =
0. 1 kg, 电阻均为 R = 3 欧 姆, 整 个 装 置 处 于 无 限
对 ab 棒由动量定理: - 2BILt= mv - mv0 对 cd 棒由动量定理: - 2BILt = mv - 0
由上分 析知, 要使两棒产 生相等 感应电 动势, 必须
v = 2v
由以上两棒中 I 相等, 令 I = BILt
则- 2I = mv - mv 0 I = 2mv - 0
v = v0 / 5, v = 2v0 / 5
于同 一 水 平面 内, 两 导 轨 间距为 L , 导轨上放着两 根
导体棒 ab 和 cd , 构 成矩 形 回路, 两根导棒的 质量皆 为 m, 电 阻均 为 R , 回路 中其

电磁感应中单棒、双棒问题 PPT课件 课件 人教课标版

电磁感应中单棒、双棒问题 PPT课件 课件 人教课标版
(1)ab棒在N处进入磁场区速度多大?此时棒中 电流是多少?
(2) cd棒能达到的最大速度是多大?
(3)ab棒由静止到达最大速度过程中,
系统所能释放的热量是多少?
解析:
(1)ab棒由静止从M滑下到N的过程中,只有重力做功,机械 能守恒,所以到N处速度可求,进而可求ab棒切割磁感线时 产生的感应电动势和回路中的感应电流. ab棒由M下滑到N过程中,机械能守恒,故有

9、永远不要逃避问题,因为时间不会给弱者任何回报。

10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。

11、明天是世上增值最快的一块土地,因它充满了希望。

12、得意时应善待他人,因为你失意时会需要他们。

13、人生最大的错误是不断担心会犯错。

14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。
b mg
解析: 因所为以导电体键棒K闭ab合自瞬由间下a落b的的速时度间无t没法有确确定定,,a
使得ab棒受到的瞬时安培力F与G大小无 法比较,因此存在以下可能: (1)若安培力F <G: 则ab棒先做变加速运动,再做匀速直线运动
(2)若安培力F >G: 则ab棒先做变减速运动,再做匀速直线运动
(3)若安培力F =G: 则ab棒始终做匀速直线运动
K
F b
mg
7.几种变化 (1) 电路变化
F
(2)磁场方向变化
B
F
(3) 导轨面变化(竖直或倾斜) (4)拉力变化
B
C
B
F
P
Q
A
D
竖直

倾斜
例4、如图1所示,两根足够长的直金属导轨MN、PQ平行

2023年高二物理模型重难点易错专练 电磁感应现象中的单棒和双棒模型(解析版)

2023年高二物理模型重难点易错专练 电磁感应现象中的单棒和双棒模型(解析版)

电磁感应现象中的单棒和双棒模型特训专题特训内容专题1三类常见单棒模型(1T -3T )专题2三类含容单棒模型(4T -6T )专题3等距式双棒模型(7T -9T )专题4不等距式双棒模型(10T -12T )1【典例专练】一、三类常见单棒模型1如图所示,两根电阻不计且足够长的平行光滑金属导轨固定在同一水平面内,其间距d =1m ,左端连接一个R =1.5Ω的定值电阻,整个导轨处在磁感应强度B =0.2T 的匀强磁场中,磁场方向竖直向下。

质量m =0.2kg 、长度L =1m 、电阻r =0.5Ω的导体棒垂直导轨放置并与导轨接触良好。

现使导体棒获得大小6m s 、方向水平向右的初速度,下列说法正确的是( )。

A.回路中感应电流的方向为逆时针方向B.导体棒刚开始运动瞬间,R 两端电压为1.2VC.当导体棒停止运动时,通过R 的电荷量为6CD.整个过程中导体棒向右运动的位移为60m【答案】ACD【详解】A .由右手定则可得回路中感应电流的方向为逆时针方向,故A 正确;B .导体棒刚开始运动瞬间,产生的电动势为E =BLv =1.2V ,R 两端电压为U =RER +r=0.9V C .取水平向右为正方向,由动量定理可得-BIL ×Δt =0-mv 则q =mvBL=6C 故C 正确;D .整个过程中通过导体棒的电荷量为q =I t =Δϕt R +r t =ΔϕR +r =BLxR +r解得位移为x =60m 故D 正确。

故选ACD 。

2水平固定放置的足够长的光滑平行导轨,电阻不计,间距为L ,左端连接的电源电动势为E ,内阻为r ,质量为m 的金属杆垂直静放在导轨上,金属杆处于导轨间部分的电阻为R ,整个装置处在磁感应强度大小为B 、方向竖直向下的匀强磁场中如图所示。

闭合开关,金属杆由静止开始沿导轨做变加速运动直至达到最大速度,则下列说法正确的是()A.金属杆的最大速度等于ER BL R +rB.此过程中通过金属杆的电荷量为mE B 2L 2C.此过程中电源提供的电能为mE 22B 2L 2 D.此过程中金属杆产生的热量为mE 2R2B 2L 2R +r 【答案】BD【详解】A .金属杆向右运动切割磁感应线产生的感应电动势与电源电动势方向相反,随着速度增大,感应电动势增大,回路中的总电动势减小,回路中的电流减小,金属杆受到的安培力减小,金属杆做加速度逐渐减小的加速运动,最后匀速运动;金属杆速度最大时,产生的感应电动势大小为E ,则有E =BLv m解得金属杆的最大速度为v m =EBL故A 错误;B .从开始运动到速度最大的过程中,以向右为正方向,对金属杆根据动量定理,有BI L Δt =mv m -0又q =IΔt联立解得此过程中通过金属杆的电荷量为q =mEB 2L 2故B 正确;C .此过程中电源提供的电能为W =qE =mE 2B 2L2故C 错误;D .金属杆最后的动能为E k =12mv 2m =mE 22B 2L 2根据能量守恒定律,系统产生的焦耳热为Q =W -E k =mE 22B 2L 2此过程中金属杆产生的热量为Q=R R +r Q =mE 2R 2B 2L 2R +r故D 正确。

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。

根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。

需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。

举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。

根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。

加速度随速度增大而减小,最终特征为匀速运动。

在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。

需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。

1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。

整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。

重力加速度为g,导轨电阻不计,杆与导轨接触良好。

求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。

电磁感应之含源电路单棒模型

电磁感应之含源电路单棒模型

电磁感应之含源电路单棒模型
1 电磁感应之含源电路单棒模型
电磁感应是电磁学的重要内容之一,它主要是指物体所受外界磁场的影响,从而产生电场和磁场现象。

进而,我们研究电磁感应,也要考虑在物体中会出现的电路单元。

而电磁感应之含源电路单棒模型就是其中一种,它由一个半圆形电磁体和一个接地电磁体构成,组成一个完整的电路单元,能够在外界磁场变化的情况下,以含源方式改变自身的电流和电位。

此外,电磁感应之含源电路单棒模型的参数还可以进行调整,可以考虑其中各项參数,如电抗、变压器、磁通等,我们可以通过调整这些参数,以满足特定的需求,如可以通过增加变压器的容量,提升电抗的稳定性。

此外,电磁感应之含源电路单棒模型还可以用于相关的实验,也可以用于工程实践当中,如火电厂、发电站等。

综上所述,电磁感应之含源电路单棒模型是电磁学研究中不可或缺的电路元件之一,具有可调的参数和可用于实践的功能,有花在工程上的重要作用。

法拉第电磁感应定律——单双杆模型

法拉第电磁感应定律——单双杆模型

法拉第电磁感应定律——单双杆模型单双杆模型一、知识点扫描1.无力单杆(阻尼式)整个回路仅有电阻,导体棒以一定初速度垂直切割磁感线,除安培力外不受其他外力。

根据右手定则确定电流方向,左手定则确定安培力方向,画出受力分析图。

这种情况下安培力方向与速度方向相反。

某时刻下导体棒的速度为v,则感应电动势E=BLv,感应电流I= E/ (R+r),安培力大小F=BLI。

根据牛顿定律,可知导体棒做加速度逐渐减小的减速运动,最终减速到零。

根据牛顿定律,整个过程中通过任一横截面的电荷量q=BLmv/(R+r)。

实际上也可通过牛顿定律求解电荷量:BLq=mv。

从能量守恒的角度出发,即导体棒减少的动能转化成整个回路产生的热量。

2.___单杆(发电式)整个回路仅有电阻,导体棒在恒力F作用下从静止出发垂直切割磁感线。

根据右手定则确定电流方向,左手定则确定安培力方向,画出受力分析图。

这种情况下安培力方向与速度方向相反。

某时刻下导体棒的速度为v,则感应电动势E=BLv,感应电流I=E/ (R+r),安培力大小F=BLI。

根据牛顿定律,可知导体棒做加速度逐渐减小的加速运动,当a=0时有最大速度,v_max=FL/(B^2L^2r)。

这种情况下仍有q=BLmv/ (R+r)。

电磁感应实验是物理学中的重要实验之一,通过实验可以研究电磁感应现象。

本文将介绍三种不同的电磁感应实验,分别是不含容单杆、含容单杆和含源单杆实验。

1.不含容单杆实验在不含容单杆实验中,电、电阻和导体棒通过光滑导轨连接成回路,导体棒以一定的初速度垂直切割磁感线,除安培力外不受其他外力。

当导体棒向右运动时,切割磁感线产生感应电动势,根据右手定则知回路存在逆时针的充电电流,电两端电压逐渐增大。

而又根据左手定则知导体棒受向左的安培力,因此导体棒做减速运动,又因E=BLv可知产生的感应电动势逐渐减小,当感应电动势减小至与电两端相同时,不再向电充电,充电电流为零,导体不受安培力,做匀速直线运动。

高中物理 电磁感应-单棒问题解析

高中物理 电磁感应-单棒问题解析

电磁感应---单棒问题(一)★如图所示,水平面上有电阻不计的光滑金属导轨平行固定放置,间距d 为0.5m ,左端通过导线与阻值为2Ω的电阻R 连接,右端通过导线与阻值为4Ω的小灯泡L 连接,在CDEF 矩形区域内有竖直向上的匀强磁场, CE 长为2m ,区域内的磁场的磁感应强度B 随时间变化如图所示,在0t =时,一阻值为2Ω的金属棒在恒力F 作用下由静止开始从AB 位置沿导轨向右运动,当金属棒从AB 位置运动到EF 位置过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流强度;(2)恒力F 的大小 (3)金属棒的质量解:(1)金属棒未进入磁场时,R 总=R L +R /2=5 Ω,E 1=∆ϕ∆t =S ∆B∆t=0.5 V , I L =E 1/R 总=0.1 A ,(2)因灯泡亮度不变,故4 s 末金属棒进入磁场时刚好匀速运动, I =I L +I R =I L +I L R LR=0.3 A ,F =F A =BId =0.3 N , (3)E 2=I (R +RR L R +R L )=1 V ,v =E 2Bd =1 m/s ,,a =v t =0.25 m/s 2,m =Fa =1.2 kg 。

★两根金属导轨平行放置在倾角为θ=30°的斜面上,导轨左端接有电阻R =10Ω,导轨自身电阻忽略不计。

匀强磁场垂直于斜面向上,磁感强度B =0.5T 。

质量为m =0.1kg ,电阻可不计的金属棒ab 静止释放,沿导轨下滑。

如图所示,设导轨足够长,导轨宽度L =2m ,金属棒ab 下滑过程中始终与导轨接触良好,当金属棒下滑h =3m 时,速度恰好达到最大值v =2m/s 。

求此过程中电阻中产生的热量。

解法1:当金属棒速度恰好达到最大速度时,受力分析, 则mg sin θ=F 安+f据法拉第电磁感应定律:E =BLv ;据闭合电路欧姆定律:I=ER∴F 安=ILB =B 2L 2vR =0.2N ;∴f=mg sin θ-F 安=0.3N下滑过程据动能定理得:mgh -fh sin θ-W = 12mv 2解得W =1J ,∴此过程中电阻中产生的热量Q =W =1J解法2:当金属棒速度恰好达到最大速度时,受力分析,则sin 0.5mg N θ=据法拉第电磁感应定律:E =BLv ;据闭合电路欧姆定律:I =ER ∴F 安=BIL由以上各式解得F 安=0.2N ;所以导体受到的摩擦力为0.3f N =下滑过程据动能定理得:220mgh Q f h mv θ--=-; 解得1Q J =★(1999年上海)如图17-123所示,长为L 、电阻r =0.3Ω、质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0.5Ω的电阻,量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F 使金属棒右移.当金属棒以v =2m/s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:(1)此满偏的电表是什么表?说明理由: (2)拉动金属棒的外力F 多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R 的电量.解析:(1)若电流表满偏,则I =3A ,U =IR =1.5V ,大于电压表量程.可知:电压表满偏. (2)由功能关系:2()Fv I R r =+ 而I U R =,22()F U R r R v ∴=+代入数据得221(0.50.3)2 1.6F N N =⨯+⨯= (3)由动量定理:BIL t m v ⋅∆=⋅∆两边求和121122............m v m v BI l t BI l t ⋅∆+⋅∆+=⋅∆+⋅∆+即BLq mv = 由电磁感应定律E BLv =,()E I R r =+解得2()q mv I R r =+代入数据得20.122(0.50.3)0.25q C =⨯⨯+=★如图所示,固定于水平桌面上足够长的两平行导轨PO 、MN ,PQ 、MN 的电阻不计,间距为d =0.5m .P 、M 两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B =0.2T 的匀强磁场中.电阻均为r =0.1Ω,质量分别为m 1=300g 和m 2=500g 的两金属棒L 1、L 2平行的搁在光滑导轨上,现固定棒L 1,L 2在水平恒力F =0.8N 的作用下,由静止开始做加速运动,试求:(1)当电压表的读数为U =0.2V 时,棒L 2的加速度多大? (2)棒L 2能达到的最大速度v m .(3)若在棒L 2达到最大速度v m 时撤去外力F ,并同时释放棒L 1,求棒L 2达到稳定时的速度值.(4)若固定棒L 1,当棒L 2的速度为v ,且离开棒L 1距离为S的同时,撤去恒力F ,为保持棒L 2做匀速运动,可以采用将B 从原值(B 0=0.2T )逐渐减小的方法,则磁感应强度B 应怎样随时间变化(写出B 与时间t 的关系式)? 解:(1)∵L 1与L 2串联∴流过L 2的电流为:A A r U I 21.02.0===① (2分) L 2所受安培力为:F ′=BdI=0.2N ② (2分) ∴222/2.1/5.02.08.0s m s m m F F a =-='-=③ (2分) (2)当L 2所受安培力F 安=F 时,棒有最大速度v m ,此时电路中电流为I m .则:F 安=BdI m ④ (1分) rBdv I mm 2=⑤ (1分) F 安=F ⑥ (1分) 由④⑤⑥得:s m dB Frv m /16222==⑦ (2分) (3)撤去F 后,棒L 2做减速运动,L 1做加速运动,当两棒达到共同速度v 共时,L 2有稳定速度,对此过程有:共v m m v m m )(212+= ⑧ (2分) ∴s m m m v m v m/10212=+=共 ⑨ (2分)(4)要使L 2保持匀速运动,回路中磁通量必须保持不变,设撤去恒力F 时磁感应强度为B 0,t 时刻磁感应强度为B t ,则:B 0dS =B t d (S +vt ) ⑩ (3分) ∴vtS SB B t +=0 (2分)★如图所示,两根相距为d 足够长的平行金属导轨位于水平的xOy 平面内,导轨与x 轴平行,一端接有阻值为R 的电阻.在x >0的一侧存在竖直向下的匀强磁场,一电阻为r 的金属直杆与金属导轨垂直放置,且接触良好,并可在导轨上滑动.开始时,金属直杆位于x =0处,现给金属杆一大小为v 0、方向沿x 轴正方向的初速度.在运动过程中有一大小可调节的平行于x 轴的外力F 作用在金属杆上,使金属杆保持Qx大小为a ,方向沿x 轴负方向的恒定加速度运动.金属导轨电阻可忽略不计.求:⑴金属杆减速过程中到达x 0的位置时,金属杆的感应电动势E ; ⑵回路中感应电流方向发生改变时,金属杆在轨道上的位置;⑶若金属杆质量为m ,请推导出外力F 随金属杆在x 轴上的位置(x )变化关系的表达式.答案:⑴E=Bd 0202ax v - ⑵x m =v 02/2a ⑶ rR axv d B ma F +-±=22022★如图所示,固定在水平桌面上的光滑金属框架cdef 处于竖直向下磁感应强度为B 0的匀强磁场中.金属杆ab 与金属框架接触良好.此时abed 构成一个边长为l 的正方形,金属杆的电阻为r ,其余部分电阻不计.⑴若从t =0时刻起,磁场的磁感应强度均匀增加,每秒钟增量为k ,施加一水平拉力保持金属杆静止不动,求金属杆中的感应电流.⑵在情况⑴中金属杆始终保持不动,当t = t 1秒末时,求水平拉力的大小.⑶若从t =0时刻起,磁感应强度逐渐减小,当金属杆在框架上以恒定速度v 向右做匀速运动时,可使回路中不产生感应电流.写出磁感应强度B 与时间t 的函数关系式.答案:⑴r kl I 2= ⑵()rkl kt B F 310+= ⑶vt l l B B +=0-------提示:产生感应电动势的原因。

高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】

高中物理   第09章  电磁感应  (单双棒问题)典型例题(含答案)【经典】

第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。

(2)安培力的特点:安培力为阻力,并随速度减小而减小。

(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。

电磁感应--单棒类问题

电磁感应--单棒类问题

电磁感应---单棒问题1、如图所示,水平面上有电阻不计的光滑金属导轨平行固定放置,间距d为0.5m,左端通过导线与阻值为2Ω的电阻R连接,右端通过导线与阻值为4Ω的小灯泡L连接,在CDEF矩形区域内有竖直向上的匀强磁场,CE长为2m,区域内的磁场的磁感应强度B随时间变化如图所示,在0t=时,一阻值为2Ω的金属棒在恒力F作用下由静止开始从AB位置沿导轨向右运动,当金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流强度;(2)恒力F的大小(3)金属棒的质量2、两根金属导轨平行放置在倾角为θ=30°的斜面上,导轨左端接有电阻R=10Ω,导轨自身电阻忽略不计。

匀强磁场垂直于斜面向上,磁感强度B=0.5T。

质量为m=0.1kg,电阻可不计的金属棒ab静止释放,沿导轨下滑。

如图所示,设导轨足够长,导轨宽度L=2m,金属棒ab下滑过程中始终与导轨接触良好,当金属棒下滑h=3m时,速度恰好达到最大值v=2m/s。

求此过程中电阻中产生的热量。

3、 (1999年上海)如图17-123所示,长为L、电阻r=0.3Ω、质量m=0.1kg的金属棒CD垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R=0.5Ω的电阻,量程为0~3.0A的电流表串接在一条导轨上,量程为0~1.0V的电压表接在电阻R的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F使金属棒右移.当金属棒以v=2m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:(1)此满偏的电表是什么表?说明理由:(2)拉动金属棒的外力F 多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R 的电量.4、如图所示,固定于水平桌面上足够长的两平行导轨PO 、MN ,PQ 、MN 的电阻不计,间距为d =0.5m.P 、M 两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B =0.2T 的匀强磁场中.电阻均为r =0.1Ω,质量分别为m 1=300g 和m 2=500g 的两金属棒L 1、L 2平行的搁在光滑导轨上,现固定棒L 1,L 2在水平恒力F =0.8N 的作用下,由静止开始做加速运动,试求:(1)当电压表的读数为U =0.2V 时,棒L 2的加速度多大?(2)棒L 2能达到的最大速度v m . (3)若在棒L 2达到最大速度v m 时撤去外力F ,并同时释放棒L 1,求棒L 2达到稳定时的速度值.(4)若固定棒L 1,当棒L 2的速度为v ,且离开棒L 1距离为S 的同时,撤去恒力F ,为保持棒L 2做匀速运动,可以采用将B 从原值(B 0=0.2T)逐渐减小的方法,则磁感应强度B 应怎样随时间变化(写出B 与时间t 的关系式)?5、如图所示,两根相距为d 足够长的平行金属导轨位于水平的xOy 平面内,导轨与x 轴平行,一端接有阻值为R 的电阻.在x >0的一侧存在竖直向下的匀强磁场,一电阻为r 的金属直杆与金属导轨垂直放置,且接触良好,并可在导轨上滑动.开始时,金属直杆位于x =0处,现给金属杆一大小为v 0、方向沿x 轴正方向的初速度.在运动过程中有一大小可调节的平行于x 轴的外力F 作用在金属杆上,使金属杆保持大小为a ,方向沿x 轴负方向的恒定加速度运动.金属导轨电阻可忽略不计.求:⑴金属杆减速过程中到达x 0的位置时,金属杆的感应电动势E ; ⑵回路中感应电流方向发生改变时,金属杆在轨道上的位置;⑶若金属杆质量为m ,请推导出外力F 随金属杆在x 轴上的位置(x )变化关系的表达式.Pabcdef6、如图所示,固定在水平桌面上的光滑金属框架cdef 处于竖直向下磁感应强度为B 0的匀强磁场中.金属杆ab 与金属框架接触良好.此时abed 构成一个边长为l 的正方形,金属杆的电阻为r ,其余部分电阻不计.⑴若从t =0时刻起,磁场的磁感应强度均匀增加,每秒钟增量为k ,施加一水平拉力保持金属杆静止不动,求金属杆中的感应电流. ⑵在情况⑴中金属杆始终保持不动,当t = t 1秒末时,求水平拉力的大小.⑶若从t =0时刻起,磁感应强度逐渐减小,当金属杆在框架上以恒定速度v 向右做匀速运动时,可使回路中不产生感应电流.写出磁感应强度B 与时间t 的函数关系式.7、一个“ ”形导轨PONQ ,其质量为M =2.0kg ,放在光滑绝缘的水平面上,处于匀强磁场中,另有一根质量为m =0.60kg 的金属棒CD 跨放在导轨上,CD 与导轨的动摩擦因数是0.20,CD 棒与ON 边平行,左边靠着光滑的固定立柱a 、b ,匀强磁场以ab 为界,左侧的磁场方向竖直向上(图中表示为垂直于纸面向外),右侧磁场方向水平向右,磁感应强度的大小都是0.80T ,如图所示.已知导轨ON 段长为0.50m ,电阻是0.40Ω,金属棒CD 的电阻是0.20Ω,其余电不计.导轨在水平拉力作用下由静止开始以0.20m/s 2的加速度做匀加速直线运动,一直到CD 中的电流达到.设导轨足够长,取g=10m/s 2.求:⑴导轨运动起来后,C 、D 两点哪点电势较高?⑵导轨做匀速运动时,水平拉力F ⑶导轨做匀加速运动的过程中,水平拉力F 的最小值是多少? ⑷CD 上消耗的电功率为P =0.80W 时,水平拉力F 做功的功率是多大?8、如图所示,在与水平面成θ=30º的平面内放置两条平行、光滑且足够长的金属轨道,其电阻可忽略不计。

专题19 电磁感应中的单导体棒模型--2024版高三物理培优——模型与方法

专题19 电磁感应中的单导体棒模型--2024版高三物理培优——模型与方法

2024版高三物理培优——模型与方法专题19电磁感应中的单导体棒模型目录一.阻尼式单导体棒模型 (1)二.发电式单导体棒模型 (9)三.无外力充电式单导体棒模型 (22)四.无外力放电式单导体棒模型 (23)五.有外力充电式单导体棒模型 (27)六.含“源”电动式模型 (34)1.电路特点:导体棒相当于电源。

当速度为5.最终状态:静止6.四个规律(1)全过程能量关系:A.当MN速度为v1时,MN两端的电势差为B.当MN速度为v1时,MN的加速度大小为【答案】(1)BLvRR r+;(2)P=【详解】(1)感应电动势电路中的感应电流【答案】(1)BLv,【详解】(1)刚开始运动时金属杆【答案】(1)22B L vmR;(2)mvBL;(3)22mv RB L【详解】(1)由于金属棒所受外力的合力等于安培力,则金属棒速度最大时的加速度最大,则有【答案】(1)0v v a x-'=【详解】(1)类比匀加速直线运动中加速度(2)①在导体棒速度从因为时间极短,可认为这一段时间内安培力为一定值,根据动量定理可得1.电路特点:导体棒相当于电源,当速度为5.最终特征:匀速运动6.两个极值(1)(2)磁场方向变化(3)导轨面变化(竖直或倾斜)10.若F的作用下使导体棒做匀加速直线运动则证明:根据法拉第电磁感应定律E=..................................................................BLv【答案】(1)4.8A ;19.2V ;(2)23.2m /s ;(3)33.76J【详解】(1)由乙图可知,导体棒做切割磁感线运动的最大速度为m 12m/sv =导体棒产生的最大感应电动势为m mE BLv =【答案】(1)max max BLv I R r =+,方向由M 流向N ;(2)F 0m 0si 21R r W Q m gv t R +=-【详解】(1)由题图2知杆AB 运动到水平轨道P 2Q 2处时的速率为v max ,则回路中的最大感应电动势max maxE BLv =杆AB 运动到水平轨道的P 2Q 2处时,回路中的感应电流最大,回路中的最大感应电流max max E I R r=+解得【答案】(1)223BF L gt mgR=+【详解】(1)根据法拉第电磁感应定律有【答案】(1)0.25μ=;(2)m 8m/s v =;(3)19.52JQ =【详解】(1)由图乙可知,金属棒在0~1s 内做初速度为的匀加速直线运动,可知金属棒第1s 末进入磁场。

电磁感应单棒问题

电磁感应单棒问题
A.导体棒两端电压为
B.电阻R1消耗的热功率为
C.t时间内通过导体棒的电荷量为
D.导体棒所受重力与安培力的合力方向与竖直方向夹角小于θ
5.(电动式)如图所示,水平放置的足够长平行导轨MN、PQ的间距为L=0.1m,电源的电动势E=10V,内阻r=0.1Ω,金属杆EF的质量为m=1kg,其有效电阻为R=0.4Ω,其与导轨间的动摩擦因素为μ=0.1,整个装置处于竖直向上的匀强磁场中,磁感应强度B=1T,现在闭合开关,求:(1)闭合开关瞬间,金属杆的加速度;(2)金属杆所能达到的最大速度;(3)当其速度为v=20m/s时杆的加速度为多大?(忽略其它一切电阻,g=10m/s2)
(1)AB杆运动的距离;(2)AB杆运动的时间;
(3)当杆速度为2m/s时其加速度为多大?
2.如图所示,U型金属导轨PQMN水平固定在竖直向上的匀强磁场中,磁感应强度为B,导轨宽度为L。QM之间接有阻值为R的电阻,其余部分电阻不计。一质量为m、电阻也为R的金属棒ab放在导轨上,给棒一个水平向右的初速度vo使之开始滑行,导体棒经过时间t停止运动,导体棒与导轨间的动摩擦因数为 ,重力加速度为g,下列说法正确的是()
8.如图所示,有一匀强磁场B=1.0×10-3T,在垂直磁场的平面内,有金属棒AO,绕平行于磁场的O轴顺时针转动,已知棒长L=0.20 m,角速度ω=20 rad / s,求:棒产生的感应电动势多大?
9.如图所示,在磁感应强度为B的匀强磁场中,有一边长为a的正方形线框在磁场中做速度为v的匀速运动,不计线框的内阻。在线框的AD边串一个内阻为R的伏特表,则AD两点间的电势差和伏特表的读数分别为
A.Bav,BavB.Bav,0
C.0,BavD.0,0
A.由题目条件可计算出导体棒ab运动过程中通过的电荷量

高二物理《电磁感应定律-单杆模型》练习题(教师版)

高二物理《电磁感应定律-单杆模型》练习题(教师版)

3.3、电磁感应定律--单杆模型Ⅰ、无动力典型例题1:如图所示,除导体棒ab 可动外,其余部分均固定不动。

设导体棒、导轨的电阻均可忽略,导体棒和导轨间的摩擦也不计。

图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长。

今给导体棒ab 一个向右的初速度v 0,分析导体棒ab 的最终运动状态感应电路中的功能关系分析①安培力的特点:22B L vF BIL R==②功是能量转化的量度:“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.同理,安培力做功的过程是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. Ⅱ、恒力驱动典型例题2:如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场方向垂直纸面向里,磁感应强度大小为B 。

一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处静止释放。

导体棒进入磁场后,流经电流表的电流逐渐变化,最终稳定。

整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。

分析导体棒可能的运动过程变式题:如图所示,水平放置的两平行导轨左侧连接电阻,其它电阻不计。

导轨MN 放在导轨上,在水平恒力F 的作用下,沿导轨向右运动,并将穿过方向竖直向下的有界匀强磁场,磁场边界PQ 与MN 平行,从MN 进入磁场开始计时,通过MN 的感应电流i 随时间t 的变化可能是下图中的:ACD× × × × × ×RbV 0Bai A 0 i B 0tiDt i CN R M PQFⅢ、恒定电源驱动典型例题3:如图所示,除导体棒ab 可动外,其余部分均固定不动。

设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计。

图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长。

今给导体棒ab 一个向右的初速度v 0,分析导体棒ab 的最终运动状态变式题:如图所示,两平行光滑金属导轨间的距离L =0.40m ,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在平面内,分布着磁感应强度B=0.50T 、方向垂直于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E =4.5V 、内阻r =0.50Ω的直流电源.现把一个质量m =0.04kg 、电阻R 0=2.5Ω的导体棒ab 放在金属导轨上,由静止释放.导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触点间的电阻、金属导轨电阻均不计,g 取10m/s 2.已知sin37°=0.60,cos37°=0.80,求导体棒最终稳定时的速度大小和方向. 解:最终稳定时mg sinα=BIL解得:I =1.2A4.5/IR E BLv v m s =-⇒= 沿斜面向上 Ⅳ、含容电路典型例题4(无动力时的情况):如图所示,除导体棒ab 可动外,其余部分均固定不动,甲图中的电容器C 原来不带电。

电磁感应现象中的单双棒问题(原卷版)-2023年高考物理压轴题专项训练(全国通用)

电磁感应现象中的单双棒问题(原卷版)-2023年高考物理压轴题专项训练(全国通用)

压轴题08电磁感应现象中的单双棒问题考向一/选择题:电磁感应现象中的单棒问题考向二/选择题:电磁感应现象中的含容单棒问题考向三/选择题:电磁感应现象中的双棒棒问题考向一:电磁感应现象中的单棒问题模型规律阻尼式(导轨光滑)1、力学关系:22A B l vF BIl R r==+;22()A FB l va m m R r ==+2、能量关系:20102mv Q-=3、动量电量关系:00BIl t mv -⋅∆=-;Bl sq n R r R rφ∆⋅∆==++电动式(导轨粗糙)1、力学关系:((B A E E E lv F B l B lR r R r--=++反))=;(B ()B F mg E lv a B l g m m R r μμ--=-+)=2、动量关系:0m BLq mgt mv μ-=-3、能量关系:212m qE Q mgS mv μ=++4、稳定后的能量转化规律:min min ()2min mI E I E I R r mgv μ=+++反5、两个极值:(1)最大加速度:v=0时,E 反=0,电流、加速度最大。

m E I R r =+;m m F BI l =;mm F mg a mμ-=(2)最大速度:稳定时,速度最大,电流最小。

min ,m E Blv I R r -=+min min mE Blv mgF BI l B l R rμ-===+发电式(导轨粗糙)1、力学关系:22--==--+()B F F mg F B l va gm m m R r μμ2、动量关系:0m Ft BLq mgt mv μ--=-3、能量关系:212mFs Q mgS mv μ=++4、稳定后的能量转化规律:2()m m mBLv Fv mgv R rμ=++5、两个极值:(1)最大加速度:当v=0时,m F mg a mμ-=。

(2)最大速度:当a=0时,220--==--=+()m B B l v F F mg Fa g m m m R r μμ考向二:电磁感应现象中的含容单棒问题模型规律放电式(先接1,后接2。

电磁感应——单棒模型ppt课件

电磁感应——单棒模型ppt课件
电磁感应中的动力学和能量问题
——单棒模型
1



应 中
运动情况分析 动力学观点

动量观点
导 轨
能量转化
能量观点


牛顿定律 平衡条件 动量定理 动量守恒 功能关系 能量守恒
2
力学问题
F合 ma
W合

1 2
mv22

1 2
mv12
能量守恒
F安 BIl
电学问题
E n
t E Blv I E
Rr Rr
Fx

Q热

1 2
mv m 2
,Q热

Fx

mF
2(R 2B 4l 4
r)2

mF 2 (R r)2 R
QR Fx
2B4l 4

R

r
6
3、其他条件不变,ab棒质量为m,
开始时静止,当受到一水平向右 拉力的作用,若拉力的功率P保持
R
不变,则:
b
r →v F
K Vm =8m/s V终 = 2m/s
F
a
若从金属导体ab从静止下落到接通电 键K的时间间隔为t,ab棒以后的运动 情况有几种可能?试用v-t图象描述。
b mg
13
F
3.稳定后的力学规律与能 量转化规律
受力平衡
F外

F安

B
Blvm rR
l
功率平衡
Fvm

(Blvm )2 Rr
14
b
(1)试分析棒的运动情况
R
r v0
a
(2)若已知了棒整个过程中的位移x,还能得出那些物理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应“切割模型”中导体棒长度变化类试题1.如图所示,在磁感应强度为B=2T ,方向垂直纸面向里的匀强磁场中,有一个由两条曲线状的金属导线及两电阻(图中黑点表示)组成的固定导轨,两电阻的阻值分别为R 1=3Ω、R 2=6Ω,两电阻的体积大小可忽略不计,两条导线的电阻忽略不计且中间用绝缘材料隔开,导轨平面与磁场垂直(位于纸面内),导轨与磁场边界(图中虚线)相切,切点为A ,现有一根电阻不计、足够长的金属棒MN 与磁场边界重叠,在A 点对金属棒MN 施加一个方向与磁场垂直、位于导轨平面内的并与磁场边界垂直的拉力F ,将金属棒MN 以速度v=5m /s 匀速向右拉,金属棒MN 与导轨接触良好,以切点为坐标原点,以F 的方向为正方向建立x 轴,两条导线的形状符合曲线方程x y 4sin22π±= m ,求:(1)推导出感应电动势e 的大小与金属棒的位移x 的关系式. (2)整个过程中力F 所做的功.(3)从A 到导轨中央的过程中通过R 1的电荷量.2.如图所示,在xoy 平面内存在B=2T 的匀强磁场,OA 与OCA 为置于竖直平面内的光滑金属导轨,其中OCA 满足曲线方程)(5sin5.0m y x π=,C 为导轨的最右端,导轨OA 与OCA相交处的O 点和A 点分别接有体积可忽略的定值电阻R 1=6Ω和R 2=12Ω。

现有一长L=1m 、质量m=0.1kg 的金属棒在竖直向上的外力F 作用下,以v=2m/s 的速度向上匀速运动,设棒与两导轨接触良好,除电阻R 1、R 2外其余电阻不计,求:(1)金属棒在导轨上运动时R 2上消耗的最大功率 (2)外力F 的最大值(3)金属棒滑过导轨OCA 过程中,整个回路产生的热量。

3.如图所示,在磁感应强度大小为B ,方向垂直纸面向里的匀强磁场中,有一个质量为m 、半径为r 、电阻为R 的均匀圆形导线圈,线圈平面跟磁场垂直(位于纸面内),线圈与磁场边缘(图中虚线)相切,切点为A ,现在A 点对线圈施加一个方向与磁场垂直,位于线圈平面内并跟磁场边界垂直的拉力F ,将线圈以速度v 匀速拉出磁场.以切点为坐标原点,以F 的方向为正方向建立x 轴,设拉出过程中某时刻线圈上的A 点的坐标为x.(1)写出力F 的大小与x 的关系式;(2)在F -x 图中定性画出F -x 关系图线,写出最大值F 0的表达式. 4.如图所示,MN 、PQ 是相互交叉成60°角的光滑金属导轨,O 是它们的交点且接触良好.两导轨处在同一水平面内,并置于有理想边界的匀强磁场中(图中经过O 点的虚线即为磁场的左边界).导体棒ab 与导轨始终保持良好接触,并在弹簧S 的作用下沿导轨以速度v 0向左匀速运动.已知在导体棒运动的过程中,弹簧始终处于弹性限度内.磁感应强度的大小为B ,方向如图.当导体棒运动到O 点时,弹簧恰好处于原长,导轨和导体棒单位长度的电阻均为r ,导体棒ab 的质量为m .求:(1)导体棒ab 第一次经过O 点前,通过它的电流大小; (2)弹簧的劲度系数k ;(3)从导体棒第一次经过O 点开始直到它静止的过程中,导体棒ab 中产生的热量.5.如图所示,由粗细均匀的电阻丝绕成的矩形导线框abcd 固定于水平面上,导线框边长ab =L, bc =2L ,整个线框处于竖直方向的匀强磁场中,磁场的磁感应强度为B ,导线框上各段导线的电阻与其长度成正比,已知该种电阻丝单位长度上的电阻为λ,λ的单位是Ω/m .今在导线框上放置一个与ab 边平行且与导线框接触良好的金属棒MN,MN 的电阻为r ,其材料与导线框的材料不同.金属棒MN 在外力作用下沿x 轴正方向做速度为v 的匀速运动,在金属棒从导线框最左端(该处x=0)运动到导线框最右端的过程中:(1)请写出金属棒中的感应电流I 随x 变化的函数关系式;(2)试证明当金属棒运动到bc 段中点时,MN 两点间电压最大,并请写出最大电压U m 的表达式;(3)试求出在此过程中,金属棒提供的最大电功率P m ;(4)试讨论在此过程中,导线框上消耗的电功率可能的变化情况.6.如图,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为2l。

磁场的磁感强度为B ,方向垂直纸面向里。

现有一段长度为2l、电阻为2R 的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然后沿ab 方向以恒定速度v 向b 端滑动,滑动中始终与ac 平行并与导线框保持良好接触。

当MN 滑过的距离为3l时,导线ac 中的电流是多大?方向如何?7.如图所示,顶角θ=450的金属导轨MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。

一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向右滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r .导体棒与导轨接触点为a 和b ,导体棒在滑动过程中始终保持与导轨良好接触.t=0时,导体棒位于顶角O 处,求:(1)t 时刻流过导体棒的电流大小I 和电流方向. (2)导体棒做匀速直线运动时水平外力F 的表达式. (3)导体棒在0~t 时间内产生的焦耳热Q.(4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x.1.解答:(1)m 4sin242x y L π==所以 V 4sin 240x Blv e π==(2)因为 x=vt 所以V 45sin240t e π= 由于导体做匀速运动,力F 所做的功等于电路中电流所做的功。

有效值V 402max==E E导体切割磁感线的时间s 6.14/52==ππt 电路中总电阻Ω=+⨯=+=263632121R R R R R拉力F 所做的功J 12802===t RE Q W 热 (3)由V 45sin240t e π= 可知 E max =BS ω=Φm ω ,所以ππωφ2324/5240maxm ===E Wb 通过电阻R 1的电量为C 32642232296R 2R R R I m 2121ππφ=⨯⨯=⨯+=∆=t Q 电2.解析:(1)金属棒向上匀速运动的过程中切割磁感线,产生电动势,接入电路的有效长度即为OCA导轨形状所满足的曲线方程,因此接入电路的金属棒长度为:)(5sin5.0m y x l π==所以当棒运动到C 点时,感应电动势最大,为:V v Bx v Bl E m m m 2===电阻R 1、R 2并联,此时R 2上消耗的功率最大,最大值为:WW R E P m 33.031222≈==(2)金属棒相当于电源,外电路中R 1、R 2并联,其并联阻值为:Ω=+=42121R R R R R通过金属棒的最大电流为:A R E I m5.0==所以最大安培力N BIx F m 5.0==安因为金属棒受力平衡,所以外力的最大值N mg F F 5.1=+=安(3)金属棒中产生的感应电动势为:yBxv E 5sin2π==显然为正弦交变电动势,所以有效值为VE E m 22==有该过程经历的时间:s v OAt 5.2==所以产生的热量为Jt RE Q 25.12==有。

3.解析:由于线圈沿F 方向做切割磁感线运动,线圈上要产生顺时针方向的感应电流,从而要受到与F 方向反向的安培力F f 作用,由图可知,此时线圈切割磁感线的有效长度2)0.(2)x r l x r ⎧⎪≤=⎨>⎪⎩线圈上感应电动势E=Blv ,感应电流Ei R =,线圈所受安培力大小为F f =Bil ,方向沿x 负方向,因线圈被匀速拉出,所以F = F f ,解上各式得22284,(2)0.(2)B vr B v x x x r F R Rx r ⎧-≤⎪=⎨⎪>⎩(2)当x=r 时,拉力F 最大,最大值为2204B r vF R =。

F -x 关系图线如图所示。

4.解:(1)设ab 棒在导轨之间的长度为l ,由欧姆定律得rBv lr Blv I 3300==(2)设O 点到ab 棒距离为x ,则ab 棒的有效长度l' =2xtan30°=x 332 ∵ab 棒做匀速运动,∴l BI kx '=∴ rv B x xr Bv B xl BI k 9323323020=⋅⋅='=(3)裸导线最终只能静止于O 点,故其动能全部转化为焦耳热,即2021mv Q = (2分) 则6320mv Q Q ab ==5.解: (1) E= BLv,)25)(2(666)25)(2(2x L x L Lr vBL Lx L x L r BLv rR E I -++=-++=+=λλ(2)M 、N 两点间电压Rr ER rR EU +=+=1,当外电路电阻最大时,U 有最大值m U 。

. 因为外电路电阻L x L x L R 6)25)(2(-+=λ,当x L x L 252-=+,即x=L 时,R 有最大值,所以x=L时,即金属棒在bc 中点时M 、N 两点间电压有最大值,即Lr v BL U m λλ3232+=。

(3) rL E r L E P m 6566522+=+=λλ (4)外电路电阻λλL L L L L R 6555min =+⋅=,λλL L L L L R 233333max =+⋅=。

当r<min R ,即r<λL 65时,导线框上消耗的电功率先变小,后变大;当min R < r<max R ,即λL 65<r<λL 23时,导线框上消耗的电功率先变大,后变小,再变大,再变小;当r>max R ,即r>λL 23时,导线框上消耗的电功率先变大,后变小.6.解析:MN 滑过的距离为3l时,它与bc 的接触点为P ,如图。

由几何关系可知MP 长度为3l,MP 中的感应电动势Blv E 31=MP 段的电阻 R r 31=MacP 和MbP 两电路的并联电阻为 R R r 9232313231=+⨯=并 由欧姆定律,PM 中的电流 并r r EI +=ac 中的电流 I I ac 32= 解得 RBlvI ac 52=根据右手定则,MP 中的感应电流的方向由P 流向M ,所以电流I ac 的方向由a 流向c 。

7.解析:(1)0~t 时间内,导体棒的位移为0x v t =,t 时刻导体棒的长度l=x ,导体棒的电动势0E Blv =,回路总电阻R (2)R x r =,电流E I R ==,电流方向b →a .(2)22F BIl ==(3) t时刻导体棒的电功率为232P I R '==因P ∝t,故2322PQ t == (4)如图所示,撤去外力后,设任意时刻t 导体棒的坐标为x ,速度为v ,取很短时间△t 或很短距离△x .在t ~t +△t 内,由动量定理得BIl t m v -∆=∆又E I R ===则2)lv t m v -∆=∆∑2S mv =扫过面积22000000()(),()22x x x x x x S x v t +--∆===得x =d ,则0000()2v t v t d S d ++∆=即200220d v t d S +-∆=解之得00d v t =-+,得00x v t d =+==。

相关文档
最新文档