拉伸试验
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p p
1
2
1 p1 p2 q1 q2 式中:
L1 2 p2 1 L2 2 p1 1 p2 p1 1 p1 p2
L ,
1 1 1
L ;
2 2 2
T2 (2 p2 1) T2 2 p1 1 T1 p2 T2 p1 p1 p2
试件选择:试件为板式和环式两种。 板式试件拉伸时,要避免应力集中。
板式拉伸试件示意图
圆形拉伸试件示意图
环状试件的拉伸
对开式拉力盘拉伸法(NOL)
-是美国1955年发明用以评定纤维粗纱表面化学处理方法对玻璃纤维复合材 料强度的影响,目前,NOL圆环主要用于测定弹性模量、圆周拉伸强度和剪 切模量,现已纳入ASTM标准,并已被世界各国所采用。
p D E 2bh 2u
b 环试件宽度; h 环试件厚度; D 环的平均直径; u-载荷增加p时,两半盘间距的变化量;
-两个半盘间的初始距离一定要小(要求两面全面接触),因随着 两个半盘之间的间隙出现,试样的相应部分不仅会被拉直,而且还 会有偏转(如a型)简化改进后的卡具就考虑了这一点。 -由于试件同拉力盘不能完全接触,而且,由于摩擦的影响,以及 拉力盘分开处的试件局部变形的因素的存在,所以环的圆周应变分 布是不均匀的。
验证试验发现:环试件圆周应变、应力分布 不均匀; 从而确定了电阻应变片粘贴的有效 位置;
此时,弹性模量由下式确定:
p 1 E 2bh
p 载荷;
-电阻应变片测得的应变平均值(4个)
圆周弹性模量 E也可由于长环试件的测定(b),此时,电阻应变 片应贴在直线部位。
强度测量:
PT = 2bh
不同纤维材料的NOL环的应力集中,靠近拉力盘对开处的相对接 触压力 P / Pm 变化的理论曲线,P是内压,在试件中产生相当于 受拉力盘拉伸形成的圆周力 。
可看出: 接触压力的变 化主要于试样 材料有关。
柔性圆环加载法
-利用橡胶或液体作为工作介质,使环内表面产生均匀压力的加载方法。
优点: 由于采用了均匀的内压,排除了对开式拉力盘对开平面上与环状试样弯 曲有关的现象。
1 2
’ ’ , :横向应变;
1 2
, :相应应力;
1 2
各向弹性常数的导出
1 L1 p2 L2 p1 4(T1 T2 ) p1 p2 (q2 q1 ) Ex p2 p1 L1 ( p2 1) L2 ( p1 1) 1 Ey p2 p1 4 T1 T2 1 Gxy
处理试验结果所用的数学公式与试件破坏形式不适应;
原因:实际测量时,往往因纵向层间分离、剪切或标距外破坏、卡具内破坏的发 生而造成。 解决办法:加紧形式、对中、防滑。
应力-应变曲线(-)
纤维聚合物复合材料的拉伸应力-应变曲线取决于: 1、增强相和铺层方式; 2、增强相与基体的相互作用;
3、对中问题;
!
只有仔细观察、记录、分析被测试件破坏模式,才能提炼 出反映真实物理客观事实的理论模型,才能真正指导材料的设 计、和优化出完美的材料。
加载条件
-根据试验的目的有选择加载。 弹性常数的 测定: 先加载到预期静强度的10-20%,然后,降低到静强度 的5%之后再开 始加载。 破坏强度的测定: 可直接加载到破坏为止,但加载速率要恒定。若不恒定呢?
沿纤维增强方向加载的单向复合材料,通常因增强纤维断裂而破坏; 纤维含量低的材料,聚合物基体在增强纤维断裂之前破坏;
单向纤维复合材料上的载荷与纤维方向有夹角时,破坏随角度而变化;
1、小角度时,由于剪切以及平行于增强纤维方向的聚合物基体剥离,而是 材料开始破坏;
2、角度加大时,由于拉应力起着主要作用,极端情况下,因聚合物基体横 向断裂而破坏;
根据试验的目的不同 选择不同形状、尺寸的 试件。 要测定弹性常数该选 哪一种呢?
强度呢?
板样试件的加载
各向异性杆的变形特征 -对于各向异性材料,受轴向拉伸的杆不仅沿加载方向延伸,沿横向收 缩,而且在所有平行于坐标平面的面上受剪。与各向同性材料相反。
-在约束变形条件下,出 拉伸应力外,还产生弯曲 力和剪切力,从而导致变 形不均匀。 -此时,弯曲和剪切的影 响不仅取决于被测试材料 的弹性常数,而且取决于 试样的长宽比。
接头片
改进后的夹具
正交各向异性复合材料的弹性常数的测定
一、方法 -采用两组试样试验测定弹性常数。各向弹性常数的准确测定,对分析解决平 面问 题至关重要。
二、试样的制备
1+2 90O)切取的两组试样进行简单的 常简化为采用对x轴成 1角和 2角(
加载试验。
三、可直接测得参量
, :纵向应变;
弹性模量和泊松比的测定:
对试样要加载几次(至少3次),若数据很分散,就加载6-10次,但应 力不要超 过应力-应变曲线上的拐点的水平。
加载速率的选择:
可查阅相关手册或国标。
试样的形状和尺寸
一般要求: -参考标准,结合卡具类型。 -尽量保证标距段的应力均匀; -保证在标距段破坏,以确保 试验数据有效性。
测量值及计算公式
p x= s
T x。
材料发生破坏, x 既是该材料的破坏强度
纵向应变:
x :横截面上的正应力,当试件加载的破坏时,既是最大正应力载荷时:
t x
l l
l l1 l
-标距长度的增量
弹性模量的确定:
i x p i l p i 1 E i . i x S l S x 1 x
PΒιβλιοθήκη Baidu
P
P
P a
c
P b
试件环主要采用缠绕法和机械加工法制备
Naval Ordnance Lab.
试件的尺寸:ASTM标准规定了经机械加工的圆环的尺寸
圆环试件卡具
简化改进后的圆环试件卡具
石墨润滑剂
液压式驱动卡具
对弹性模量E的测定,有几种测量变形的方法。最简单的方法是测量两 个半盘间的间隙量(a类似)。
复合材料拉伸实验
一、板状试件的拉伸
-单向拉伸是复合材料力学性能试验应用最广,研究最多的一种方法。前苏、美、 德、英各自的标准加入ISO后,我国参照ISO也建立了自己的国标(GB)。
拉伸时的难点:
-在整个标距段难以建立均匀的应力状态。 由于测量弹性常数和断裂强度对试件所受的应力状态要求不同;根据圣维南原理, 各向异性材料的表现最为突出;同传统的材料相比,试件的端部效应更为明显。 -为了即避免边界效应的影响,又能较为准确测定刚度,势必增加试件的长度, 但同时可能带来破坏模式的改变。因此,必须保证试件的数量和尺寸不同的试件。 测定强度时常见的误差:
弹性模量的计算:
pDi E 2h
p 橡胶对内环表面产生的压强; Di -圆环内径;
在圆环外表面测得的或用位移传感器测定的应变
强度计算:
u pu
Di 2h
pu 环状试件破坏时的强度;
液静压加载法 -利用流体产生内压的液静压试验,克服了上述各种方法所固有的 缺点,可保证精度;然而,所需设备特殊、昂贵。
T1
,
' 1
1
' T ;
2 2 2
0
E0
p1 sin 2 1 ,
p2 sin 2 2 ;
q1 sin 2 21 q2 sin 2 2 2 ;
如果试件尺寸可固定测量Z方向上电阻应变片,则可测得主要弹性常数
zx a13 Ex和 xy a23 E y
问题与难点:
-在拉伸条件下,纤维聚合物复合材料的泊松比并非不变值,而是随着载荷的增 加而减小,有时会出现负的泊松比。 -分析其主要原因:泊松比的符号取决于增强纤维的铺设方向和顺序,反映在边 缘效应上。因此,对增强纤维的横向相对应变进行测量时困难;
解决办法:
-取厚与宽相同的承均质叠层的试样上测定泊松比,且由单向材料的试样测量, 并加载水平给予说明。
lL : 试样在基长lT 上的纵向变形;
i i 式中: lL / lL L和-lT / lT T 可直接用电阻应变片测量;
破坏模式
-纤维聚合物的破坏模式主要是由于增强叠层形式、各组分的材料的力学 性能及组分间的作用,工艺缺陷(空隙、纤维波纹度等)、以及试样尺寸 所决定。
几种破坏模式:
4、试验环境 试验发现: 单向玻璃纤维增强复合材料的应力-应变曲线在材料破坏前是线性的; 正交增强的、非编织的玻璃纤维复合材料和玻璃布材料的应力-应变关系曲线是 由两条或多条斜率不同的直线组成。 折点存在原因:
Stress
Strain
1、材料的局部破坏为主要原因;
2、设备的不完善;
Y
X Z
关于泊松比
p i:载荷增量; S:试样标距的横截面积; l:引伸计的跨度; l:l的变形;
i x :电阻应变片测定的应变;
实际测量时,若测得的应力-应变曲线无线性段,只能测定正切或正割时 的弹性模量。
泊松比的确定: i
yx
i i y z i , zx i x x
i lT lL T i lT : 试样在基长lT 上的横向变形; lT lL L
拉伸应力的传递
-通常采用自锁楔式夹头中的试样加载。
保证试件在夹头中加紧的条件:
1 F P 2
P:载荷; F:一个侧面的摩擦力;
F可由下式确定:
P f F =Pf 2 tg ( )
f 复合材料同楔形面间摩擦系数;
楔形夹钳的斜角; 夹头斜面上滚动摩擦的折算角; 正压的传递强度系数
然而,当 时,试件破坏的层间剪应力 可能超过材料 的极限值。由于弯曲的结果,内层受载,而外层载荷不足。
T
纤维环氧复合材料和碳纤维复合材料的内表面(接触面)相对 圆周应力 / m 的变化曲线。
可看出:圆周应力的分布与试样材料的关系很小。
针对长环型试件的内表面相对圆周应力 / m 的变化曲 线
可算出:
a13 a23
z1 p2 z1 p1 p2 p1
式中:
z; ;
z 1 p2 1 z2 p1 1 p2 p1
1 00 2 45
0
'' z ,
1 1
通常选用
进行试验。
'' z
2
1
2
2
层间拉伸强度