排列组合备课教案

合集下载

二年级排列组合教案

二年级排列组合教案

二年级排列组合教案第一章:排列组合的基本概念1.1 排列的概念:排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的过程。

1.2 组合的概念:组合是指从n个不同元素中取出m(m≤n)个元素,但与排列不同的是,组合不考虑元素的顺序。

第二章:排列的计算方法2.1 排列数的计算公式:排列数A(n,m) = n! / (n-m)!,其中n!表示n的阶乘,即n×(n-1)×(n-2)×…×2×1。

2.2 举例说明排列数的计算方法:例如,计算A(5,3)的值,先计算5的阶乘,再计算5-3的阶乘,用5的阶乘除以(5-3)的阶乘得到A(5,3)的值。

第三章:组合的计算方法3.1 组合数的计算公式:组合数C(n,m) = A(n,m) / m!,其中A(n,m)表示从n 个元素中取出m个元素的排列数,m!表示m的阶乘。

3.2 举例说明组合数的计算方法:例如,计算C(5,3)的值,先计算A(5,3)的值,再计算3的阶乘,用A(5,3)的值除以3的阶乘得到C(5,3)的值。

第四章:排列组合的应用实例4.1 题目:有红、蓝、绿3种颜色的珠子,每种颜色有3个,从中取出2个珠子,求取出的珠子颜色不同的排列数。

4.2 解题过程:计算总的排列数A(9,2),即9个珠子中取出2个的排列数;计算颜色相同的排列数,即两个红色珠子、两个蓝色珠子、两个绿色珠子的排列数;用总的排列数减去颜色相同的排列数得到颜色不同的排列数。

4.3 答案:颜色不同的排列数为288种。

第五章:总结与拓展5.1 总结:本章学习了排列组合的基本概念、计算方法及其应用实例。

5.2 拓展:鼓励学生思考排列组合在实际生活中的应用,如彩票中奖号码的组合、水果店摆放水果的排列等。

第六章:组合的应用实例6.1 题目:一个篮子里有5个苹果,3个香蕉,2个橘子,从中选出2个水果,求选出的水果不同的组合数。

6.2 解题过程:计算总的组合数C(10,2),即从10个水果中选出2个的组合数;计算选出两个苹果、两个香蕉、两个橘子的组合数;用总的组合数减去选出两个相同水果的组合数得到选出不同水果的组合数。

《排列与组合》教学设计优秀9篇

《排列与组合》教学设计优秀9篇

《排列与组合》教学设计优秀9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《排列与组合》教学设计优秀9篇作为一位杰出的老师,常常需要准备教案,教案有助于顺利而有效地开展教学活动。

排列组合问题(教案

排列组合问题(教案

排列组合问题(教案)第一章:排列组合基础1.1 排列组合概念:排列、组合的定义及其区别1.2 排列组合的基本公式:排列数公式、组合数公式1.3 排列组合的应用:简单的排列组合问题求解第二章:排列组合的性质与方法2.1 排列组合的性质:交换律、结合律、分配律等2.2 排列组合的方法:直接法、排除法、插空法等2.3 排列组合的实例分析:解决实际问题第三章:排列组合的拓展3.1 排列组合的递推关系:Fibonacci数列与排列组合3.2 排列组合的极限问题:鸽巢原理、包含-排除原理3.3 排列组合与其他数学领域的联系:组合数学与图论、概率论等第四章:排列组合在实际问题中的应用4.1 排列组合在组合优化问题中的应用:旅行商问题、装箱问题等4.2 排列组合在信息科学中的应用:编码理论、密码学等4.3 排列组合在生物学中的应用:遗传组合、进化论等第五章:排列组合问题的解题技巧与策略5.1 排列组合的分类讨论:按照元素属性、按照排列顺序等5.2 排列组合的简化方法:图论方法、recurrence relation 等5.3 排列组合的思维策略:逻辑思维、创新思维等第六章:排列组合的综合应用题6.1 排列组合与概率论的结合:计算事件的概率6.2 排列组合与图论的结合:解决图论中的问题6.3 排列组合与数论的结合:组合数与素数的关系等第七章:排列组合与其他数学问题的联系7.1 排列组合与组合优化:线性规划、整数规划等7.2 排列组合与算法:动态规划、回溯算法等7.3 排列组合与数学竞赛:排列组合在数学竞赛中的应用第八章:现代排列组合方法与工具8.1 计算机算法:排列组合问题的计算机算法实现8.2 数学软件:使用数学软件解决排列组合问题8.3 组合设计:拉丁方、Steiner系统等组合设计理论第九章:排列组合在生活中的应用9.1 排列组合在日常生活中的应用:如彩票、概率游戏等9.2 排列组合在社会科学中的应用:如人口统计、社会调查等9.3 排列组合在艺术中的应用:如密码、图案设计等第十章:排列组合问题的研究前沿与展望10.1 排列组合问题的新模型:如网络流模型、组合优化模型等10.2 排列组合问题的新方法:如图论方法、代数方法等10.3 排列组合问题的未来发展趋势:如与、大数据的结合等重点和难点解析重点环节一:排列组合概念的区分学生需要理解排列和组合的定义,并能够区分它们的应用场景。

排列组合问题(教案

排列组合问题(教案

排列组合问题教案章节:一、排列组合基础教学目标:1. 理解排列组合的概念和意义。

2. 掌握排列和组合的计算方法。

教学内容:1. 排列组合的定义和分类。

2. 排列的计算方法:排列数公式。

3. 组合的计算方法:组合数公式。

教学步骤:1. 引入排列组合的概念,解释其在实际生活中的应用。

2. 讲解排列的定义和计算方法,示例说明。

3. 讲解组合的定义和计算方法,示例说明。

4. 练习题:求解一些简单的排列组合问题。

教学评估:1. 课堂提问:学生能准确回答排列组合的定义和计算方法。

2. 练习题:学生能正确解答给定的排列组合问题。

教案章节:二、排列组合的应用教学目标:1. 掌握排列组合在实际问题中的应用。

2. 能够解决一些复杂的排列组合问题。

教学内容:1. 排列组合在排列问题中的应用。

2. 排列组合在组合问题中的应用。

教学步骤:1. 引入排列组合在实际问题中的应用,举例说明。

2. 讲解排列在排列问题中的应用,示例说明。

3. 讲解组合在组合问题中的应用,示例说明。

4. 练习题:解决一些实际的排列组合问题。

教学评估:1. 课堂提问:学生能理解排列组合在实际问题中的应用。

2. 练习题:学生能解决给定的实际排列组合问题。

教案章节:三、排列组合的拓展教学目标:1. 掌握排列组合的拓展概念和计算方法。

2. 能够解决一些特殊的排列组合问题。

教学内容:1. 排列组合的拓展概念和计算方法。

2. 特殊的排列组合问题的解决方法。

教学步骤:1. 引入排列组合的拓展概念,解释其在实际生活中的应用。

2. 讲解排列组合的拓展计算方法,示例说明。

3. 讲解特殊的排列组合问题的解决方法,示例说明。

4. 练习题:求解一些特殊的排列组合问题。

1. 课堂提问:学生能准确回答排列组合的拓展概念和计算方法。

2. 练习题:学生能正确解答给定的特殊的排列组合问题。

教案章节:四、排列组合的综合应用教学目标:1. 掌握排列组合的综合应用。

2. 能够解决一些综合性的排列组合问题。

排列组合问题(教案

排列组合问题(教案

排列组合问题(教案)第一章:排列与组合的基本概念1.1 排列的概念:排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的过程。

1.2 组合的概念:组合是指从n个不同元素中取出m(m≤n)个元素,但与排列不同的是,组合不考虑元素的顺序。

1.3 排列数与组合数的表示:排列数用符号A(n,m)表示,组合数用符号C(n,m)表示。

第二章:排列数的计算方法2.1 排列数的直接计算方法:A(n,m) = n ×(n-1) ×(n-2) ××(n-m+1),当n≥m时成立。

2.2 排列数的递推计算方法:A(n,m) = A(n-1,m-1) ×(n-m+1),当n≥m时成立。

2.3 排列数的周期性:对于任意的正整数n和m,A(n,m)与A(n,n-m)相等。

第三章:组合数的计算方法3.1 组合数的直接计算方法:C(n,m) = A(n,m) / m!,当n≥m时成立。

3.2 组合数的递推计算方法:C(n,m) = C(n-1,m-1) + C(n-1,m),当n≥m时成立。

3.3 组合数的性质:C(n,m) = C(n,n-m),且C(n,m) = C(n-1,m-1) + C(n-1,m)。

第四章:排列组合的应用实例4.1 人员选拔问题:从n个人中选拔m个人,有多少种不同的选拔方式?4.2 活动安排问题:有n个活动,每个活动可以独立进行或进行,有多少种不同的安排方式?4.3 物品分配问题:有n个相同的物品,需要分成m组,每组至少有一个物品,有多少种不同的分配方式?第五章:排列组合问题拓展5.1 错位排列问题:将一个长度为n的序列中的每个元素错位排列,求错位排列的总数。

5.2 循环排列问题:将一个长度为n的序列进行循环排列,求循环排列的总数。

5.3 限制条件的排列组合问题:在排列组合问题中,添加一些限制条件,如元素不可重复使用等,求解符合条件的排列组合总数。

排列组合问题教案

排列组合问题教案

排列组合问题教案一、教学目标1. 让学生理解排列组合的概念和意义。

2. 培养学生运用排列组合知识解决实际问题的能力。

3. 引导学生掌握排列组合的计算方法和技巧。

二、教学内容1. 排列的概念和计算方法2. 组合的概念和计算方法3. 排列组合的综合应用三、教学重点与难点1. 教学重点:排列组合的计算方法和技巧。

2. 教学难点:排列组合在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究排列组合的计算方法。

2. 运用案例分析法,让学生通过解决实际问题,巩固排列组合知识。

3. 采用小组合作学习法,培养学生的团队协作能力和交流表达能力。

五、教学准备1. 教学课件:排列组合的概念、计算方法和应用案例。

2. 练习题:涵盖排列和组合的各种类型,用于巩固知识点。

教案一、导入(5分钟)1. 教师通过引入“猜拳游戏”的问题,引导学生思考排列组合的概念。

2. 学生分享对排列组合的理解,教师总结并板书。

二、排列的概念和计算方法(10分钟)1. 教师讲解排列的定义和计算方法,示例演示。

2. 学生跟随教师一起完成典型案例的排列计算。

3. 学生自主练习排列计算,教师巡回指导。

三、组合的概念和计算方法(10分钟)1. 教师讲解组合的定义和计算方法,示例演示。

2. 学生跟随教师一起完成典型案例的组合计算。

3. 学生自主练习组合计算,教师巡回指导。

四、排列组合的综合应用(15分钟)1. 教师提出一个实际问题,引导学生运用排列组合知识解决。

2. 学生分组讨论,提出解决方案,并进行展示。

3. 教师点评并总结,强调排列组合在实际问题中的应用。

五、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结排列组合的计算方法和应用。

2. 学生分享学习收获,教师给予鼓励和评价。

六、课后作业(课后自主完成)1. 完成练习题,巩固排列组合的知识点。

教学反思:本节课通过问题驱动、案例分析和小组合作学习等方法,引导学生掌握了排列组合的计算方法和实际应用。

简单的排列教案7篇

简单的排列教案7篇

简单的排列教案7篇简单的排列教案篇1【背景】在日常生活中,有很多需要用排列组合解决的知识。

如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。

在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。

这节课安排生动有趣额活动,让学生通过这些活动进行学习。

例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的`体会:怎样摆才能保证不重复、不遗漏。

【教材分析】“数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。

排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。

【教学目标】1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。

【教学重点】经历探索简单事物排列与组合规律的过程【教学难点】初步理解简单事物排列与组合的不同【教学准备】多媒体、数字卡片。

【教学方法】观察法、动手操作法、合作探究法等。

【课前预习】预习数学书99页,思考以下问题:1、用1、2两个数字能摆出哪些两位数?2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。

3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。

【教学准备】ppt【教学过程】……一、以游戏形式引入新课师:同学们,今天老师带大家去数学广角做游戏。

在门口设置了,上有密码。

小学二年级数学教案 排列组合9篇

小学二年级数学教案 排列组合9篇

小学二年级数学教案排列组合9篇排列组合 1教学目标1、使学生通过观察、猜测、实验等活动,找出最简单的事物排列数和组合数。

2、培养学生初步的观察、分析及推理能力。

3、初步培养学生有顺序地、全面地思考问题的意识。

教学重点:经历探索简单事物排列与组合规律的过程。

教学难点:引导学生发现和应用规律,做到不重复也不遗漏地找出事物的排列数和组合数。

教具准备:多媒体课件、数字卡片、练习纸。

教学过程:一、创设情境,引出课题师:同学们,今天老师带大家继续在数学王国里遨游,今天我们要去一个新的地方数学城堡,想去吗?生:想。

师:那我们就一起出发吧!老师相信,凭借你们的智慧,今天一定会玩儿的很开心的!二、趣味活动,探索新知(一)破译密码——体会排列1、破译密码——体会排列(出示城堡大门的大锁头)师:真不巧,今天城堡的管理员不在,大门紧锁,不过别着急,这里既然是数学城堡,那么用我们的数学头脑一定能解决问题。

我知道,这把锁是密码锁。

咱们只要破译了密码就可以顺利进入了。

师:快看,这把锁头上有提示,它的密码是由1和2组成的两位数,猜猜看会是几?生:12、21.师:有的说是12、有的说是21.还有别的可能吗?生:没有了。

师:为什么呢?生:因为由1和2组成的两位数不是12就是21。

不能组成其它数了。

师:好,那到底哪一个是密码呢?我们来试一试。

先来试一试12(错误)。

那肯定是?生:21.师:好,恭喜大家顺利进入数学城堡。

数学城堡为我们设置了几道关卡,想考验考验大家,你们有信心闯关吗?生:有!(二)排一排——应用排列师:那好,那我们就来看看第一关。

1、2、3能组成几个不同的两位数?括号里写的什么啊?生:请有序的思考。

师:咱们看谁能做到有序的思考(神秘些)。

当然,在数学城堡里闯关还要遵守闯关规则,那就是不重复、不遗漏。

下面请大家拿起手中的数字卡片试着排一排,然后把你摆出的两位数记录在练习纸上。

开始行动吧!(设计意图:通过解决闯关题,使学生自身产生对知识的迫切需要,使学生在充满兴趣的情感中不知不觉地进入了摆数活动,让学生在体验中感受,在活动操作中成功,在交流中找到方法,在学习中应用。

排列与组合教学设计5篇

排列与组合教学设计5篇

排列与组合教学设计5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、心得体会、演讲致辞、合同协议、读后感、观后感、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, work plans, experiences, speeches, contract agreements, reading feedback, observation feedback, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!排列与组合教学设计5篇排列与组合教学设计篇1排列组合教学设计实验学校崔海涛教学内容义务教育课程标准实验教科书(人教版)二年级上册第八单元第一课时教学目标:知识目标:使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。

排列组合的经典教案

排列组合的经典教案

排列组合的经典教案作为一位杰出的教职工,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。

如何把教案做到重点突出呢?下面是店铺收集整理的排列组合的经典教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

排列组合的经典教案篇1一、课标要求:1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。

二、命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。

排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。

考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目。

三、要点精讲1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。

3.排列(1)排列定义,排列数(2)排列数公式:系= =n·(n-1)…(n-m+1);(3)全排列列: =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;4.组合(1)组合的定义,排列与组合的区别;(2)组合数公式:Cnm= = ;(3)组合数的性质①Cnm=Cnn-m;② ;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk;6.二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性。

二年级排列组合教案

二年级排列组合教案

二年级排列组合教案一、教学目标1. 让学生理解排列组合的概念,能够运用排列组合的知识解决实际问题。

2. 培养学生观察、思考、动手操作的能力,提高学生的逻辑思维能力。

3. 培养学生合作学习的精神,培养学生的团队意识。

二、教学内容1. 排列的概念和排列数计算方法。

2. 组合的概念和组合数计算方法。

3. 排列组合在实际问题中的应用。

三、教学重点与难点1. 教学重点:排列组合的概念、排列数和组合数的计算方法。

2. 教学难点:排列组合在实际问题中的应用。

四、教学方法1. 采用直观演示法,让学生通过观察、操作,理解排列组合的概念。

2. 采用案例教学法,让学生通过解决实际问题,掌握排列组合的计算方法。

3. 采用小组合作学习法,培养学生的团队意识和合作精神。

五、教学准备1. 教具:排列组合的教具模型、实际问题案例。

2. 学具:学生用书、练习本、画笔。

六、教学过程1. 导入:通过复习上节课的内容,引出本节课的主题——排列组合。

2. 新课导入:讲解排列的概念和排列数的计算方法。

3. 案例分析:通过分析实际问题,让学生掌握排列数的计算方法。

4. 课堂练习:让学生独立完成练习题,巩固所学知识。

5. 总结:对本节课的内容进行总结,强调重点知识点。

七、作业布置1. 请学生运用排列组合的知识,解决家庭中的实际问题。

2. 完成练习本上的相关练习题。

八、课堂反馈1. 通过课堂观察,了解学生对排列组合知识的掌握情况。

2. 通过作业批改,了解学生对排列组合知识的运用情况。

九、教学反思1. 反思本节课的教学内容,是否符合学生的认知水平。

2. 反思本节课的教学方法,是否有利于学生的理解和运用。

3. 反思本节课的课堂管理,是否有利于学生的学习。

十、课后拓展1. 开展排列组合竞赛活动,激发学生的学习兴趣。

2. 组织学生进行小组研究,探讨排列组合在生活中的应用。

3. 推荐学生阅读与排列组合相关的书籍,提高学生的知识水平。

六、教学内容1. 讲解组合的概念和组合数的计算方法。

排列与组合教案设计

排列与组合教案设计

排列与组合教案(一)【教学目标】知识目标:理解排列的定义,掌握排列数的计算公式.能力目标:学生的数学计算技能、计算工具使用技能和数学思维能力得到提高.【教学重点】排列数计算公式.【教学难点】排列数计算公式.【教学设计】复习两个计数原理,一方面它是复习回顾,另一方面是做好衔接,为下面的问题及排列数的计算奠定基础.一个排列元素是不可重复的.也就是说,利用排列研究问题时,元素是不可以重复选取.对于元素可以重复选取的问题是直接应用两个计数原理计算的问题.排列的概念中有两个要素.一个是不同的元素,另一个是一定的顺序.从n个不同元素中,取出m(m≤n)个不同元素的所有排列的个数,叫做从n个不同元素中取出m个不同元素的排列数,用符号P mn 表示.采用这个符号是执行国家的新规定.有些教材中使用符合A mn表示.例2是巩固排列数公式的题目.例3与例4是排列的实际应用题.其中例3是基础题,解题关键是搞清原来不同元素的个数、取出不同元素的个数、是否有序.例4是综合利用计数原理与排列知识的题目.讲解时要注意进行数学方法的渗透.首先考虑特殊元素或特殊位置,然后再考虑一般元素或位置,分步骤来研究问题,这种研究方法是本章中经常使用的方法.排列数的计算一般的数字都是比较大,比较麻烦,采用计算器来完成计算非常便捷.教材介绍了利用计算器计算排列数的方法.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【教师教学后记】【课题】3.1排列与组合(二)【教学目标】知识目标:理解组合的定义,掌握组合数的计算公式.能力目标:学生的数学计算技能、计算工具使用技能和数学思维能力得到提高.【教学重点】组合数计算公式.【教学难点】组合数计算公式.【教学设计】组合与排列的区别是,组合与顺序无关.因此判断是排列问题还是组合问题的关键是看元素是否有序.从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数,用符号C m表示.组合数的计算公式及组合数的n性质中,教学重点是组合数计算公式和性质1.利用它们可以方便地计算组合数.例5是组合数计算问题.例6 是组合的实际应用.与排列数的计算一样,教材介绍了利用计算器计算组合数.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】3!,P,m【教师教学后记】【课题】3.1排列与组合(三)【教学目标】知识目标:利用排列数组合数计算公式解决简单的应用问题.能力目标:学生的数学计算技能、计算工具使用技能和数学思维能力得到提高.【教学重点】排列与组合的综合应用.【教学难点】排列与组合的综合应用.【教学设计】实际应用过程中,要注意区分以下3点:(1)元素是否允许重复.元素不允许重复的是排列与组合问题;元素允许重复的是直接应用计数原理的问题.(2)元素是否有序.有序是排列问题,无序是组合问题.(3)是否需要分类或分步骤来进行研究.例7是简单的排列与组合训练题.要注意分清是排列问题还是组合问题.例8是产品检验的抽样计算问题,是组合应用的典型问题.在题目的说明中,介绍了对立事件.例9是照相排队问题,是排列应用的典型问题.要注意“先考虑特殊元素或特殊位置,再考虑一般元素或位置”这种分步骤研究方法的使用.例10是排列组合综合应用问题.“先取出元素,然后再安排”是这类问题的典型方法.例11元素可以重复,不是排列与组合问题,直接应用分步计数原理计算.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】。

高中数学排列组合教案优秀

高中数学排列组合教案优秀

高中数学排列组合教案优秀
教学目标:
1. 理解排列和组合的基本概念;
2. 掌握求解排列组合问题的方法和技巧;
3. 运用排列组合的知识解决实际问题。

教学重点:
1. 排列的定义和性质;
2. 组合的定义和性质;
3. 排列组合的计算方法。

教学难点:
1. 利用排列组合解决实际问题;
2. 综合运用排列组合的知识。

教学过程:
一、导入(5分钟)
介绍排列组合的概念,并提出一个简单的问题引导学生思考。

二、理论讲解(15分钟)
1. 排列的定义和性质;
2. 组合的定义和性质;
3. 排列组合的计算公式。

三、例题讲解(20分钟)
通过一些具体的例题,讲解排列组合的求解方法和技巧,帮助学生掌握基本思路。

四、练习与讨论(20分钟)
让学生进行一些练习题,并在学生回答问题时进行讨论与解析,引导学生灵活运用排列组合知识。

五、实际问题解析(15分钟)
给学生提供一些实际问题,让他们结合排列组合知识进行分析与解答。

六、课堂小结(5分钟)
总结本节课的重点内容,强调排列组合在数学问题中的重要性。

作业布置:
布置相关的练习题,帮助学生巩固所学知识。

教学反思:
排列组合作为数学中的一个重要内容,需要学生熟练掌握相关概念和方法。

在教学中,需要注重引导学生灵活运用排列组合知识解决各种问题,增强学生的数学思维能力和解决问题的能力。

二年级排列组合教案

二年级排列组合教案

二年级排列组合教案一、教学目标:1. 让学生理解排列组合的概念,能够运用排列组合的知识解决实际问题。

2. 培养学生观察、思考、动手操作的能力,提高学生的逻辑思维能力。

3. 培养学生合作学习的意识,提高学生的团队协作能力。

二、教学内容:1. 排列的概念:排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的过程。

2. 组合的概念:组合是指从n个不同元素中取出m(m≤n)个元素,但不考虑元素的顺序。

3. 排列组合的计算方法:(1)排列的计算方法:排列数公式A(n,m) = n×(n-1)×(n-2)×...×(n-m+1) (2)组合的计算方法:组合数公式C(n,m) = [n×(n-1)×(n-2)×...×(n-m+1)] ÷[m×(m-1)×(m-2)× (1)三、教学重点与难点:1. 教学重点:让学生掌握排列组合的概念及计算方法,能够运用排列组合的知识解决实际问题。

2. 教学难点:排列组合的计算方法及应用。

四、教学方法:1. 采用情境教学法,通过生活实例引入排列组合的概念。

2. 采用小组合作学习法,让学生在小组内讨论、探究、解决问题。

3. 采用启发式教学法,引导学生思考、发现、总结排列组合的计算方法。

五、教学准备:1. 教具准备:课件、卡片、小礼物等。

2. 学具准备:学生分组,每组准备一定数量的卡片。

六、教学步骤:1. 导入新课:通过生活实例,如举办抽奖活动,让学生了解排列组合的概念。

2. 讲解排列组合的概念:引导学生认识排列和组合,解释排列是指元素的顺序,组合是指元素的组合。

3. 讲解排列数的计算方法:借助课件,展示排列数公式的推导过程,让学生理解并掌握排列数的计算方法。

4. 讲解组合数的计算方法:借助课件,展示组合数公式的推导过程,让学生理解并掌握组合数的计算方法。

排列组合教案13篇

排列组合教案13篇

排列组合教案排列组合教案13篇作为一名专为他人授业解惑的人民教师,往往需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。

如何把教案做到重点突出呢?以下是小编为大家收集的排列组合教案,仅供参考,大家一起来看看吧。

排列组合教案1求解排列应用题的主要方法:直接法:把符合条件的排列数直接列式计算;优先法:优先安排特殊元素或特殊位置捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。

间接法:正难则反,等价转化的方法。

例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(1) 全体排成一行,其中甲只能在中间或者两边位置;(2) 全体排成一行,其中甲不在最左边,乙不在最右边;(3) 全体排成一行,其中男生必须排在一起;(4) 全体排成一行,男生不能排在一起;(5) 全体排成一行,男、女各不相邻;(6) 全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;(7) 全体排成一行,甲、乙两人中间必须有3人;(8) 若排成二排,前排3人,后排4人,有多少种不同的排法。

某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中,各有多少种不同的选法?(1)无任何限制条件;(2)正、副班长必须入选;(3)正、副班长只有一人入选;(4)正、副班长都不入选;(5)正、副班长至少有一人入选;(5)正、副班长至多有一人入选;6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;(2)分为三份,每份2本;(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;(5)分给甲、乙、丙三人,每人至少1本例2、(1)10个优秀指标分配给6个班级,每个班级至少一个,共有多少种不同的分配方法?(2)10个优秀指标分配到1、2、 3三个班,若名额数不少于班级序号数,共有多少种不同的分配方法?.(1)四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?排列组合教案2解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。

排列、组合、二项式定理的精品教案3篇

排列、组合、二项式定理的精品教案3篇

排列、组合、二项式定理的精品教案排列、组合、二项式定理的精品教案精选3篇(一)教案主题:排列、组合、二项式定理教学目标:1. 了解和理解排列、组合的概念和特点;2. 学习排列、组合的计算公式;3. 通过实际问题应用排列、组合的知识;4. 理解和应用二项式定理。

教学准备:1. PowerPoint演示文稿;2. 排列、组合的计算示例;3. 计算器。

教学流程:一、导入(5分钟)1. 引出学生对于排列、组合的了解,以及他们对于二项式定理的了解。

2. 引出排列、组合涉及到的实际问题,如抽奖、排座位等。

二、讲解排列(15分钟)1. 讲解排列的概念:从n个元素中选取r个元素进行排列,一共有多少种不同的排列方式。

2. 讲解排列的计算公式:P(n, r) = n!/(n-r)!。

3. 讲解排列的特点:次序有关,一个元素不能重复选取。

三、讲解组合(15分钟)1. 讲解组合的概念:从n个元素中选取r个元素进行组合,一共有多少种不同的组合方式。

2. 讲解组合的计算公式:C(n, r) = n!/[(n-r)!r!]。

3. 讲解组合的特点:次序无关,一个元素不允许重复选取。

四、讲解二项式定理(15分钟)1. 讲解二项式定理的概念:将一个二项式表达式展开后的结果。

2. 讲解二项式定理的公式:(a+b)^n = C(n, 0) a^n b^0 + C(n, 1) a^n-1 b^1 + ... + C(n, n-1) a^1 b^n-1 + C(n, n) a^0 b^n。

3. 讲解二项式定理的应用:展开二项式表达式,求特定项的值。

五、练习与应用(20分钟)1. 给出一些排列、组合的计算问题,让学生自主计算并回答。

2. 提供一些实际问题,让学生应用排列、组合的知识进行解决。

六、总结与延伸(5分钟)1. 对排列、组合和二项式定理进行简要总结。

2. 探讨一些延伸问题,如多项式展开、二项式系数等。

教学反思:1. 教学内容安排合理,从概念到计算公式,再到实际应用,能够让学生逐步理解和掌握知识。

高中数学排列组合教案(6篇)

高中数学排列组合教案(6篇)

高中数学排列组合教案(6篇)高中数学排列组合教案(精选篇1)教学主题:主要涉及到简洁排列组合问题,相同元素和不同元素排列组合问题。

捆绑法插空法特别元素法特别位置法定序法分组安排教学内容及分析:排列组合问题是高中数学学问的一个重要组成部分,在高考中也是必考内容,难度一般在中等偏上,只要把握的排列组合的几种典型方法,就能快速理解题型题意,快速找到突破口,对症下药,事半功倍,关键是要把握住什么题型用什么方法,通过题型对比分析相同点和不同点,区分易错的,难点。

另外,排列组合在适应新高考有着自然出题优势,由于排列组合更贴近显示生活,可以把我们课本上的抽象概念和数学公式和实际生活联系起来,数学学问走进生活,学问来与是但高于生活,最终回归于生活,才是我们学习学问,专研学问的立足点。

本文就对数学中概率统计中的一小点内容——排列组合,做一个简洁的对比分析。

教学对象及特点:排列组合在高中数学选修2—3。

人教版教材,高二的同学在日常生活中,有许多需要用排列组合来解决的学问。

作为二班级的同学,已有了肯定的生活阅历及解决问题的力量。

因此,在设计中,我通过创设一个完整的、好玩的生活情境来进行教学,力求使同学在经受日常生活最简洁的事例中体验到重要的数学思想方法,从而也感受到数学思想也是依托于生活,来源于生活,是有生命活力的。

教学目标:基于对教材的理解,我把本节课的教学重点定为:在经受简洁事物排列与组合规律的过程中体会排列与组合的数学思想。

教学难点定为:培育同学全面有序的思索问题的意识。

通过观看、猜想、比较、试验等活动,培育同学学习初步的观看、分析力量和有序、全面地思索问题的意识。

培育同学大胆猜想、乐观思维的学习方法,使同学感受学习数学的欢乐,进一步激发同学学习数学的爱好。

教学过程:一、排列问题例1:有4个男生,5个女生站队,在下列条件下,有多少种状况?(1)9个人全部站成一排;(2)9个人站成两排,前排站4人,后排站5人;(3)9个人全部站一排,全部女生站在一起;(捆绑法)(4)9个人全部站一排,全部男生都不相邻;(插空法)(5)9个人全部站一排,甲乙相邻,丙丁不相邻;(6)9个人全部站一排,甲不在两端;(特别元素法,特别位置法)(7)9个人全部站一排,甲不在最左边,乙不在最右边;(8)9个人全部站一排,甲在乙的左边,可以不相邻;(定序)(9)9个人全部站一排,甲在乙的前面,乙在丙的前面,可以不相邻;(10)9个人全部站一排,甲在乙和丙的中间,可以不相邻;二、组合问题例2:有25件产品,其中5件次品,从中任取3件,在下列条件下,有多少种状况?(1)次品甲在内;(2)次品甲不在内;(3)恰有1件次品;(4)至少1件次品;(5)至少2件次品;三、分组安排问题(不同元素)例3:有6名同学安排到三个班级,在下列条件下,有多少种状况?(1)随机安排;(2)每个班表达对一名同学的争取意愿,6名同学实力相当;(3)安排到三个班的人数分别为1、2、3人;(4)安排到三个班的人数分别为1、1、4人;(5)安排到三个班的人数分别为2、2、2人;四、分组安排问题(相同元素)例4:9个相同的乒乓球分给3个不同的人,在下列条件下,有多少种状况?(1)3个人分别分到2个乒乓球,3个乒乓球,4个乒乓球;(2)3个人分别分到2个乒乓球,2个乒乓球,5个乒乓球;(3)3个人平均分,每人得到3个乒乓球;(4)3个人每人至少分到1个乒乓球;(5)3个人每个人至少分到2个乒乓球;(6)3个人随机安排这9个乒乓球;五、分组安排问题(部分元素相同)例5:有外形大小相同,颜色不全相同的乒乓球,其中红色乒乓球,黄色乒乓球,黑色乒乓球分别有5个,从中取出四个乒乓球排一排,在下列条件下,有多少种状况?(1)取3个红色乒乓球,1个黄色乒乓球;(2)取2个红色乒乓球,2个黄色乒乓球;(3)取2个红色乒乓球,1个黑色乒乓球,1个黄色乒乓球;(4)取出的4个乒乓球中刚好3个乒乓球颜色相同;(5)取出的4个乒乓球中刚好2个乒乓球颜色相同,其他两个乒乓球颜色也相同;取出的4个乒乓球中刚好2个乒乓球颜色相同,其他两个乒乓球颜色不同;所选技术以及技术使用的目的:选取的技术是PPT演示文稿,电子文档,交互式电子白板,目的是能和同学共享资源,实时授课,不用边抄题目边讲课,节省时间,集中精力。

高中数学排列组合和概率人教版全部教案

高中数学排列组合和概率人教版全部教案

高中数学排列组合和概率人教版教案(一)教学内容:排列的概念及排列数的计算公式。

教学目标:1. 理解排列的概念,掌握排列数的计算公式。

2. 能够运用排列数公式解决实际问题。

教学重点:1. 排列的概念。

2. 排列数的计算公式。

教学难点:1. 排列数的计算公式的应用。

教学过程:一、导入(5分钟)1. 引入排列的概念,引导学生思考在日常生活中遇到的排列问题。

2. 引导学生总结排列的特点和意义。

二、新课讲解(15分钟)1. 讲解排列数的计算公式。

2. 通过例题讲解排列数的计算过程。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固排列数的计算方法。

2. 讲解练习题的解题思路和技巧。

四、拓展与应用(10分钟)1. 引导学生思考如何运用排列数公式解决实际问题。

2. 举例讲解排列数在实际问题中的应用。

五、课堂小结(5分钟)1. 回顾本节课所学内容,总结排列的概念和排列数的计算公式。

2. 强调排列数的计算公式的应用。

教学评价:1. 课后作业:布置有关排列数的计算和应用的题目,检验学生掌握情况。

2. 课堂练习:观察学生在课堂练习中的表现,了解学生对排列数的计算公式的掌握程度。

高中数学排列组合和概率人教版教案(二)教学内容:组合的概念及组合数的计算公式。

教学目标:1. 理解组合的概念,掌握组合数的计算公式。

2. 能够运用组合数公式解决实际问题。

教学重点:1. 组合的概念。

2. 组合数的计算公式。

教学难点:1. 组合数的计算公式的应用。

教学过程:一、导入(5分钟)1. 引入组合的概念,引导学生思考在日常生活中遇到的组合问题。

2. 引导学生总结组合的特点和意义。

二、新课讲解(15分钟)1. 讲解组合数的计算公式。

2. 通过例题讲解组合数的计算过程。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固组合数的计算方法。

2. 讲解练习题的解题思路和技巧。

四、拓展与应用(10分钟)1. 引导学生思考如何运用组合数公式解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n m + 种不同的方法乘法原理):做一件事情,完成它需要分成种不同的方法,做第二步有
n m ⨯ 种不同的方法强调知识的综合是近年的一种可取的现象.两个基本原理的作用:计算做一件事完成它的所有不同的方法种数两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分,乘法原理是“分步完成”
54⨯⨯,则)(68)(69n n -这五个数字中,任取人站成一排照相,共有多少种不同的站法?组)联赛共有课时。

5(21)n -1!
n n -+;⑵2!33!!n n +⨯++⨯第五课时:排列应用(二)个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?(从特殊位置考虑)1360805919=A A。

相关文档
最新文档