概率统计经典习题
九年级数学概率统计练习题及答案
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
概率与数理统计习题及详解答案
概率与统计题目精选及答案1. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话.解:设A 1={第i 次拨号接通电话},i =1,2,3. (1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P(2)拨号不超过3次而接通电话可表示为:A 1+32121A A A A A +于是所求概率为 P (A 1+32121A A A A A +)=P(A 1)+P(21A A )+P(321A A A )=.103819810991109101=⨯⨯+⨯+2. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率; (2)求这位司机在途中遇到红灯数ξ的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=.27431)311)(311(=⨯--(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD3. (理科)摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9; 当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ……9分 E ξ=6×539151121579157=⨯+⨯+(元)答:此次摇奖获得奖金数额的数字期望是539元 ……………………12分 4. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为A 、B 、C ,则P (A )=0.9 P (B )=0.8,P (C )=0.85 …………………………2分 (Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅=[1-P (A )]·[1-P (B )]·[1-P (C )] =(1-0.9)×(1-0.8)×(1-0.85)=0.003答:三科成绩均未获得第一名的概率是0.003………………6分 (Ⅱ)P (C B A C B A C B A ⋅⋅+⋅⋅+⋅⋅) = P ()()()C B A p C B A P C B A ⋅⋅+⋅⋅+⋅⋅=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ⋅⋅+⋅⋅+⋅⋅=[1-P (A )]·P (B )·P (C )+P (A )·[1-P (B )]·P (C )+P (A )·P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329答:恰有一科成绩未获得第一名的概率是0.329……………………12分5. 如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当x ≥6时,则保证信息畅通.求线路信息畅通的概率;(II )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P Θ)6(431012034141)6()4(101202)9(,9432203)8(,842243141205)7(,7322421分分=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P ΘΘΘ(II ))8(203)5(,5221311,101)4(,4211分===++=++===++x P x P ΘΘ ∴线路通过信息量的数学期望 5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= (11分) 答:(I )线路信息畅通的概率是43. (II )线路通过信息量的数学期望是6.5.(12分)6. 三个元件T 1、T 2、T 3正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路.(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.解:记“三个元件T 1、T 2、T 3正常工作”分别为事件A 1、A 2、A 3,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为(A 2+A 3)A 1.(2分)∴不发生故障的概率为321521]41411[)()]()(1[)4)(()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P 分(Ⅱ)如图,此时不发生故障的概率最大.证明如下: 图1中发生故障事件为(A 1+A 2)·A 3 ∴不发生故障概率为3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P )11(12分P P >∴图2不发生故障事件为(A 1+A 3)·A 2,同理不发生故障概率为P 3=P 2>P 1(12分) 说明:漏掉图1或图2中之一扣1分7. 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求: (1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率. 解:设事件A=“从甲机床抽得的一件是废品”;B=“从乙机床抽得的一件是废品”. 则P (A )=0.05, P(B)=0.1, (1)至少有一件废品的概率)7(145.090.095.01)()(1)2)((1)(分分=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率)12(995.09.095.01.095.09.005.0)(分=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8. (理科)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差解:(1)记甲、乙分别解出此题的事件记为A 、B. 设甲独立解出此题的概率为P 1,乙为P 2.(2分) 则P (A )=P 1=0.6,P(B)=P 2:48.08.06.0)()()2(44.08.04.02.06.0)()()()()1(08.02.04.0)()()0()2()7(8.032.04.092.06.06.092.0)1)(1(1)(1)(2222212121的概率分布为分即则ξξξξ=⨯=⋅===⨯+⨯=+===⨯=⋅=====-+∴=-+=---=⋅-=+B P A P P B P A P B P A P P B P A P P P P P P P P P P P P B A P B A P)12(4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222分或利用=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξE E D D E9. (理科考生做) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ 表示公司每年的收益额,则ξ是一个随机变量,其分布列为:6分因此,公司每年收益的期望值为E ξ =x (1-p )+(x -a )·p =x -ap .8分为使公司收益的期望值等于a 的百分之十,只需E ξ =0.1a ,即x -ap =0.1a , 故可得x =(0.1+p )a .10分 即顾客交的保险金为 (0.1+p )a 时,可使公司期望获益10%a .12分10. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2. (1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: P =1-0.85-15C ×0.84×0.2≈0.263. 4分(2)五项指标全部检验完毕,这批食品可以出厂的概率是:P 1=14C ×0.2×0.83×0.88分五项指标全部检验完毕,这批食品不能出厂的概率是:P 2=14C ×0.2×0.83×0.210分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P =P 1+P 2=14C ×0.2×0.83=0.4096.12分11. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛.比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛. 已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(Ⅱ)高三(1)班代表队连胜两盘的概率是多少? 解:(I )参加单打的队员有23A 种方法.参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分(II )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分 所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 12. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件其概率为14131411=-………………12分 13. 一名学生骑自行车上学,从他的家到学校的途中有6个交通岗,假设他在各交通岗遇到红灯的事件是独立的,并且概率都是31.(I )求这名学生首次遇到红灯前,已经过了两个交通岗的概率;(II )求这名学生在途中遇到红灯数ξ的期望与方差.解:(I )27431)311)(311(=--=P …………………………………………4分 (II )依题意ξ~),31,6(B ……………………………………………………7分2316=⋅=∴ξE ……………………………………………………………9分34)311(316=-⋅⋅=ξD ……………………………………………………12分14. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=.27431)311)(311(=⨯--(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD1、 写出下列随机试验的样本空间。
《概率统计》练习题及参考答案
习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
高中数学概率统计专题练习题及答案
高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。
求三位同学中至少有一位通过考试的概率。
答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。
现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。
答案约为0.599。
2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。
答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。
答案约为0.201。
3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。
答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。
答案约为0.967。
以上为高中数学概率统计专题练习题及答案。
希望对您的学习有所帮助!。
概率统计试题及答案
概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。
本文将提供一套概率统计的试题及答案,以供学习和复习之用。
一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。
答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。
答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。
答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。
答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。
答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。
概率统计习题
第一章 随机事件与概率例题精选1.已知U为必然事件,V为不可能事件,则P(U)=1,P(V)=02.已知事件A的概率P(A)=0.6,U为必然事件,则 P(A+U)=1,=2297+2295-2293 =8165 5 某药检所以送检的10件药品中先后抽检了两件,如果10件中有3件次品,求(1)第一次检得次品的概率(2)第一次检得次品后,第二次检得次品的概率(3)两次都检得次品的概率解:设A={第一次检得次品},B={第二次检得次品},得(1)P(A)=3/10(2)P(B|A)=2/9 (3)P(AB)=P(A) P(B|A)=15192103=⨯少?解:设A={取得的两数之和为偶数},则P(A)=252223C C C +=4/10=0.4 2.将一均匀硬币抛投两次,求下列事件的概率(1)出现两次正面(2)恰好出现一次正面(3)至少出现一次正面解:设A={出现两次正面},B={恰好出现一次正面},C={至少出现一次正面},则P(A)=221=1/4个件正品、一件次品},则P(A)=165160C C =12/13≈0.9231 P(B)=265260C C =177/208≈0.8510 P(C)=26515160C C C =15/104≈0.1442练习1-32.若某地区人群中患结核病的概率为0.006,患沙眼病的概率为0.04,兼患此两种病的概率为0.001,问该地区人群中至少患有一种病的概率。
解:设A={患结核病},B={患沙眼病},则A与B独立。
P(A+B)=P(A)+P(B)-P(AB)解法2: P(C)=P(BA)=P(A)P(B)=[1-P(A)][1-P(B)]=1-P(A)-P(B)+P(A)P(B)=1-0.015-0.02+0.015⨯0.02=0.9653=96.53%4.某医疗器械厂的全部产品中有废品3%,在合格品中有80%是一级品。
求从产品中任取出一产品恰是一级品的概率。
概率统计高二练习题及答案
概率统计高二练习题及答案一、选择题1. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5, 6},事件A={2, 4, 6},事件B={3, 4, 5},则事件A∪B的元素个数是:A. 2B. 3C. 4D. 5答案:C2. 将两个硬币抛掷,它们的结果可以分别是正面(正)、反面(反)。
S表示随机试验“抛掷两个硬币,观察正反面”,事件A表示“至少有一个正面朝上”,则事件A的对立事件是:A. 两个硬币都是反面朝上B. 两个硬币都是正面朝上C. 两个硬币正反面朝上D. 至少有一个反面朝上答案:A3. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={1, 3, 4},则事件A∩B的元素个数是:A. 0B. 1C. 2D. 3答案:14. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={3, 4},则事件A∪B的元素个数是:A. 4B. 5C. 6D. 7答案:45. 在某次抽查中,2人中至少有1人精通英语的概率为0.8,两人都不精通英语的概率为0.1,则恰有1人精通英语的概率为:A. 0.1B. 0.2C. 0.3D. 0.4答案:C二、填空题1. 样本空间为Ω={1, 2, 3, 4, 5}的随机试验,以P表示概率函数,则P(Ω)=____。
答案:12. 设随机试验S可有n个结果,而其样本空间的元素个数为m个,则事件A发生的可能性大小为 ________。
答案:m/n3. 在某乡村学校的学生中,男生占40%,女生占60%,男生与女生都占的概率是______。
答案:04. 把两颗骰子分别投掷一次,事件A表示两颗骰子的点数和为8,则事件A发生的概率为________。
答案:5/365. 在两人赛马中,甲、乙、丙三匹马参赛,任一马获胜的概率均为1/3,则甲、乙、丙三匹马同时获胜的概率为______。
答案:0三、计算题1. 有n个袜子,有黑、白两种颜色,从中任取3只,问至少有1只黑袜子的概率是多少?答案:1 - (C(n, 3)/C(n, 3 - 0))*(C(n - 2, 3)/C(n, 3))2. 某商场推出一种新产品,调查发现客户购买此产品的概率为0.25,连续3个客户中至少有一个购买此产品的概率是多少?答案:1 - (1 - 0.25)^33. 一批零件中有5个次品,从中任取4个进行抽样,假设各个零件取得的概率相同,计算抽到至少1个次品的概率。
概率论与数理统计总习题及答案
试题一、填空1、设P(A)=0.4,P(AUB)=0.7,A与B不相容,则P(B)=0.3 解:由公式,P(AUB)= P(A)+ P(B)所以P(B)= 0.7-0.4=0.32、若X~B(n,p),则X的数学期望E(X)= n*p解:定义:二项分布E(X)= n*p D(X)=n*p(1-p)3、甲盒中有红球4个,黑球2个,白球2个;乙盒中有红球5个,黑球3个;丙盒中有黑球2个,白球2个。
从这3个盒子中任取1个盒子,再从中任取1球,他是红球的概率0.375解:设甲为A1,乙为A2,丙为A3,红球为B则P(B)=P(A1)P(B| A1)+P(A2)P(B| A2)+P(A3)P(B| A3)=1/3*1/2+1/3*5/8+1/3*0=0.3754、若随机变量X的分布函数为f(x)={0,x<0√x,0≤x<1 1, x≥1则P{0.25<X≤1}=0.5解:分布函数求其区间概率即右端点函数值减去左端点函数值F (1)-F (0.25) = 1-0.5=0.55、设(X1,X2,…X n)为取自正态分布,总体X~N(μ,σ2),的样本,则X的分布为N(μ,σ2n )解:定义6、设ABC表示三个随机变量事件,ABC至少有一个发生,可表示为AUBUC解:至少;如果是一切发生为A∩B∩C7、设X为连续随机变量,C是一个常数,则P{X=C}=0 解:取常数,取一个点时,恒定为08、一射手对同一目标独立地进行4次射击,若至少命中1次的概率为80/81,则该射击的命中率为2/3解:射击,即伯努利试验。
求P(X=0)=Cn0p0(1−p)4=1−80/81(1−p)4=181,1−p=13,p=239、设X~N(−1,2),Y~N(1,3)且X与Y相互独立,则X+ 2Y~N(1,14)解:因为X与Y相互独立,再由正态分布得E(X)=-1,D(X)=2;E(Y)=1,D(Y)=3;所以E(X+2Y)=E(X)+2E(Y)=-1+2*1=1D(x+2Y)=D(X)+4D(Y)=2+4*3=14所以X+2Y~N(1,14)10、设随机变量X的方差为2.5,利用切比雪夫不等式估计概率得P{|X−E(X)|≥7.5}≤ 2.57.52解:由切比雪夫不等式P{|X−μ|≥ε}≤σ2ε2≤ 2.57.52二、 计算1、 从0,1,2,…9中任意取出3个不同的数字,求下列的概率。
概率统计作业题
《概率统计》习题(一)一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7, 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 (A )P (A+B) = P (A); (B )()P(A);P AB = (C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销” (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。
3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 4. 对于事件A ,B ,下列命题正确的是 (A )若A ,B 互不相容,则A 与B 也互不相容。
(B )若A ,B 相容,那么A 与B 也相容。
(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。
(D )若A ,B 相互独立,那么A 与B 也相互独立。
5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -=三、计算题1. 10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。
概率统计习题带答案
概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。
3.试验E 为掷2颗骰子观察出现的点数。
每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。
设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。
试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。
问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。
今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。
试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。
试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。
试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。
求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。
概率统计习题集(含答案)
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
概率统计练习题
P( A B) c , 0 b c ,求 P( AB )
12. 设 A , B , C 是三个事件,且 P ( A) P ( B ) P (C )
1 , P ( AB) P ( BC ) 0 , 5
P( AC )
1 ,求 A,B,C 至少有一个发生的概率. 7
概率统计练习题
第1章
1. 一口袋装有 10 只球,其中 6 只是红球,4 只是白球,今随机地从中同时取出 2 只球,试 求取到二只球颜色相同的概率。 2. 一口袋装有 10 只球, 其中 6 只是红球, 4 只是白球, 今随机地从中同时取出 2 只球试求: (1)2 只都是红球的概率 (2)一只是红球一只是白球的概率. 3. 在 8 件产品中有 5 件是一级品和 3 件是二级品,现从中任取 2 件,求取得的 2 件中只有 一件是一级品的概率. 如果: (1)2 件产品是无放回的逐次抽取; (2)2 件产品是有放回的逐次抽取. 4. 将 15 名新生平均分配到三个班级中去, 新生中有三名是优秀生, 问每一个班级各分配到 一名优秀生的概率是多少? 5. 盒中有 10 只外形相同的晶体管,其中有 4 只次品,6 只正品,现从中随机地抽取一只测 试,测试后不放回,直到找出 4 只次品为止,求最后一只次品晶体管在第 10 次测试时发现 的概率。 6. 盒中装有 10 只外形相同的晶体管,其中有 4 只次品,6 只正品,现从中随机地抽取一只 测试,测试后不放回,直到找出 4 只次品为止,求最后一只次品晶体管在第 5 次测试时发现 的概率。 30 这 30 个数中随机地选取 10 个不同的数, 求所取出的数都是偶数的概率。 7. 从 1, 2, …, 8. 袋中装有 5 个白球,3 个黑球,4 个红球,从中一次取出三个球,问三个球是同色球的概 率。 9. 为了减少比赛次数,把 21 个球队分成三组(每组 7 个队)进行比赛,求其中最强的三个队 被分在不同组内的概率。 10. 从一付扑克的 13 张黑桃中,一张接一张地有放回地抽取 3 次,求抽到有同号的概率。 11. 已知 P ( B ) b,
概率统计习题
概率统计习题概率统计习题习题⼀1.设A 、B 、C 是某⼀随机试验的3个事件,⽤A 、B 、C 的运算关系表⽰下列事件:(1)A 、B 、C 都发⽣;(2)A 、B 、C 都不发⽣;(3)A 与B 发⽣,⽽C 不发⽣;(4)A 发⽣,⽽B 与C 不发⽣;(5)A 、B 、C 中⾄少有⼀个发⽣;(6)A 、B 、C 中不多于⼀个发⽣;(7)A 与B 都不发⽣;(8)A 与B 中⾄少有⼀个发⽣; (9) A 、B 、C 中恰有两个发⽣.2.将⼀颗骰⼦连掷两次,观察其掷出的点数.令A =“两次掷出的点数相同” ,B =“点数之和为10” ,C =“最⼩点数为4” .试分别指出事件A 、B 、C 以及A B U 、ABC 、A C - 、C A - 、B C 各⾃含有的样本点.3.在⼀段时间内,某电话交换台接到呼唤的次数可能是0次,1次,2次,… .记事件k A(k = 1 ,2 ,…)表⽰“接到的呼唤次数⼩于k ” ,试⽤k A 间的运算表⽰下列事件:(1)呼唤次数⼤于2 ;(2)呼唤次数在5到10次范围内;(3)呼唤次数与8的偏差⼤于2 4.下列命题是否成⽴,并说明理由: (1) A B AB B =U U (2) A B AB -=个是⽩球,6个是⿊球,从中⼀次抽取3个,计算⾄少有两个是⽩球的概率.16.某货运码头仅能容⼀船卸货,⽽甲已两船在码头卸货时间分别为1⼩时和2⼩时.设甲、⼄两船在24⼩时内随时可能到达,求它们中任何⼀船都不需等待码头空出的概率. 17.50个零件,其中48个精度合格,45个表⾯粗糙度合格,44个精度和表⾯粗糙度都合格.现从中任取⼀个,已验得其表⾯粗糙度合格,问其精度合格的可能性多⼤? 18.已知()14P A =,()13P B A =,()12P A B =,求()P A B U . 19.设()0.5P A =,()0.6P B =.问 (1) 什么条件下()P AB 可以取最⼤值,其值是多少?(2) 什么条件下()P AB 可以取最⼩值,其值是多少?20.由长期统计资料得知,某⼀地区在4⽉份下⾬(记为事件A )的概率为 415,刮风(记为事件B )的概率为715,既刮风⼜下⾬的概率为110.求(|),(|)().P A B P B A P A B U 及21.某⼈有5把钥匙,其中两把可以打开门,从中随机取⼀把试开房门,求第三次才打开门的概率.22. ⼀猎⼈⽤猎枪向⼀野兔射击,第⼀枪距离野兔200m 远,如果未击中,他追到离野兔150m 处第⼆次射击,如果仍未击中,他追到距离野兔100m 处进⾏第三次射击,此时击中的概率为12.如果这个猎⼈射击的命中率与他到野兔的距离的平⽅成反⽐,求猎⼈击中野兔的概率.23.已知某种疾病的发病率为0.1%, 该种疾病患者⼀个⽉以内的死亡率为90%;且知未患该种疾病的⼈⼀个⽉以内的死亡率为0.1%;现从⼈群中任意抽取⼀⼈,问此⼈在⼀个⽉内死亡的概率是多少?若已知此⼈在⼀个⽉内死亡,则此⼈是因该种疾病致死的概率为多少?24. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,⽽B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?25.商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8, 0.1, 0.1,某顾客选中⼀箱,从中任选4只检查,结果都是好的,便买下了这⼀箱.问这⼀箱含有⼀个次品的概率是多少?26.设⼀箱产品共100件,其中次品个数从0到2是等可能的.开箱检验时,从中随机抽取10件,如果发现有次品,则认为该箱产品不合要求⽽拒收.(1)求该箱产品通过验收的概率;(2)若已知该箱产品已通过验收,求其中确实没有次品的概率27.某保险公司把被保险⼈分为3类:“谨慎的”、“⼀般的”、“冒失的”。
概率统计练习题
概率统计练习题概率统计练习题一、选择题1.某一批花生种子,如果每一粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是()A.12125 B.16125 C.48125 D.961252.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A .13B .12C .23D .343.在某地的奥运火炬传递活动中,有编号为1,2,3, (18)18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为() A.511 B.681 C.3061 D.4081 4.从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为( ) A.184 B.121 C.25 D.355. 把 3 个不同的小球随意地放入 4 个不同的盒子内,则 3 个小球恰在三个不同的盒子内的概率为()A. 38B. 45C. 34D. 7166. 某学校要派遣6位教师中的4位去参加一个学术会议,其中甲、乙两位教师不能同时参加,则派遣教师的不同方法数共有()A .6种B .7种C .8种D .9种7. 某同学做了10道选择题,每道题四个选择项中有且只有一顶是正确的,他每道题都随意地从中选了一个答案。
记该同学至少答对9道题的概率为 p ,则下列数据中与 p 接近的是:A. 3×10-4B. 3×10-5C. 3×10-6D. 3×10-7 8. 一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为1p 和2p .则A .12p p <B .12p p =C .12p p >D .以上三种情况都有可能二、填空题:9.一个骰子连续投2 次,点数和为4 的概率.10. 在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E 是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率__ .11. 明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 .12. 在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是(结果用分数表示)13. 某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1③他至少击中目标1次的概率是1-0.14其中正确结论的序号是(写出所有正确结论的序号).14. 某车场有一排16个停车位,现要停12辆汽车,事件“恰有四个空位连在一起”发生的概率. 是。
数学概率统计题精选
数学概率统计题精选一、选择题1. 在一个长度为10的等差数列中,第一项是2,公差是3,那么这个数列的中位数是____。
2. 如果一个事件的概率是0.5,那么它发生的可能性是____。
3. 抛掷两枚公平的六面骰子,得到两个数之和为8的概率是多少?4. 随机变量X服从参数为λ=5的泊松分布,那么X的数学期望是多少?5. 如果一个袋子里有5个红球和3个蓝球,随机取一个球,取出红球的概率是多少?二、填空题6. 设随机变量X的分布列为P(X=1)=0.3,P(X=2)=0.4,P(X=3)=0.3,则X的数学期望E(X)=____。
7. 在一次抽奖活动中,有10个奖项,其中有1个一等奖,3个二等奖,6个三等奖,随机抽奖一次,抽到一等奖的概率是____。
8. 抛掷一个均匀的正方体,得到偶数的概率是____。
9. 在一个长度为5的等差数列中,第一项是3,公差是2,那么这个数列的中位数是____。
10. 如果一个事件的概率是0.8,那么它发生的可能性是____。
三、解答题11. 假设随机变量X服从参数为λ=4的泊松分布,求P(X=2)。
12. 设随机变量X的分布列为P(X=1)=0.3,P(X=2)=0.4,P(X=3)=0.3,求X的数学期望E(X)和方差D(X)。
13. 在一个长度为6的等差数列中,第一项是2,公差是3,求这个数列的前n项和。
14. 抛掷两枚公平的六面骰子,求两个数之和为8的概率。
15. 假设一个袋子里有5个红球和3个蓝球,随机取一个球,求取出的球是红球的概率。
16. 设随机变量X服从参数为λ=6的泊松分布,求P(X=3)。
17. 设随机变量X的分布列为P(X=1)=0.2,P(X=2)=0.4,P(X=3)=0.3,求X的数学期望E(X)。
18. 在一次抽奖活动中,有10个奖项,其中有1个一等奖,3个二等奖,6个三等奖,求抽到二等奖的概率。
19. 抛掷一个均匀的正方体,求得到奇数的概率。
20. 在一个长度为5的等差数列中,第一项是2,公差是2,求这个数列的中位数。
概率习题(概率与统计)
随机事件及其概率一、填空题1.假设()0.4P A =,()0.7P A B =,那么(1)若A 与B 互不相容,则()P B =_____ _;(2)若A 与B 相互独立,则()P B =_______ ___,()|P A B = ,()P AB = .2.设在一次试验中,事件A 发生的概率为p .现进行n 次 独立试验,则(1)A 一次都不发生的概率为 ; (2)A 恰好发生一次的概率为 ; (3)A 至少发生一次的概率为 ; (4)A 至多发生一次的概率为 . 3.A ,B ,C 为三个事件,试用A ,B ,C 表达事件:三件事至少有一个发生________ __ _;仅仅事件B 发生______ _____;三件事件不都发生 _____________________.4.设在一次试验中,事件A 发生的概率为p .现进行n 次独立试验, 则A 恰好发生一次的概率为___________5.设在一次试验中,事件A 发生的概率为p .现进行n 次独立试验,则A 一次都不发生的概率为___________6.三道工序的次品率分别二设第一三道工序加工某一零件共需经过、、,是、%3品率则加工出来的零件的次假设各道工序互不影响,%.5%4、为_______. 7.同时掷两个均匀骰子,则出现点数之和为3的概率___________________. 8.某人投篮两次,设事件A=“第一次投中”,B=“第二次投中”, 试问事件B A 表示 ________ .9.一批产品次品率为20%,重复抽样检查,取10件样品,列出这10件样品中恰有2件次品的概率的式子 (不需计算). 二、选择题1. 打靶4发,事件A i 表示“第i 发击中”(i=1,2,3,4), 那么事件A=A 1∪A 2∪A 3∪A 4表示A.四发全命中B.四发中至少有一发命中C.四发都没有命中D.四发不都命中2. 在两位数10~39中任取一个数,这个数能被2或3整除的概率为A. 2/3B. 1/3C.1/2D.1/4 3.设随机事件A 与B 互不相容,则A. A 与B 互相独立B. P(B A ⋃)=0C. P(AB)=1D. P(AB)=0 4.设事件A 与B 相互独立,P(A)=0.2,P(B)=0.3,则P(B A ⋃)= A. 0.5 B. 0.1 C. 0.06 D. 0.445.对某一目标依次进行三次独立射击,第一、第二、第三次射击命中率分别 为0.4,0.5,和0.7,则仅仅在第三次才命中的概率是A.0.21B. 0.14C. 0.06D. 0.09 6.设A ,B 是两个随机事件,则一定有A .()1P AB ⋃= B. ()1P A B ⋃= C. ()0P A B ⋃= D. ()1()P A B P AB ⋃=-7.每次试验的成功率为()10<<p p ,独立重复地进行n 次试验恰好有()n r r ≤≤1次成功的概率为 A.()rn rp p --1C rn B.()rn rr n p p C ----111 C.()rn rp p --1 D.()rn r r n p p C -----1111三、简答题1. 从一批6件正品,4件次品组成的产品中,任取3件,求其中至少有一件次品的概率.2. 设A 、B 为相互独立的事件,,4.0)(,6.0)(==A P B A P 求).(B P3. 袋中10个球,其中有4个白球,6个红球。
概率统计考试试卷
概率统计考试试卷一、选择题(每题2分,共20分)1. 某事件的概率为0.5,这意味着:A. 这个事件几乎不可能发生B. 这个事件一定会发生C. 这个事件发生的可能性是50%D. 这个事件是不可能事件2. 以下哪个不是随机变量的类型?A. 离散型B. 连续型C. 确定型D. 混合型3. 期望值E(X)表示:A. 随机变量X的众数B. 随机变量X的中位数C. 随机变量X的平均值D. 随机变量X的方差4. 方差是衡量随机变量的:A. 偏度B. 峰度C. 离散程度D. 相关性5. 以下哪个不是大数定律的内容?A. 随机变量的算术平均数趋近于期望值B. 随机变量的几何平均数趋近于期望值C. 随机变量的加权平均数趋近于期望值D. 随机变量的样本均值趋近于总体均值...二、填空题(每空2分,共20分)1. 如果随机变量X服从二项分布B(n, p),则其期望值E(X)等于______。
2. 标准正态分布的均值为______,方差为______。
3. 随机变量X和Y的协方差衡量了X和Y的______程度。
4. 事件A和B同时发生的概率记作______。
5. 随机变量X的方差公式为______。
...三、简答题(每题10分,共30分)1. 简述什么是条件概率,并给出一个条件概率的例子。
2. 解释什么是中心极限定理,并说明它在统计学中的重要性。
3. 描述什么是泊松分布,并给出其概率质量函数。
...四、计算题(每题15分,共30分)1. 已知随机变量X服从正态分布N(μ, σ²),其中μ=50,σ²=25。
求P(40 < X ≤ 60)。
2. 某工厂生产的零件长度服从均匀分布U(10, 20)。
求该零件长度超过15的概率。
3. 假设有5个独立同分布的随机变量X₁, X₂, ..., X₅,每个随机变量Xᵢ服从泊松分布P(λ)。
求这5个随机变量之和的期望值和方差。
...结束语:请同学们认真审题,仔细作答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立足概率基础 关注横向联系
诸暨中学 邵跃才
随着高考改革的深入,概率统计问题已经成为高考命题的一个重点内容。
其考查的内容主要有:等可能性事件发生的的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,随机事件的分布列和数学期望等基本概念和求解方法。
概率问题虽然常常以实际应用题的形式出现,但近几年也逐渐开始和传统知识及相关学科的交汇融合,形成一些背景新颖、结构精巧的综合题。
一、典型例题
1.等可能性事件发生的概率
例1 先后抛掷两枚均匀的正方形骰子(六个面上分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X ,Y 则满足1log 2=Y X 的概率为( ) A.16 B.536
C.112 D. 12 解: 满足1log 2=Y X 即Y=2X 的有序数对为(1,2),(2,4),(3,6) ∴231612
P == 故选C 例2 将1,2,…,9这9个数平均分成三组,每组的三个数成等差数列的概率为( ) A .561 B .701 C .3361 D .420
1 解:本题的关键是求“每组的三个数成等差数列”这一事件中的基本事件数,基本事件
总数为n=28033
333639=A C C C ,每组三数成等差数列的分法可按前两组的公差大小分类计数,则有(1,2,3)(4,5,6)(7,8,9); (2,3,4)(6,7,8)(1,5,9); (1,3,5)(2,4,6)(7,8,9); (4,6,8)(5,7,9)(1,2,3); (1,4,7)(2,5,8)(3,6,9)。
∴m=5, 56
12805==P ,故选A 例3某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等 可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 .
解:“6位乘客按0,1,2,3的人数分配到4节车厢”这一事件中基本事件的个数,
分法数为34
21233
6A C C C ,∴3236346454128C C A P == 点评 求等可能性事件概率的关键在于计算所求事件包含的基本事件的个数。
2.互斥事件发生的概率
例4家中有人时,某家庭电话在打进的电话响第一声时被接的概率为0.1,在响第二声时被接的概率为0.3,在响第三声时被接的概率为0.4,在响第四声时被接的概率为0.1,那么电话在响前四声内被接的概率是多少?
解: 分别记“电话响第一、二、三、四声时被接”为事件A 1、A 2、A 3、A 4,则有P (A 1)=0.1,P (A 2)=0.3,P (A 3)=0.4,P (A 4)=0.1,电话在响前4声内,每一声是否被接彼此互斥,所以P= P (A 1)+ P (A 2)+P (A 3)+P (A 4)=0.1+0.3+0.4+0.1=0.9
点评 只有互斥事件才可考虑概率和公式。
当直接求某一事件发生的概率较为复杂时不妨先转化为求其对立事件的概率,从而简化解题过程。
3.相互独立事件或独立重复事件发生的概率
例5甲、乙两人各进行3次射击,甲每次击中目标的概率为
21,乙每次击中目标的概 率3
2.求:(I )甲恰好击中目标2次的概率;(II )乙至少击中目标2次的概率;(III )求乙恰好比甲多击中目标2次的概率.
解:(Ⅰ)甲恰好击中目标2次的概率为P 1=2
3313()28
C = (II )乙至少击中目标2次的概率为P 2=22333321220()()()33327
C C ⋅+=. 或P 2=1-2720)31()32()31(2113303=-C C (III )设乙恰好比甲多击中目标2次为事件A ,乙恰好击中目标2次且甲恰好击中目标0次 为事件B 1,乙恰好击中目标3次且甲恰好击中目标1次为事件B 2,则A =B 1+B 2,B 1、B 2 为互斥事件.
2203331312333321121()()()()()()()33232P A P B P B C C C C =+=⋅⋅+⋅=1111896
+=.所以,乙恰好比甲多击中目标2次的概率为16
. 点评 要特别注意n 次独立重复试验恰有k 次发生的概率k n k k n p p C --)1(和第k 次发生
的概率k n k p p --)
1(的区别,对涉及到“至多”、“至少”等词时,可用对立事件的概率公式来简化计算。
4.离散型随机变量的概率分布
例6 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每 次随机地摸出1个球,记下颜色后放回。
其中,摸出1个红球可获得奖金10元,摸出两个红球可获得奖金50元。
现有甲、乙两位顾客,规定甲摸一次,乙摸两次,令ξ表示甲、乙二人摸球后获得的奖金总额. 求:(1)ξ的分布列;(2)ξ的数学期望
解 :ξ所有可能的取值为0,10,20,50,60,
1000
729)109()0(3===ξP 10002431018109)109(101)10(22=⨯+==ξP 1000181018101)20(2=⨯==ξP 1000
9109101)50(2=⨯==ξP 10001)101()60(3===ξP
ξ的分布列为:
(2)数学期望 E ξ=0×1000729+10×1000243+20×100018+50×10009+60×1000
1=3.3(元) 二、概率统计与其它知识的交汇融合
1.概率统计与方程、函数、不等式、数列的交汇融合
例 7 一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,a 、b 、c )1,0(∈,已知他投篮一次得分的期望为2,则b
a 312+的最小值为( ) A .332 B.328 C.314 D.3
16 解: 由已知得223,2023=+=⋅++b a c b a 即且有10,3
20<<<<b a . ∴3
1622231022313223)312(312=+≥+++=++=+b a a b b a a b b a b a b a ,故选D. 例8袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17。
现有甲、乙两人 从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取,取后不放回,直到两人中有一人取到白球时即终止每个球在每一次被取出的机会是等可能的.求:
(Ⅰ)袋中原有白球的个数;(Ⅱ)取球2次终止的概率;(Ⅲ)甲取到白球的概率
解:(Ⅰ)设袋中原有n 个白球,由题意知:227
(1)
1(1)2.76776
2n n n C n n C --===⨯⨯ 所以(1)6n n -=,解得2=n 舍去,3=n 即袋中原有3个白球(Ⅱ)记“取球2次终止”的事件为A.,则7
6734)(=⨯⨯=A P (Ⅲ)记“甲取到白球”的事件为B ,“第i次取出的球是白球”的事件为i A ,
(i=1,2,3,4,5)因为甲先取,所以甲只有可能在第1次、第3次和第5次取球,则 P(B)=P (135A A A ++)。
因为事件1A 、3A 、5A 两两互斥,所以
135()()()()P B P A P A P A =++3433432133617765765437353535⨯⨯⨯⨯⨯⨯=++=++=⨯⨯⨯⨯⨯⨯ 例9 甲、乙两人拿两枚骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时原掷骰子的人继续掷;若掷出的不是3的倍数时,就由对方接着掷。
第一次由甲掷,记第n 甲掷的概率为P n ,,求P n
解: 第n 次由甲掷有两种情况:
(1)第n -1次由甲掷,第n 次继续由甲掷,此时概率为113
13612--=n n P P ; (2)第n -1次由乙掷,第n 次由甲掷,此时的概率为()1132136121--=-⎪⎭⎫ ⎝⎛-
n n P P , 因为这两事件是互斥的,所以有)2()1(3
23111≥-+=--n P P P n n n ∴)2()21(31211≥--=--n P P n n 又211=P ,即{21-n P }是以21为首项,3
1-为公比的等比数列,故1)3
1(2121--+=n n P 点评 概率统计和其它数学知识的交汇融合是一类新颖别致数学问题,这类题涵盖的知识点多,数学思想方法要求高,能够全面考查同学们的综合解题能力。
2.概率在其它学科中的渗透
例10 一对表现正常的夫妻,生了一个白化色盲的儿子,则他们再生一个孩子患白化色盲的概率是( )
A . 41
B .81
C .161
D .32
1 解: 根据生物学知识及双亲和所生儿子的表现型,推知母亲的基因型为,b B X AaX ,
而父亲的基因型为Y AaX B ,由此确定两种遗传病在孩子中出现的概率各为41,所以白化色盲在孩子中发生的概率为41×41=16
1,故选C 点评 概率的产生、建立和发展都与生活实际密切相关。
近几年各地的模考、高考中以几何、物理、生物等知识为背景的概率题型相继出现,值得同学们重视。