2018中考数学:几何证明题答题思路总结
初中生如何做好几何证明题(含答案)
14、如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。
求证:DE =DFCF BA ED图1分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。
从而不难发现∆∆DCF DAE ≅ 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆A D E CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
中学数学,初中几何题证明思路汇总
中学数学,初中几何题证明思路汇总几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。
这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。
所以数学好教师对中考中最常出现的若干结论做了一个思路总结。
1证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
2两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等3证明两直线平行1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
初中数学几何证明题解题技巧
初中数学几何证明题解题技巧
初中数学几何证明题是学生在学习几何学时经常遇到的一种题型。
解题时,不仅需要掌握一定的几何知识,还需要运用一些解题技巧。
首先,对于几何证明题,学生需要熟悉几何学中常用的基本命题和定理,如平行线的性质、三角形的性质、四边形的性质等。
只有掌握了这些基本知识,才能更好地理解题目中的条件和要求。
其次,解决几何证明题时,学生需要灵活运用画图和标注技巧。
通过画图,可以更直观地理解题目中的几何图形,并帮助分析和推导。
在画图时,应该注意保持图形的准确和清晰,以便于观察和推理。
同时,可以通过在图中标注角度、边长、相等关系等,帮助理清思路,找到解题的关键点。
另外,学生在解决几何证明题时,需要运用一些常用的证明方法。
例如,利用反证法证明、利用归纳法证明、利用逆否命题等。
这些方法可以帮助学生更好地推理和论证,并达到有力证明的目的。
此外,解决几何证明题还需要注意合理的推理和逻辑思维。
在解题过程中,要灵活运用几何学中的基本定理和性质,通过推理推导出结论。
同时,要注意推理的逻辑严谨性和合理性,避免出现漏洞或错误的推
理。
最后,对于一些较难的几何证明题,学生可以通过尝试反证法、辅助线构造、角度追踪等方法来解决。
这些方法可以帮助学生发现题目中隐藏的特殊性质或规律,从而更好地解决问题。
总而言之,初中数学几何证明题的解题技巧主要包括掌握基本知识、灵活运用画图和标注技巧、运用常用的证明方法、合理的推理和逻辑思维等。
通过不断的练习和积累,学生可以提高解决几何证明题的能力,并在考试中取得好的成绩。
初中数学几何大题的证明思路及常用原理
初中数学几何大题的证明思路及常用原理几何证明题入门难,证明题难做,已经成为许多同学的共识…今天分享的是一位数学老教师总结的几何证明题思路及常用的原理,一定要好好看并且收藏起来!几何证明题的思路很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。
对于证明题,有三种思考方式:1.正向思维。
对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
2.逆向思维。
顾名思义,就是从相反的方向思考问题。
在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。
同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。
例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…这样我们就找到了解题的思路,然后把过程正着写出来就可以了。
3.正逆结合。
对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。
初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。
给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。
正逆结合,战无不胜。
证明题要用到哪些原理要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键…下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题…证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
初中几何题证明思路汇总
初中几何题证明思路汇总几何题是初中数学中的重要部分,它要求学生通过准确地证明来解决问题。
在证明过程中,思路的清晰与合理性对于得到正确答案是至关重要的。
本文将汇总一些常见的几何题证明思路,帮助初中生更好地理解和掌握几何题证明方法。
一、线段垂直的证明思路:要证明两条线段垂直,通常可以使用垂直定理或反证法。
垂直定理是指如果两条直线相交,且相交的四个角中有两个互为补角,则这两条直线垂直。
反证法是假设两条线段不垂直,然后通过推理和推断得出矛盾的结论,从而证明其实两条线段是垂直的。
二、三角形相似的证明思路:要证明两个三角形相似,可以使用相似三角形的性质,如对应角相等、对应边成比例等来进行证明。
另外,还可以利用三角形的辅助线进行辅助证明,如绘制高、中线、角平分线等,通过这些辅助线与三角形的性质相结合,来得出相似三角形的证明。
三、平行线的证明思路:要证明两条直线平行,通常可以使用平行定理或反证法。
平行定理是指如果一条直线与另外两条直线分别相交,且这两个交角互为补角,则这条直线与另外两条直线平行。
反证法是假设两条直线不平行,然后通过推理和推断得出矛盾的结论,从而证明其实两条直线是平行的。
四、圆的性质的证明思路:要证明圆的性质,通常可以使用圆的基本性质进行证明,如半径相等、弦相等、切线垂直等。
另外,还可以利用圆的辅助线进行辅助证明,如绘制半径、切线、割线等,通过这些辅助线与圆的性质相结合,来得出圆的性质的证明。
五、多边形的证明思路:要证明多边形的性质,通常可以使用多边形的各个角的性质进行证明。
如正多边形的内角和、外角和、对角线数目等。
另外,还可以利用多边形的辅助线进行辅助证明,如绘制对角线、中线等,通过这些辅助线与多边形的性质相结合,来得出多边形的性质的证明。
总结:几何题证明的思路汇总了线段垂直、三角形相似、平行线、圆的性质以及多边形的证明思路。
通过运用几何定理、性质和辅助线等工具,结合合理的推理和推断,可以解决各种几何题,提高初中生的几何思维能力和证明能力。
初中数学知识归纳几何题的解题思路与方法
初中数学知识归纳几何题的解题思路与方法几何题在初中数学中占据着重要的地位,它不仅考察了学生对几何概念的理解,还需要运用一些解题技巧和方法。
本文将从几何题的解题思路和方法两个方面进行阐述,希望能够帮助读者更好地理解和应对几何题。
一、几何题的解题思路解决几何题首先要理解题意,弄清楚题目中给出的条件和要求。
在这个过程中,我们需要运用数学知识进行分析和归纳。
下面是一些常见的解题思路:1. 图形识别法:通过观察题目中给出的图形,识别出可能与之相关的几何性质。
例如,如果题目中出现了平行线、垂直线、等腰三角形等关键词,可以进一步研究它们的性质,从而找到解题的线索。
2. 形状比较法:有时候题目中给出了多个图形,要求我们比较它们的大小、面积或者其他性质。
这时,我们可以通过计算或者直观的对比来找出它们之间的关系。
3. 数字推理法:一些几何题目中给出了具体的数字或者比例关系,我们可以根据这些信息进行推理。
例如,通过求解比例、利用勾股定理等方法来计算出未知的长度、角度等。
4. 分类讨论法:有些几何题目可能存在多种条件或者情况,我们可以根据题目中的关键信息进行分类讨论。
通过分别解决每一种情况,再综合得出最后的结论。
二、几何题的解题方法在掌握了解题思路后,我们还需要掌握一些具体的解题方法,这些方法是根据几何性质和常见的解题模式总结得出的。
下面是一些常见的解题方法:1. 几何性质运用:几何题目中常常涉及到点、线、面的性质。
因此,我们需要牢记一些常见的几何性质,如平行线的性质、垂直线的性质、等腰三角形的性质等。
这些性质在解题过程中起着重要的作用,可以帮助我们找到解题的线索。
2. 分割图形法:有时候题目中给出的图形比较复杂,我们可以通过分割图形来简化问题。
将复杂的图形分割为若干简单的几何形状,然后对每个简单的几何形状进行分析和运算,最后再综合得出最终的结论。
3. 利用相似性:在一些几何题中,图形之间存在相似性。
我们可以通过相似三角形的性质来求解未知的长度、角度等。
初中几何证明题思路
学习总结:中考几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的因为、所以逻辑将条件一步步转化为所要证明的结论。
这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。
所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
111.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等三、证明两直线平行1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平 2行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
10初中几何证明题思路
学习总结:中考几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的〃因为〃、〃所以〃逻辑将条件一步步转化为所要证明的结论。
这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重:要模型的总结、常见思路的总结。
所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等三、证明两直线平行1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
2018中考数学:几何证明题答题思路总结
2018中考数学:几何证明题答题思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的”因为”、”所以”逻辑将条件一步步转化为所要证明的结论。
这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。
所以对中考中最常出现的若干结论做了一个思路总结。
一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等三、证明两直线平行1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
学习总结:初中几何题证明思路总结
学习总结:初中几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。
这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。
所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等三、证明两直线平行1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
初中几何证明中的几种解答技巧
初中几何证明中的几种解答技巧几何证明是初中阶段数学学习的重点之一、在几何证明中,通过运用一些特定的解答技巧,可以更加巧妙地解决问题。
下面将介绍一些常见的几何证明解答技巧。
1.作图法:在几何证明中,作图是一种常用的解答技巧。
通过合理地选择和绘制图形,可以揭示出问题的本质和内在关系。
在作图时,可以利用平行线、垂直线、共线关系、等分线等基本几何概念,合理地引入一些辅助线段或角度,从而通过观察和推理,找到问题解答的线索。
2.借助等腰三角形和全等三角形:在几何证明中,等腰三角形和全等三角形是常用的工具。
借助等腰三角形的性质,可以利用等底角、等腰角、底角是顶角的一半等性质进行推理,找到一些等量关系。
而全等三角形则可以用于说明两个三角形各个对应边、对应角相等的关系,从而得到一些结论。
3.利用三角形的角平分线和垂直平分线:三角形的角平分线将一个角分成两个相等的角,而垂直平分线将一条线段分成两个相等的部分。
在几何证明中,可以根据这两条性质,通过观察和推理,运用这些工具线段,找到一些性质和等量关系,从而解决问题。
4.利用圆的性质:圆是几何中一个重要的基本概念,具有许多独特的性质和定理。
在几何证明中,可以利用圆的弧、弦、切线等性质,结合线段和角的关系,揭示问题的内在连接,构造相关的等式、比例和关系,从而解决问题。
5.形象化和数学归纳法:在一些复杂的几何证明中,有时可以通过形象化问题,将问题转化为著名的图形问题,如数独、八皇后等,运用图形的特殊性质,进行求解。
此外,对于一些几何问题,可以利用数学归纳法,通过具体的例子观察、总结规律,最终给出普遍的结论。
6.旁证法和反证法:在几何证明中,为了证明一个命题,有时也可以利用旁证法和反证法。
旁证法是通过假设原命题不成立的情况,再运用已知条件和可证明的命题,推导出一个矛盾的结论,从而证明原命题是成立的。
反证法则是通过假设原命题不成立,再运用推理规律,得出一个矛盾结论,从而证明原命题的真实性。
2018中考数学解题思路与方法汇总
2018中考数学解题思路与方法汇总初中数学解题方法与技巧要学好数学,学会解题是关键。
在进行解题的过程中,不仅需要加强必要的训练,其还要掌握一定的解题规律与技巧。
一、数学思想方法在解题中有不可忽视的作用解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。
基本题要练程序和速度;典型题尝试一题多解开发数学思维;最后要及时总结反思改错,交流学习好的解法和技巧。
著名的数学教育家波利亚说“如果没有反思,就错过了解题的的一次重要而有意义的方面。
”教师在教学设计中要让解学生好数学问题,就要对数学思想方法有清楚的认识,才能更好的挖掘题目的功能,引导学生发现总结题目的解法和技巧,提高解题能力。
1.函数与方程的思想函数与方程的思想是中学数学最基本的思想。
所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。
而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2.数形结合的思想数与形在一定的条件下可以转化。
如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。
因此数形结合的思想对问题的解决有举足轻重的作用。
3.分类讨论的思想分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。
原因四是实际问题中常常需要分类讨论各种可能性。
初中数学知识归纳几何证明题的分析与解题方法
初中数学知识归纳几何证明题的分析与解题方法几何证明题是初中数学中的重要部分,通过解题可以帮助我们巩固基础知识,提升逻辑思维能力。
本文将分析几何证明题的特点,并介绍解题的方法。
一、几何证明题的特点1. 图形清晰:几何证明题通常给出了明确的图形,我们需要仔细观察图形的形状、所给的条件等。
2. 充分条件:几何证明题给出一系列条件,我们需要根据这些条件进行推理和演绎。
在解答过程中,需要充分利用所给条件,灵活运用几何定理和性质。
3. 严格的逻辑性:几何证明题的解答过程需要严密的逻辑推理,每一步都要清晰地说明推理依据。
4. 数学语言的运用:在解答几何证明题时,我们要注意运用数学语言来进行精确的描述,不仅要言之有物,更要条理清晰。
二、解题方法1. 推理和演绎:首先,根据所给的条件进行推理和演绎,找出可能的推理路径。
根据几何定理和性质,可以进行等式推导、证明图形相似、利用垂直关系等等。
通过推理和演绎过程,我们可以得到一系列结果,为接下来的解题提供依据。
2. 反证法:几何证明题中,有时候可以采用反证法来解题。
反证法的基本思路是假设所要证明的结论不成立,然后通过逻辑推理推出矛盾的情况,从而推翻最初的假设。
通过反证法解题可以锻炼我们的逻辑推理能力,培养我们的思维严密性。
3. 分析全局:在解答几何证明题时,我们需要充分把握全局。
我们要观察图形的整体结构,找出其中的特点和规律。
有时候,我们需要从整个图形的角度出发,通过观察、比较、归纳整理相关性质,从而进行证明。
4. 结合具体例子:有时候,我们可以通过结合具体例子进行解题。
首先,我们选择一组具体的数据,画出相应的图形,然后根据特定的条件进行分析和推理。
通过具体例子的解题过程,我们可以更好地理解和掌握几何证明题的解题方法。
5. 利用已掌握的定理和性质:几何证明题通常会涉及到各种几何定理和性质,这就要求我们要牢固掌握各类几何定理和性质,能够熟练运用。
在解答过程中,我们可以参考已经掌握的定理和性质,将其应用到具体的题目中。
初中几何题证明思路汇总
1证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
2两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等3证明两直线平行1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
4证明两直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
中学数学,初中几何题证明思路汇总
中学数学,初中几何题证明思路汇总几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。
这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。
所以数学好教师对中考中最常出现的若干结论做了一个思路总结。
1证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
2两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等3证明两直线平行1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学:几何证明题答题思路总结
几何证明题重点考察的是学生的逻辑思维能力,能通过严密的”因为”、”所以”逻辑将条
件一步步转化为所要证明的结论。
这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更
看重的是对重要模型的总结、常见思路的总结。
所以对中考中最常出现的若干结论做了一个思路总结。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧
对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等
三、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
五、证明线段的和、差、倍、分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明角的和、差、倍、分
1.作两个角的和,证明与第三角相等。
2.作两个角的差,证明余下部分等于第三角。
3.利用角平分线的定义。
4.三角形的一个外角等于和它不相邻的两个内角的和。
七、证明两线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理--相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
以上九项是中考几何证明题中最常出现的内容,只要掌握了对应的方法,
再根据题目中的条件进行合理选择,攻克难题不再是梦想!。