八年级上册数学期末试卷及答案沪教版
(全优)沪教版八年级上册数学期末测试卷及含答案
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,是反比例函数y= 和y= (k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB =4,则k2﹣k1的值是()A.1B.2C.4D.82、在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到斜边AB的距离是()A. B. C.9 D.63、如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE,连接AE交OD于点F,若AB=2,∠ABC=60°,则AE的长为()A. B. C. D.4、电话卡上存有4元话费,通话时每分钟话费元,则电话卡上的余额(元)与通话时间(分钟)之间的函数图象是图中的()A. B.C.D.5、若,则的值用a、b可以表示为()A. B. C. D.6、如图,,点、、…在射线上,点、、…在射线上,、、…均为等边三角形,依此类推,若,则的边长为()A. B. C.2016 D.40327、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上.A.1B.2C.3D.48、如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,则AB=()A.4B.C.D.9、李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A. =20B.n(n﹣1)=20C. =20D.n(n+1)=2010、已知a、b为一元二次方程的两个根,那么的值为()A. B.0 C.7 D.1111、如图,⊙O的半径为5,圆心O到弦AB的距离为3,则AB的长为()A.4B.5C.6D.812、下列计算正确的是()A. B. C. · D.13、一元二次方程的解是()A. ,B. ,C.D.,14、如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=48°,则∠2的度数是( )A.64°B.65°C.66°D.67°15、下列方程中,属于一元二次方程的是()A.ax 2+bx+c=0B.C.(x+3)2=2(x﹣3)D.(x+4)(x﹣2)=x 2二、填空题(共10题,共计30分)16、在直角三角形ABC中,斜边AB=3,则AB2+AC2+BC2=________.17、如图,有一个圆柱,它的高等于16cm,底面半径等干4cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是________cm.(π取3)18、方程的解为________.19、已知:,则ab3+a3b的值为________.20、若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第________象限.21、某种灯的使用寿命为8000小时,那么它可使用的天数y与平均每天使用的小时数x之间的函数关系式为________ .22、如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径长为6cm,PO=10cm,则△PDE的周长是________cm.23、有一面积为120的梯形,其上底是下底长的.若上底长为x高为y,则y 与x的函数关系式为________ ;当高为10时x=________ .24、如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。
沪教版八年级上册数学期末测试卷(参考答案)
沪教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x (分)变化的图象(全程)如图,根据图象判定下列结论不正确的是( )A.甲先到达终点B.前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇D.这次比赛的全程是28千米2、若在实数范围内有意义,则x的取值范围是( )A. ≥3B.x<3C.x≤3D.x>33、已知直角三角形的周长为4+,斜边为4,则该三角形的面积是()A.2B.C.D.4、用配方法解一元二次方程,方程可变形为()A. B. C. D.5、方程(x-5)(x+2)=0的解是 ( )A.x=5B.x=-2C.x1=-5,x2=2 D.x1=5,x2=-26、将方程化为一般形式,若二次项系数为3,则一次项系数和常数项分别为()A.-2,6B.-2,-6C.2,6D.2,-67、如图,一次函数y=kx+b的图象与反比例函数y= 的图象交于A,B两点.当一次函数的值大于反比例函数的值时,自变量x的取值范围是()A.﹣2<x<1B.0<x<1C.x<﹣2和0<x<1D.﹣2<x<1和x>18、已知x=2是关于x的一元二次方程x2+ax=0的一个根,则a的值为( )A.-2B.2C.D.9、如图,在△ABC中,∠ABC=50°,∠BAC=20°,D为线段AB的垂直平分线与直线BC的交点,连接AD,则∠ADC的度数为().A.50°B.60°C.70°D.80°10、如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是( )A.24B.30C.36D.4211、若点(3,4)是反比例函数图象上一点,则此函数图象必经过点()A.(2,6)B.(2,-6)C.(4,-3)D.(3,-4)12、下列运算正确的是()A. B. C. D.13、在中,,,,则点到斜边的距离是()A. B. C.9 D.614、若关于x的方程k2x2﹣(2k+1)x+1=0有实数根,则k的取值范围是()A.﹣B.C.D.k≥﹣且k≠015、如图,锐角三角形ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,l与m相交于P点.若∠BAC=60°,∠ACP=24°,则∠ABP是()A.24°B.30°C.32°D.36°二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC=5,S=12,AD⊥BC于点D,CE⊥AB于点△ABCE.若点P是AD上一动点,连接PE,PB,则PE+PB的最小值是________.17、已知关于x的一元二次方程x2﹣(k+2)x+2k=0,若x=l是这个方程的一个根,则求k=________.18、已知3 ,a ,4, b, 5这五个数据,其中a,b是方程x2+2=3x的两个根,那么这五个数据的平均数是________,方差是________.19、在如图正方形网格的格点中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有________个。
沪教版八年级上册数学期末测试卷2套详细答案
第一套八年级上册数学期末测试卷2套详细答案一、选择:(本题共6题,每题3分,满分18分)1.已知最简二次根式与是同类二次根式,则x的值是()A.﹣1 B.0 C.1 D.22.下面的代数式中,其中 +1的一个有理化因式是()A.B. C. +1 D.﹣13.如关于x的方程ax2﹣3x+2=0是一元二次方程,则a的取值范围是()A.a>0 B.a≥0 C.a=1 D.a≠04.下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系5.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等6.如图所示,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论正确的是()A.CM=BC B.CB=AB C.∠ACM=30° D.CH•AB=AC•BC二、填空题(本题共12小题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.计算: = .8.计算: = .9.如关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是.10.在实数范围内分解因式x2﹣4x﹣1= .11.函数的定义域是.12.如正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是.13.命题“全等三角形的周长相等”的逆命题是.14.经过已知点A和点B的圆的圆心的轨迹是.15.已知直角坐标平面内两点A(﹣3,1)和B(1,2),那么A、B两点间的距离等于.16.如在四边形ABCD中,∠B=60°,AB=BC=13,AD=12,DC=5,那么∠ADC= .17.边长为5的等边三角形的面积是.18.已知在△AOB中,∠B=90°,AB=OB,点O的坐标为(0,0),点A的坐标为(0,4),点B在第一象限内,将这个三角形绕原点O逆时针旋转75°后,那么旋转后点B的坐标为.三、解答题(本大题共8题,满分58分)19.计算:.20.解方程:(x﹣)2+4x=0.21.已知关于x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,求这个方程根的判别式的值.22.如图所示,在△ABC中,∠C=90°,AC=6cm,AB=10cm,点D 在边AC上,且点D到边AB和边BC的距离相等.(1)作图:在AC上求作点D;(保留作图痕迹,不写作法)(2)求CD的长.23.如图所示,在直角坐标系xOy中,反比例函数图象与直线y=x相交于横坐标为2的点A.(1)求反比例函数的解析式;(2)如点B在直线y=x上,点C在反比例函数图象上,BC∥x 轴,BC=3,且BC在点A上方,求点B的坐标.24.如图示,已知在△ABC中,∠ABC=90°,点E是AC的中点,联结BE,过点C作CD∥BE,且∠ADC=90°,在DC取点F,使DF=BE,分别联结BD、EF.(1)求证:DE=BE;(2)求证:EF垂直平分BD.25.为改善奉贤交通状况,使奉贤区融入上海1小时交通圈内,上海轨交5号线南延伸工程于2014年启动,并将于2017年年底通车.(1)某施工队负责地铁沿线的修路工程,原计划每周修2000米,但由于设备故障第一周少修了20%,从第二周起工程队增加工人和设备,加快了速度,第三周修了2704米,求该工程队第二周、第三周平均每周的增长率.(2)轨交五号线从西渡站到南桥新城站,行驶过程中的路程y (千米)与时间x(分钟)之间的函数图象如图所示.请根据图象解决下列问题:①求y关于x的函数关系式并写出定义域;②轨交五号线从西渡站到南桥新城站沿途经过奉浦站,如果它从西渡站到奉浦站的路程是4千米,那么轨交五号线从西渡站到奉浦站需要多少时间?26.如图示,已知△ABC中,∠ACB=90°,∠ABC=30°,AC=2,点P是边AB上的一个动点,以点P为圆心,PB的长为半径画弧,交射线BC于点D,射线PD交射线AC于点E.(1)当点D与点C重合时,求PB的长;(2)当点E在AC的延长线上时,设PB=x,CE=y,求y关于x的函数关系式,并写出定义域;(3)当△PAD是直角三角形时,求PB的长.第一套:八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)1.如果最简二次根式与是同类二次根式,那么x的值是()A.﹣1 B.0 C.1 D.2【考点】同类二次根式.【分析】根据题意,它们的被开方数相同,列出方程求解即可.【解答】解:由最简二次根式与是同类二次根式,得x+2=3x,解得x=1.故选:C.2.下列代数式中, +1的一个有理化因式是()A.B. C. +1 D.﹣1【考点】分母有理化.【分析】根据有理化因式的定义进行求解即可.两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.【解答】解:∵由平方差公式,()()=x﹣1,∴的有理化因式是,故选D.3.如果关于x的方程ax2﹣3x+2=0是一元二次方程,那么a取值范围是()A.a>0 B.a≥0 C.a=1 D.a≠0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:依题意得:a≠0.故选:D.4.下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系【考点】反比例函数的定义;正比例函数的定义.【分析】分别利用反比例函数、正比例函数以及二次函数关系分别分析得出答案.【解答】解:A、一个人的体重与他的年龄成正比例关系,错误;B、正方形的面积和它的边长是二次函数关系,故此选项错误;C、车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D、水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;故选:C.5.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等【考点】直角三角形全等的判定.【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【解答】解:A、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;B、可以利用边角边判定两三角形全等,不符合题意;C、可以利用边角边或HL判定两三角形全等,不符合题意;D、可以利用角角边判定两三角形全等,不符合题意.故选:A.6.如图,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论正确的是()A.CM=BC B.CB=AB C.∠ACM=30° D.CH•AB=AC•BC【考点】三角形的角平分线、中线和高.【分析】由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH ∽△CHB,然后由相似三角形的对应边成比例,证得CH2=AH•HB;由△ABC中,∠ACB=90°,CM是斜边AB上中线,根据直角三角形斜边的中线等于斜边的一半,即可得CM=AB.【解答】解:△ABC中,∠ACB=90°,CM分别是斜边AB上的中线,可得:CM=AM=MB,但不能得出CM=BC,故A错误;根据直角三角形斜边的中线等于斜边的一半,即可得CM=AB,但不能得出CB=AB,故B错误;△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,无法得出∠ACM=30°,故C错误;由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH∽△CHB,根据相似三角形的对应边成比例得出CH•AB=AC•BC,故D正确;故选D二、填空题(本题共12小题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.计算: = 2.【考点】算术平方根.【分析】根据算术平方根的性质进行化简,即=|a|.【解答】解: ==2.故答案为2.8.计算: = 2a .【考点】二次根式的加减法.【分析】先化简二次根式,再作加法计算.【解答】解:原式=a+a=2a,故答案为:2a.9.如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m 的取值范围是m<﹣4 .【考点】根的判别式.【分析】根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围.【解答】解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4.10.在实数范围内分解因式x2﹣4x﹣1= (x﹣2+)(x﹣2﹣).【考点】实数范围内分解因式.【分析】根据完全平方公式配方,然后再把5写成()2利用平方差公式继续分解因式.【解答】解:原式=x2﹣4x+4﹣5=(x﹣2)2﹣5=(x﹣2+)(x﹣2﹣).故答案为:(x﹣2+)(x﹣2﹣).11.函数的定义域是x>﹣2 .【考点】函数自变量的取值范围.【分析】根据当表达式的分母中含有自变量时,自变量取值要使分母不为零,求解即可.【解答】解:由题意得:>0,即:x+2>0,解得:x>﹣2.故答案为:x>﹣2.12.如正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是k>3 .【考点】正比例函数的性质.【分析】根据正比例函数y=(k﹣3)x的图象经过第一、三象限得出k的取值范围即可.【解答】解:因为正比例函数y=(k﹣3)x的图象经过第一、三象限,所以k﹣3>0,解得:k>3,故答案为:k>3.13.命题“全等三角形的周长相等”的逆命题是周长相等的三角形是全等三角形.【考点】命题与定理.【分析】交换原命题的题设和结论即可得到原命题的逆命题.【解答】解:命题“全等三角形的周长相等”的逆命题是周长相等的三角形是全等三角形,故答案为:周长相等的三角形是全等三角形、14.经过已知点A和点B的圆的圆心的轨迹是线段AB的垂直平分线.【考点】轨迹.【分析】要求作经过已知点A和点B的圆的圆心,则圆心应满足到点A和点B的距离相等,从而根据线段的垂直平分线性质即可求解.【解答】解:据同圆的半径相等,则圆心应满足到点A和点B的距离相等,即经过已知点A和点B的圆的圆心的轨迹是线段AB 的垂直平分线.故答案为线段AB的垂直平分线.15.已知直角坐标平面内两点A(﹣3,1)和B(1,2),那么A、B两点间的距离等于.【考点】两点间的距离公式.【分析】根据两点间的距离公式,可以得到问题的答案.【解答】解:∵直角坐标平面内两点A(﹣3,1)和B(1,2),∴A、B两点间的距离为: =.故答案为.16.如在四边形ABCD中,∠B=60°,AB=BC=13,AD=12,DC=5,那么∠ADC= 90°.【考点】勾股定理的逆定理;等边三角形的判定与性质.【分析】根据等边三角形的判定得出△ABC是等边三角形,求出AC=13,根据勾股定理的逆定理推出即可.【解答】解:连接AC,∵∠B=60°,AB=BC=13,∴△ABC是等边三角形,∴AC=13,∵AD=12,CD=5,∴AD2+CD2=AC2,∴∠AC=90°,故答案为:90°.17.边长为5的等边三角形的面积是.【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可以求得高线AD的长度,根据三角形的面积公式即可得出结果.【解答】解:如图所示:作AD⊥BC于D,∵△ABC是等边三角形,∴D为BC的中点,BD=DC=,在Rt△ABD中,AB=5,BD=,∴AD===,∴等边△ABC的面积=BC•AD=×5×=.故答案为:.18.已知在△AOB中,∠B=90°,AB=OB,点O的坐标为(0,0),点A的坐标为(0,4),点B在第一象限内,将这个三角形绕原点O逆时针旋转75°后,那么旋转后点B的坐标为(,).【考点】坐标与图形变化-旋转;解直角三角形.【分析】易得△AOB的等腰直角三角形,那么OB的长为2,绕原点O逆时针旋转75°后,那么点B与y轴正半轴组成30°的角,利用相应的三角函数可求得旋转后点B的坐标.【解答】解:∵∠B=90°,AB=OB,点O的坐标为(0,0),点A 的坐标为(0,4),∴OA=4.∴OB=2,∵将这个三角形绕原点O逆时针旋转75°,∴点B与y轴正半轴组成30°的角,点B的横坐标为﹣,纵坐标为.∴旋转后点B的坐标为(,).三、解答题(本大题共8题,满分58分)[将下列各题的解答过程,做在答题纸的相应位置上]19.计算:.【考点】二次根式的加减法.【分析】根据二次根式的加减法,即可解答.【解答】解:由题意,得 m>0原式==20.解方程:(x﹣)2+4x=0.【考点】二次根式的混合运算.【分析】利用完全平方公式把原方程变形,根据二次根式的加减法法则整理,解方程即可.【解答】解:,,,,所以原方程的解是:.21.已知关于x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,求这个方程根的判别式的值.【考点】整式的加减—化简求值.【分析】首先根据x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,可得(m﹣2)2=0,据此求出m的值是多少;然后根据△=b2﹣4ac,求出这个方程根的判别式的值是多少即可.【解答】解:∵关于x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,∴(m﹣2)2=0,解得m=2,∴原方程是x2+5x=0,∴△=b2﹣4ac=52﹣4×1×0=25∴这个方程根的判别式的值是25.22.如图,在△ABC中,∠C=90°,AC=6cm,AB=10cm,点D在边AC上,且点D到边AB和边BC的距离相等.(1)作图:在AC上求作点D;(保留作图痕迹,不写作法)(2)求CD的长.【考点】作图—基本作图;全等三角形的判定与性质;角平分线的性质.【分析】(1)直接利用角平分线的做法得出符合题意的图形;(2)直接利用角平分线的性质结合全等三角形的判定与性质得出BC=BE,进而得出DC的长.【解答】解:(1)如图所示:(2)过点D作DE⊥AB,垂足为点E,∵点D到边AB和边BC的距离相等,∴BD平分∠ABC.(到角的两边距离相等的点在这个角的平分线上)∵∠C=90°,DE⊥AB,∴DC=DE.(角平分线上的点到角的两边的距离相等)在Rt△CBD和Rt△EBD中,∴Rt△CBD≌Rt△EBD(HL),∴BC=BE.∵在△ABC中,∠C=90°,∴AB2=BC2+AC2.(勾股定理)∵AC=6cm,AB=10cm,∴BC=8cm.∴AE=10﹣8=2cm.设DC=DE=x,∵AC=6cm,∴AD=6﹣x.∵在△ADE中,∠AED=90°,∴AD2=AE2+DE2.(勾股定理)∴(6﹣x)2=22+x2.解得:.即CD的长是.23.如图所示,在直角坐标系xOy中,反比例函数图象与直线y=x相交于横坐标为2的点A.(1)求反比例函数的解析式;(2)如点B在直线y=x上,点C在反比例函数图象上,BC∥x 轴,BC=3,且BC在点A上方,求点B的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把x=2代入y=x 得出点A 坐标,从而求得反比例函数的解析式;(2)设点C (,m ),根据BC ∥x 轴,得点B (2m ,m ),再由BC=3,列出方程求得m ,检验得出答案.【解答】解:(1)设反比例函数的解析式为y=(k ≠0),∵横坐标为2的点A 在直线y=x 上,∴点A 的坐标为(2,1), ∴1=,∴k=2,∴反比例函数的解析式为;(2)设点C (,m ),则点B (2m ,m ),∴BC=2m ﹣=3,∴2m 2﹣3m ﹣2=0,∴m 1=2,m 2=﹣,m 1=2,m 2=﹣都是方程的解,但m=﹣不符合题意,∴点B 的坐标为(4,2).24.如图,已知在△ABC中,∠ABC=90°,点E是AC的中点,联结BE,过点C作CD∥BE,且∠ADC=90°,在DC取点F,使DF=BE,分别联结BD、EF.(1)求证:DE=BE;(2)求证:EF垂直平分BD.【考点】直角三角形斜边上的中线;线段垂直平分线的性质.【分析】(1)根据直角三角形斜边上的中线的性质求出BE=DE,根据等腰三角形性质求出即可;(2)证出DE=DF,得出∠DEF=∠DFE,证出∠BEF=∠DEF,即可得出结论.【解答】(1)证明:∵∠ABC=90°,∠ADC=90°,点E是AC的中点,∴,.(直角三角形斜边上的中线等于斜边的一半)∴BE=DE.(2)证明:∵CD∥BE,∴∠BEF=∠DFE.∵DF=BE,BE=DE,∴DE=DF.∴∠DEF=∠DFE.∴∠BEF=∠DEF.∴EF垂直平分BD.(等腰三角形三线合一)25.为改善奉贤交通状况,使奉贤区融入上海1小时交通圈内,上海轨交5号线南延伸工程于2014年启动,并将于2017年年底通车.(1)某施工队负责地铁沿线的修路工程,原计划每周修2000米,但由于设备故障第一周少修了20%,从第二周起工程队增加工人和设备,加快了速度,第三周修了2704米,求该工程队第二周、第三周平均每周的增长率.(2)轨交五号线从西渡站到南桥新城站,行驶过程中的路程y (千米)与时间x(分钟)之间的函数图象如图所示.请根据图象解决下列问题:①求y关于x的函数关系式并写出定义域;②轨交五号线从西渡站到南桥新城站沿途经过奉浦站,如果它从西渡站到奉浦站的路程是4千米,那么轨交五号线从西渡站到奉浦站需要多少时间?【考点】一元二次方程的应用;一次函数的应用.【分析】(1)首先表示出第一周修的长度,进而利用结合求第二周、第三周平均每周的增长率,得出等式求出答案;(2)①直接利用待定系数法求出函数解析式,再利用图形得出x 的取值范围;②当y=4代入函数解析式进而求出答案.【解答】解:(1)设该工程队第二周、第三周平均每周的增长率为x ,由题意,得 2000(1﹣20%)(1+x )2=2704.整理,得 (1+x )2=1.69.解得 x 1=0.3,x 2=﹣2.3.(不合题意,舍去)答:该工程队第二周、第三周平均每周的增长率是30%.(2)①由题意可知y 关于x 的函数关系式是y=kx (k ≠0), 由图象经过点(10,12)得:12=10k ,解得:k=.∴y 关于x 的函数关系是:y=x (0≤x ≤10);②由题意可知y=4,∴,解得:x=,答:五号线从西渡站到奉浦站需要分钟.26.如图所示,已知△ABC中,∠ACB=90°,∠ABC=30°,AC=2,点P是边AB上的一个动点,以点P为圆心,PB的长为半径画弧,交射线BC于点D,射线PD交射线AC于点E.(1)当点D与点C重合时,求PB的长;(2)当点E在AC的延长线上时,设PB=x,CE=y,求y关于x的函数关系式,并写出定义域;(3)当△PAD是直角三角形时,求PB的长.【考点】三角形综合题.【分析】(1)根据直角三角形的性质得到AC=AB,根据等腰三角形的性质得到∠PCB=∠B=30°,根据等边三角形的性质即可得到结论;(2)由等腰三角形的性质得到∠PDB=∠B=30°,求得AE=AP,即可得到结论;(3)①如图2所示,当点E在AC的延长线上时,求得∠PDA=90°,根据直角三角形的性质得到PD=AP,解方程得到x=;②如图3,当点E在AC边上时,根据直角三角形的性质得到AP=PD.解方程得到x=.【解答】解:(1)如图1所示,∵在△ABC 中,∠ACB=90°,∠ABC=30°,∴AC=AB,∵AC=2,∴AB=4,∵以点P为圆心,PB的长为半径画弧,交射线BC于点D,点D 与点C重合,∴PD=PB,∴∠PCB=∠B=30°,∴∠APC=∠ACD=60°,∴AP=AC=2,∴BP=2;(2)∵PD=PB,∠ABC=30°,∴∠PDB=∠B=30°,∴∠APE=60°,∠CDE=30°,∵∠ACD=90°,∴∠AEP=60°,∴AE=AP,∵PB=x,CE=y,∴2+y=4﹣x,y=2﹣x.(0<x<2);(3)①如图2,当点E在AC的延长线上时,连接AD,∵△PAD是直角三角形,∠APD=60°,∠PAD<60°,∴∠PDA=90°,∴∠PAD=30°.∴PD=AP,即x=(4﹣x),∴x=;②如图3,当点E在AC边上时,连接AD∵△PAD是直角三角形,∠APD=60°,∠ADP<60°,∴∠PAD=90°,∴∠PDA=30°.∴AP=PD.即4﹣x=x,∴x=.综上所述:当PB的长是或时,△PAD是直角三角形.第二套:八年级上册培优数学试题时间:120分钟 满分150分一、选择 (共10小题,每小题4分,共40分)1. 在平面直角坐标系中,点P(-1,4)一定是在 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.若点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为 ( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)3.一次函数y=﹣2x ﹣3一定不经过 ( )A .第一象限 B. 第二象限 C. 第三象限 D.第四象限4.下列图形当中,为轴对称图形的是 ( )5.函数y=21 x 中的自变量x 的取值范围是 ( )A .x ≠2 B. x <2 C. x ≥2 D.x >26△ABC 中,∠A ﹦31∠B ﹦51∠C ,则△ABC 是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定7.如果一次函数y﹦kx﹢b的图象经过第一象限,且与y轴负半轴相交,那么()A. k﹥0,b﹥0B. k﹥0,b﹤0C. k﹤0,b﹥0D. k﹤0, b﹤08.如图,直线y﹦kx﹢b交坐标轴于A,B两点,则不等式kx﹢b﹥0的解集是()A. x﹥-2B. x﹥3C. x﹤-2D. x﹤39.如图示,OD=OB,AD∥BC,则全等三角形有()A. 2对B. 3对C. 4对D. 5对10. 两个一次函数y=-x+5和y=﹣2x+8的图象的交点坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)二、填空题(本题共4小题,每小题5分,满分20分)11.通过平移把点A(2,-1)移到点A’(2,2),按同样的平移方式,点B(-3,1)移动到点B’,则点B’的坐标是 .12.如图所示,将两根钢条A A’、 B B’的中点O连在一起,使A A’、B B’可以绕着点O自由转动,就做成了一个测量工具,则A’ B’的长等于内槽宽AB,那么判定△OAB≌△OA’ B’的理由是 .13.2008年罕见雪灾发生之后,灾区急需帐篷。
(新一套)沪教版八年级上册数学期末测试卷及含答案
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、一元二次方程2x2﹣x﹣3=0的二次项系数、一次项系数、常数项分别是()A.2,1,3B.2,1,﹣3C.2,﹣1,3D.2,﹣1,﹣32、如图,已知,点P在边OA上,OP=10,点M、N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.63、等于()A. B. C.3 D.34、下列各图中,表示y是x的函数的是()A. B. C.D.5、下列运算正确的有()A.5ab﹣ab=4B.3 ﹣=3C.a 6÷a 3=a 3D. + =6、如图,P是∠AOB的平分线OC上一点(不与O重合),过P分别向角的两边作垂线PD,PE,垂足是D,E,连结DE,那么图中全等的直角三角形共有()A.3对B.2对C.1对D.没有7、如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上一点,测得CB=60 m,AC=20 m,则A,B两点间的距离是( )A.200 mB.40 mC.20 mD.50 m8、如图,中,是高,,若,则的长是()A. B. C. D.9、两条平行线a、b被第三条直线c所截得的同旁内角的平分线的交点到直线c的距离是2cm,则a、b之间的距离是()A.3cmB.4cmC.5cmD.6cm10、在我国古代数学著作《九章算术》“勾股”章中有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何?”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB的距离为1尺(1尺=10寸),双门间的缝隙CD 为2寸,那么门的宽度(两扇门的和)AB为( )A.103寸B.102寸C.101寸D.100寸11、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x) 2=1000B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x) 2]=100012、方程9x2=16的解是()A. B. C.± D.±13、关于x的方程mx2﹣4x﹣m+5=0,有以下说法:①当m=0时,方程只有一个实数根;②当m=1时,方程有两个相等的实数根;③当m=﹣1时,方程没有实数根.则其中正确的是()A.①②B.①③C.②③D.①②③14、在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m 1 2 3 4v 0.01 2.9 8.03 15.1A.v=2m﹣2B.v=m 2﹣1C.v=3m﹣3D.v=m+115、如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.10二、填空题(共10题,共计30分)16、计算:(﹣)﹣3+ +2sin45°+()0=________.17、关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是________.18、如果关于x的方程有两个相等的实数根,且常数a与b 互为负倒数,那么________.19、已知关于x的一元二次方程x2﹣(k+2)x+2k=0,若x=l是这个方程的一个根,则求k=________.20、化简________.21、已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是________22、如图:AB∥CD,GN平分∠BGH,HN平分∠DHG,点N到直线AB的距离是2,则点N到直线CD的距离是________.23、关于的一元二次方程m -(2m -l) +1=0的根的判別式是1,那么m=________.24、一元二次方程的根是________.25、一个两位数,个位数字比十位数字大3,个位数的平方恰好等于这个两位数,这个两位数是________.三、解答题(共5题,共计25分)26、计算:27、一海关缉私艇发现在正北方45海里处有一艘可疑船只,测得它以60海里/时的速度向正东方向航行,立即调整方向,以75海里/时的速度准备将其拦截,问经过多少时间能拦截上?28、一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.29、已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.若方程有两个相等的实数根,试判断△ABC的形状,并说明理由.30、解方程:x2﹣2x﹣3=0;参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、C5、C6、A7、B8、B9、B11、D12、C13、A14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、。
沪教版数学八年级数学上册期末练习(含答案)
沪教版数学八年级数学上册期末练习卷姓名__________学号___________成绩__________一、选择题1. 下列等式中,根为-1的方程是( )A.2x 2+x=0B.3x 2+2x -5=0C.x 2-5x+4=0D.2x 2-3x -5=02. 关于x 的方程x 2-mx -1=0根的情况,下列说法正确的是( )A. 没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定 3. 关于x 的方程x2+(k2-4)x+k+1=0的两个根互为相反数,则k 的值是( ) A. -1 B.1 C.-2 D.24. 如图,三个正比例函数的图像对应的解析式为①y=ax ,②y=bx,③y=cx ,则a 、b 、c 的大小关系是( ) A. a<b<c B.c>a>b C. c>b>a D.b>a>c5.若正比例函数y=k 1x(k 1≠0)与反比例函数)1k (x1k y 22≠-=的大致图像如图所示,则k1、k2的取值范围是( ). A.k 1>0,k 2>1 B. k 1<0,k 2>1 C. k 1>0,k 2<1 D.k 1<0,k 2<16.如图所示,在Rt △ACB 中,∠C=90°,AD 平分∠BAC,若BC=16,BD=10,则点D 到AB 的距离是( ). A.6 B.8 C.10 D.12二、填空题7.如下图,在△ABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于D ,BC=12cm,BD=8cm ,点D 到点AB 的距离等于___________.8.正比例函数kx y =的图像是_________,它一定经过点_________.9.已知等腰三角形的周长为40,腰长为y ,底边长为x,则y 关于x 的函数解析式是__________.10.计算:=+-))((3223____________________. 11.把式子nm mn2n m --+分母有理化的结果是___________.12.一元二次方程031x -x 322=-根的情况是___________. 13.如果一个直角三角形的三边长是三个连续偶数,那么这个三角形的周长是__________.14.在△ABC 中,∠C=90°,BC=12,AB=13,AC=_________.15.已知点A(2,2)、B(5,-2)在x 轴上找一点M 使∠AMB 为直角,则点M 的坐标是_________.16.在△ABC 中,三边长分别为8k 、15k 、17k (k>0),则ABC________直角三角形.(填“是”或“不是”)(第4题图)(第5、6题图)(第7题图)17.已知2x x x f +=)(,则)3(f =_________;1x x3)x (g +-=,则()3g -=________.18.已知方程3ax 2-bx -1=0和ax 2+2bx -5=0有共同的根-1,则ab=______. 19.已知y=3x x 33x ++-+-,求y x +=_________.20.如图,∠A=60°,BD ⊥AC,CE ⊥AB,BD 与CE 相交于点F ,若FD=2cm,FE=4cm,则AB+CE=________cm.21.如下图,在△ABC 中,∠ACB=90°,∠A=20°,CD 与CE ,CD 与CE 分别是斜边AB 上的高和中线,则∠DCE=________°.22.如图,P 是反比例函数的图像上的一点,且S △PQO =10,求反比例函数的解析式是__________.三、计算题 23. 计算x1x 24x 6x 932-+ 24.解方程:(用公式法)010x 34x 2=+-25.解方程:x 2x 2x 322-=-)( 26.解方程:()5x x 322=+-27.已知010y 6x 4y x 422=+--+,求)x y x 5x 1x (y x y x 9x 32232--⎪⎪⎭⎫⎝⎛+的值.四、证明简答题.(第20题图)(第21题图)(第22题图)28.已知正比例函数y=3x 图像上点P 的横坐标为为-2,点P 关于x 轴,y 的对称点分别为P 1和P 2. (1)求出点P 、P 1、P 2的坐标.(2)若正比例函数y=k 1x 的图像经过点P 1,正比例函数y=k 2x 的图像经过点P 2,求k 1,k 2的值.29. 如图,在△ABC 中,∠ACB=90°,D 是AC 上任意一点,DE ⊥AB,垂足为点E,M 、N 分别是BD 、CE 的中点,求证:MN ⊥CE.30. 如图,在四边形ABCD 中,AD//BC ,E 为AD 的中点,连接AE 、BE,BE ⊥AE,延长AE 交BC 的延长线于点F,求证:(1)FC=AD ;(2)AB=BC+AD.31. 如图,BE 、CE 分别为△ABC 的两个外角平分线,EP ⊥AM 于P ,EQ ⊥AN 于Q.求:(1)EP=EQ;(2)点E ∠NAM 的平分线上.沪教版数学八年级数学上册期末练习卷答案1. D2.C3.C4.C5. B6.A7.4cm8. 一条直线,(0,0)9.)(20x 0x 2120y <<-= 10.622336--+ 11.n m - 12. 没有实数根 13. 24 14. 5 15.(1,0)或(6,0) 16.是 17.332-,323-- 18.-2 19.3 20.18 21.50°22.x20y -= 23.分)(分)(分)(解:原式1x 32x 2x 3x 22xxx ?22x ·6x 3·32⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-+=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-+= 24.25.26.28.29.31.。
沪教版八年级上册数学期末测试卷及含答案
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4C.2D.42、如图,在△ABC中,∠C=90°,AC=8,BC=6,按下列步骤作图:①以点A 为圆心,适当长为半径画弧,分别交AC,AB于点D,E;②分别以D,E为圆心,DE的长为半径画弧,两弧相交于点F;③作射线AF,交BC于点G,则CG =()A.3B.6C.D.3、在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A. B. C. D.4、若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥2B.x>2C.x<2D.x≤25、下列一元二次方程中没有实数根的是()A.x 2+3x+4=0B.x 2-4x+4=0C.x 2-2x-5=0D.x 2+2x-4=06、函数y=中,自变量x的取值范围是()A. x>5B. x≥5C. x≤5D. x<57、方程(x﹣3)2=(x﹣3)的根为()A.3B.4C.4或3D.﹣4或38、如图四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则DC+BC的值为()A.6B.C.D.79、下列各式运算中,正确的是()A.a 3+a 2=a 5B. =3C.a 3•a 4=a 12D. = (a≠0)10、如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为A. B. C.D.11、若反比例函数y=的图象在二、四象限,那么直线y=kx-2经过哪几个象限()A.一、二、三B.一、二、四C.一、三、四D.二、三、四12、如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6步B.5步C.4步D.2步13、下列方程是一元二次方程的是()A. +x 2=0B.3x 2﹣2xy=0C.x 2+x﹣1=0D.ax 2﹣bx=014、下列二次根式中不能够与合并的是()A. B. C. D.15、有一块长方形铁皮,长100cm,宽50cm,在它的四周各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,设铁皮各角应切去的正方形边长为xcm,则下面所列方程正确的是()A.4x 2=3600B.100×50﹣4x 2=3600C.(100﹣x)(50﹣x)=3600 D.(100﹣2x)(50﹣2x)=3600二、填空题(共10题,共计30分)16、函数y=中自变量x的取值范围是________ .17、如图,在平面直角坐标系xOy中,分别平行x、y轴的两直线a、b相交于点A(3,4).连接OA,线段OA长________;若在直线a上存在点P,使△AOP是以OA为腰的等腰三角形.那么所有满足条件的点P的坐标是________.18、如图,Rt△ABC的周长为cm,以AB、AC为边向外作正方形ABPQ 和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是________cm2.19、方程x(x﹣2)=﹣(x﹣2)的根是________ .20、如图,正方形ABCD中,点E在边BC上,∠BAE=n°.如果在边AB、CD上分别找一点F、G,使FG=AE,FG与AE相交于点O,那么∠GOE的大小等于________.21、计算________.22、如图,正方形网格中,每个小正方形的边长为,则网格上的是_________三角形.23、已知长方体的体积为36,长为,宽为,则高为________.24、把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为________.25、如图,在Rt△ACB中,∠ABC=90°,D为BC边的中点,BE⊥AD于点E,交AC于F,若AB=4,BC=6,则线段EF的长为________.三、解答题(共5题,共计25分)26、解方程:.27、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,若△ABC面积是36cm2, AB=10cm,AC=8cm,求DE的长.28、如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD 交CD的延长线于点F.求证:△ABE≌△ADF.29、已知,且x为偶数,求(1+x)的值.30、某工程队在我县实施一江两岸山水园林县城的改造建设中,承包了一项拆迁工程,原计划每天拆1250m2,因为准备工作不足,第一天少拆20%,从第二天开始,该工程队加快拆迁速度,第三天就拆迁了1440m2,问:(1)该工程队第一天拆迁面积是多少?(2)若该工程队第二、三天拆迁面积比前一天增加的百分数相同,求这个百分数。
沪教版八年级上册数学期末测试卷及含答案(综合题)(黄金题型)
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()A.6B.9C.10D.122、如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.23、据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A. y=0.05 xB. y=5 xC. y=100 xD. y=0.05 x+1004、若函数y= 有意义,则()A.x>1B.x<1C.x=1D.x≠15、如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3B.4C.5D.66、如图,中,为线段AB的垂直平分线,交于点E,交于D,连接,若,则的长为( )A.6B.3C.4D.27、在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40B.a=b=5,c=5C.a:b:c=3:4:5 D.a=11,b=12,c=158、某药品经过两次降价,每瓶零售价由100元降为81元,则平均每次降价()A.8.5%B.9%C.9.5%D.10%9、若在实数范围内有意义,则x的取值范围是( )A. ≥3B.x<3C.x≤3D.x>310、如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.1011、如图,以数轴的单位长线段为边作一个正方形,以-1所在的点为旋转中心,将过-1点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.12、已知a,b,c是△ABC三条边的长,那么方程cx2+(a+b)x+ =0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.无法确定13、已知一个一元二次方程的二次项系数是3,常数项是1,则这个一元二次方程可能是()A.3x+1=0B.x 2+3=0C.3x 2﹣1=0D.3x 2+6x+1=014、下列各组数中,是勾股数的()A.12,15,18B.11,60,61C.15,16,17D.12,35,3615、菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8B.20C.8或20D.10二、填空题(共10题,共计30分)16、一个反比例函数的图象位于第二、四象限.请你写出一个符合条件的解析式是________ .17、为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是________ .18、如图,在中,,为边上的中线,过点作交于点.若,,则的长为________.19、如图,是一个简单的数值运算程序.则输入x的值为________.20、已知函数的图象经过点(1,3),且与x轴没有交点,写出一个满足题意的函数的解析式________.21、+2sin30°-tan60°+tan45°=________.22、若x2+3xy-2y2=0,那么= ________.23、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是________24、在“2011年北京郁金香文化节”中,北京国际鲜花港的3×106株郁金香为京城增添了亮丽的色彩.若这些郁金香平均每平方米种植的数量为n(单位:株/平方米),总种植面积为S(单位:平方米),则n与S的函数关系式为________ .(不要求写出自变量S的取值范围)25、计算:6 ×=________,÷(2﹣)=________.三、解答题(共5题,共计25分)26、解方程:x2-3x=5x-127、解方程:x2﹣6x+5=0 (配方法)28、数学阅读是学生个体根据已有的知识经验,通过阅读数学材料建构数学意义和方法的学习活动,是学生主动获取信息,汲取知识,发展数学思维,学习数学语言的途径之一.请你先阅读下面的材料,然后再根据要求解答提出的问题:问题情境:设a,b是有理数,且满足,求的值.解:由题意得,∵a,b都是有理数,∴也是有理数,∵是无理数,∴,∴,∴解决问题:设x,y都是有理数,且满足,求的值.29、如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线与AC交于点D,垂足为点F,试探究线段AD与DC的数量关系,并证明你的结论.30、如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,AB=10cm,DC=3cm,试求△ABD的面积.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、D5、D6、B7、D8、D9、A10、C11、C12、B13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
【新】沪教版八年级上册数学期末测试卷及含答案
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.()﹣2=9B. =﹣2C.(﹣2)0=﹣1D.|﹣5﹣3|=22、如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C 为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正确的是()A.①②③B.①②④C.①③④D.②③④3、下列二次根式中,与是同类二次根式的是()A. B. C. D.4、下列各式计算正确的是()A. B. C. D.5、方程x2=3x的解是()A.x=3B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x1=1,x2=36、如果关于x的一元二次方程(m﹣3)x2+3x+m2﹣9=0有一个解是0,那么m的值是( )A.3B.﹣3C.±3D.0或﹣37、在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简的结果为()A.3a+b﹣cB.﹣a﹣3b+3cC.a+3b﹣3cD.2a8、如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠PAQ=40°,则∠BAC的度数是()A.110°B.100°C.120°D.70°9、函数中,自变量x的取值范围是()A.x>2B.x<2C.x≠2D.x≠﹣210、下列根式中,不是最简二次根式的是()A. B. C. D.11、如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为().A.6米;B.9米;C.12米;D.15米.12、下列运算正确的是()A. =﹣4B. ﹣C.()2=4D.13、关于x的方程x2+x﹣k=0有两个不相等的实数根,则k的取值范围为()A.k>﹣B.k≥﹣C.k<﹣D.k>﹣且k≠014、下列计算正确的是()A. B.- C. D.15、根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.﹣B.C.1D.二、填空题(共10题,共计30分)16、化简:﹣=________.17、已知,则=________.18、如图,于点,为的中点,连接的平分线交于点,连结,若,则________.19、已知关于x的一元二次方程ax2﹣(a+2)x+2=0有两个不相等的正整数根时,整数a的值是________.20、如图,反比例函数y=-图象上有一点P,PA⊥x轴于A,点B在y轴的负半轴上,那么△PAB的面积是________21、下列二次根式,不能与合并的是________(填写序号即可).①;②;③;④;⑤.22、如果a+b+c=0,那么一元二次方程ax2+bx+c=0必有一个根是________.23、若8,a,17是一组勾股数,则a=________.24、反比例函数y=的图像过点(-2,a)、(2,b),若a-b=-6,则ab=________.25、已知直角三角形的三边长为 4,5,,为斜边,则以为边长的正方形面积为________.三、解答题(共5题,共计25分)26、解方程(配方法):27、如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=12,CD=2.求⊙O半径的长.28、如图,在钝角△ABC中,BC=9,AB=17,AC=10,AD⊥BC于D,求AD的长.29、如图,四边形ABCD是某新建厂区示意图,∠A=75°,∠B=45°,BC⊥CD,AB=500 米,AD=200米,现在要在厂区四周建围墙,求围墙的长度有多少米?30、在等腰三角形,三边长分别是.其中,若关于x的方程有两个相等的实数根,求的周长.参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、D5、B6、B7、E8、A9、C10、C11、B12、C13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
【最新】沪教版八年级上册数学期末测试卷及含答案
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、要使根式有意义,则字母x的取值范围是()A.x>0B.x≥3C.x≤3D.x≠32、图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.51B.49C.76D.无法确定3、若反比例函数y=的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限4、如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是()A.14B.13C.12D.115、如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A. B. C. D.6、如果式子是二次根式,那么a的取值范围是( )A.a≥1B.a>1C.a=1D.a≤17、三角形一边长为,另两边长是方程的两实根,则这是一个().A.直角三角形B.锐角三角形C.钝角三角形D.任意三角形8、在Rt△ABC中,若斜边AB=3,则AC2+BC2等于( )A.6B.9C.12D.189、如图,在中,,点是上的点,且,垂直平分,垂足是,如果,则等于()A. B. C. D.10、点 A(3,4)和点 B(3,-5),则 A、B 相距()A.1 个单位长度B.6 个单位长度C.9 个单位长度D.15 个单位长度11、下列函数中,当x>0时,y随x的增大而增大的是()A.y=-3xB.y=-x+4C.y=-D.y=12、如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数(,)的图象上,横坐标分别为1,4,对角线轴.若菱形ABCD的面积为,则k的值为()A. B. C.4 D.513、如图,表示的点应在()A.线段上B.线段上C.线段上D.线段上14、如图,点A,点B分别在反比例函数和反比例函数的图象上,AB∥x轴,交y轴与点C,且∠AOB=90°,则AC:CB等于()A.1:2B.1:3C.1:4D.1:15、如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )A.4B.6.25C.7.5D.9二、填空题(共10题,共计30分)16、在△ABC中,∠C=90°,∠A=30°,AB=16,则BC的长是________.17、反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB 的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________.18、如图,点P是∠AOB的角平分线上一点,PD⊥OA于点D,CE垂直平分OP,若∠AOB=30°,OE=4,则PD=________.19、下列各式①y=0.5x﹣2;②y=|2x|;③3y+5=x;④y2=2x+8中,y是x的函数的有________ 只填序号)20、以3和4为根的一元二次方程是 ________.21、己知点C为函数y= (x>0)上一点,过点C平行于x轴的直线交y轴于点D,交函数y= 于点A,作AB⊥CO于E,交y轴于B,若∠BCA=45°,△OBC的面积为l4,则m=________.22、已知A(,)和B(,)是反比例函数的图象上两点,若,则y1与y2的大小关系是________.23、如果函数y=x 2m -1 为反比例函数,则m的值是________.24、如图,点M、N在半圆的直径AB上,点P、Q在上,四边形MNPQ为正方形.若半圆的半径为,则正方形的边长为________.25、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2, AB=16cm,AC=14cm,则DE=________.三、解答题(共5题,共计25分)26、已知:x=1﹣,y=1+ ,求x2+y2﹣xy﹣2x+2y的值.27、如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.28、计算:①已知:a+ =1+ ,求a2+ 的值.②如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积。
沪教版八年级上册数学期末测试卷及含答案
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知m、n是方程x2+3x-2=0的两个实数根,则m2+4m+n+2mn的值为()A.-5B.C.5D.02、如图,⊙A过点O(0,0),C( ,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是( )A.15°B.30°C.45°D.60°3、正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A. B. C. D.4、如图,点A为反比例函数y=﹣图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.4B.﹣2C.2D.无法确定5、若y=+﹣2,则﹣xy的值为()A.-2B.2C.1D.-16、已知⊙O的半径是2,一个正方形内接于⊙O,则这个正方形的边长是()A.2B.2C.D.47、已知点A(x1, y1),(x2, y2)是反比例函数y= 图象上的点,若x 1>0>x2,则一定成立的是()A.y1>y2>0 B.y1>0>y2C.0>y1>y2D.y2>0>y18、反比例函数经过点,则下列说法错误的是()A. B.函数图象分布在第一、三象限 C.当时,随的增大而增大 D.当时,随的增大而减小9、已知:如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y (cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列四个结论中正确的个数有()①图1中的BC长是8cm;②图2中的M点表示第4秒时y的值为24;③图1中的CD长是4cm;④图1中的DE长是3cm;⑤图2中的Q点表示第8秒时y的值为33;⑥图2中的N点表示第12秒时y的值为18cmA.1个B.2个C.3个D.4个10、如图,在△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( )A.3B.4C.5D.611、已知一次函数y=2x﹣3与反比例函数y=﹣,那么它们在同一坐标系中的图象可能是()A. B. C. D.12、下列方程中,是一元二次方程的为()A.ax 2+bx+c=0B.x 2+3x=0C. + =0D.x 2+2-x(x-1)=013、已知,则=()A. B.﹣ C. D.14、如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为( )A.12B.10C.8D.615、我们这样来探究二次根式的结果,当a>0时,如a=3,则=3,此时的结果是a本身;当a=0时,=0.此时的结果是零;当a<0时,如a=﹣3,则=﹣(﹣3)=3,此时的结果是a的相反数.这种分析问题的方法所体现的数学思想是()A.分类讨论B.数形结合C.公理化D.转化二、填空题(共10题,共计30分)16、如图,矩形ABCD,AD=2,以A为圆心,任意长为半径作弧,分别交AB、AD 于M、N两点,分别以M、N为圆心,大于MN的长为半径作弧,两弧相交于点P,连接AP并延长交CD于点E,以A为圆心,AE为半径作弧,此弧刚好过点B,则CE的长为 ________。
沪教版八年级上册数学期末测试卷及含答案(新一套)(实用)
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC 中,∠C=90°,在AC和AB 上分别截取AE,AD,使 AE=AD分别以点D,E 为圆心,大于立DE 长为半径作弧,两弧在∠BAC 内交于点F,作射线AF交边BC 于点G,若 CG=4,AB=10,则△ABG 的面积为()A.12B.20C.30D.402、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x) 2=1000B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x) 2]=10003、为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2.若每年的年增长率相同,则年增长率为()A.9%B.10%C.11%D.12%4、函数与(a≠0)在同一平面直角坐标系中的图象可能是().A. B. C.D.5、若关于x的一元二次方程x2+ x+tana=0有两个相等的实数根,则锐角a等于()A.15°B.30°C.45°D.60°6、某商品原价为200元,经过连续两次降价后售价为148元,设平均每次降价为a%,则下面所列方程正确的是()A.200 (1+a%)2=148B.200 (1﹣a% )2=148C.200 (1﹣2a% )=148 D.200 (1﹣a 2%)=l487、△ABC的三边满足|a+b﹣16|+ +(c﹣8)2=0,则△ABC为()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8、下列函数中,当x<0时,函数值y随x的增大而增大的有()个.①y=x;②y=-2x+1;③y=-;④y=3x2.A.1个B.2个C.3个D.4个9、方程的解是(A. B. , C. , D. ,10、若式子有意义,则实数的取值范围是()A. 且B.C.D.11、如图,在平面直角坐标系xOy中,直线经过第一象限内一点A,且OA=4过点A作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,则点C的坐标为()A.(- ,2)B.(- ,1)C.(-2,)D.(-1,)12、已知x=﹣1是方程x2+mx+1=0的一个实数根,则m的值是()A.0B.1C.2D.﹣213、如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF.若∠EDC=135°,CF= ,则AE2+BE2的值为()A.8B.12C.16D.2014、下面是小秋同学做的四道题:①=4x2;②(a≥0);③(a>0);④(a>0).你认为他做得正确的有()A.1道B.2道C.3道D.4道15、已知关于y的方程y2-3y=a没有实数根,则a的取值范围是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为________.17、有一块田地的形状和尺寸如图,则它的面积为________.18、如图,长方形ABCD中,AB=3,BC=4,点E是BC边上任一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当CE的长为________时,△CEB′恰好为直角三角形.19、某航空公司托运行李的费用y元与托运行李的质量x(kg)之间的函数关系如图所示,根据图中的信息可知:免费托运行李质量应不超过________kg.20、方程=3的根是________21、已知一个无理数与+1的积为有理数,这个无理数为________.22、如图所示,P是∠BAC的平分线上一点,PB⊥AB于点B,且PB = 5 cm,AC = 12 cm,则△APC的面积是 ________ cm2.23、如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=5,AC=4,则D点到AB的距离是________.24、已知直角三角形两边x、y的长满足|x2﹣4|+ =0,则第三边长为________.25、对于正比例函数,若的值随的值增大而减小,则的值为________.三、解答题(共5题,共计25分)26、解方程:27、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)2 5 7 10 12 13 14 17 20对概念的接受能力(y)47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?28、已知A(1,)是反比例函数图象上的一点,直线AC经过点A及坐标原点且与反比例函数图象的另一支交于点C,求C的坐标及反比例函数的解析式.29、如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.30、将一块正方形铁皮的四个角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,盒子的容积是400cm3,求原铁皮的边长.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、D5、D6、B7、A9、B10、A11、D12、C13、C14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
沪科版八年级数学上册期末试卷及答案六套
(3)ACE BD八年级数学(上学期)期末试题(一)姓名__________得分________一、填空题:(本题满分30分,每小题3分)1、若点(x ,y)的坐标满足y =2x - , 则这个点在 ____ 象限或_____。
2、点(5,-3)左平移3个单位,下平移2个单位坐标后的坐标是_______3、如图(1), 直线L, m 的解析式分别是 ___________________________4、某长途汽车客运公司规定按如图方法收取旅客行李费,问:旅客最多可免费携带行李_______kg ?5、函数 y =1x -+ (x-2)°中,x 的取值范围是_______________. 6、若10个数的平方和是370,方差是33那么这10个数的平均数为_______ 7、在∆ABC 中,BC = 10,AB = 6, 那么 AC 的取值范围是______________. 8、说明“对应角相等的两个三角形全等“是假命题的反例是______________________________________________________________ 9、腰长为12cm ,底角为15︒的等腰三角形的面积为____________。
10、上图(3),在∆ABC 中,∠ACB = 90︒,∠B= 30︒, DE 垂直平分BC ,BD = 5, 则∆ACD 的周长为_________。
二、选择题:(本题满分18分,每小题3分)1、若 y -1 与 2x +3 成正比例,且 x = 2 时, y = 15,则 y 与 x 间的函数解析式是 ( )A :y =2x +3B :y = 4x + 7C :y =2x +2D :y =2x +152、若函数y = ax + b ( a ≠0) 的图象如图(4)所示不等式ax + b ≥0的解集x(4) oy = ax+b22 yAEBCD(5)ABD C y (元)是 ( )A :B :x ≤C :x = 2D :x ≥ - b a3,若量得∠∠D =∠E = 35︒, 那么∠A = ( ) A :35︒ B : 45︒ C :40︒ D :50︒ 4、下列命题是真命题的是: ( )A : 面积相等的两个三角形全等B :三角形的外角和是360︒C : 有一个角是30︒的等腰三角形底角为75︒D :角平分线上的点到角的两边上的点的距离相等5、直线y = x , y = 3 , x = - 1所围成的三角形面积是 ( ) A :9 B : 5 C :6 D :86、三角形三内角平分线的交点到( )距离相等A :三顶点B :三边C :三边中点D :三条高三、证明题:(本题满分16分,每小题8分)1、已知:如图,在三角形ABC 中AB = AC ,O 是三角形ABC 内一点,且OB = OC , 求证:AO ⊥ BC2、如图,在∆ABC 中,AB = AC, ∠BAC =120︒,且BD = AD, 求证:CD = 2BD四、(本题满分20分,每小题10分)1、下图是某企业职工养老保险个人月缴费y(元),随个人月工资x (百元)变化的图象:请你根据图象解答问题:(1) 张工程师5月份工资3500元,这个月他应缴养老金多少元?(2) 李师傅5月份缴养老金80元?他这个 月工资多少元?2、已知等腰三角形周长为24cm ,若底边长为y(cm),一腰长为x(cm), (1) 写出y 与x 的函数关系式 (2) 求自变量x 的取值范围 (3) 画出这个函数的图象五、作图题(本题满分8分)求作一点P ,使PC = PD, 并且使点P 到AOB 两边的距离相等 (保留痕迹,不写作法)六、(本题满分8分)一组数据从小到大排列为a, 3, 4, 6, 7, 8, b ,其平均数为6,极差是8,求这组数据的方差答案: 一、1、第二象限 原点2、 (2,-5)3、L :y = x +3 m : y = - 2x4、 305、 x > 1且 x ≠ 26、 27、 4< x < 168、边长不等的两个等边三角形 9、 36 10、 15二、 1、B 2、B 3、C 4、B 5、D 三、提示:1、证明AO 是等腰三角形的顶角平分线2、利用直角三角形中30︒角所对的边等于斜边的一半四、1、(1)200 (2) 10002、(1)y = -2x + 24 (2)6< x < 12 五、作∠AOB 的平分线与CD 的垂直平分线相交,交点为P六、 6沪科版八年级数学第一学期期末测试题(二)一、认真选一选(本题共10小题,每题3分,共30分)1、函数12+=x y 中自变量x 的取值范围是 【 】 A .21≥x B. 0≥x C. 21-≥x D. 21->x 2、已知点P (a,-b )在第一象限,则直线y=ax+b 经过的象限为 【 】 A .一、二、三象限 B..一、三、四象限 C .二、三、四象限D .一、二、四象限3、下列一次函数中,y的值随着x的值增大而减小的是【】A.y=x B.y=x+1 C.y=x-1 D.y=-x+1 4、一个等腰三角形,周长为9,其余各边均为整数,则腰长为【】A.4或3或2 B. 4或3 C.4 D.35、如图,已知点P到BE、BD、AC的距离恰好相等,则P点的位置:①在∠B的平分线上②在∠DAC的平分线上③在∠ECA的平分线上④恰好是∠B、∠DAC、∠ECA的三条角平分线的交点。
沪教版八年级上册数学期末测试卷(附解析)
沪教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()A.y=xB.y=x+1C.y=x+2D.y=x+32、用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I 2与R成反比例C.P为定值,I与R成正比例D.P为定值,I 2与R成正比例3、一副学生三角板放在一个圈里恰好如图所示,顶点在圆圈外,其他几个顶点都在圆圈上,圆圈和交于点,已知,则这个圆圈上的弦长是()A. B. C. D.4、下列二次根式中,属于最简二次根式的是()A. B. C. D.5、下列计算正确的是()A.2 =B. =C.4 ﹣3 =1D.3+2=56、若直角三角形的三边a、b、c满足a2-4a+4+ =0,则第三边c的长度是( )A. B. C. 或 D.5或137、若代数式+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠18、若点(x1, y1),(x2, y2)都是反比例函数图象上的点,并且,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限9、如图,在△ABC中,AC=8,BC=6,AB=10,P为边AB上一动点,PD AC于D,PE BC于E,则DE的最小值为()A.3.6B.4.8C.5D.5.210、已知关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.11、下列函数的图像在每一个象限内,y值随x值的增大而增大的是()A.y=-x+1B.y=x 2-1C.D.12、若关于x的一元二次方程为ax2+bx-5=0(a≠0)的一个解是x=1,则2019-a-b的值是A.2018B.2013C.2014D.201213、如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A.45°B.60°C.50°D.55°14、用配方法解方程x2+4x﹣1=0时,原方程应变形为()A.(x+2)2=5B.(x+2)2=3C.(x﹣2)2=3D.(x﹣2)2=515、如图,∠A=120°,AB=AC=4,D在线段AB上,DE∥BC交AC于E,将△ADE绕点D顺时旋转30°得△GDH,当H点在BC上时,AD的长为()A. B.2 C. D.二、填空题(共10题,共计30分)16、如图,⊙O中直径AB⊥弦CD于E,若AB=26,CD=24,则OE=________.17、如图,正方形ABCD的边长是2,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2…按此规律继续下去,则S2016的值为________.18、在函数y= 中,自变量x的取值范围是________.19、如图,在中,,垂直平分,垂足为,交于,若的周长为,则的长为________20、已知:,那么a的取值范围是________.21、若正比例函数y=(m﹣2)x m2﹣10的图象在第一、三象限内,则m=________ .22、在△ABC中,AB=AC,AB的中垂线于AC所在的直线相交所得的锐角为40°,则底角∠B的大小为________23、如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为________ .24、在函数y= 中,自变量x的取值范围是________25、已知是关于x的一元二次方程,则的取值范围是________ 。
沪教版八年级上册数学期末测试卷及含答案(完整版)
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知点,,点P在线段AB上(不与端点重合),反比例函数的图象经过点P,则的取值范围是()A. >3B.0≤≤3C.0<≤3D. ≥32、如图正比例函数y=k1x与反比例函数y=的图象相交于A、B两点,AC ⊥x轴于点C,CD∥AB交y轴于点D,连接AD、BD,若S△ABD=6,则下列结论正确的是()A. k1=﹣6B. k1=﹣3C. k2=﹣6D. k2=﹣123、下列关于x的一元二次方程中,没有实数根的是()A. B. C.D.4、下列式子为最简二次根式的是()A. B. C. D.5、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为图中的()A. B. C.D.6、下列各数分别与(2-)相乘,结果为有理数的是()A. B.2+ C.2- D.-2+7、如图,在四边形ABCD中,∠A=90°,AB=3 ,AD= ,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN 的中点,则EF长度的最大值为()A. B.3.5 C.5 D.2.58、如图所示,两个反比例函数y= 和y= 在第一象限内的图象依次是C 1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k1+k2B.k1﹣k2C.k1•k2D.k1•k2﹣k29、下列二次根式中,是最简二次根式的是()A. B. C. D.10、函数y=(m2﹣m)是反比例函数,则()A.m≠0B.m≠0且m≠1C.m=2D.m=1或211、将水匀速滴进如图所示的容器时,能符合题意反映容器中水的高度(h)与时间(t)之间对应关系的图象大致是()A. B. C. D.12、最简二次根式与是同类二次根式,则x等于()A. B.10 C.2 D.413、若关于x的方程是一元二次方程,则a的取值范围是()A.a≠1B.a>1C.a<1D.a≠014、如图,在平面直角坐标系中,正方形 ABCO 的顶点 A,C 分别在 y 轴、x 轴上,以 AB 为弦的⊙M 与 x 轴相切,若点 A 的坐标(0,8),则圆心M 的坐标为()A.(-4,3)B.(-3,4)C.(-5,5)D.(-4,5)15、下列二次根式中,与是同类二次根式的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC 的中点,连接DE,则△CDE的周长为________.17、如图,点A在反比例函数上,AB⊥x轴于点B,且△AOB的面积是4,则k的值是________.18、如图,过点的直线交轴于点,,,曲线过点,将点沿轴正方向平移个单位长度恰好落在该曲线上,则的值为________.19、若x是实数,且y= + ﹣1,则x+y=________.20、函数y=中,自变量x的取值范围是________.21、方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为________.22、圆的面积S与半径R之间的关系式是S=πR2,其中自变量是________ .23、如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC 边上的高长度为________.24、如图,反比例函数y= 的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为________.25、余干二中秋季运动会上,小捷掷出的铅球在场地上砸出一个小坑(如图),其中AB为8cm,小坑的最大深度为2cm,则该铅球的直径为________cm.三、解答题(共5题,共计25分)26、解方程组:27、已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE28、如图,在△ABC中,∠C=90°,∠A=36°,DE是线段AB的垂直平分线,交AB于点D,交AC于点E.求∠EBC的度数.29、利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.30、如图3-5-24,⊙O直径AB为5 cm,弦AC为3 cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、A5、D6、B7、D8、B9、D10、C11、D12、A13、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
沪教版八年级上册数学期末测试卷(附解析)
沪教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、下列三条长度的线段不能组成直角三角形的是( )A. B.12,5,13 C.7,24,25 D.9,40,412、化简的值为()A. B. C. D.3、若关于x的一元二次方程有两个不相等的实数根,则k的取值范围()A. B. C. 且 D.4、下列计算正确的是()A. B. C. D.5、下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是()A. B. C. D.6、在同一平面直角坐标系内,如果直线与双曲线没有交点,那么和的关系一定是().A. ,B. ,C. ,同号D. ,异号7、若是方程的根,则的值为()A.2022B.2021C.2019D.20188、方程x2﹣|2x﹣1|﹣4=0的实根的个数是()A.4B.2C.3D.09、如图,已知等腰三角形中,,,分别以、两点为圆心,以大于的长为半径画圆弧,两弧分别交于点、,直线与相交于点,则的度数是()A.50°B.60°C.75°D.45°10、△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c 2=b 2﹣a 2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b 2,则△ABC是直角三角形 D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形11、下列计算正确的是()A. =3B. =-3C. =±3D.12、如图,在△ABC中,点D为△ABC的内心,∠A=60°,BD:CD=2:1,BD=4,则△DBC的面积为( )A.3B.2C.2D.313、已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①2AE=AB+AD;②CD=CB;③∠DAB+∠DCB=180°;④S△ACE=S△BCE+S△ADC.其中正确结论的个数是( )A.4个B.3个C.2个D.1个14、下列各组二次根式中,x的取值范围相同的是()A. 与B.()2与C. 与D. 与15、下列方程是关于x的一元二次方程的是()A.ax 2+bx+c=0B. =2C.x 2+2x=x 2﹣1D.3(x+1)2=2(x+1)二、填空题(共10题,共计30分)16、已知实数a在数轴上的对应点,如图所示,则化简所得结果为________17、如图,四边形ABCD为菱形,点A在y轴正半轴上,AB∥x轴,点B,C在反比例函数上,点D在反比例函数上,那么点D的坐标为________.18、已知x=,则x2+x+1= ________19、如图,某公园有一块菱形草地ABCD,它的边及对角线AC是小路,若AC的长为16m,边AB的长为10m,妈妈站在AC的中点O处,亮亮沿着小路C→D→A→B→C跑步,在跑步过程中,亮亮与妈妈之间的最短距离为________m.20、如果关于x的一元二次方程x2-2x+k=0只有一个解,那么k=________21、如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB.已知∠ADE=40°,则∠DBC=________度.22、关于的一元二次方程有实数根,则实数的取值范围是________.23、在△ABC中,BC⊥AC,DE⊥AC,D是AB的中点,若∠A=30°,AB=8,则BC=________,DE=________.24、如图,点P是反比例函数图象上任意一点, PA⊥x轴于A,连接PO,为________.则S△PAO25、如图,在△ABC中,∠BAC=90°.AD⊥BC于点D,若∠C=30°,BD=1,则线段CD的长为________.三、解答题(共5题,共计25分)26、计算:27、已知:如图所示,反比例函数的图象与正比例函数的图象交于A、B,作AC⊥ 轴于C,连BC,则△ABC的面积为3,求反比例函数的解析式.28、如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.29、如图,在中,,,,.求的长.30、如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF.参考答案一、单选题(共15题,共计45分)1、A2、A3、C4、A5、D6、D7、B8、B10、B11、A12、C13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
沪教版(上海)八年级第一学期数学期末试卷
上海市八年级(上)期末数学试卷(附答案与解析)一、选择题(本大题共6题,每题2分,满分12分)1.(2分)下列二次根式中,最简二次根式是()A.B.C.D.2.(2分)已知函数中,在每个象限内,y随x的增大而增大,那么它和函数y =kx(k≠0)在同一直角坐标平面内的大致图象是()A.B.C.D.3.(2分)方程x2=4x的解是()A.x=4B.x=2C.x=4或x=0D.x=04.(2分)已知反比例函数y=的图象经过点(3,﹣2),则k的值是()A.﹣6B.6C.D.﹣5.(2分)如图,一棵直立的大树在一次强台风中被折断,折断处离地面2米,倒下部分与地面成30°角,这棵树在折断前的高度为()A.米B.米C.4米D.6米6.(2分)已知下列命题中:①有两条边分别相等的两个直角三角形全等;②有一条腰相等的两个等腰直角三角形全等;③有一条边与一个锐角分别相等的两个直角三角形全等;④顶角与底边分别对应相等的两个等腰三角形全等.其中真命题的个数是()A.1B.2C.3D.4二、填空题(本大题共12题,每题3分,满分36分)7.(3分)计算:=.8.(3分)函数的定义域是.9.(3分)在实数范围内分解因式:x2﹣x﹣3=.10.(3分)如果正比例函数y=(k﹣2)x的图象经过第二、四象限,那么k的取值范围是.11.(3分)已知某种近视眼镜的度数y(度)与镜片焦距x(米)之间的函数解析式为,如果测得该近视眼镜镜片的焦距为0.25米,那么该近视眼镜的度数为度.12.(3分)已知直角坐标平面内点A(1,2)和点B(2,4),则线段AB=.13.(3分)命题“直角三角形两锐角互余”的逆命题是:.14.(3分)以线段MN为底边的等腰三角形的顶角顶点的轨迹是.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC,AD平分∠CAB,如果CD=1,那么BD=.16.(3分)如图,在四边形ABCD中,∠ABC=90°,∠ADC=90°,AC=26,BD=24,联结AC、BD,取AC和BD的中点M、N,联结MN,则MN的长度为.17.(3分)在平面直角坐标系中,已知反比例函数,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立了一个“凡尔赛阶梯”,那么A2的坐标为.18.(3分)如图,已知Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,D是边AB上的一点,将△BCD沿直线CD翻折,使点B落在点B1的位置,若B1D⊥BC,则BD的长度为.三、计算题(本大题共2题,满分10分)19.(5分)计算:.20.(5分)解方程:2x(x﹣2)=x2﹣3.四、解答题(本大题共5题,21-24每题6分,25题8分,满分32分)21.(6分)已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.22.(6分)为了让我们的小朋友们有更好的学习环境,我校2020年投资110万元改造硬件设施,计划以后每年以相同的增长率进行投资,到2022年投资额将达到185.9万元.(1)求我校改造硬件设施投资额的年平均增长率;(2)从2020年到2022年,这三年我校将总共投资多少万元?23.(6分)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.24.(6分)如图,在△ABC中,AB=AC,∠B=30°.(1)在BC边上求作一点N,使得AN=BN;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,求证:CN=2BN.25.(8分)如图,已知一次函数和反比例函数的图象交点是A(4,m).(1)求反比例函数解析式;(2)在x轴的正半轴上存在一点P,使得△AOP是等腰三角形,请求出点P的坐标.五、综合题:(本大题只有1题,满分10分)26.(10分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,点D、E在线段AB上.(1)如图1,若CD=CE,求证:AD=BE;(2)如图2,若∠DCE=45°,求证:DE2=AD2+BE2;(3)如图3,若点P是△ABC内任意一点,∠BPC=135°,设AP=a、BP=b、CP=c,请直接写出a,b,c之间的数量关系.八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题2分,满分12分)1.(2分)下列二次根式中,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的概念判断即可.【解答】解:A、=,被开方数含分母,不是最简二次根式,不符合题意;B、=2,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;C|,是最简二次根式,符合题意;D、=|y|,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意;故选:C.2.(2分)已知函数中,在每个象限内,y随x的增大而增大,那么它和函数y =kx(k≠0)在同一直角坐标平面内的大致图象是()A.B.C.D.【分析】首先根据反比例函数图象的性质判断出k的范围,在确定其所在象限,进而确定正比例函数图象所在象限,即可得到答案.【解答】解:∵函数中,在每个象限内,y随x的增大而增大,∴k<0,∴双曲线在第二、四象限,∴函数y=kx的图象经过第二、四象限,故选:B.3.(2分)方程x2=4x的解是()A.x=4B.x=2C.x=4或x=0D.x=0【分析】本题可先进行移项得到:x2﹣4x=0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0.【解答】解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,∴x=0或x=4.故选:C.4.(2分)已知反比例函数y=的图象经过点(3,﹣2),则k的值是()A.﹣6B.6C.D.﹣【分析】把(3,﹣2)代入解析式,就可以得到k的值.【解答】解:根据题意,得k=xy=﹣2×3=﹣6.故选:A.5.(2分)如图,一棵直立的大树在一次强台风中被折断,折断处离地面2米,倒下部分与地面成30°角,这棵树在折断前的高度为()A.米B.米C.4米D.6米【分析】根据直角三角形中30°角所对的直角边等于斜边的一半,求出折断部分的长度,再加上离地面的距离就是折断前树的高度.【解答】解:如图,根据题意BC=2米,∵∠BAC=30°,∴AB=2BC=2×2=4米,∴2+4=6米.故选:D.6.(2分)已知下列命题中:①有两条边分别相等的两个直角三角形全等;②有一条腰相等的两个等腰直角三角形全等;③有一条边与一个锐角分别相等的两个直角三角形全等;④顶角与底边分别对应相等的两个等腰三角形全等.其中真命题的个数是()A.1B.2C.3D.4【分析】根据全等三角形的判定、等腰三角形和直角三角形的性质分别对每一项进行分析即可.【解答】解:①有两条边分别相等的两个直角三角形不一定全等,原命题是假命题;②有一条腰相等的两个等腰直角三角形全等,是真命题;③有一条边与一个锐角分别相等的两个直角三角形不一定全等,原命题是假命题;④顶角与底边分别对应相等的两个等腰三角形全等,是真命题.其中真命题的个数是2个;故选:B.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)计算:=4.【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴=4,故答案为4.8.(3分)函数的定义域是x≥﹣2.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:3x+6≥0,解得x≥﹣2.故答案为:x≥﹣2.9.(3分)在实数范围内分解因式:x2﹣x﹣3=.【分析】首先解一元二次方程x2﹣x﹣3=0,即可直接写出分解的结果.【解答】解:解方程x2﹣x﹣3=0,得x=,则:x2﹣x﹣3=.故答案是:.10.(3分)如果正比例函数y=(k﹣2)x的图象经过第二、四象限,那么k的取值范围是k <2.【分析】根据正比例函数的性质(正比例函数y=kx(k≠0),当k<0时,该函数的图象经过第二、四象限)解答.【解答】解:∵正比例函数y=(k﹣2)x的的图象经过第二、四象限,∴k﹣2<0,解得,k<2.故答案是:k<2.11.(3分)已知某种近视眼镜的度数y(度)与镜片焦距x(米)之间的函数解析式为,如果测得该近视眼镜镜片的焦距为0.25米,那么该近视眼镜的度数为400度.【分析】把近视眼镜镜片的焦距为0.25米代入函数解析式就可解决问题.【解答】解:把x=0.25代入,解得y=400,所以他的眼睛近视400度.故答案为:400.12.(3分)已知直角坐标平面内点A(1,2)和点B(2,4),则线段AB=.【分析】利用勾股定理列式计算即可得解.【解答】解:∵点A(1,2),B(2,4),∴AB==.故答案为:.13.(3分)命题“直角三角形两锐角互余”的逆命题是:如果三角形有两个锐角互余,那么这个三角形是直角三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可得到原命题的逆命题.【解答】解:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,所以逆命题是:“如果三角形有两个锐角互余,那么这个三角形是直角三角形”.故答案为:如果三角形有两个锐角互余,那么这个三角形是直角三角形.14.(3分)以线段MN为底边的等腰三角形的顶角顶点的轨迹是线段MN的垂直平分线(线段MN的中点除外).【分析】满足△MNC以线段MN为底边且CM=CN,根据线段的垂直平分线判定得到点C在线段AB的垂直平分线上,除去与MN的交点(交点不满足三角形的条件).【解答】解:∵△MNC以线段MN为底边,CM=CN,∴点C在线段MN的垂直平分线上,除去与MN的交点(交点不满足三角形的条件),∴以线段MN为底边的等腰三角形的顶点C的轨迹是:线段MN的垂直平分线(线段MN的中点除外).故答案为:线段MN的垂直平分线(线段MN的中点除外).15.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC,AD平分∠CAB,如果CD=1,那么BD=.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE =CD,再求出△BDE是等腰直角三角形,然后根据等腰直角三角形斜边等于直角边的倍解答.【解答】解:如图,过点D作DE⊥AB于E,∵AD平分∠CAB,∠C=90°,∴DE=CD=1,∵AC=BC,∠C=90°,∴∠B=45°,∴△BDE是等腰直角三角形,∴BD=DE=.故答案为:.16.(3分)如图,在四边形ABCD中,∠ABC=90°,∠ADC=90°,AC=26,BD=24,联结AC、BD,取AC和BD的中点M、N,联结MN,则MN的长度为5.【分析】连接MB、MD,利用直角三角形斜边上中线的性质得出△MBD为等腰三角形,再利等腰三角形“三线合一”得出MN⊥BD,BN=ND=BD=12,最后利用勾股定理即可求出MN的长度.【解答】解:如图,连接MB、MD,∵∠ABC=90°,∠ADC=90°,M是AC的中点,∴MB=AC,MD=AC,∵AC=26,∴MB=MD=×26=13,∵N是BD的中点,BD=24,∴MN⊥BD,BN=DN=BD=×24=12,∴MN===5,故答案为:5.17.(3分)在平面直角坐标系中,已知反比例函数,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立了一个“凡尔赛阶梯”,那么A2的坐标为(,).【分析】根据题意求得A3(1,1),设A2所在的正方形的边长为m,则A2(m,m+1),由图象上点的坐标特征得到k=m(m+1)=1,解得m=,即可求得A2的坐标为(,).【解答】解:∵反比例函数的解析式为,∴A3所在的正方形的边长为1,∴A3(1,1),设A2所在的正方形的边长为m,则A2(m,m+1),∴m(m+1)=1,解得m=(负数舍去),∴A2的坐标为(,),故答案为:(,).18.(3分)如图,已知Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,D是边AB上的一点,将△BCD沿直线CD翻折,使点B落在点B1的位置,若B1D⊥BC,则BD的长度为.【分析】延长B1D交BC于E,由B1D⊥BC,可得DE=BD,BE=BD,设BD=x,在Rt△B1CE中可得(x+x)2+(3﹣x)2=32,即可解得答案.【解答】解:延长B1D交BC于E,如图:∵B1D⊥BC,∴∠BED=∠B1EC=90°,∵∠B=30°,∴DE=BD,BE=BD,设BD=x,∵将△BCD沿直线CD翻折,使点B落在点B1的位置,∴B1D=x,∵BC=3,∴CE=3﹣x,B1C=BC=3,在Rt△B1CE中,B1E2+CE2=B1C2,∴(x+x)2+(3﹣x)2=32,解得x=0(舍去)或x=,∴BD=,故答案为:.三、计算题(本大题共2题,满分10分)19.(5分)计算:.【分析】先进行分母有理化、化简二次根式,再去括号,计算加减即可.【解答】解:原式=﹣(﹣1)+2=﹣2﹣+1+2=2﹣1.20.(5分)解方程:2x(x﹣2)=x2﹣3.【分析】先把方程变形为一般式,再把方程左边进行因式分解(x﹣1)(x﹣3)=0,方程就可化为两个一元一次方程x﹣1=0或x﹣3=0,解两个一元一次方程即可.【解答】解:方程变形为:x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=3.四、解答题(本大题共5题,21-24每题6分,25题8分,满分32分)21.(6分)已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.【分析】根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可.【解答】解:∵关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,∴b2﹣4ac=(2m)2﹣4(m﹣1)(m+3)=4m2﹣(4m2+8m﹣12)=4m2﹣4m2﹣8m+12=﹣8m+12≥0,m﹣1≠0,解得:m≤且m≠1,则m的最大整数值为0.22.(6分)为了让我们的小朋友们有更好的学习环境,我校2020年投资110万元改造硬件设施,计划以后每年以相同的增长率进行投资,到2022年投资额将达到185.9万元.(1)求我校改造硬件设施投资额的年平均增长率;(2)从2020年到2022年,这三年我校将总共投资多少万元?【分析】(1)设我校改造硬件设施投资额的年平均增长率为x,利用2022年投资额=2020年投资额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用这三年我校总共投资的金额=2020年投资额+2020年投资额×(1+年平均增长率)+2022年投资额,即可求出结论.【解答】解:(1)设我校改造硬件设施投资额的年平均增长率为x,依题意得:110(1+x)2=185.9,解得:x1=0.3=30%,x2=﹣2.3(不合题意,舍去).答:我校改造硬件设施投资额的年平均增长率为30%.(2)110+110×(1+30%)+185.9=110+143+185.9=438.9(万元).答:从2020年到2022年,这三年我校将总共投资438.9万元23.(6分)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.【分析】求出∠A=∠DEC,∠B=∠C=90°,根据AAS证△ABE≌△ECD,推出AB=CE,求出AB+BC=2AB+BE=11,把BE=3代入求出AB即可.【解答】解:∵AB⊥BC,DC⊥BC,垂足分别是点B、C,∴∠B=∠C=90°.∴∠A+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∵∠AEB+∠AED+∠DEC=180°,∴∠AEB+∠DEC=90°,∴∠A=∠DEC,∵在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AB=CE,∵BC=BE+CE=BE+AB,∴AB+BC=2AB+BE=11,∵BE=3,∴AB=4.24.(6分)如图,在△ABC中,AB=AC,∠B=30°.(1)在BC边上求作一点N,使得AN=BN;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,求证:CN=2BN.【分析】(1)作线段AB的垂直平分线上;(2)根据等腰三角形的性质计算出∠C的度数,再计算出∠CAN的度数,然后根据三角形的性质可得CN=2AN,进而得到CN=2BN.【解答】(1)解:作图正确;(2)证明:连接AN.∵AB=AC,∴∠B=∠C=30°.∴∠BAC=180°﹣2∠B=120°.∵AN=BN,∴∠NAC=∠BAC﹣∠NAB=120°﹣30°=90°.∵∠C=30°,∴CN=2AN.∴CN=2BN.25.(8分)如图,已知一次函数和反比例函数的图象交点是A(4,m).(1)求反比例函数解析式;(2)在x轴的正半轴上存在一点P,使得△AOP是等腰三角形,请求出点P的坐标.【分析】(1)根据一次函数解析式求出A点坐标,再用待定系数法求出反比例函数解析式即可;(2)若使△AOP是等腰三角形,分OA=OP,OA=AP,OP=AP三种情况讨论分别求出P点的坐标即可.【解答】解:(1)∵A点是一次函数和反比例函数图象的交点,∴m=×4,解得m=2,即A(4,2),把A点坐标代入反比例函数得,2=,解得k=8,∴反比例函数的解析式为y=;(2)设P点的坐标为(n,0),若使△AOP是等腰三角形,分以下三种情况:①当OA=OP时,由(1)知,A(4,2),∴n==2,即P(2,0);②当OA=AP时,作AH⊥OP于H,∵A(4,2),∴OH=4,∵OA=AP,∴OP=2OH=2×4=8,即P(8,0);③当OP=AP时,∵A(4,2),∴n=,即n2=(4﹣n)2+22,解得n=,即P(,0),综上,符合条件的P点坐标为(2,0)或(8,0)或(,0).五、综合题:(本大题只有1题,满分10分)26.(10分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,点D、E在线段AB上.(1)如图1,若CD=CE,求证:AD=BE;(2)如图2,若∠DCE=45°,求证:DE2=AD2+BE2;(3)如图3,若点P是△ABC内任意一点,∠BPC=135°,设AP=a、BP=b、CP=c,请直接写出a,b,c之间的数量关系.【分析】(1)由CA=CB得∠A=∠B,由CD=CE得∠CEA=∠CDB,则△ACE≌△BCD,得AE=BD,即可转化为AD=BE;(2)将△ACD绕点C沿逆时针方向旋转90°得到△BCF,联结EF,则BF=AD,证明△FCE≌△DCE,得FE=DE,再证明∠EBF=90°,则FE2=BF2+BE2,即可证得DE2=AD2+BE2;(3)将△CAP绕点C沿逆时针方向旋转90°得到△CBG,联结PG,则BG=AP,GC =PC,∠PCG=90°,所以PG2=PC2+GC2=2PC2,再证明∠BPG=90°,则BG2=BP2+PG2,可证得AP2=BP2+2PC2,即a2=b2+2c2.【解答】(1)证明:如图1,∵CA=CB,∴∠A=∠B,∵CD=CE,∴∠CEA=∠CDB,∴△ACE≌△BCD(AAS),∴AE=BD,∴AE﹣DE=BD﹣DE,∴AD=BE.(2)证明:如图2,将△ACD绕点C沿逆时针方向旋转90°得到△BCF,联结EF,∵∠ACB=90°,CA=CB,∴∠CBA=∠A=45°,由旋转得CF=CD,∠BCF=∠ACD,∵∠DCE=45°,∴∠FCE=∠BCF+∠BCE=∠ACD+∠BCE=90°﹣45°=45°,∴∠FCE=∠DCE,∵CE=CE,∴△FCE≌△DCE(SAS),∴FE=DE,∵∠CBF=∠A=∠CBA=45°,∴∠EBF=90°,∴FE2=BF2+BE2,∵BF=AD,∴DE2=AD2+BE2.(3)a2=b2+2c2,理由如下:如图3,将△CAP绕点C沿逆时针方向旋转90°得到△CBG,联结PG,由旋转得GC=PC,∠PCG=90°,∴∠CPG=∠CGP=45°,PG2=PC2+GC2=2PC2,∵∠BPC=135°,∴∠BPG=135°﹣45°=90°,∴BG2=BP2+PG2,∵BG=AP,∴AP2=BP2+2PC2,∴a2=b2+2c2.。
沪教版八年级上册数学期末测试卷及含答案(有一套)
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、的值为()A. B. C. D.2、如图,A、B是双曲线上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A. B. C.3 D.43、下列函数中,自变量x的取值范围为x<1的是()A. B. C. D.4、二次函数的图象如图所示,反比列函数与正比列函数在同一坐标系内的大致图象是()A. B. C.D.5、关于x的一元二次方程x2-2x-3=0的根是()A.x1=1,x2=3 B.x1=-1,x2=3 C.x1=1,x2=-3 D.x1=-1,x2=-36、下列函数中,自变量的取值范围为的是()A. B. C. D.7、如图,每个小正方形的边长为1,格点A、B、C在同一圆弧上,若点A的坐标为(﹣2,3),则该圆弧所在圆的圆心坐标是()A.(﹣1,1)B.(﹣3,0)C.(﹣3,1)D.(0,1)8、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,则a的值是( )A.1B.-1C.1或-1D.29、P是反比例函数y=的图象上一点,过P点分别向x轴、y轴作垂线,所得的图中阴影部分的面积为6,则这个反比例函数的解析式为 ( )A. y=-B. y=C. y=-D. y=10、下列各式一定是二次根式的是( )A. B. C. D.11、如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,AB=4,BC=6,点O是边BC上一点,以O为圆心,OC为半径的⊙O,与边AD只有一个公共点,则OC的取值范围是()A.4<OC≤B.4≤OC≤C.4<OCD.4≤OC12、下列方程为一元二次方程的是()A.ax 2﹣bx+c=0(a、b、c为常数)B.x(x+3)=x 2﹣1C.x(x﹣2)=3D.13、如图所示,DE⊥AB,DF⊥AC,AE=AF,则下列结论成立的是()A.BD=CDB.DE=DFC.∠B=∠CD.AB=AC14、函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数15、下列方程中,是关于x的一元二次方程的是()A.x 2+3y=1B.x 2+3x=1C.ax 2+bx+c=0D.二、填空题(共10题,共计30分)16、如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG 与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM= ,则MN的长为________。
八年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)(一)
八年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()2.已知正比例函数y=(k+3)x,若y随x的增大而减小,则k的取值范围是() A.k>-3B.k<-3C.k>3D.k<33.函数y=x-2x-3的自变量x的取值范围是()A.x≠3B.x>0且x≠3C.x≥0且x≠3D.x≥2且x≠3 4.若长度分别是a,5,9的三条线段能组成一个三角形,则a的值可以是() A.15B.14C.8D.45.若点M(2-a,3a+6)到两坐标轴的距离相等,则点M的坐标为() A.(6,-6)B.(3,3)C.(-6,6)或(-3,3)D.(6,-6)或(3,3)6.下列命题:①内错角相等;②两个锐角的和是钝角;③a,b,c是同一平面内的三条直线,若a∥b,b∥c,则a∥c;④a,b,c是同一平面内的三条直线,若a⊥b,b⊥c,则a∥c,其中真命题的个数是()A.1个B.2个C.3个D.4个7.如图,已知∠1=∠2,添加一个条件,使得△ABC≌△ADC,下列条件添加错误的是()(第7题)A .∠B =∠D B .BC =DC C .AB =AD D .∠3=∠48.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.下列说法错误的是()A .该汽车的蓄电池充满电时,电量是60千瓦时B .蓄电池剩余电量为35千瓦时时汽车已行驶了150千米C .当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时D .25千瓦时的电量,汽车能行驶150km(第8题)(第9题)(第10题)9.如图,△ABC 的面积是2,AD 是△ABC 的中线,AF =13AD ,CE =12EF ,则△CDE 的面积为()A.29 B.16 C.23 D.4910.如图,在等边三角形ABC 中,BD 是中线,点P ,Q 分别在AB ,AD 上,且BP =AQ =QD =1,动点E 在BD 上,则PE +QE 的最小值...为()A .2B .3C .4D .5二、填空题(本大题共4小题,每小题5分,满分20分)11.如果点A (-3,a )和点B (b ,2)关于x 轴对称,那么ab 的值是____________.(第12题)12.如图,在△ABC 中,BD 是一条角平分线,CE 是AB 边上的高线,BD ,CE相交于点F,若∠EFB=60°,∠BDC=70°,则∠A=_______________________________________.13.在一次函数y=1x+3的图象上,到y轴的距离等于2的点的坐标是2____________.(第14题)14.如图,△ADB,△BCD都是等边三角形,E,F分别是AB,AD上两个动点,满足AE=DF.BF与DE交于点G,连接CG.(1)∠EGB的度数是____________;(2)若DG=3,BG=5,则CG=____________.三、(本大题共2小题,每小题8分,满分16分)15.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移5个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是什么?(第15题) 16.从①∠1+∠2=180°,②∠3=∠A,③∠B=∠C三个条件中选出两个作为题设,另一个作为结论可以组成三个命题.从中选择一个真命题,写出已知、求证,并证明.如图,已知:________,求证:________.(填序号)(第16题)证明:四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=kx+b的图象经过点(-2,10),(3,0)和(1,m).(1)求m的值;(2)当-4≤y≤8时,求x的取值范围.18.如图,在Rt△ABC中,∠C=90°,请用尺规作图:(不要求写作法,保留作图痕迹)(1)在线段AB上找一点E,使得E点到边BC的距离与到边AC的距离相等.(2)在线段BC 上找一点D ,使得S △ABD =S △ACD.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.下面是某数学兴趣小组在项目学习课上的方案策划书,请仔细阅读,并完成相应的任务.项目课题探究用全等三角形解决“不用直接测量,得到高度”的问题问题提出墙上点A 处有一灯泡,在无法直接测量的情况下,如何得到灯泡的高度(即OA 的长,灯泡的大小忽略不计)?项目图纸解决过程①标记测试直杆的底端点D ,测量OD 的长度.②找一根长度大于OA 的直杆,使直杆斜靠在墙上,且顶端与点A 重合.③使直杆顶端缓慢下滑,直到∠DCO =∠ABO .④记下直杆与地面的夹角∠ABO .项目数据……任务:(1)由于项目记录员粗心,记录排乱了“解决过程”,正确的顺序应是()A .②→③→①→④B .③→④→①→②C .①→②→④→③D .②→④→③→①(2)请你说明他们作法的正确性.20.如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°.(1)求证:AC=BD;(2)AC与BD相交于点P,求∠APB的度数.(第20题)六、(本题满分12分)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式(k-3)x+b>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线,交y=3x于点N,当MN=2DO时,求M点的坐标.(第21题)七、(本题满分12分)22.要从甲、乙两仓库向A,B两地运送水泥.已知甲仓库可运出100t水泥,乙仓库可运出80t水泥.A地需70t水泥,B地需110t水泥.两仓库到A,B两地的路程和运费如下表:路程/km运费/[元/(t·km)]甲仓库乙仓库甲仓库乙仓库A地2015 1.2 1.2B地252010.8(1)设从甲仓库运往A地水泥x t,求总运费y关于x的函数表达式,并画出图象.(2)当从甲仓库运往A地多少吨水泥时,总运费最省?最省的总运费是多少?八、(本题满分14分)23.如图,△ABC是边长为12cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,其中点P运动的速度是1cm/s,点Q 运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t的值;若不能,请说明理由.(3)当t为何值时,△BPQ是直角三角形?(第23题)答案一、1.A 2.B3.C4.C5.D6.B7.B8.D9.A 10.B 思路点睛:作点P 关于BD 的对称点P ′,连接P ′Q 交BD 于E ,此时PE+EQ 的值最小.二、11.612.40°13.(2,4)或(-2,2)14.(1)60°(2)8三、15.解:(1)如图,△A 1B 1C 1即为所求.(第15题)(2)如图,△A 2B 2C 2即为所求.(3)(m -5,-n ).16.解:(答案不唯一)①②;③∵∠1+∠2=180°,∴AD ∥EF ,∴∠3=∠D .∵∠3=∠A ,∴∠A =∠D ,∴AB ∥CD ,∴∠B =∠C .四、17.解:(1)∵一次函数y =kx +b 的图象经过点(-2,10),(3,0),∴2k +b =10,k +b =0,=-2,=6,∴一次函数的表达式为y =-2x +6,∴m =-2×1+6=4.(2)∵-2<0,∴y 随x 的增大而减小.当y =-4时,-4=-2x +6,解得x =5;当y =8时,8=-2x +6,解得x =-1.∴当-4≤y ≤8时,x 的取值范围为-1≤x ≤5.18.解:(1)如图,点E 为所作.(第18题)(2)如图,点D为所作.五、19.解:(1)D(2)在△ABO和△DCO ∠AOB=∠DOC,∠ABO=∠DCO,AB=DC,∴△ABO≌△DCO,∴OA=OD.即测量OD的长度,就等于OA的长度,即点A的高度.20.(1)证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD.∵OA=OB,OC=OD,∴△AOC≌△BOD,∴AC=BD.(2)解:设AC与BO交于点M,则∠AMO=∠BMP.∵△AOC≌△BOD,∴∠OAC=∠OBD,∴180°-∠OAC-∠AMO=180°-∠OBD-∠BMP,∴∠APB=∠AOM=60°.六、21.解:(1)当x=1时,y=3x=3,∴C点坐标为(1,3).直线y=kx+b经过(-2,6)和(1,3),-2k+b=6,k+b=3,k=-1,b=4.(2)x<1.(3)由(1)知,直线AB的表达式为y=-x+4,当x=0时,y=-x+4=4,∴D点坐标为(0,4),∴OD=4.设点M的横坐标为m,则M(m,-m+4),N(m,3m),∴MN=3m-(-m+4)=4m-4.∵MN=2DO,∴4m-4=8,解得m=3,∴M点坐标为(3,1).11七、22.解:(1)由题意得y =1.2×20x +1×25×(100-x )+1.2×15×(70-x )+0.8×20×[80-(70-x )]=-3x +3920,即所求的函数表达式为y =-3x +3920,其中0≤x ≤70,其图象如图所示.(第22题)(2)当x =70时,y 的值最小.∴当从甲仓库运往A 地70t 水泥时,总运费最省,最省的总运费为3710元.八、23.解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由如下:∵AB =BC =AC =12cm ,∴当点Q 到达点C 时,t =122=6,∴AP =6×1=6(cm),∴点P 为AB 的中点.∵△ABC 是等边三角形,∴AC =BC ,∴PQ ⊥AB .(2)能.∵△BPQ 是等边三角形,∴BP =PQ =BQ .由题意得AP =t cm ,BQ =2t cm ,∴BP =(12-t )cm ,∴2t =12-t ,解得t =4.∴当t =4时,△BPQ 是等边三角形.(3)易知AP =t cm ,BQ =2t cm ,BP =(12-t )cm.当∠BQP =90°时,∵∠PBQ =60°,∴∠BPQ =30°,∴BQ =12BP ,即2t =12(12-t ),解得t =2.4;当∠BPQ =90°时,同理可得12×2t =12-t ,解得t =6.综上所述,当t =2.4或t =6时,△BPQ 是直角三角形.。
(考试直接用)沪教版八年级上册数学期末测试卷及含答案(综合考察)
沪教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC—CD—DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A. B. C. D.2、如图,在平面直角坐标系中,长方形ABCD的顶点B在坐标原点,顶点A、C 分别在y轴、x轴的负半轴上,其中,,将矩形ABCD绕点D逆时针旋转得到矩形,点恰好落在x轴上,线段与CD交于点E,那么点E的坐标为A. B. C. D.3、边长为1的正方形OA1B1C1的顶点A1在x轴的正半轴上,如图将正方形OA1B1C1绕顶点O顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为()A. B. C.﹣2 D.4、如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是()A. B. C.D.5、下列方程中是一元二次方程的有()①②③④A.①②B.①③C.④D.①③④6、给出的六个关系式:①x(y+1)②③④⑤⑥;其中y是x的反比例函数是()A.①②③④⑥B.③⑤⑥C.①②④D.④⑥7、下列根式中,属于最简二次根式的是()A. B. C. D.8、函数y=中,自变量x的取值范围是()A.x≥2B.x≠2C.x>2D.x≤29、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.4B.3C.2D.1.510、设,a在两个相邻整数之间,则这两个整数是()A.1和2B.2和3C.3和4D.4和511、如图所示,中,,顶点分别在反比例函数与的图象器上,则的值为()A. B. C. D.12、已知一个菱形的边长是5cm,两条对角线长的比是4:3,则这个菱形的面积是( )A.12cm 2B.24cm 2C.48cm 2D.96cm 213、函数y= + 的自变量x的取值范围是()A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤314、计算:等于()A. B. C. D.15、的三边分别为a,b,c,下列条件:①;②;③.其中能判断是直角三角形的条件个数有A.0个B.1个C.2个D.3个二、填空题(共10题,共计30分)16、如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD=________ .17、等式=﹣a 成立的条件是________.18、如图正方形ABCD中,点E在边DC上,DE=4,EC=2,把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为________.19、如图,已知线段BC,分别以B,C为圆心,大于BC的长为半径作弧,两弧相交于E,F两点,连接CE,经过点E作射线BA,若∠CEA=60°,CE=2,则△BCE的面积为________.20、如图,点P是反比例函数图像上一点,PA⊥y轴于点A,=2,则k=________.21、已知xy=3,那么的值为________ .22、如图,点A为反比例函数y= 图象上一点,点B为反比例函数y= 图象上一点,且AB∥x轴,已知∠AOB=90°,AB交y轴于点C,若=2,则k=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学期末试卷及答案沪教版一、填空题(每小题2分,共20分)1.已知空气的单位体积质量为0.00124g/cm3,将它用科学记数表示为g/cm3.2.计算:(﹣)2015×[( )1007]2=.3.分解因式:﹣x2+4xy﹣4y2=.4.若等腰三角形两边长分别为8,10,则这个三角形的周长为.5.三角形三内角的度数之比为1:2:3,边的长是8cm,则最小边的长是c6.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是.7.如图,在△abc中,∠c=90°,∠a=30°,ab的垂直平分线mn交ac于d,cd=1cm,连接bd,则ac的长为c8.若a+b=7,ab=12,则a2+b2的值为.9.如图,在△abc中,∠bac=120°,ad⊥bc于d,且ab+bd=dc,那么∠c=度.10.已知:a+ =5,则=.二、选择题:(每小题2分,共20分)11.下列计算正确的是( )a. x2+x3=x5b. x2•x3=x6c. (x2)3=x5d. x5÷x3=x212.下面有4个汽车标志图案,其中是轴对称图形的是( )a. ②③④b. ①③④c. ①②④d. ①②③13.已知点p(1,a)与q(b,2)关于x轴成轴对称,则a﹣b的值为( )a. ﹣1b. 1c. ﹣3d. 314.如图,△abc≌△a de,∠b=80°,∠c=30°,∠dac=35°,则∠eac 的度数为( )a. 40°b. 35°c. 30°d. 25°15.下列各式变形中,是因式分解的是( )a. a2﹣2ab+b2﹣1=(a﹣b)2﹣1b. 2x2+2x=2x2(1+ )c. (x+2)(x﹣2)=x2﹣4d. x4﹣1=(x2+1)(x+1)(x﹣1)16.若分式的值为零,则x等于( )a. ﹣1b. 1c. ﹣1或1d. 1或217.等腰三角形的一个角是48°,它的一个底角的度数是( )a. 48°b. 48°或42°c. 42°或66°d. 48°或66°18.下列命题中,正确的是( )a. 三角形的一个外角大于任何一个内角b. 三角形的一条中线将三角形分成两个面积相等的三角形c. 两边和其中一边的对角分别相等的两个三角形全等d. 三角形的三条高都在三角形内部19.不能用尺规作出三角形的是( )a. 已知两角和夹边b. 已知两边和夹角c. 已知两角和其中一角的对边d. 已知两边和其中一边的对角20.如图,△abc中,ab=ac,ab的垂直平分线交ac于p点,若ab=5cm,bc=3cm,则△pbc的周长等于( )a. 4cmb. 6cmc. 8cmd. 10cm三.解答题(本题7小题,共60分)21 .计算:(1)(﹣2xy2)2÷( xy)+b﹣4a2b÷b.22.因式分解:(1)2﹣(x+2y)2(a﹣b)2+4ab.23.先化简代数式,再从﹣2,2,0三个数中选一个恰当的数作为a的值代入求值.24.解方程:25.如图,在平面直角坐标系xoy中,a(﹣1,5),b(﹣1,0),c(﹣4,3).(1)请画出△abc关于y轴对称的△a′b′c′(其中a′,b′,c′分别是a,b,c的对应点,不写画法);直接写出a′,b′,c′三点的坐标:a′( ),b′( ),c′( )(3)计算△abc的面积.26.如图(1),rt△abc中,∠acb=90°,cd⊥a b,垂足为d.af平分∠cab,交cd于点e,交cb于点f(1)求证:ce=cf.将图(1)中的△ade沿ab向右平移到△a′d′e′的位置,使点e′落在bc 边上,其它条件不变,如图所示.试猜想:be′与cf有怎样的数量关系?请证明你的结论.27.某商店第一次用600元购进2b铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?参考答案与试题解析一、填空题(每小题2分,共20分)1.已知空气的单位体积质量为0.00124g/cm3,将它用科学记数表示为1.24×10﹣3g/cm3.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00124=1.24×10﹣3.故答案为:1.24×10﹣3.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|2.计算:(﹣)2015×[( )1007]2=﹣.考点:幂的乘方与积的乘方.分析:先根据幂的乘方进行计算,再根据积的乘方进行计算,最后求出即可.解答:解:(﹣)2015×[( )1007]2=(﹣)2015×( )2014=[(﹣)× ]2014×(﹣)=12014×(﹣)=﹣,故答案为:﹣.点评:本题考查了幂的乘方和积的乘方的应用,能灵活运用运算法则进行计算是解此题的关键,注意:am•bm=(ab)3.分解因式:﹣x2+4xy﹣4y2=﹣(x﹣2y)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式﹣1,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.解答:解:﹣x2+4xy﹣4y2,=﹣(x2﹣4xy+4y2),=﹣(x﹣2y)2.故答案为:﹣(x﹣2y)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.4.若等腰三角形两边长分别为8,10,则这个三角形的周长为26 或28.考点:等腰三角形的性质;三角形三边关系.分析:分腰长为8和10两种情况,可求得三角形的三边,再利用三角形的三边关系进行验证,可求得其周长.解答:解:当腰长为8时,则三角形的三边长分别为8、8、10,满足三角形的三边关系,此时周长为26;当腰长为10时,则三角形的三边长分别为10、10、8,满足三角形的三边关系,此时周长为28;综上可知三角形的周长为26或28,故答案为:26或28.点评:本题主要考查等腰三角形的性质,掌握等腰三角形的两腰相等是解题的关键,注意利用三角形的三边关系进行验证.5.三角形三内角的度数之比为1:2:3,边的长是8cm,则最小边的长是4c考点:含30度角的直角三角形.分析:先求出三角,再解直角三角形求边.解答:解:三角形三内角的度数之比为1:2:3,则最小的角是30度,角是直角,因而最小边是30°的锐角所对的边,等于斜线的一半是4c故填4c点评:本题主要考查了直角三角形中.30度的锐角所对的直角边等于斜边的一半.6.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是10.考点:多边形内角与外角.分析:多边形的外角和是360度,多边形的外角和是内角和的4倍,则多边形的内角和是360×4=1440度,再由多边形的内角和列方程解答即可.解答:解:设这个多边形的边数是n,由题意得,(n﹣2)×180°=360°×4解得n=10.故答案为:10.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.7.如图,在△abc中,∠c=90°,∠a=30°,ab的垂直平分线mn交ac于d,cd=1cm,连接bd,则ac的长为3c考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质可得ad=bd,可得到∠cbd=30°,在rt△cbd中可求得bd=2cd,可求得ad,可得到ac.解答:解:∵mn是ab的垂直平分线,∴ad=bd,∴∠dba=∠a=30°,∴∠cdb=60°,又∠c=90°,∴∠cbd=30°,∴ad=bd=2cd=2cm,∴ac=ad+cd=2cm+1c m=3cm,故答案为:3.点评:本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.若a+=7,ab=12,则a2+b2的值为25.考点:完全平方公式.分析:根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.解答:解:∵a+b=7,ab=12,∴a2+b2=(a+b)2﹣2ab=72﹣2×12=25.故答案为:25.点评:本题考查了对完全平方公式的应用,注意:完全平方公式有:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.9.如图,在△abc中,∠bac= 120°,ad⊥bc于d,且ab+bd=dc,那么∠c=20度.考点:等腰三角形的性质.专题:计算题.分析:由ab+bd=dc,易想到可作辅助线de=d b,然后连接ae,从而可出现两个等腰三角形,一个是△abe,一个是△ace,利用三角形外角的性质,易求∠b=2∠c,再利用三角形内角和定理可求∠c.解答:解:在dc上截取de=db,连接ae,设∠c=x,∵ab+bd=dc,de=db,∴ce=ab,又∵ad⊥bc,db=de,∴直线ad是be的垂直平分线,∴ab=ae,∴ce=ae,∴∠b=∠aeb,∠c=∠cae,又∵∠aeb=∠c+∠cae,∴∠aeb=2x,∴∠b+∠c=3x=180°﹣120°=60°,∴∠c=20°.故答案是:20°.点评:本题考查了线段垂直平分线的判定和性质、等腰三角形的性质、三角形内角和定理、三角形外角性质.10.已知:a+ =5,则=24.考点:分式的乘除法.专题:计算题.分析:本题可以从题设入手,然后将化简成含有a+ 的分式,再代入计算即可.解答:解:= ;∵a+ =5,∴= =52﹣1=24.故答案为24.点评:本题化简过程比较灵活,运用了提取公因式、配方法.二、选择题:(每小题2分,共20分)11.下列计算正确的是( )a. x2+x3=x5b. x2•x3=x6c. (x2)3=x5d. x5÷x3=x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减,分别进行计算,即可选出答案.解答:解:a、x2与x3不是同类项,不能合并,故此选项错误;b、x2•x3=x2+3=x5,故此选项错误;c、(x2)3=x6,故此选项错误;d、x5÷x3=x2,故此选项正确;故选:d.点评:此题主要考查了同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.12.下面有4个汽车标志图案,其中是轴对称图形的是( )a. ②③④b. ①③④c. ①②④d. ①②③考点:轴对称图形.分析:利用轴对称图形性质,关于某条直线对称的图形叫轴对称图形得出即可.解答:解:只有第4个不是轴对称图形,其它3个都是轴对称图形.故选:d.点评:此题主要考查了轴对称图形的性质,轴对称的关键是寻找对称轴,两边图象折叠后可重合.13.已知点p(1,a)与q(b,2)关于x轴成轴对称,则a﹣b的值为( )a. ﹣1b. 1c. ﹣3d. 3考点:关于x轴、y轴对称的点的坐标.分析:关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值.解答:解:∵点p(1,a)与q(b,2)关于x轴成轴对称,∴b=1,a=﹣2,∴a﹣b=﹣3,故选:c.点评:此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.14.如图,△abc≌△ade,∠b=80°,∠c=30°,∠dac=35°,则∠eac的度数为( )a. 40°b. 35°c. 30°d. 25°考点:全等三角形的性质.分析:根据三角形的内角和定理列式求出∠bac,再根据全等三角形对应角相等可得∠dae=∠bac,然后根据∠eac=∠dae﹣∠dac代入数据进行计算即可得解.解答:解:∵∠b=80°,∠c=30°,∴∠bac=180°﹣80°﹣30°=70°,∵△abc≌△ade,∴∠dae=∠bac=70°,∴∠eac=∠dae﹣∠dac,=70°﹣35°,=35°.故选b.点评:本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.15.下列各式变形中,是因式分解的是( )a. a2﹣2ab+b2﹣1=(a﹣b)2﹣1b. 2x2+2x=2x2(1+ )c. (x+2)(x﹣2)=x2﹣4d. x4﹣1=(x2+1)(x+1)(x﹣1)考点:因式分解的意义.分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:a a2﹣2ab+b2﹣1=(a﹣b)2﹣1中不是把多项式转化成几个整式积的形式,故a错误;2x2+2x=2x2(1+ )中不是整式,故b错误;c (x+2)(x﹣2)=x2﹣4是整式乘法,故c错误;d x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1),故d正确.故选:d.点评:本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意b不是整式的积,a、c不是积的形式.16.若分式的值为零,则x等于( )a. ﹣1b. 1c. ﹣1或1d. 1或2考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:依题意得|x|﹣1=0,且x 2﹣3x+2≠0,解得x=1或﹣1,x≠1和2,∴x=﹣1.故选a.点评:此题考查的是对分式的值为0的条件的理解和因式分解的方法的运用,该类型的题易忽略分母不为0这个条件.17.等腰三角形的一个角是48°,它的一个底角的度数是( )a. 48°b. 48°或42°c. 42°或66°d. 48°或66°考点:等腰三角形的性质.专题:分类讨论.分析:分底角为48°和顶角48°,根据等腰三角形的性质和三角形内角和定理求解即可.解答:解:当底角为48°时,则底角为48°;当顶角为48°时,则底角= =66°;综上可知三角形的一个底角为48°或66°,故选d.点评:本题主要考查等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.18.下列命题中,正确的是( )a. 三角形的一个外角大于任何一个内角b. 三角形的一条中线将三角形分成两个面积相等的三角形c. 两边和其中一边的对角分别相等的两个三角形全等d. 三角形的三条高都在三角形内部考点:命题与定理.分析:根据三角形外角性质对a进行判断;根据三角形中线性质和三角形面积公式对b进行判断;根据三角形全等的判定对c进行判断;根据三角形高线定义对d进行判断.解答:解:a、三角形的一个外角大于任何一个不相邻的一个内角,所以a选项错误;b、三角形的一条中线将三角形分成两个面积相等的三角形,所以b选项正确;c、两边和它们的夹角分别对应相等的两个三角形全等,所以c选项错误;d、钝角三角形的高有两条在三角形外部,所以d选项错误.故选b.点评:本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.19.不能用尺规作出三角形的是( )a. 已知两角和夹边b. 已知两边和夹角c. 已知两角和其中一角的对边d. 已知两边和其中一边的对角考点:全等三角形的判定.分析:把尺规作图的性转化成全等三角形的判定,根据全等三角形的判定方法逐项判定即可.解答:解:a、已知两角和夹边,满足asa,可知该三角形是的;b、已知两边和夹角,满足sas,可知该三角形是的;c、已知两角和其中一角的对边,满足aas,可知该三角形是的;d、已知两边和其中一边的对角,满足ssa,不能确定三角形是的.故选d.点评:本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即sss、sas、asa、aas和hl,注意aaa和ssa不能证明三角形全等.20.如图,△abc中,ab=ac,ab的垂直平分线交ac于p点,若ab=5cm,bc=3cm,则△pbc的周长等于( )a. 4cmb. 6cmc. 8cmd. 10cm考点:线段垂直平分线的性质;等腰三角形的性质.分析:先根据等腰三角形的性质得出ac=ab=5cm,再根据线段垂直平分线的性质得出ap=bp,故ap+pc=ac,由此即可得出结论.解答:解:∵△abc中,ab=ac,ab=5cm,∴ac=5cm,∵ab的垂直平分线交ac于p点,∴bp+pc=ac,∴△pbc的周长=(bp+pc)+bc=ac+bc=5+3=8c故选c.点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.三.解答题(本题7小题,共60分)21.计算:(1)(﹣2xy2)2÷( xy)+b﹣4a2b÷b.考点:整式的混合运算.分析:(1)先算乘方,再算除法;先利用平方差公式和整式的乘除计算,再进一步合并同类项即可.解答:解:(1)原式=(4x2y4)÷( xy)=12xy3;原式=4a2﹣b2+2ab+b2﹣4a2=2ab.点评:此题考查整式的混合运算,掌握计算公式和计算方法是解决问题的关键.22.因式分解:(1)2﹣(x+2y)2(a﹣b)2+4ab.考点:因式分解-运用公式法.分析:(1)用平方差公式进行因式分解即可;先利用完全平方公式展开(a﹣b)2+4ab,再利用完全平方公式因式分解即可.解答:解:(1)2﹣(x+2y)2=[+(x+2y)][﹣(x+2y)]=(3x+3y)(x﹣y)=3(x+y)(x﹣y);(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2.点评:本题考查了因式分解,公式法分解因式,熟练掌握完全平方公式和平方差公式的结构特点是解题的关键.23.先化简代数式,再从﹣2,2,0三个数中选一个恰当的数作为a的值代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将a=0代入计算即可求出值.解答:解:原式= ÷= •= ,当a=0时,原式= =2.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.24.解方程:考点:解分式方程.专题:计算题.分析:观察可得方程最简公分母为(x﹣2)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:去分母,得:(x+1)2+x﹣2=(x﹣2)(x+1)整理得:4x=﹣1,x=﹣.经检验x=﹣是原方程的解.所以原方程的解为x=﹣.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.25.如图,在平面直角坐标系xoy中,a(﹣1,5),b(﹣1,0),c(﹣4,3).(1)请画出△abc关于y轴对称的△a′b′c′(其中a′,b′,c′分别是a,b,c的对应点,不写画法);直接写出a′,b′,c′三点的坐标:a′( ),b′( ),c′( )(3)计算△abc的面积.考点:作图-轴对称变换.分析:(1)分别找到y轴右侧与y轴左侧的点在同一水平线上,且到y轴的距离相等的点,顺次连接即可;根据点所在的象限及距离y轴,x轴的距离分别写出各点坐标即可;(3)易得此三角形的底边为5,高为3,利用三角形的面积公式计算即可.解答:解:(1);a′(1,5),b′(1,0),c′(4,3);(3)∵a(﹣1,5),b(﹣1,0),c(﹣4,3),∴ab=5,ab边上的高为3,∴s△abc= .点评:用到的知识点为:两点关于某条直线对称,那么这两点的连线被对称轴垂直平分;三角形的面积等于底×高÷2.26.如图(1),rt△abc中,∠acb=90°,cd⊥ab,垂足为d.af平分∠cab,交cd于点e,交cb于点f(1)求证:ce=cf.将图(1)中的△ade沿ab向右平移到△a′d′e′的位置,使点e′落在bc 边上,其它条件不变,如图所示.试猜想:be′与cf有怎样的数量关系?请证明你的结论.考点:全等三角形的判定与性质;等腰三角形的判定与性质;平移的性质.专题:几何综合题;压轴题.分析:(1)根据平分线的定义可知∠caf=∠ead,再根据已知条件以及等量代换即可证明ce=cf,根据题意作辅助线过点e作eg⊥ac于g,根据平移的性质得出d′e′=de,再根据已知条件判断出△ceg≌△be′d′,可知ce=be′,再根据等量代换可知be′=cf.解答:(1)证明:∵af平分∠cab,∴∠caf=∠ead,∵∠acb=90°,∴∠caf+∠cfa=90°,∵cd⊥ab于d,∴∠ead+∠aed=90°,∴∠cfa=∠aed,又∠aed=∠cef,∴∠cfa=∠cef,∴ce=cf;猜想:be′=cf.证明:如图,过点e作eg⊥ac于g,连接ee′,又∵af平分∠cab,ed⊥ab,eg ⊥ac,∴ed=eg,由平移的性质可知:d′e′=de,∴d′e′=ge,∵∠acb=90°,∴∠acd+∠dcb=90°∵cd⊥ab于d,∴∠b+∠dcb=90°,∴∠acd=∠b,在△ceg与△be′d′中,,∴△ceg≌△be′d′(aas),∴ce=be′,由(1)可知ce=cf,∴be′=cf.点评:本题主要考查了平分线的定义,平移的性质以及全等三角形的判定与性质,难度适中.27.某商店第一次用600元购进2b铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?考点:分式方程的应用;一元一次不等式组的应用.专题:计算题.分析:(1)设第一次每支铅笔进价为x元,则第二次每支铅笔进价为x元,根据题意可列出分式方程解答;设售价为y元,求出利润表达式,然后列不等式解答.解答:解:(1)设第一次每支铅笔进价为x元,根据题意列方程得,﹣=30,解得x=4,经检验:x=4是原分式方程的解.答:第一次每支铅笔的进价为4元.设售价为y元,第一次每支铅笔的进价为4元,则第二次每支铅笔的进价为4× =5元根据题意列不等式为:×(y﹣4)+ ×(y﹣5)≥420,解得y≥6.答:每支售价至少是6元.。