2020年贵州省黔南州中考数学试卷最新

合集下载

2020年贵州省黔南中考数学试卷含答案-答案在前

2020年贵州省黔南中考数学试卷含答案-答案在前

2020年贵州省黔南州中考试卷数学答案解析一、1.【答案】A【解析】解:根据相反数的定义,可得3的相反数是:3-.故选:A .2.【答案】D【解析】解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .3.【答案】C【解析】解:493 4009.3410=⨯.故选:C .4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D .5.【答案】A【解析】解:A 、()4312a a =,故原题计算正确;B 、347a a a ⋅=,故原题计算错误;C 、2222a a a +=,故原题计算错误;D 、()222ab a b =,故原题计算错误;故选:A .6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD BC ∥, '30AEG BGD ∠=∠=︒∴,18030150DEG ∠=︒-︒=︒∴,由折叠可得,111507522DEG ∠α∠==⨯︒=, 故选:D .7.【答案】B【解析】解:∵在Rt ADE △中,6DE =,1AE AB BE AB CD x =-=-=-,55ADE ∠=︒,sin55AE AD ︒=∴,cos55DE AD ︒=,1tan556AE x DE -︒==, 故选:B .8.【答案】C【解析】解:设该商品每件的进价为x 元,依题意,得:120.82x ⨯-=,解得:7.6x =.故选:C .9.【答案】D【解析】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=.故选:D .10.【答案】C【解析】解:45∵,314∴<,1在3和4之间,即34a <<.故选:C .二、11.【答案】()2a ab -【解析】解:3222a a b ab -+, ()222a a ab b =-+,()2a ab =-.12.【答案】9【解析】解:27m n a b -+∵与443a b -的和仍是一个单项式,24m -=∴,74n +=,解得:6m =,3n =-,故()639m n -=--=.故答案为:9.13.【答案】4【解析】解:∵2,3,x ,1,5,7的众数为7,7x =∴,把这组数据从小到大排列为:1、2、3、5、6、7, 则中位数为3542+=; 故答案为:4.14.【答案】二【解析】解:由已知,得:0k >,0b <.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.【答案】()【解析】解:∵直线443y x =+与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为()3,0,点B 的坐标为()0,4.过点C 作CE y ⊥轴于点E ,如图所示.BC OC OA ==∵,3OC =∴,2OE =,CE ==∴∴点C 的坐标为().故答案为:().16.【答案】10【解析】解:在Rt ABC △中,2AB =∵,1sin 3AB ACB AC ∠==, 1263AC =÷=∴ 在Rt ADC △中,AD =10=.故答案为:10.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6,6AC BD +=∴,∵菱形的周长为,AB ∴AC BD ⊥,12AO AC =,12BO BD =, 3AO BO +=∴, 222AO BO AB +=∴,()29AO BO +=,即225AO BO +=,2229AO AO BO BO +⋅+=, 24AO BO ⋅=∴,∴菱形的面积1242AC BD AO BO =⋅=⋅=; 故答案为:4.18.【答案】12y x =【解析】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形,10AB BC ==∴,90ABC ∠=︒,6OB ===∴,90ABC AOB ∠=∠=︒∵,90ABO CBE ∠+∠=︒∴,90ABO BAO ∠+∠=︒,BAO CBE ∠=∠∴,又90AOB BEC ∠=∠=︒∵,()ABO BCE AAS △≌△∴,6CE OB ==∴,8BE AO ==,2OE =∴,∴点()6,2C ,∵反比例函数()0ky k x =≠的图象过点C ,6212k =⨯=∴,∴反比例函数的解析式为12y x =, 故答案为:12y x =.19.【答案】5210258x y x y +=⎧⎨+=⎩【解析】解:根据题意得:5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩. 20.【答案】0【解析】解:28160x x -+=,解得:4x =,即124x x ==,则2121?22*16160x x x x x =-=-=,故答案为0.三、21.【答案】解:(1)原式01232 2 0202⎛⎫=--⨯- ⎪⎝⎭ ()221 2 020=---02 2 019=--21=--1=--(2)解不等式312x -≤,得:1x ≥, 解不等式是324x +≥,得:23x ≥, 则不等式组的解集为1x ≥.【解析】具体解题过程参照答案。

黔南布依族苗族自治州2020年中考数学试卷A卷(新版)

黔南布依族苗族自治州2020年中考数学试卷A卷(新版)

黔南布依族苗族自治州2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019八下·诸暨期中) 若化简|1-x|- 的结果为2x﹣5,则x的取值范围是()A . x为任意实数B . 1≤x≤4C . x≥1D . x≤42. (2分)(2020·南漳模拟) 生物学家发现了一种病毒的长度约为0.0000032毫米,数据0.0000032用科学记数法表示为()A .B .C .D .3. (2分)如下图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A . ①②B . ②③C . ②④D . ③④4. (2分)下列四个算式中,正确的个数有().①②③④A . 0个B . 1个C . 2个D . 3个5. (2分)(2019·曹县模拟) 如图,将平行四边形沿对角线折叠,使点落在点处,交于点,若,,则的度数为()A .B .C .D .6. (2分) (2020九下·和平月考) 如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点A 的直线折叠,点O恰好落在弧AB上的点O'处,折痕交OB于点C,则弧O'B的长是()A . πB . πC . 2πD . 3π7. (2分)(2020·黑龙江) 一组数据4,4,x,8,8有唯一的众数,则这组数据的平均数是()A .B . 或5C . 或D . 58. (2分)在平面直角坐标系中有两点A(6,2),B(6,0),以原点为位似中心,相似比为1∶3.把线段AB缩小,则过A点对应点的反比例函数的解析式为()A .B .C .D .9. (2分)不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A . y=2x2B . y=-xC . y=-2xD . y=x10. (2分)如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△,将△向下平移5个单位,得△那么点A的对应点的坐标是()A . (-3,-2)B . (3,-8)C . (-2,-1)D . (1,-1)11. (2分)一元二次方程x2+3x+4=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根12. (2分) (2016九上·石景山期末) 如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s 的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)(2019·黑龙江模拟) 分解因式:m2n﹣4mn﹣4n=________.14. (1分) (2019八下·淅川期末) 当 ________时,方程无解.15. (1分)任取四个1至13之间的自然数,将这四个数(且每个数只能用一次)进行“+、-、×、÷”四则运算,使其结果为24.现有四个有理数:3,4,-6,10,运用上述规则,写出一个运算:________.16. (1分) (2016九上·宜春期中) 如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A 旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是________.17. (1分)一个扇形的半径为8cm,弧长为πcm,则扇形的圆心角为________ .18. (1分)(2017·苏州) 如图,在一笔直的沿湖道路上有、两个游船码头,观光岛屿在码头北偏东的方向,在码头北偏西的方向,.游客小张准备从观光岛屿乘船沿回到码头或沿回到码头,设开往码头、的游船速度分别为、,若回到、所用时间相等,则 ________(结果保留根号).三、解答题 (共7题;共81分)19. (15分)(2017·潮南模拟) 如图,直线y=2x与反比例函数y= (k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα= .(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.20. (10分)如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,直线BD与直线CE相交于点O.(1)求证:CE=BD.(2)如果当点A在直线BC的上方变化位置,且保持∠ABC和∠ACB都是锐角,那么∠BOC的度数是否会发生变化?若变化,请说明理由;若不变化,请求出∠BOC的度数.21. (11分)(2018·兴化模拟) 九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22. (15分)(2017·东城模拟) 在平面直角坐标系xOy中,点P与点Q不重合,以点P为圆心作经过Q的圆,则称该圆为点P、Q的“相关圆”(1)已知点P的坐标为(2,0)①若点Q的坐标为(0,1),求点P、Q的“相关圆”的面积;②若点Q的坐标为(3,n),且点P、Q的“相关圆”的半径为,求n的值;(2)已知△ABC为等边三角形,点A和点B的坐标分别为(﹣,0)、(,0),点C在y轴正半轴上,若点P、Q的“相关圆”恰好是△ABC的内切圆且点Q在直线y=2x上,求点Q的坐标.(3)已知△ABC三个顶点的坐标为:A(﹣3,0)、B(,0),C(0,4),点P的坐标为(0,),点Q 的坐标为(m,),若点P、Q的“相关圆”与△ABC的三边中至少一边存在公共点,直接写出m的取值范围.23. (10分)(2017·桂林模拟) 某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球,一个篮球各需多少元?(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?24. (10分) (2017八下·湖州期中) 如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.25. (10分)已知二次函数的图象经过(0,0),(-1,-1),(1,9)三点.(1)求这个函数的解析式;(2)求出这个函数图象的顶点坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共81分)19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、。

贵州省黔东南州2020年中考数学试题(Word版,含答案与解析)

贵州省黔东南州2020年中考数学试题(Word版,含答案与解析)

贵州省黔东南州2020年中考数学试卷一、选择题(共10题;共20分)1.﹣2020的倒数是()A. ﹣2020B. ﹣12020 C. 2020 D. 12020【答案】B【考点】有理数的倒数【解析】【解答】解:﹣2020的倒数是﹣12020.故答案为:B.【分析】根据“乘积为1的两个数互为倒数”即可判断求解。

2.下列运算正确的是()A. (x+y)2=x2+y2B. x3+x4=x7C. x3•x2=x6D. (﹣3x)2=9x2【答案】 D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,故此选项正确.故答案为:D.【分析】(1)由完全平方公式展开后的结果应该是一个三项式,从而即可判断;(2)x3与x4不是同类项,无法合并,从而即可判断;(3)由“同底数幂相乘底数不变指数相加”即可判断;(4)由“积的乘方等于把每一个因式分别乘方,再把所得的幂相乘”即可判断D.3.实数2 √10介于()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【考点】估算无理数的大小【解析】【解答】解:∵2 √10=√40,且6<√40<7,∴6<2 √10<7.故答案为:C.【分析】首先由二次根式的性质将2 √10变形为√40,再估算出√40的大小即可判断求解.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A. ﹣7B. 7C. 3D. ﹣3【答案】A【考点】一元二次方程的根与系数的关系【解析】【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故答案为:A.”可得关于另一个根的方程,解这个方程即可求解.【分析】根据根与系数的关系“两根之和等于−ba5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠l=25°,则∠2等于()A. 25°B. 30°C. 50°D. 60°【答案】C【考点】矩形的性质,翻折变换(折叠问题)【解析】【解答】解:由折叠的性质可知:∠ACB′=∠1=25°.∵四边形ABCD为矩形,∴AD∥BC,∴∠2=∠1+∠ACB′=25°+25°=50°.故答案为:C.【分析】由折叠的性质可得∠ACB′=∠1,由矩形的性质可得出AD∥BC,再根据“两直线平行,内错角相等”可求出∠2的度数.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A. 12个B. 8个C. 14个D. 13个【答案】 D【考点】由三视图判断几何体【解析】【解答】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故答案为:D.【分析】由主视图知:左右两边最高有3层,中间最高有2层;由左视图知第一排和第三排最高有3层,中间最高有2层;由此可判断出各行各列最多有几个正方体组成即可求解.7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5,则AB的长为()A. 8B. 12C. 16D. 2 √91【答案】C【考点】垂径定理【解析】【解答】解:连接OA,∵⊙O的直径CD=20,OM:OD=3:5,∴OD=10,OM=6,∵AB⊥CD,∴AM=√OA2−OM2=√102−62=8,∴AB=2AM=16.故答案为:C.【分析】连接OA,先根据已知条件OM:OD=3:5易求出OD及OM的长,再用勾股定理可求出AM的长,然后结合垂径定理可求解.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A. 16B. 24C. 16或24D. 48【答案】B【考点】因式分解法解一元二次方程,菱形的性质【解析】【解答】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,∴菱形ABCD的周长=4AB=24.故答案为:B.【分析】用因式分解法解一元二次方程可得x=4,或x=6,分两种情况:①当AB=AD=4时,根据三角形三边关系定理可知不能构成三角形;②当AB=AD=6时,6+6>8,符合题意,再根据菱形的性质即可求得菱形ABCD的周长.9.如图,点A是反比例函数y═6x(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=2x的图象于点B,点P是x轴上的动点,则△PAB的面积为()A. 2B. 4C. 6D. 8【答案】A【考点】反比例函数系数k的几何意义【解析】【解答】解:如图,连接OA、OB、PC.∵AC⊥y轴,∴S△APC=S△AOC=12×|6|=3,S△BPC=S△BOC=12×|2|=1,∴S△PAB=S△APC﹣S△BPC=2.故答案为:A.【分析】连接OA、OB、PC.由于AC⊥y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S△APC=S△AOC=3,S△BPC=S△BOC=1,然后根据图形的构成S△PAB=S△APC﹣S△APB进行计算即可求解. 10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧BD⌢,再分别以E、F为圆心,1为半径作圆弧BO⌢、OD⌢,则图中阴影部分的面积为()A. π﹣1B. π﹣2C. π﹣3D. 4﹣π【答案】 B【考点】正方形的性质,扇形面积的计算【解析】【解答】解:由题意可得,阴影部分的面积是: 14 •π×22﹣ 12·π×12 ﹣2(1×1﹣ 14 •π×12)=π﹣2,故答案为:B.【分析】根据题意和图形的构成,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,代入计算即可求解. 二、填空题:(每小题3分,10个小题,共30分)(共10题;共30分)11.cos60°=________.【答案】 0.5【考点】特殊角的三角函数值【解析】【解答】特殊角的锐角三角函数值求解即可.cos60°=0.5.【分析】根据特殊角的三角函数值即可求解。

2020年贵州省黔西南州中考数学试卷(解析版)

2020年贵州省黔西南州中考数学试卷(解析版)

2020年贵州省黔西南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.(4分)2的倒数是()A.﹣2 B.2 C.﹣D.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.【解答】解:2的倒数是,故选:D.2.(4分)某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106B.3.6×105C.3.6×106D.36×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:360000=3.6×105,故选:B.3.(4分)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得四个并排的正方形,如图所示:故选:D.4.(4分)下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a3+a2,不是同类项,无法合并,故此选项错误;B、a3÷a=a2,故此选项错误;C、a2•a3=a5,正确;D、(a2)4=a8,故此选项错误;故选:C.5.(4分)某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5 B.5,4 C.4,4 D.5,5【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,这组数据的中位数为4;众数为5.故选:A.6.(4分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为()A.37°B.43°C.53°D.54°【分析】根据平行线的性质,可以得到∠2和∠3的关系,从而可以得到∠3的度数,然后根据∠1+∠3=90°,即可得到∠1的度数.【解答】解:∵AB∥CD,∠2=37°,∴∠2=∠3=37°,∵∠1+∠3=90°,∴∠1=53°,故选:C.7.(4分)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米B.4sinα米C.米D.4cosα米【分析】过点A′作A′C⊥AB于点C,根据锐角三角函数的定义即可求出答案.【解答】解:过点A′作A′C⊥AB于点C,由题意可知:A′O=AO=4,∴sinα=,∴A′C=4sinα,故选:B.8.(4分)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2 B.m≤2C.m<2且m≠1D.m≤2且m≠1【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣2x+1=0有实数根,∴,解得:m≤2且m≠1.故选:D.9.(4分)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为2,∴OC=2,∠COB=60°,∴点C的坐标为(﹣1,),∵顶点C在反比例函数y═的图象上,∴=,得k=﹣,即y=﹣,故选:B.10.(4分)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16【分析】由抛物线y=ax2+bx+4交y轴于点A,可得点A的坐标,然后由抛物线的对称性可得点B的坐标,由点B关于直线AC的对称点恰好落在线段OC上,可知∠ACO=∠ACB,再结合平行线的性质可判断∠BAC =∠ACB,从而可知AB=AD;过点B作BE⊥x轴于点E,由勾股定理可得EC的长,则点C坐标可得,然后由对称性可得点D的坐标,则OC•OD的值可计算;由勾股定理可得AD的长,由双根式可得抛物线的解析式,根据以上计算或推理,对各个选项作出分析即可.【解答】解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.二、填空题(本题10小题,每题3分,共30分)11.(3分)把多项式a3﹣4a分解因式,结果是a(a+2)(a﹣2).【分析】首先提公因式a,再利用平方差进行二次分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).12.(3分)若7a x b2与﹣a3b y的和为单项式,则y x=8.【分析】直接利用合并同类项法则进而得出x,y的值,即可得出答案.【解答】解:∵7a x b2与﹣a3b y的和为单项式,∴7a x b2与﹣a3b y是同类项,∴x=3,y=2,∴y x=23=8.故答案为:8.13.(3分)不等式组的解集为﹣6<x≤13.【分析】首先分别计算出两个不等式的解集,再确定不等式组的解集即可.【解答】解:,解①得:x>﹣6,解②得:x≤13,不等式组的解集为:﹣6<x≤13,故答案为:﹣6<x≤13.14.(3分)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为2.【分析】首先证明DB=AD=CD,然后再由条件BC=3可得答案.【解答】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=3,∴CD+2CD=3,∴CD=,∴DB=2,故答案为:2.15.(3分)如图,正比例函数的图象与一次函数y=﹣x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是y=﹣2x.【分析】根据图象和题意,可以得到点P的纵坐标,然后代入一次函数解析式,即可得到点P的坐标,然后代入正比例函数解析式,即可得到这个正比例函数的解析式.【解答】解:∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=﹣x+1上,∴2=﹣x+1,得x=﹣1,∴点P的坐标为(﹣1,2),设正比例函数解析式为y=kx,则2=﹣k,得k=﹣2,∴正比例函数解析式为y=﹣2x,故答案为:y=﹣2x.16.(3分)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为.【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=AM,故AN=NG,∴∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=∠4=×90°=30°,∵四边形ABCD是矩形,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,∴AE=AD=BC=1,∴AG=2,∴EG==,故答案为:.17.(3分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…依此类推,以5,1循环,(2020﹣2)÷2=1009,能够整除,所以输出的结果是1,故答案为:118.(3分)有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了10个人.【分析】设每轮传染中平均每人传染了x人.开始有一人患了流感,第一轮的传染源就是这个人,他传染了x人,则第一轮后共有(1+x)人患了流感;第二轮传染中,这些人中的每个人又传染了x人,则第二轮后共有[1+x+x(x+1)]人患了流感,而此时患流感人数为121,根据这个等量关系列出方程.【解答】解:设每轮传染中平均每人传染了x人.依题意,得1+x+x(1+x)=121,即(1+x)2=121,解方程,得x1=10,x2=﹣12(舍去).答:每轮传染中平均每人传染了10人.19.(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为57.【分析】根据图形的变化规律即可得第⑦个图形中菱形的个数.【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.20.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.故答案为﹣.三、解答题(本题6小题,共80分)21.(12分)(1)计算(﹣2)2﹣|﹣|﹣2cos45°+(2020﹣π)0;(2)先化简,再求值:(+),其中a=﹣1.【分析】(1)直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=4﹣﹣2×+1=4﹣﹣+1=5﹣2;(2)原式=[+]•=•=,当a=﹣1时,原式==.22.(12分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是B;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(1)(3)(5)(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有C个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:23.(14分)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40名;(2)扇形统计图中表示A级的扇形圆心角α的度数是54°,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为75人;(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.【分析】(1)由题意可得本次抽样测试的学生人数是:12÷30%=40(人),(2)首先可求得A级人数的百分比,继而求得∠α的度数,然后补出条形统计图;(3)根据A级人数的百分比,列出算式即可求得优秀的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小明的情况,再利用概率公式即可求得答案.【解答】解:(1)本次抽样测试的学生人数是:12÷30%=40(人);(2)∵A级的百分比为:×100%=15%,∴∠α=360°×15%=54°;C级人数为:40﹣6﹣12﹣8=14(人).如图所示:(3)500×15%=75(人).故估计优秀的人数为75人;(4)画树状图得:∵共有12种等可能的结果,选中小明的有6种情况,∴选中小明的概率为.故答案为:40;54°;75人.24.(14分)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a 的取值范围就可以求出y的最大值.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1800﹣1500)a+(2400﹣1800)(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.∴a=20时,y有最大值∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.25.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.【分析】(1)连接OD、DB,由已知可知DE垂直平分OB,则DB=DO,再由圆的半径相等,可得DB=DO=OB,即△ODB是等边三角形,则∠BDO=60°,再由等腰三角形的性质及三角形的外角性质可得∠CDB =30°,从而可得∠ODC=90°,按照切线的判定定理可得结论;(2)连接OP,先由已知条件得OP=OB=BC=2OE,再利用两组边成比例,夹角相等来证明△OEP∽△OPC,按照相似三角形的性质得出比例式,则可得答案.【解答】解:(1)连接OD、DB,∵点E是线段OB的中点,DE⊥AB交⊙O于点D,∴DE垂直平分OB,∴DB=DO.∵在⊙O中,DO=OB,∴DB=DO=OB,∴△ODB是等边三角形,∴∠BDO=∠DBO=60°,∵BC=OB=BD,且∠DBE为△BDC的外角,∴∠BCD=∠BDC=∠DBO.∵∠DBO=60°,∴∠CDB=30°.∴∠ODC=∠BDO+∠BDC=60°+30°=90°,∴CD是⊙O的切线;(2)答:这个确定的值是.连接OP,如图:由已知可得:OP=OB=BC=2OE.∴==,又∵∠COP=∠POE,∴△OEP∽△OPC,∴==.26.(16分)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC 于点D,E,当PD+PE取最大值时,求点P的坐标;(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.【分析】(1)将点A,B坐标代入抛物线解析式中,解方程组即可得出结论;(2)先求出OA=OC=6,进而得出∠OAC=45°,进而判断出PD=PE,即可得出当PE的长度最大时,PE+PD取最大值,设出点E坐标,表示出点P坐标,建立PE=﹣t2+6t=﹣(t﹣3)2+9,即可得出结论;(3)先判断出NF∥x轴,进而求出点N的纵坐标,即可建立方程求解得出结论.【解答】解:(1)∵抛物线y=ax2+bx+6经过点A(6,0),B(﹣1,0),∴,∴,∴抛物线的解析式为y=﹣x2+5x+6=﹣(x﹣)2+,∴抛物线的解析式为y=﹣x2+5x+6,顶点坐标为(,);(2)由(1)知,抛物线的解析式为y=﹣x2+5x+6,∴C(0,6),∴OC=6,∵A(6,0),∴OA=6,∴OA=OC,∴∠OAC=45°,∵PD平行于x轴,PE平行于y轴,∴∠DPE=90°,∠PDE=∠DAO=45°,∴∠PED=45°,∴∠PDE=∠PED,∴PD=PE,∴PD+PE=2PE,∴当PE的长度最大时,PE+PD取最大值,∵A(6,0),C(0,6),∴直线AC的解析式为y=﹣x+6,设E(t,﹣t+6)(0<t<6),则P(t,﹣t2+5t+6),∴PE=﹣t2+5t+6﹣(﹣t+6)=﹣t2+6t=﹣(t﹣3)2+9,当t=3时,PE最大,此时,﹣t2+5t+6=12,∴P(3,12);(3)如图(2),设直线AC与抛物线的对称轴l的交点为F,连接NF,∵点F在线段MN的垂直平分线AC上,∴FM=FN,∠NFC=∠MFC,∵l∥y轴,∴∠MFC=∠OCA=45°,∴∠MFN=∠NFC+∠MFC=90°,∴NF∥x轴,由(2)知,直线AC的解析式为y=﹣x+6,当x=时,y=,∴F(,),∴点N的纵坐标为,设N的坐标为(m,﹣m2+5m+6),∴﹣m2+5m+6=,解得,m=或m=,∴点N的坐标为(,)或(,).。

黔南布依族苗族自治州2020年(春秋版)中考数学试卷(II)卷

黔南布依族苗族自治州2020年(春秋版)中考数学试卷(II)卷

黔南布依族苗族自治州2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·凤庆期中) 我县2011年12月21日至24日每天的最高气温与最低气温如表:日期12月21日12月22日12月23日12月24日最高气温8℃7℃5℃6℃最低气温﹣3℃﹣5℃﹣4℃﹣2℃其中温差最大的一天是()A . 12月21日B . 12月22日C . 12月23日D . 12月24日2. (2分) (2016七上·绍兴期中) 在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A . 2.7×105B . 2.7×106C . 2.7×107D . 2.7×1083. (2分)(2020·呼和浩特模拟) 如图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A . 6B . 8C . 10D . 124. (2分)若代数式和的值相等,则x的值为()A . 3B . 7C . -4D . -85. (2分) (2020八下·枣阳期末) 一家鞋店在一段时间内销售了某种男鞋200双,各种尺码鞋的销售量如下表所示:尺码/厘米2323.52424.52525.526销售量/双5102239564325一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据是()A . 平均数B . 中位数C . 众数D . 方差6. (2分)若关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个不相等的实数根,则k的取值范围是()A .B . 且k≠1C .D . 且k≠17. (2分)下列说法中,错误的是()A . 平行四边形的对角线互相平分B . 矩形的对角线互相垂直C . 菱形的对角线互相垂直平分D . 等腰梯形的对角线相等8. (2分)有三张正面分别写有数字﹣1,1,2的卡片,它们的材质、大小和背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽取一张,以其正面的数学作为b的值,则满足a2+b2=5的概率为()A .B .C .D .9. (2分)在直角坐标系中,要将图形向左平移3个单位时,只需()A . 将图形上的每一个点的横坐标加3,纵坐标不变B . 将图形上的每一个点的横坐标不变,纵坐标减3C . 将图形上的每一个点的横坐标减3,纵坐标不变D . 将图形上的每一个点的横坐标不变,纵坐标加310. (2分) (2018九上·梁子湖期末) 如图,在中,,,以点为中心,把逆时针旋转45°,得到,则图中阴影部分的面积为()A . 2B .C . 4D .二、填空题 (共5题;共6分)11. (2分) (2019七下·柳江期中) -64的立方根是________,的平方根是________.12. (1分)(2017·滨州) 不等式组的解集为________.13. (1分) (2017九上·龙岗期末) 如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴、y轴上,反比例函数y= (x>0)的图像经过点D,且与边BC交于点E,则点E的坐标为________.14. (1分) (2017八上·西安期末) 已知方程|x|=ax+1有一个负根但没有正根,则a的取值范围是________15. (1分) (2018九上·淮阳期中) 如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是________.三、解答题 (共8题;共90分)16. (20分) (2019七下·宜兴月考) 计算:(1)x•(﹣x)2(﹣x)3;(2)x3•x5﹣(2x4)2+x10÷x2.(3)(﹣0.125)2018×82019;(4)(a﹣b)10÷(b﹣a)3÷(b﹣a)3.17. (10分)(2017·兰州模拟) 我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.18. (10分)(2018·路北模拟) 如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.(1)求证:MN⊥CE;(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.19. (5分)(2019·平邑模拟) 2018年9月12日,临沂第六界中国百里沂河水上运动拉开帷幕,临沂电视台用直升机航拍技术全程直播.如图,在直升机的镜头下,观测处的俯角为,处的俯角为,如果此时直升机镜头处的高度为150米,点、、在同一条直线上,则、两点间的距离为多少米?(结果保留根号)20. (10分) (2017八下·泉山期末) 如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).(1)求和的值;(2)过点作直线平行轴交轴于点,连结AC,求△ 的面积.21. (10分)目前节能灯在全国各地都受到欢迎,今年某县在农村地区广泛推广,商家抓住机遇,某商场计划用3800元购进甲、乙两种型号的节能灯共120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)求甲、乙两种节能灯各购进多少只?(2)由于节能灯的销售量很好,商场在甲种型号节能灯销售一半后,将甲种节能灯的售价提高20%,如果商场把这120只节能灯全部销售完,那么该商场将获利多少元?22. (15分)(2017·兴化模拟) 如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= ,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF= CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t的代数式表示BQ、DF;(2)当0<t<1时,求矩形DEGF的最大面积;(3)点Q在整个运动过程中,当矩形DEGF为正方形时,求t的值.23. (10分)(2020·江苏模拟) 已知,矩形中,,,是边上一点,连接,将沿直线翻折得 .(1)如图①,点恰好在上,求证:;(2)如图②,当时,延长交边于点,求的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共90分)16-1、16-2、16-3、16-4、17-1、17-2、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。

2020年贵州省黔东南州中考数学试卷(解析版)

2020年贵州省黔东南州中考数学试卷(解析版)

2020年贵州省黔东南州中考数学试卷参考答案与试题解析一.选择题(共10小题)1.﹣2020的倒数是()A.﹣2020B.﹣C.2020D.【分析】根据倒数的概念解答.【解答】解:﹣2020的倒数是﹣,故选:B.2.下列运算正确的是()A.(x+y)2=x2+y2B.x3+x4=x7C.x3•x2=x6D.(﹣3x)2=9x2【分析】直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案.【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,正确.故选:D.3.实数2介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】首先化简2=,再估算,由此即可判定选项.【解答】解:∵2=,且6<<7,∵6<2<7.故选:C.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣3【分析】根据根与系数的关系即可求出答案.【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∵l=25°,则∵2等于()A.25°B.30°C.50°D.60°【分析】由折叠的性质可得出∵ACB′的度数,由矩形的性质可得出AD∵BC,再利用“两直线平行,内错角相等”可求出∵2的度数.【解答】解:由折叠的性质可知:∵ACB′=∵1=25°.∵四边形ABCD为矩形,∵AD∵BC,∵∵2=∵1+∵ACB′=25°+25°=50°.故选:C.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【解答】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故选:D.7.如图,∵O的直径CD=20,AB是∵O的弦,AB∵CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2【分析】连接OA,先根据∵O的直径CD=20,OM:OD=3:5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.【解答】解:连接OA,∵∵O的直径CD=20,OM:OD=3:5,∵OD=10,OM=6,∵AB∵CD,∵AM===8,∵AB=2AM=16.故选:C.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16B.24C.16或24D.48【分析】解方程得出x=4,或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.【解答】解:如图所示:∵四边形ABCD是菱形,∵AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,∵菱形ABCD的周长=4AB=24.故选:B.9.如图,点A是反比例函数y═(x>0)上的一点,过点A作AC∵y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则∵P AB的面积为()A.2B.4C.6D.8【分析】连接OA、OB、PC.由于AC∵y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S∵APC=S∵AOC=3,S∵BPC=S∵BOC=1,然后利用S∵P AB=S∵APC﹣S∵APB进行计算.【解答】解:如图,连接OA、OB、PC.∵AC∵y轴,∵S∵APC=S∵AOC=×|6|=3,S∵BPC=S∵BOC=×|2|=1,∵S∵P AB=S∵APC﹣S∵BPC=2.故选:A.10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,本题得以解决.【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.二.填空题(共10小题)11.cos60°=.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为 3.2×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3200000=3.2×106.故答案为:3.2×106.13.在实数范围内分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】本题可先提公因式x,再运用平方差公式分解因式即可求解.【解答】解:xy2﹣4x=x(y2﹣4)=x(y+2)(y﹣2).故答案为:x(y+2)(y﹣2).14.不等式组的解集为2<x≤6.【分析】先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找”可确定不等式组的解集.【解答】解:解不等式5x﹣1>3(x+1),得:x>2,解不等式x﹣1≤4﹣x,得:x≤6,则不等式组的解集为2<x≤6,故答案为:2<x≤6.15.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为y =2x+3.【分析】直接利用一次函数的平移规律进而得出答案.【解答】解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是﹣3<x<1.【分析】根据物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【解答】解:∵物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∵抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.以∵ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为(2,﹣1).【分析】根据平行四边形是中心对称图形,再根据∵ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.【解答】解:∵∵ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∵点C的坐标为(2,﹣1),故答案为:(2,﹣1).18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【解答】解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∵出场顺序恰好是甲、乙、丙的概率为,故答案为:.19.如图,AB是半圆O的直径,AC=AD,OC=2,∵CAB=30°,则点O到CD的距离OE为.【分析】在等腰∵ACD中,顶角∵A=30°,易求得∵ACD=75°;根据等边对等角,可得:∵OCA=∵A=30°,由此可得,∵OCD=45°;即∵COE是等腰直角三角形,则OE=.【解答】解:∵AC=AD,∵A=30°,∵∵ACD=∵ADC=75°,∵AO=OC,∵∵OCA=∵A=30°,∵∵OCD=45°,即∵OCE是等腰直角三角形,在等腰Rt∵OCE中,OC=2;因此OE=.故答案为:.20.如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ∵BC 于点Q,则PQ=.【分析】根据矩形的性质得到AB∵CD,AB=CD,AD=BC,∵BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∵AB∵CD,AB=CD,AD=BC,∵BAD=90°,∵E为CD的中点,∵DE=CD=AB,∵∵ABP∵∵EDP,∵=,∵=,∵=,∵PQ∵BC,∵PQ∵CD,∵∵BPQ∵∵DBC,∵==,∵CD=2,∵PQ=,故答案为:.三.解答题(共6小题)21.(1)计算:()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(﹣a+1)÷,其中a从﹣1,2,3中取一个你认为合适的数代入求值.【分析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.【解答】解:(1)()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0=4+﹣3+2×1﹣1=4+﹣3+2﹣1=2+;(2)(﹣a+1)÷=×==﹣a﹣1,要使原式有意义,只能a=3,则当a=3时,原式=﹣3﹣1=﹣4.22.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x <90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率A a20%B1640%C b mD410%请你根据统计图表提供的信息解答下列问题:(1)上表中的a8,b=12,m=30%.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.【分析】(1)根据题意列式计算即可得到结论;(2)用D等级人数除以它所占的百分比即可得到调查的总人数;(3)列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)a=16÷40%×20%=8,b=16÷40%×(1﹣20%﹣40%﹣10%)=12,m=1﹣20%﹣40%﹣10%=30%;故答案为:8,12,30%;(2)本次调查共抽取了4÷10%=40名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)∵共有12种等可能的结果,恰为一男一女的有8种,∵抽得恰好为“一男一女”的概率为=.23.如图,AB是∵O的直径,点C是∵O上一点(与点A,B不重合),过点C作直线PQ,使得∵ACQ=∵ABC.(1)求证:直线PQ是∵O的切线.(2)过点A作AD∵PQ于点D,交∵O于点E,若∵O的半径为2,sin∵DAC=,求图中阴影部分的面积.【分析】(1)连接OC,由直径所对的圆周角为直角,可得∵ACB=90°;利用等腰三角形的性质及已知条件∵ACQ=∵ABC,可求得∵OCQ=90°,按照切线的判定定理可得结论.(2)由sin∵DAC=,可得∵DAC=30°,从而可得∵ACD的度数,进而判定∵AEO为等边三角形,则∵AOE 的度数可得;利用S阴影=S扇形﹣S∵AEO,可求得答案.【解答】解:(1)证明:如图,连接OC,∵AB是∵O的直径,∵∵ACB=90°,∵OA=OC,∵∵CAB=∵ACO.∵∵ACQ=∵ABC,∵∵CAB+∵ABC=∵ACO+∵ACQ=∵OCQ=90°,即OC∵PQ,∵直线PQ是∵O的切线.(2)连接OE,∵sin∵DAC=,AD∵PQ,∵∵DAC=30°,∵ACD=60°.又∵OA=OE,∵∵AEO为等边三角形,∵∵AOE=60°.∵S阴影=S扇形﹣S∵AEO=S扇形﹣OA•OE•sin60°=×22﹣×2×2×=﹣.∵图中阴影部分的面积为﹣.24.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y (单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1119日销售量y(件)182请写出当11≤x≤19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?【分析】(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得关于a、b的二元一次方程组,求解即可.(2)设y与x之间的函数关系式为y=k1x+b1,用待定系数法求解即可.(3)根据利润等于每件的利润乘以销售量列出函数关系式,然后写成顶点式,按照二次函数的性质可得答案.【解答】解:(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:,解得:.∵甲、乙两种商品的进货单价分别是10、15元/件.(2)设y与x之间的函数关系式为y=k1x+b1,将(11,18),(19,2)代入得:,解得:.∵y与x之间的函数关系式为y=﹣2x+40(11≤x≤19).(3)由题意得:w=(﹣2x+40)(x﹣10)=﹣2x2+60x﹣400=﹣2(x﹣15)2+50(11≤x≤19).∵当x=15时,w取得最大值50.∵当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.25.如图1,∵ABC和∵DCE都是等边三角形.探究发现(1)∵BCD与∵ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∵ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且∵ABC和∵DCE的边长分别为1和2,求∵ACD的面积及AD的长.【分析】(1)依据等式的性质可证明∵BCD=∵ACE,然后依据SAS可证明∵ACE∵∵BCD;(2)由(1)知:BD=AE,利用勾股定理计算AE的长,可得BD的长;(3)如图2,过A作AF∵CD于F,先根据平角的定义得∵ACD=60°,利用特殊角的三角函数可得AF的长,由三角形面积公式可得∵ACD的面积,最后根据勾股定理可得AD的长.【解答】解:(1)全等,理由是:∵∵ABC和∵DCE都是等边三角形,∵AC=BC,DC=EC,∵ACB=∵DCE=60°,∵∵ACB+∵ACD=∵DCE+∵ACD,即∵BCD=∵ACE,在∵BCD和∵ACE中,,∵∵ACE∵∵BCD(SAS);(2)如图3,由(1)得:∵BCD∵∵ACE,∵BD=AE,∵∵DCE都是等边三角形,∵∵CDE=60°,CD=DE=2,∵∵ADC=30°,∵∵ADE=∵ADC+∵CDE=30°+60°=90°,在Rt∵ADE中,AD=3,DE=2,∵AE===,∵BD=;(3)如图2,过A作AF∵CD于F,∵B、C、E三点在一条直线上,∵∵BCA+∵ACD+∵DCE=180°,∵∵ABC和∵DCE都是等边三角形,∵∵BCA=∵DCE=60°,∵∵ACD=60°,在Rt∵ACF中,sin∵ACF=,∵AF=AC×sin∵ACF=1×=,∵S∵ACD===,∵CF=AC×cos∵ACF=1×=,FD=CD﹣CF=2﹣,在Rt∵AFD中,AD2=AF2+FD2==3,∵AD=.26.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得∵EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.【解答】解:(1)∵抛物线的顶点为(1,﹣4),∵设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∵a=1,∵抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∵x=﹣1或x=3,∵B(3,0),A(﹣1,0),令x=0,则y=﹣3,∵C(0,﹣3),∵AC=,设点E(0,m),则AE=,CE=|m+3|,∵∵ACE是等腰三角形,∵∵当AC=AE时,=,∵m=3或m=﹣3(点C的纵坐标,舍去),∵E(3,0),∵当AC=CE时,=|m+3|,∵m=﹣3±,∵E(0,﹣3+)或(0,﹣3﹣),∵当AE=CE时,=|m+3|,∵m=﹣,∵E(0,﹣),即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);(3)如图,存在,∵D(1,﹣4),∵将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∵点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∵t=1+2或t=1﹣2,∵Q(1+2,4)或(1﹣2,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∵FB=PG=3﹣1=2,∵点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).初中怎样提高数学成绩1.课内重视听讲,培养学生的思维能力初中新生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,因此,重视听法指导,使他们学会听课,是提高学习效率的关键。

【最新人教版初中数学精选】2020年贵州省黔南州中考数学试卷

【最新人教版初中数学精选】2020年贵州省黔南州中考数学试卷

2020年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2020的相反数是()A.﹣2020 B.2020 C.﹣D.2.(4分)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.(4分)2020年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×1066.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P 是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.98.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°11.(4分)反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A.3 B.﹣3 C.D.﹣12.(4分)“一带一路”国际合作高峰论坛于2020年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2020客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300013.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac <b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个二、填空题(共6小题,每小题4分,满分24分)14.(4分)因式分解:2x2﹣8=.15.(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为.16.(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.17.(4分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.18.(4分)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为.19.(4分)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=.三、解答题(共7小题,满分74分)20.(10分)(1)计算:|﹣1|+(﹣1)2020+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.22.(10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.23.(10分)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)24.(10分)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?25.(12分)如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD 交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=4,求BE的长.26.(12分)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x 轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.2020年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(共13小题,每小题4分,满分52分)1.(4分)(2020•黔南州)2020的相反数是()A.﹣2020 B.2020 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2020+(﹣2020)=0,∴2020的相反数是(﹣2020),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(4分)(2020•黔南州)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=1【分析】A、根据立方根的定义解答;B、根据完全平方公式解答;C、根据积的乘方和幂乘方解答;D、根据非零数的0次方解答.【解答】解:A、=4≠8,故本选项错误;B、(x+3)2=x2+6x+9≠x2+9,故本选项错误;C、(ab3)2=a2b6=ab6,故本选项错误;D、∵π﹣3.14≠0,∴(π﹣3.14)0=1,故本选项正确;故选D.【点评】本题考查了立方根、积的乘方和幂的乘方、完全平方公式、0指数幂,综合性较强,要细心.3.(4分)(2020•黔南州)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行【分析】直接利用直线的性质分析得出答案.【解答】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法运用到的数学原理是:两点确定一条直线.故选:B.【点评】此题主要考查了直线的性质,正确把握直线的性质联系实际生活是解题关键.4.(4分)(2020•黔南州)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(4分)(2020•黔南州)2020年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4138900用科学记数法表示为:4.1389×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2020•黔南州)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.7.(4分)(2020•黔南州)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.9【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【解答】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==3.故选A.【点评】此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.8.(4分)(2020•黔南州)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形【分析】设这个多边形的边数为n.根据题意列出方程即可解决问题.【解答】解:设这个多边形的边数为n.由题意(n﹣2)•180°=2×360°,解得n=6,答:这个多边形是正六边形.故选C.【点评】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.9.(4分)(2020•黔南州)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B、了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C、调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D、调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考察的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.(4分)(2020•黔南州)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°【分析】由AD为圆O的切线,利用切线的性质得到OA与AD垂直,在直角三角形OAD中,由直角三角形的两锐角互余,根据∠ODA的度数求出∠AOD的度数,再利用同弧所对的圆心角等于所对圆周角的2倍即可求出∠ACB的度数.【解答】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.11.(4分)(2020•黔南州)反比例函数y=﹣(x<0)如图所示,则矩形OAPB 的面积是()A.3 B.﹣3 C.D.﹣【分析】可设出点P的坐标,则可表示出矩形OAPB的面积.【解答】解:∵点P在反比例函数y=﹣(x<0)的图象上,∴可设P(x,﹣),∴OA=﹣x,PA=﹣,∴S=OA•PA=﹣x•(﹣)=3,矩形OAPB故选A.【点评】本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.12.(4分)(2020•黔南州)“一带一路”国际合作高峰论坛于2020年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2020客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=3000【分析】根据题意得出2018年的台数为1000(1+x)台,2019年为1000(1+x)2台,列出方程即可.【解答】解:根据题意:2019年为1000(1+x)2台.则1000(1+x)2=3000;故选:C.【点评】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b (a<b);平均降低率问题,在理解的基础上,可归结为a(1﹣x)2=b(a>b).13.(4分)(2020•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个【分析】根据二次函数的性质和二次函数的图象可以判断题目中各个小题的结论是否成立,从而可以解答本题.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于负半轴,则c<0,∴abc>0,故①正确,函数图象与x轴有两个不同的交点,则b2﹣4ac>0,即4ac<b2,故②正确,由图象可知,,则2b=﹣2a,2a+b=﹣b>0,故③正确,由抛物线过点(﹣1,0),(0,﹣2),(2,0),可得,,得,∴y=x2﹣x﹣2=,∴顶点坐标是(,﹣),故④错误,∴当x<时,y随x的增大而减小,故⑤正确,当x=1时,y=a+b+c<0,故⑥错误,由上可得,正确是①②③⑤,故选B.【点评】本题考查二次函数图象与系数的关系,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2020•黔南州)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.15.(4分)(2020•黔南州)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】根据一次函数与一元一次不等式的关系即可求出答案.【解答】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<1故答案为:x<1【点评】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.16.(4分)(2020•黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是40°.【分析】根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.(4分)(2020•黔南州)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为π.【分析】连接OC,如图,利用等腰三角形的性质和三角形内角和可计算出∠AOC=60°,则∠BOC=70°,然后根据弧长公式计算的长.【解答】解:连接OC,如图,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.【点评】本题考查了弧长的计算:圆周长公式:C=2πR;弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.18.(4分)(2020•黔南州)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C 按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为9.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=6,AB=B′A′=3,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴,解得AD=12,∴BD=AD﹣AB=12﹣3=9.故答案为:9.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.19.(4分)(2020•黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5,此题得解.【解答】解:观察图形,可知:(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.故答案为:1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【点评】本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.三、解答题(共7小题,满分74分)20.(10分)(2020•黔南州)(1)计算:|﹣1|+(﹣1)2020+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.【分析】(1)根据绝对值、乘方、三角函数、平方根的定义解答;(2)先将括号内通分,再将除法转化为乘法解答.【解答】解:(1)原式=﹣1﹣1+4×+2=3;(2)∵x、y满足|x﹣1|+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2.原式=×=,当x=1,y=﹣2时,原式==﹣1.【点评】(1)本题考查了绝对值、乘方、三角函数、平方根,熟悉定义是解题的关键;(2)本题考查了分式的化简求值,熟悉约分、通分是解题的关键.21.(10分)(2020•黔南州)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质进而得出对应点位置,进而得出答案;(3)首先得出圆心角以及半径,再利用扇形面积公式直接计算得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B1C2,即为所求;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为:=π.【点评】此题主要考查了平移变换以及旋转变换和扇形面积求法,正确得出对应点位置是解题关键.22.(10分)(2020•黔南州)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【分析】(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A的人数,再补全条形统计图;(2)利用样本估计总体,用450乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.【解答】解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)450×=180,所以估计全年级可能有180名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.23.(10分)(2020•黔南州)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)【分析】(1)利用题中的公式和特殊角的三角函数值计算75度的正切值;(2)如图2,先在Rt△BDE中利用正切的定义计算出BE,然后计算BE+AE即可.【解答】解:(1)tan75°=tan(45°+30°)====2+;(2)如图2,易得DE=CA=5.7,AE=CD=1.72,在Rt△BDE中,∵tan∠BDE=,∴BE=DEtan75°=5.7×(2+)≈21.2724,∴AB=BE+AE=21.2724+1.72≈23(m).答:文峰塔AB的高度约为23m.【点评】本题考查了解直角三角形的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(10分)(2020•黔南州)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?【分析】(1)根据题意列方程组即可得到结论;(2)①由题意列出y与x之间的关系式即可;②利用配方法,根据二次函数的性质解答即可;【解答】解:(1)根据题意得:,。

2020年贵州省黔南州中考数学试卷(解析版)

2020年贵州省黔南州中考数学试卷(解析版)

2020年贵州省黔南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.3的相反数是()A.﹣3B.3C.﹣D.2.观察下列图形,是中心对称图形的是()A.B.C.D.3.某市2020年参加中考的考生人数的为93400人,将93400用科学记数法表示为()A.934×102B.93.4×103C.9.34×104D.0.934×1054.下列四个几何体中,左视图为圆的是()A.B.C.D.5.下列运算正确的是()A.(a3)4=a12B.a3•a4=a12C.a2+a2=a4D.(ab)2=ab2 6.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A 的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.tan55°=B.tan55°=C.sin55°=D.cos55°=8.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元9.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.2210.已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5二.填空题(本题10小题,每题3分,共30分)11.分解因式:a3﹣2a2b+ab2=.12.若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=.13.若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为.14.函数y=x﹣1的图象一定不经过第象限.15.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C 在第二象限,若BC=OC=OA,则点C的坐标为.16.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是.17.已知菱形的周长为4,两条对角线长的和为6,则菱形的面积为.18.如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为.19.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【答案】见试题解答内容【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:.故答案为:.20.对于实数a,b,定义运算“*“,a*b=例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=.【考点】2C:实数的运算;A6:解一元二次方程﹣配方法;AB:根与系数的关系.【专题】23:新定义;523:一元二次方程及应用;65:数据分析观念.【答案】0.【分析】求出x2﹣8x+16=0的解,代入新定义对应的表达式即可求解.【解答】解:x2﹣8x+16=0,解得:x=4,即x1=x2=4,则x1*x2=x1•x2﹣x22=16﹣16=0,故答案为0.三、解答题(本题6小题,共80分)21.(1)计算(﹣)﹣1﹣3tan60°+|﹣|+(2cos60°﹣2020)0;(2)解不等式组:.22.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt△ABC中,∠BCA=90°,AC=3,BC=4,点O在线段BC上,且OC=,以O为圆心.OC为半径的⊙O交线段AO于点D,交线段AO的延长线于点E.(1)求证:AB是⊙O的切线;(2)研究过短中,小明同学发现=,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.23.勤劳是中生民的传統美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?24.某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?25.在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为,第五个图中y的值为.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为,当x=48时,对应的y=.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?26.如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.27.如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为,顶点坐标为;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.2020年贵州省黔南州中考数学试卷参考答案与试题解析一.选择题1.3的相反数是()A.﹣3B.3C.﹣D.【分析】根据相反数的定义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的定义,可得3的相反数是:﹣3.故选:A.2.观察下列图形,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.3.某市2020年参加中考的考生人数的为93400人,将93400用科学记数法表示为()A.934×102B.93.4×103C.9.34×104D.0.934×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:93400=9.34×104.故选:C.4.下列四个几何体中,左视图为圆的是()A.B.C.D.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,由此可确定答案.【解答】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D.5.下列运算正确的是()A.(a3)4=a12B.a3•a4=a12C.a2+a2=a4D.(ab)2=ab2【分析】利用幂的乘方的性质、同底数幂的乘法法则、合并同类项法则、积的乘方的性质分别进行计算即可.【解答】解:A、(a3)4=a12,故原题计算正确;B、a3•a4=a7,故原题计算错误;C、a2+a2=2a2,故原题计算错误;D、(ab)2=a2b2,故原题计算错误;故选:A.6.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°【分析】依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=30°,∴∠DEG=180°﹣30°=150°,由折叠可得,∠α=∠DEG=×150°=75°,故选:D.7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A 的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.tan55°=B.tan55°=C.sin55°=D.cos55°=【分析】根据锐角三角函数和直角三角形的性质解答即可.【解答】解:∵在Rt△ADE中,DE=6,AE=AB﹣BE=AB﹣CD=x﹣1,∠ADE=55°,∴sin55°=,cos55°=,tan55°=,故选:B.8.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元【分析】设该商品每件的进价为x元,根据利润=售价﹣成本,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.9.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.22【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9﹣9<4,所以能构成三角形,周长是:9+9+4=22.故选:D.10.已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5【分析】先估算出的范围,即可得出答案.【解答】解:∵4<<5,∴3<﹣1<4,∴﹣1在3和4之间,即3<a<4.故选:C.二.填空题11.分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.12.若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=9.【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【解答】解:∵a m﹣2b n+7与﹣3a4b4的和仍是一个单项式,∴m﹣2=4,n+7=4,解得:m=6,n=﹣3,故m﹣n=6﹣(﹣3)=9.故答案为:9.13.若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为4.【分析】根据众数的定义可得x的值,再依据中位数的定义即可得答案.【解答】解:∵2,3,x,1,5,7的众数为7,∴x=7,把这组数据从小到大排列为:1、2、3、5、6、7,则中位数为=4;故答案为:4.14.函数y=x﹣1的图象一定不经过第二象限.【分析】根据一次函数y=kx+b的图象的性质作答.【解答】解:由已知,得:k>0,b<0.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C 在第二象限,若BC=OC=OA,则点C的坐标为(﹣,2).【分析】根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【解答】解:∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).16.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是10.【分析】根据直角三角形的边角间关系,先计算AC,再在直角三角形ACD中,利用勾股定理求出AD.【解答】解:在Rt△ABC中,∵AB=2,sin∠ACB==,∴AC=2÷=6.在Rt△ADC中,AD===10.故答案为:10.17.已知菱形的周长为4,两条对角线长的和为6,则菱形的面积为4.【分析】由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO•BO=4,即可得出答案.【解答】解:如图所示:∵两条对角线的和为6,∴AC+BD=6,∵菱形的周长为4,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故答案为:4.18.如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为y=.【分析】过点C作CE⊥y轴于E,由“AAS”可证△ABO≌△BCE,可得CE=OB=6,BE=AO=8,可求点C坐标,即可求解.【解答】解:如图,过点C作CE⊥y轴于E,∵四边形ABCD是正方形,∴AB=BC=10,∠ABC=90°,∴OB===6,∵∠ABC=∠AOB=90°,∴∠ABO+∠CBE=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∵∠AOB=∠BEC=90°,∴△ABO≌△BCE(AAS),∴CE=OB=6,BE=AO=8,∴OE=2,∴点C(6,2),∵反比例函数y=(k≠0)的图象过点C,∴k=6×2=12,∴反比例函数的解析式为y=,故答案为:y=.19.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【答案】见试题解答内容【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:.故答案为:.20.对于实数a,b,定义运算“*“,a*b=例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=.【考点】2C:实数的运算;A6:解一元二次方程﹣配方法;AB:根与系数的关系.【专题】23:新定义;523:一元二次方程及应用;65:数据分析观念.【答案】0.【分析】求出x2﹣8x+16=0的解,代入新定义对应的表达式即可求解.【解答】解:x2﹣8x+16=0,解得:x=4,即x1=x2=4,则x1*x2=x1•x2﹣x22=16﹣16=0,故答案为0.三、解答题21.(1)计算(﹣)﹣1﹣3tan60°+|﹣|+(2cos60°﹣2020)0;(2)解不等式组:.【考点】2C:实数的运算;6F:负整数指数幂;CB:解一元一次不等式组;T5:特殊角的三角函数值.【专题】524:一元一次不等式(组)及应用;66:运算能力.【答案】(1)﹣1﹣2;(2)x≥1.【分析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=﹣2﹣3×++(2×﹣2020)0=﹣2﹣3++(1﹣2020)2=﹣2﹣2+20190=﹣2﹣2+1=﹣1﹣2;(2)解不等式≤1,得:x≥1,解不等式是3x+2≥4,得:x≥,则不等式组的解集为x≥1.22.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt△ABC中,∠BCA=90°,AC=3,BC=4,点O在线段BC上,且OC=,以O为圆心.OC为半径的⊙O交线段AO于点D,交线段AO的延长线于点E.(1)求证:AB是⊙O的切线;(2)研究过短中,小明同学发现=,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.【考点】1O:数学常识;KQ:勾股定理;M5:圆周角定理;ME:切线的判定与性质;S9:相似三角形的判定与性质.【专题】55A:与圆有关的位置关系;55D:图形的相似;67:推理能力.【答案】(1)证明见解析过程;(2)结论正确,理由见解析过程.【分析】(1)过点O作OH⊥AB于H,由勾股定理可求AB的长,由面积法可求OH==OC,即可求结论.(2)连接CD,EC,通过证明△DAC∽△CAE,可得,由DE=AC=3,可得结论.【解答】解:(1)如图1,过点O作OH⊥AB于H,∵∠BCA=90°,AC=3,BC=4,∴AB===5,∵S△ABC=S△AOC+S△ABO,∴×3×4=×3×+×5×OH,∴OH=,∴OC=OH,且OH⊥BA,∴AB是⊙O的切线;(2)结论成立,理由如下:连接CD,EC,∵DE是直径,∴∠ECD=90°=∠ACO,∴∠ECO=∠ACD,∵OC=OE,∴∠CEO=∠OCE,∴∠ACD=∠CEO,又∵∠DAC=∠EAC,∴△DAC∽△CAE,∴,∵OC=,∴DE=2OC=3=AC,∴=,故小明同学发现的结论是正确的.23.勤劳是中生民的传統美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?【考点】V5:用样本估计总体;V8:频数(率)分布直方图;VB:扇形统计图;VC:条形统计图.【专题】54:统计与概率;65:数据分析观念.【答案】见试题解答内容【分析】(1)根据A类的人数和所占的百分比,可以求得本次调查的人数;(2)根据统计图中的数据,可以得到B类和C类的人数,然后即可将频数分布直方图补充完整;(3)根据统计图中的数据,可以得到m和α的值;(4)根据统计图中的数据,可以计算出该校七年級有多少名学生寒假在家做家务的总时间不低于20小时.【解答】解:(1)本次共调查了10÷20%=50名学生,故答案为:50;(2)B类学生有:50×24%=12(人),D类学生有:50﹣10﹣12﹣16﹣4=8(人),补全的条形统计图如右图所示;(3)m%=16÷50×100%=32%,即m=32,类别D所对应的扇形圆心角α的度数是:360°×=57.6°,故答案为:32,57.6;(4)400×=224(人),即该校七年級有224名学生寒假在家做家务的总时间不低于20小时.24.某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?【考点】8A:一元一次方程的应用;B7:分式方程的应用.【专题】521:一次方程(组)及应用;522:分式方程及应用;69:应用意识.【答案】(1)甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)购买了20瓶乙品牌消毒剂.【分析】(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意列出分式方程,解方程即可;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意列出一元一次方程,解方程即可.【解答】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x ﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.25.在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为,第五个图中y的值为.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为,当x=48时,对应的y=.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?【考点】38:规律型:图形的变化类;AD:一元二次方程的应用.【专题】2A:规律型;523:一元二次方程及应用;69:应用意识.【答案】(1)10;15;(2)y=;1128;(3)该班共有20名女生.【分析】(1)观察图形,可以找出第四和第五个图中的y值;(2)根据y值随x值的变化,可找出y=,再代入x=48可求出当x=48时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.故答案为:10;15.(2)∵1=,3=,6=,10=,15=,∴y=,当x=48时,y==1128.故答案为:y=;1128.(3)依题意,得:=190,化简,得:x2﹣x﹣380=0,解得:x1=20,x2=﹣19(不合题意,舍去).答:该班共有20名女生.26.如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.【考点】M5:圆周角定理;ME:切线的判定与性质;T7:解直角三角形.【专题】554:等腰三角形与直角三角形;559:圆的有关概念及性质;55A:与圆有关的位置关系;55D:图形的相似;67:推理能力.【答案】见试题解答内容【分析】(1)连结OF,BE,得到BE∥CD,根据平行线的性质得到CD⊥OF,即可得出结论;(2)由相似三角形的性质求出AC长,再由勾股定理可求得DC长,则能求出CF长,即可得出结果.【解答】(1)证明:连结OF,BE,如图:∵AB是⊙O的直径,∴∠AEB=90°,∵∠C=90°,∴∠AEB=∠ACD,∴BE∥CD,∵点F是弧BE的中点,∴OF⊥BE,∴OF⊥CD,∵OF为半径,∴直线DF是⊙O的切线;(2)解:∵∠C=∠OFD=90°,∴AC∥OF,∴△OFD∽△ACD,∴=,∵BD=2,OF=OB=4,∴OD=6,AD=10,∴AC===,∴CD===,∵AC∥OF,OA=4,∴=,即=,解得:CF=,∴tan∠AFC===.27.如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为,顶点坐标为;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.【考点】HF:二次函数综合题.【专题】535:二次函数图象及其性质;553:图形的全等;555:多边形与平行四边形;558:平移、旋转与对称;55E:解直角三角形及其应用;69:应用意识.【答案】(1)y=﹣x2+x+4,(4,);(2)点N在直线AC上,理由见解析过程;(3)四边形AMEF的面积=22.【分析】(1)将点B,点C坐标代入解析式可求a,b的值,由配方法可求顶点坐标;(2)由余角的性质可得∠MAO=∠B,利用三角函数可求tan∠MAO=tan∠NAO=tan∠CAO=,可得∠CAO=∠NAO,可得AC与AN共线,即可求解;(3)先求出OB解析式,AF解析式,联立方程组可求点F坐标,由四边形AMEF的面积=S四边形AMDF+S△DEF=S四边形AMDF+S△OAM=S四边形OAFD,可求解.【解答】解:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴交于点C(﹣2,0),且经过点B (8,4),∴,解得:,∴抛物线解析式为:y=﹣x2+x+4,∵:y=﹣x2+x+4=﹣(x﹣4)2+,∴顶点坐标为(4,)故答案为:y=﹣x2+x+4,(4,);(2)点N在直线AC上,理由如下:∵抛物线y=﹣x2+x+4与y轴交于点A,∴点A(0,4),即OA=4,∵点B(8,4),∴AB∥x轴,AB=8,∴AB⊥AO,∴∠OAB=90°,∴∠OAM+∠BAM=90°,∵AM⊥OB,∴∠BAM+∠B=90°,∴∠B=∠OAM,∴tan∠B=tan∠OAM===,∵将Rt△OMA沿y轴翻折,∴∠NAO=∠OAM,∴tan∠NAO=tan∠OAM=,∵OC=2,OA=4,∴tan∠CAO==,∴tan∠CAO=tan∠NAO,∴∠CAO=∠NAO,∴AN,AC共线,∴点N在直线AC上;(3)∵点B(8,4),点O(0,0),∴直线OB解析式为y=x,∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴AF∥OB,∴直线AF的解析式为:y=x+4,联立方程组:解得:或∴点F(,),∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴Rt△OMA≌Rt△DEF,OA=DF,OA∥DF∴S△OMA=S△DEF,四边形OAFD是平行四边形,∵四边形AMEF的面积=S四边形AMDF+S△DEF=S四边形AMDF+S△OAM=S四边形OAFD,∴四边形AMEF的面积=S四边形OAFD=4×=22.。

贵州黔西南州2020年中考数学试题(Word版,含答案与解析)

贵州黔西南州2020年中考数学试题(Word版,含答案与解析)

贵州黔西南州2020年中考数学试卷一、选择题(共10题;共20分)1.2的倒数是()A. 2B. 12C. −12D. -2【答案】B【考点】有理数的倒数【解析】【解答】∵2× 12=1,∴2的倒数是12,故答案为:B .【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案2.某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A. 0.36×106B. 3.6×105C. 3.6×106D. 36×105【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:360 000=3.6×105,故答案为:B.【分析】本题考查了科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.3.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A. B. C. D.【答案】 D【考点】简单组合体的三视图【解析】【解答】解:从上面看可得四个并排的正方形,如图所示:故答案为:D.【分析】俯视图为从立体图形的上方进行观察,得到答案即可。

4.下列运算正确的是()A. a3+a2=a5B. a3÷a=a3C. a2•a3=a5D. (a2)4=a6【答案】C【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】A、a3、a2不是同类项,不能合并,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)4=a8,故D错误.故答案为:C.【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项分析判断后即可求解.5.某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A. 4,5B. 5,4C. 4,4D. 5,5【答案】A【考点】中位数,众数【解析】【解答】解:将4,3,5,5,2,5,3,4,1按由小到大的顺序排列为:1,2,3,3,4,4,5,5,5,处在最中间的数是4,所以中位数是4,其中5出现了3次,出现次数最多,所以众数是5,故答案为:A.【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;出现次数最多的数据叫做这组数据的众数,由此可求解。

贵州省黔南州2020年中考数学试卷

贵州省黔南州2020年中考数学试卷

贵州省黔南州2020年中考数学试卷一、单选题1.如图,四边形ABCD 是矩形,连接BD ,60ABD ∠=,延长BC 到E 使CE =BD ,连接AE ,则AEB ∠的度数为( )A .15B .20C .30D .602.2015年11月,“喜迎G20·杭州毅行大会”在杭州市民心中盛大开幕,本次毅行大会参与总人数超过42000人,用科学计数法表示42000应为( ). A .34210⨯B .54.210⨯C .50.4210⨯D .44.210⨯3.已知等腰三角形两边的长分别是6和10,则此三角形的周长是( ) A .22或26B .22C .24D .264.用5个完全相同的小正方体组合成如图所示的立体图形,它的左视图为( )A .B .C .D .5.判断√13之值介于下列哪两个整数之间( ) A .3,4B .4,5C .5,6D .6,76.下列六个图形中是轴对称图形的有( )7.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G ,连接GF ,下列结论:①∠AGD=112.5°;②tan ∠AED=2;③S △AGD =S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG,其中正确结论的序号是( )A .①②③④⑤B .①②③④C .①③④⑤D .①④⑤8.下列运算正确的是( ) A .a 2+a 2=a 4 B .(﹣b 2)3=﹣b 6 C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 29.6-的相反数可以表示成( ) A .(6)-+B .(6)+-C .(6)--D .16⎛⎫--⎪⎝⎭10.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( ) A .0.8y x = B .30y x = C .120y x = D .150y x =二、填空题11.在《九章算术》“盈不足”中记载:“今有共买金,人出四百,盈三千四百;人出三百,盈一百,问人数、金价各几何?”“译文:“假设有一些人一起买金子,每人出400,多了3400;每人出300,多了100.问:人数是多少?金价是多少?”设人数为x 人,金价为y ,可列方程组为________.12.在平面直角坐标系xOy 中,一次函数y =10−x 的图象与函数y =6x (x >0)的图象相交于点A ,B .设点A 的坐标为(x 1,y 1),那么长为x 1,宽为y 1的矩形的面积为 ,周长为 .13.因式分解:3x 3﹣12x=_____.14.已知代数式53a b +的值为-4.那么代数式2()4(2)3a b a b +++的值是__.15.三个正方形如图摆放,其中两个正方形的面积为125S =,2144S =,则第三个正方形面积为3S =__________.16.一次函数y=3x-1的图像在y 轴上的截距是______.17.在平面直角坐标系中,一次函数y=kx+b(k 、b 为常数,k≠0)的图象经过第一、三、四象限,则直线y=kbx-k 不经过第_________象限.18.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 是平面内的一个动点,且AD =4,M 为BD 的中点.设线段CM 长度为a ,在D 点运动过中,a 的取值范围是__________.19.小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.20.定义:对于实数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.75=,[]55=,[]4π-=-,如果241x +⎡⎤⎢⎥⎦=-⎣,那么x 的取值范围是________三、解答题21.如图,在平面直角坐标系中,一次函数122y x =-的图像分别交x 、y 轴于点A 、B ,抛物线2y x bx c =++经过点A 、B ,点P 为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P 作PM ∥y 轴,分别交直线AB 、x 轴于点C 、D ,若以点P 、B 、C 为顶点的三角形与以点A 、C 、D 为顶点的三角形相似,求点P 的坐标;(3)如图2所示,过点P 作PQ ⊥AB 于点Q ,连接PB ,当△PBQ 中有某个角的度数等于∠OAB 度数的2倍时,请直接写出点P 的横坐标.22.如图,△ABC 中,A1,A2,A3,…,An 为AC 边上不同的n 个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表:若出现了45个三角形,则共连接了多少个点? 若一直连接到An ,则图中共有__________个三角形. 23.计算:-2+(π-1)0+tan60°-;24.如图所示,O 分别切ABC 的三边AB 、BC 、CA 于点D 、E 、F ,若8BC =,10AC =,6AB =.(1)求AD 的长; (2)求O 的半径长.25.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?26.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查的样本容量是(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?27.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB (1)求证:BC是⊙O的切线;(2)若⊙O OP=1,求BC的长.参考答案1.A如图,连接AC.只要证明CE=CA,推出∠E=∠CAE,求出∠ACE即可解决问题.如图,连接AC.∵四边形ABCD是矩形,∴AC=BD.∵EC=BD,∴AC=CE,∴∠AEB=∠CAE,易证∠ACB=∠ADB=30°.∵∠ACB=∠AEB+∠CAE,∴∠AEB=∠CAE=15°.故选A.本题考查了矩形的性质、等腰三角形的判定和性质,三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.2.D解:用科学记数法表示42000应为4.2×104,故选D.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.A因为等腰三角形的两边分别为6和10,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.解:当6为底时,其它两边都为6,10、10可以构成三角形,周长为26;当6为腰时,其它两边为6和10,可以构成三角形,周长为22.故选:A.本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.4.D根据左视图的定义,找到从左面看所得到的图形即可得答案.从左面看,小正方体有两层,第一层有两个小正方形,上层左面有一个小正方形,故选D.本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.5.A由9<13<16得出3<√13<4即可求解.∵9<13<16,∴√9<√13<√16,即3<√13<4.故选A.考查了估算无理数的大小,能估算出√13的范围是解此题的关键.6.D解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,第五个图形是轴对称图形,第六个图形不是轴对称图形,综上所述,是轴对称图形的有4个.故选D.7.D∵在正方形纸片ABCD中,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F 重合,∠ADO=22.5°,∴∠GAD=45°,∠ADG=12∴∠AGD=112.5°,∴①正确.,AE=EF<BE,∵tan∠AED=ADAEAB,∴AE<12>2,∴tan∠AED=ADAE∴②错误.∵AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,∴③错误.根据题意可得:AE=EF,AG=FG,又∵EF∥AC,∴∠FEG=∠AGE,。

贵州省黔南布依族苗族自治州2020版中考数学试卷A卷

贵州省黔南布依族苗族自治州2020版中考数学试卷A卷

贵州省黔南布依族苗族自治州2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分)地球上的水的总储量约为 1.39×1018m3 ,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m3 ,因此我们要节约用水。

请将0.0107×1018m3用科学记数法表示是()A . 1.07×1016m3B . 0.107×1017m3C . 10.7×1015m3D . 1.07×1017m32. (2分)将“富强、民主、文明”六个字分别写在一个正方体的六个面上,正方体的平面展开图如图所示,那么在这个正方体中,和“强”相对的字是()A . 文B . 明C . 民D . 主3. (2分)(2017·重庆) 要使分式有意义,x应满足的条件是()A . x>3B . x=3C . x<3D . x≠34. (2分)直径为6和10的两圆相外切,则其圆心距为()A . 16B . 8C . 4D . 25. (2分)如图,为了估计池塘岸边A、B两点间的距离,小明在池塘一侧选取一点O,现测得OA=15米,OB=10米,那么A、B两点间的距离不可能是()A . 25米B . 15米C . 10米D . 6米6. (2分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,E为BC中点,则sin∠AEB 的值是()A .B .C .D .7. (2分)(2019·南京) 计算的结果是()A .B .C .D .8. (2分) (2018八上·濮阳开学考) 不等式组的解在数轴上表示为()A .B .C .D .9. (2分)(2017八上·江海月考) 在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3,能确定△ABC为直角三角形的条件有()A . 1个B . 2个C . 3个D . 0个10. (2分) (2018八上·慈利期中) 若,则分式等于()A .B .C . 1D .11. (2分)如图,已知直角梯形ABCD的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形ABCD的中位线长为()A . 4cmB . 6cmC . 8cmD . 10cm12. (2分) (2017九上·滦县期末) 如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2 .则S阴影=()A . πB . 2πC .D . π二、填空题. (共6题;共7分)13. (1分)一个数为﹣5,另一个数比它的相反数大4,这两数的和为________.14. (1分)(2017·温州模拟) 如图,点A、B在双曲线y= (x<0)上,连接OA、AB,以OA、AB为边作▱OABC.若点C恰落在双曲线y= (x>0)上,此时▱OABC的面积为________.15. (1分)(2018·肇庆模拟) 因式分解: -x2+2xy-y2________.16. (1分)为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排多站一人,则每排人数y与该排排数x之间的函数关系式为________.17. (1分) (2016九上·市中区期末) 已知抛物线y=x2+(m+1)x+m﹣1与x轴交于A,B两点,顶点为C,则△ABC面积的最小值为________.18. (2分)(2017·大祥模拟) 某果园有果树200棵,从中随机抽取5棵,每棵果树的产量如下(单位:千克)98,102,97,103,105这5棵果树的平均产量为________千克,估计这200棵果树的总产量约为________千克.三、解答题. (共7题;共67分)19. (10分)(2017·海口模拟) 根据要求进行计算:(1)计算:(﹣1)5+15×3﹣2﹣;(2)求不等式组:的所有整数解.20. (7分) 2009年5月31日,A、B两地的气温变化如下图所示:(1)这一天A地气温的极差是________,B地气温的极差是________;(2) A、B两地气候有什么异同?21. (10分)(2016·常德) 某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?22. (10分)如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE , AD与BE相交于点F .(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.23. (10分)如图为某种材料温度y(℃)随时间x(min)变化的函数图像.已知该材料初始温度为15 ℃,温度上升阶段y与时间x成一次函数关系,且在第5分钟温度达到最大值60 ℃后开始下降;温度下降阶段,温度y与时间x成反比例关系.(1)分别求该材料温度上升和下降阶段,y与x间的函数关系式;(2)根据工艺要求,当材料的温度高于30 ℃时,可以进行产品加工,问可加工多长时间?24. (10分) (2019九上·遵义月考) 如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.25. (10分)(2017·徐州模拟) 已知二次函数y=ax2+bx﹣2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=﹣2和x=5时二次函数的函数值y相等.(1)求实数a、b的值;(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;参考答案一、选择题. (共12题;共24分)1-1、2、答案:略3、答案:略4-1、5-1、6-1、7、答案:略8-1、9-1、10-1、11-1、12-1、二、填空题. (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18、答案:略三、解答题. (共7题;共67分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、。

贵州省黔南布依族苗族自治州2020年(春秋版)中考数学试卷A卷

贵州省黔南布依族苗族自治州2020年(春秋版)中考数学试卷A卷

贵州省黔南布依族苗族自治州2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2016·内江) ﹣2016的倒数是()A . ﹣2016B . ﹣C .D . 20162. (2分) (2019七上·毕节期中) 一个两位数,个位数字为,十位数字为,则这个两位数为()A .B .C .D .3. (2分)(2020·河南模拟) 正在发展中的西安地铁给百姓的出行带来了极大的便利,它也逐渐成为低碳环保的最佳出行选择,如图,在正方体展开图的六个面上分别写了“市”“内”“请”“乘”“地”“铁”六个字,然后将其围成一个正方体,使得从前面看到“地”,从右边看到“乘”,则从上面看到是应该是()A . “铁”B . “请”C . “内”D . “市”4. (2分)(2020·雁塔模拟) 如图,直线l:与y轴交于点A,将直线l绕点A顺时针旋转75°后,所得直线的解析式为()A . y= x+B . y=x﹣C . y=﹣x+D . y=x+5. (2分)(2018·台州) 下列命题正确的是()A . 对角线相等的四边形是平行四边形B . 对角线相等的四边形是矩形C . 对角线互相垂直的平行四边形是菱形D . 对角线互相垂直且相等的四边形是正方形6. (2分)(2017·安次模拟) 实数的小数部分是()A . 6﹣B . ﹣6C . 7﹣D . ﹣77. (2分)如图,在⊙O中,直径CD⊥弦AB,若∠C=30°,则∠BOD的度数是()A . 30°B . 40°C . 50°D . 60°8. (2分) (2017九上·遂宁期末) 如图,在菱形ABCD中,DE⊥AB,cosA= ,BE=3,则tan∠DBE 的值是()A .B . 2C .D .二、填空题 (共10题;共11分)9. (1分)绝对值小于6且不大于2的负整数有________.10. (1分)(2020·武昌模拟) 化简:的结果是________.11. (1分)(2017·黄冈模拟) 分解因式:a3﹣9a=________.12. (1分) (2019七下·鸡西期末) 点关于轴的对称点的坐标为________.13. (1分)(2019·朝阳) 2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为________.14. (1分)(2019·盐城) 如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为________.15. (1分) (2020八下·邵阳期末) 如图,□ABCD的一个外角∠CBE是70°,则∠D的大小是________.16. (1分) (2019九上·磴口期中) 如图,点A,B,D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,若∠OCB=40°,则直线BC与⊙O的位置关系为________.17. (1分)有一组数:2,5,10,17,26,….,请观察这组数的规律,写出这组数的第n个数是________.18. (2分) (2016九上·通州期末) 学习相似三角形和解直角三角形的相关内容后,张老师请同学们交流这样的一个问题:“如上图,在正方形网格上有△A1B1C1和△A2B2C2 ,这两个三角形是否相似?”,那么你认为△A1B1C1和△A2B2C2________,(相似或不相似);理由是________.三、解答题 (共10题;共110分)19. (10分) (2019八上·丹徒月考) 化简(1)(2)20. (10分)用适当的方法解下列方程组.(1)(2).21. (15分) (2017八下·海安期中) 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=3,AB=4,求菱形ADCF的面积.22. (15分)学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整统计图.请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动.欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都“喜欢乘车”的学生的概率.23. (10分) (2020·岐山模拟) 现有四个外观与质地完全相同的小球,小球上分别标有数字 .将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.24. (10分) (2019八下·乌兰浩特期末) 如图,在平面直角坐标系xOy中,一次函数与x 轴交于点A ,与y轴交于点B .将△AOB沿过点B的直线折叠,使点O落在AB边上的点D处,折痕交x轴于点E .(1)求直线BE的解析式;(2)求点D的坐标;25. (5分)(2018·西华模拟) 为了对一棵倾斜的古杉树AB进行保护,需测量其长度,如图,在地面上选取一点C,测得∠ACB=45 ,AC=24 m,∠BAC=66.5 ,求这棵古杉树AB的长度.(结果精确到0.1 m.参考数据:sin66.5 ≈0.92,cos66.5 ≈0.40,tan66.5 ≈2.30)26. (10分) (2019九上·昭阳开学考) 已知关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为大于1的整数,求方程的根.27. (15分) (2018九上·阜宁期末) 在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P 作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若Rt△AQP≌Rt△ACP≌Rt△BQP,求的值;(3)已知AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值.28. (10分) (2019九上·杭州开学考) 某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为50m,设两饲养室合计长x(m),总占地面积为y(m2)(1)求y关于x的函数表达式和自变量的取值范围;(2)若要使两间饲养室占地总面积达到200m2 ,则各道墙的长度为多少?占地总面积有可能达到210m2吗?参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共110分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、26-1、26-2、27-1、27-2、27-3、28-1、28-2、。

2020年贵州黔东南州中考数学试题(含答案)

2020年贵州黔东南州中考数学试题(含答案)

2020年贵州黔东南州中考数学试题一.选择题(共10小题)1.﹣2020的倒数是()A.﹣2020 B.﹣C.2020 D.参考答案:解:﹣2020的倒数是﹣,故选:B.2.下列运算正确的是()A.(x+y)2=x2+y2B.x3+x4=x7C.x3•x2=x6D.(﹣3x)2=9x2.参考答案:解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,正确.故选:D.3.实数2介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间参考答案:解:∵2=,且6<<7,∴6<2<7.故选:C.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7 B.7 C.3 D.﹣3参考答案:解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠l=25°,则∠2等于()A.25°B.30°C.50°D.60°.参考答案:解:由折叠的性质可知:∠ACB′=∠1=25°.∵四边形ABCD为矩形,∴AD∥BC,∴∠2=∠1+∠ACB′=25°+25°=50°.故选:C.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个参考答案:解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故选:D.7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8 B.12 C.16 D.2解析:连接OA,先根据⊙O的直径CD=20,OM:OD=3:5求出OD 及OM的长,再根据勾股定理可求出AM的长,进而得出结论.参考答案:解:连接OA,∵⊙O的直径CD=20,OM:OD=3:5,∴OD=10,OM=6,∵AB⊥CD,∴AM===8,∴AB=2AM=16.故选:C.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16 B.24 C.16或24 D.48参考答案:解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,∴菱形ABCD的周长=4AB=24.故选:B.9.如图,点A是反比例函数y═(x>0)上的一点,过点A作AC ⊥y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x 轴上的动点,则△PAB的面积为()A.2 B.4 C.6 D.8参考答案:解:如图,连接OA、OB、PC.∵AC⊥y轴,∴S△APC=S△AOC=×|6|=3,S△BPC=S△BOC=×|2|=1,∴S△PAB=S△APC﹣S△BPC=2.故选:A.10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1 B.π﹣2 C.π﹣3 D.4﹣π参考答案:解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.二.填空题(共10小题)11.cos60°=.参考答案:解:cos60°=.故答案为:.12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为 3.2×106.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:3200000=3.2×106.故答案为:3.2×106.13.在实数范围内分解因式:xy2﹣4x=x(y+2)(y﹣2).解析:本题可先提公因式x,再运用平方差公式分解因式即可求解.参考答案:解:xy2﹣4x=x(y2﹣4)=x(y+2)(y﹣2).故答案为:x(y+2)(y﹣2).14.不等式组的解集为2<x≤6.解析:先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找”可确定不等式组的解集.参考答案:解:解不等式5x﹣1>3(x+1),得:x>2,解不等式x﹣1≤4﹣x,得:x≤6,则不等式组的解集为2<x≤6,故答案为:2<x≤6.15.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为y=2x+3.解析:直接利用一次函数的平移规律进而得出答案.参考答案:解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是﹣3<x<1.解析:根据物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.参考答案:解:∵物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为(2,﹣1).解析:根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.参考答案:解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),故答案为:(2,﹣1).18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.参考答案:解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∴出场顺序恰好是甲、乙、丙的概率为,故答案为:.19.如图,AB是半圆O的直径,AC=AD,OC=2,∠CAB=30°,则点O到CD的距离OE为.解析:在等腰△ACD中,顶角∠A=30°,易求得∠ACD=75°;根据等边对等角,可得:∠OCA=∠A=30°,由此可得,∠OCD=45°;即△COE是等腰直角三角形,则OE=.参考答案:解:∵AC=AD,∠A=30°,∴∠ACD=∠ADC=75°,∵AO=OC,∴∠OCA=∠A=30°,∴∠OCD=45°,即△OCE是等腰直角三角形,在等腰Rt△OCE中,OC=2;因此OE=.故答案为:.20.如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ⊥BC于点Q,则PQ=.解析:根据矩形的性质得到AB∥CD,AB=CD,AD=BC,∠BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.参考答案:解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,AD=BC,∠BAD=90°,∵E为CD的中点,∴DE=CD=AB,∴△ABP∽△EDP,∴=,∴=,∴=,∵PQ⊥BC,∴PQ∥CD,∴△BPQ∽△DBC,∴==,∵CD=2,∴PQ=,故答案为:.三.解答题(共6小题)21.(1)计算:()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(﹣a+1)÷,其中a从﹣1,2,3中取一个你认为合适的数代入求值.解析:(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.参考答案:解:(1)()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0=4+﹣3+2×1﹣1=4+﹣3+2﹣1=2+;(2)(﹣a+1)÷=×==﹣a﹣1,要使原式有意义,只能a=3,则当a=3时,原式=﹣3﹣1=﹣4.22.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x 为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x<90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率A a 20%B 16 40%C b mD 4 10%请你根据统计图表提供的信息解答下列问题:(1)上表中的a8,b=12,m=30%.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.解析:(1)根据题意列式计算即可得到结论;(2)用D等级人数除以它所占的百分比即可得到调查的总人数;(3)列表将所有等可能的结果列举出来,利用概率公式求解即可.参考答案:解:(1)a=16÷40%×20%=8,b=16÷40%×(1﹣20%﹣40%﹣10%)=12,m=1﹣20%﹣40%﹣10%=30%;故答案为:8,12,30%;(2)本次调查共抽取了4÷10%=40名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,A B a bA (A,B)(A,a)(A,b)B (B,A)(B,a)(B,b)a (a,A)(a,B)(a,b)b (b,A)(b,B)(b,a)∵共有12种等可能的结果,恰为一男一女的有8种,∴抽得恰好为“一男一女”的概率为=.23.如图,AB是⊙O的直径,点C是⊙O上一点(与点A,B不重合),过点C作直线PQ,使得∠ACQ=∠ABC.(1)求证:直线PQ是⊙O的切线.(2)过点A作AD⊥PQ于点D,交⊙O于点E,若⊙O的半径为2,sin ∠DAC=,求图中阴影部分的面积.解析:(1)连接OC,由直径所对的圆周角为直角,可得∠ACB=90°;利用等腰三角形的性质及已知条件∠ACQ=∠ABC,可求得∠OCQ=90°,按照切线的判定定理可得结论.(2)由sin∠DAC=,可得∠DAC=30°,从而可得∠ACD的度数,进而判定△AEO为等边三角形,则∠AOE的度数可得;利用S阴影=S扇形﹣S△AEO,可求得答案.参考答案:解:(1)证明:如图,连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵OA=OC,∴∠CAB=∠ACO.∵∠ACQ=∠ABC,∴∠CAB+∠ABC=∠ACO+∠ACQ=∠OCQ=90°,即OC⊥PQ,∴直线PQ是⊙O的切线.(2)连接OE,∵sin∠DAC=,AD⊥PQ,∴∠DAC=30°,∠ACD=60°.又∵OA=OE,∴△AEO为等边三角形,∴∠AOE=60°.∴S阴影=S扇形﹣S△AEO=S扇形﹣OA•OE•sin60°=×22﹣×2×2×=﹣.∴图中阴影部分的面积为﹣.24.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)11 19日销售量y(件)18 2请写出当11≤x≤19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?参考答案:解:(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:,解得:.∴甲、乙两种商品的进货单价分别是10、15元/件.(2)设y与x之间的函数关系式为y=k1x+b1,将(11,18),(19,2)代入得:,解得:.∴y与x之间的函数关系式为y=﹣2x+40(11≤x≤19).(3)由题意得:w=(﹣2x+40)(x﹣10)=﹣2x2+60x﹣400=﹣2(x﹣15)2+50(11≤x≤19).∴当x=15时,w取得最大值50.∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.25.如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.参考答案:解:(1)全等,理由是:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,,∴△ACE≌△BCD( SAS);(2)如图3,由(1)得:△BCD≌△ACE,∴BD=AE,∵△DCE都是等边三角形,∴∠CDE=60°,CD=DE=2,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=3,DE=2,∴AE===,∴BD=;(3)如图2,过A作AF⊥CD于F,∵B、C、E三点在一条直线上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等边三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,在Rt△ACF中,sin∠ACF=,∴AF=AC×sin∠ACF=1×=,∴S△ACD===,∴CF=AC×cos∠ACF=1×=,FD=CD﹣CF=2﹣,在Rt△AFD中,AD2=AF2+FD2==3,∴AD=.26.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E 的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.参考答案:解:(1)∵抛物线的顶点为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∴a=1,∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴B(3,0),A(﹣1,0),令x=0,则y=﹣3,∴C(0,﹣3),∴AC=,设点E(0,m),则AE=,CE=|m+3|,∵△ACE是等腰三角形,∴①当AC=AE时,=,∴m=3或m=﹣3(点C的纵坐标,舍去),∴E(3,0),②当AC=CE时,=|m+3|,∴m=﹣3±,∴E(0,﹣3+)或(0,﹣3﹣),③当AE=CE时,=|m+3|,∴m=﹣,∴E(0,﹣),即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);(3)如图,存在,∵D(1,﹣4),∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∴点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∴t=1+2或t=1﹣2,∴Q(1+2,4)或(1﹣2,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∴FB=PG=3﹣1=2,∴点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).。

2020年贵州省黔南州中考数学试卷(含答案解析)

2020年贵州省黔南州中考数学试卷(含答案解析)

2020年贵州省黔南州中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.3的相反数是()A. −3B. 3C. −13D. 132.观察下列图形,是中心对称图形的是()A. B. C. D.3.某市2020年参加中考的考生人数的为93400人,将93400用科学记数法表示为()A. 934×102B. 93.4×103C. 9.34×104D. 0.934×1054.下列四个几何体中,左视图为圆的是()A. B. C. D.5.下列运算正确的是()A. (a3)4=a12B. a3⋅a4=a12C. a2+a2=a4D. (ab)2=ab26.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A. 30°B. 45°C. 74°D. 75°7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A. tan55°=6x−1B. tan55°=x−16C. sin55°=x−16D. cos55°=x−168.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A. 7.4元B. 7.5元C. 7.6元D. 7.7元9.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A. 22B. 17C. 17或22D. 2610.已知a=√17−1,a介于两个连续自然数之间,则下列结论正确的是()A. 1<a<2B. 2<a<3C. 3<a<4D. 4<a<5二、填空题(本大题共10小题,共30.0分)11.分解因式:a3−2a2b+ab2=______.12.若a m−2b n+7与−3a4b4的和仍是一个单项式,则m−n=______.13.若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为______.14.函数y=x−1一定不经过第______ 象限.15.如图,在平面直角坐标系中,直线y=−43x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为______.16.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=13,则AD长度是______.17.已知菱形的周长为4√5,两条对角线的和为6,则菱形的面积为______.18.如图,正方形ABCD的边长为10,点A的坐标为(−8,0),点B在y轴上,若反比例函数y=kx(k≠0)的图象过点C,则该反比例函数的解析式为______.19.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为______.20.对于实数a,b,定义运算“∗“,a∗b={a2−ab(a>b)ab−b2(a≤b)例如4∗2,因为4>2,所以4∗2=42−4×2=8.若x1,x2是一元二次方程x2−8x+16=0的两个根,则x1∗x2=______.三、解答题(本大题共7小题,共90.0分)21.(1)计算(−12)−1−3tan60°+|−√3|+(2cos60°−2020)0;(2)解不等式组:{3−x2≤13x+2≥4.22.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt△ABC中,∠BCA=90°,AC=3,BC=4,点O在线段BC上,且OC=32,以O为圆心.OC为半径的⊙O交线段AO于点D,交线段AO的延长线于点E.(1)求证:AB是⊙O的切线;(2)研究过短中,小明同学发现ADDE =DEAE,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.23.勤劳是中生民的传統美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了______名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m=______,类别D所对应的扇形圆心角α的度数是______度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?24.某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?25.在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为______,第五个图中y的值为______.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为______,当x=48时,对应的y=______.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?26.如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.27.如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x轴交于点C(−2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt△OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为______,顶点坐标为______;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.答案和解析1.【答案】A【解析】解:根据相反数的含义,可得3的相反数是:−3.故选:A.根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“−”,据此解答即可.此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”.2.【答案】D【解析】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】C【解析】解:93400=9.34×104.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形, 故选:D .四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,由此可确定答案.主要考查立体图形的左视图,关键是几何体的左视图.5.【答案】A【解析】解:A 、(a 3)4=a 12,故原题计算正确; B 、a 3⋅a 4=a 7,故原题计算错误; C 、a 2+a 2=2a 2,故原题计算错误; D 、(ab)2=a 2b 2,故原题计算错误; 故选:A .利用幂的乘方的性质、同底数幂的乘法法则、合并同类项法则、积的乘方的性质分别进行计算即可.此题主要考查了幂的乘方、同底数幂的乘法、合并同类项、积的乘方,关键是熟练掌握各计算法则.6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD//BC , ∴∠AEG =∠BGD′=30°, ∴∠DEG =180°−30°=150°,由折叠可得,∠α=12∠DEG =12×150°=75°, 故选:D .依据平行线的性质,即可得到∠AEG 的度数,再根据折叠的性质,即可得出∠α的度数. 本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.【答案】B【解析】解:∵在Rt △ADE 中,DE =6,AE =AB −BE =AB −CD =x −1,∠ADE =55°, ∴sin55°=AEAD ,cos55°=DEAD ,tan55°=AEDE =x−16,故选:B .根据锐角三角函数和直角三角形的性质解答即可.此题考查了考查仰角的定义,三角函数的定义,注意数形结合思想的应用.8.【答案】C【解析】解:设该商品每件的进价为x元,依题意,得:12×0.8−x=2,解得:x=7.6.故选:C.设该商品每件的进价为x元,根据利润=售价−成本,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.【答案】A【解析】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9−9<4,所以能构成三角形,周长是:9+9+4=22.故选:A.题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.【答案】C【解析】解:∵4<√17<5,∴3<√17−1<4,∴√17−1在3和4之间,即3<a<4.故选:C.先估算出√17的范围,即可得出答案.本题考查了估算无理数的大小,能估算出√17的范围是解此题的关键.11.【答案】a(a−b)2【解析】解:a3−2a2b+ab2,=a(a2−2ab+b2),=a(a−b)2.先提取公因式a,再对余下的多项式利用完全平方公式继续分解.本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.12.【答案】9【解析】解:∵a m−2b n+7与−3a4b4的和仍是一个单项式,∴m−2=4,n+7=4,解得:m=6,n=−3,故m−n=6−(−3)=9.故答案为:9.直接利用合并同类项法则得出m,n的值,进而得出答案.此题主要考查了合并同类项,正确得出m,n的值是解题关键.13.【答案】4【解析】解:∵2,3,x,1,5,7的众数为7,∴x=7,把这组数据从小到大排列为:1、2、3、5、6、7,=4;则中位数为3+52故答案为:4.根据众数的定义可得x的值,再依据中位数的定义即可得答案.本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.14.【答案】二【解析】解:由已知,得:k>0,b<0.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.根据一次函数y=kx+b的图象的性质作答.考查了一次函数的性质,能够根据k,b的符号正确判断直线所经过的象限.15.【答案】(−√5,2)【解析】【分析】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC=OA利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【解答】解:∵直线y=−43x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE=√OC2−OE2=√5,∴点C的坐标为(−√5,2).故答案为:(−√5,2).16.【答案】10【解析】解:在Rt△ABC中,∵AB=2,sin∠ACB=ABAC =13,∴AC=2÷13=6.在Rt△ADC中,AD=√AC2+CD2=√62+82=10.故答案为:10.根据直角三角形的边角间关系,先计算AC,再在直角三角形ACD中,利用勾股定理求出AD.本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6,∴AC+BD=6,∵菱形的周长为4√5,∴AB=√5,AC⊥BD,AO=12AC,BO=12BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO⋅BO+BO2=9,∴2AO⋅BO=4,∴菱形的面积=12AC⋅BD=2AO⋅BO=4;故答案为:4.由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO⋅BO=4,即可得出答案.本题考查菱形的性质、勾股定理;解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直.18.【答案】y=12x【解析】解:如图,过点C作CE⊥y轴于E,∵四边形ABCD是正方形,∴AB=BC=10,∠ABC=90°,∴OB=√AB2−AO2=√100−64=6,∵∠ABC =∠AOB =90°,∴∠ABO +∠CBE =90°,∠ABO +∠BAO =90°,∴∠BAO =∠CBE ,又∵∠AOB =∠BEC =90°,∴△ABO≌△BCE(AAS),∴CE =OB =6,BE =AO =8,∴OE =2,∴点C(6,2),∵反比例函数y =k x (k ≠0)的图象过点C ,∴k =6×2=12,∴反比例函数的解析式为y =12x , 故答案为:y =12x .过点C 作CE ⊥y 轴于E ,由“AAS ”可证△ABO≌△BCE ,可得CE =OB =6,BE =AO =8,可求点C 坐标,即可求解.本题考查了反比例函数图象上点的坐标特征,正方形的性质,利用待定系数法求解析式,求出点C 坐标是本题的关键.19.【答案】{5x +2y =102x +5y =8【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:{5x +2y =102x +5y =8. 故答案为{5x +2y =102x +5y =8. 20.【答案】0【解析】解:x 2−8x +16=0,解得:x =4,即x 1=x 2=4,则x1∗x2=x1⋅x2−x22=16−16=0,故答案为0.求出x2−8x+16=0的解,代入新定义对应的表达式即可求解.此题主要考查了根与系数的关系,对新定义的正确理解是解题的关键.21.【答案】解:(1)原式=−2−3×√3+√3+(2×12−2020)0=−2−3√3+√3+(1−2020)2=−2−2√3+20190=−2−2√3+1=−1−2√3;(2)解不等式3−x2≤1,得:x≥1,解不等式是3x+2≥4,得:x≥23,则不等式组的解集为x≥1.【解析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:(1)如图1,过点O作OH⊥AB于H,∵∠BCA=90°,AC=3,BC=4,∴AB=√AC2+BC2=√9+16=5,∵S△ABC=S△AOC+S△ABO,∴12×3×4=12×3×32+12×5×OH,∴OH=32,∴OC=OH,且OH⊥BA,∴AB是⊙O的切线;(2)结论成立,理由如下:连接CD,EC,∵DE是直径,∴∠ECD=90°=∠ACO,∴∠ECO=∠ACD,∵OC=OE,∴∠CEO=∠OCE,∴∠ACD=∠CEO,又∵∠DAC=∠EAC,∴△DAC∽△CAE,∴ACAE =ADAC,∵OC=32,∴DE=2OC=3=AC,∴DEAE =ADDE,故小明同学发现的结论是正确的.【解析】(1)过点O作OH⊥AB于H,由勾股定理可求AB的长,由面积法可求OH=32= OC,即可求结论.(2)连接CD,EC,通过证明△DAC∽△CAE,可得ACAE =ADAC,由DE=AC=3,可得结论.本题考查了相似三角形的判定和性质,切线的判定和性质,圆的有关知识,证明△DAC∽△CAE是本题的关键.23.【答案】50 32 57.6【解析】解:(1)本次共调查了10÷20%=50名学生,故答案为:50;(2)B类学生有:50×24%=12(人),D类学生有:50−10−12−16−4=8(人),补全的条形统计图如右图所示;(3)m%=16÷50×100%=32%,即m=32,类别D所对应的扇形圆心角α的度数是:360°×850=57.6°,故答案为:32,57.6;(4)400×16+8+450=224(人),即该校七年級有224名学生寒假在家做家务的总时间不低于20小时.(1)根据A类的人数和所占的百分比,可以求得本次调查的人数;(2)根据统计图中的数据,可以得到B类和C类的人数,然后即可将频数分布直方图补充完整;(3)根据统计图中的数据,可以得到m和α的值;(4)根据统计图中的数据,可以计算出该校七年級有多少名学生寒假在家做家务的总时间不低于20小时.本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x−50)元,由题意得:300x =4003x−50,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x−5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40−y)瓶,由题意得:30y +40(40−y)=1400,解得:y =20,∴40−y =40−20=20,答:购买了20瓶乙品牌消毒剂.【解析】(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x −50)元,由题意列出分式方程,解方程即可;(2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40−y)瓶,由题意列出一元一次方程,解方程即可.本题考查分式方程的应用和一元一次方程的应用,解题的关键是:(1)正确找出等量关系,列出分式方程,(2)正确找出等量关系,列出一元一次方程.25.【答案】10 15 y =x(x−1)2 1128【解析】解:(1)观察图形,可知:第四个图中y 的值为10,第五个图中y 的值为15. 故答案为:10;15.(2)∵1=2×12,3=3×22,6=4×32,10=5×42,15=6×52, ∴y =x(x−1)2,当x =48时,y =48×(48−1)2=1128. 故答案为:y =x(x−1)2;1128.(3)依题意,得:x(x−1)2=190, 化简,得:x 2−x −380=0,解得:x 1=20,x 2=−19(不合题意,舍去).答:该班共有20名女生.(1)观察图形,可以找出第四和第五个图中的y 值;(2)根据y 值随x 值的变化,可找出y =x(x−1)2,再代入x =48可求出当x =48时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用以及图形的变化规律,解题的关键是:(1)观察图形,数出当x =5和x =6时对应的y 值;(2)根据y 随x 的变化,找出变化规律y =x(x−1)2;(3)找准等量关系,正确列出一元二次方程. 26.【答案】(1)证明:连结OF ,BE ,如图:∵AB 是⊙O 的直径,∴∠AEB =90°,∵∠C =90°,∴∠AEB =∠ACD ,∴BE//CD ,∵点F 是弧BE 的中点,∴OF ⊥BE ,∴OF ⊥CD ,∵OF 为半径,∴直线DF 是⊙O 的切线;(2)解:∵∠C =∠OFD =90°,∴AC//OF ,∴△OFD∽△ACD ,∴OFAC =ODAD ,∵BD =2,OF =OB =4,∴OD =6,AD =10,∴AC =OF×ADOD =4×106=203,∴CD =√AD 2−AC 2=√102−(203)2=10√53,∵AC//OF ,OA =4,∴CF OA =CD AD ,即CF 4=10√5310,解得:CF =4√53, ∴tan∠AFC =AC CF =2034√53=√5.【解析】(1)连结OF ,BE ,得到BE//CD ,根据平行线的性质得到CD ⊥OF ,即可得出结论;(2)由相似三角形的性质求出AC 长,再由勾股定理可求得DC 长,则能求出CF 长,即可得出结果.本题考查的是切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质、勾股定理以及三角函数定义等知识;掌握切线的判定定理和圆周角定理是解题的关键. 27.【答案】y =−15x 2+85x +4 (4,365)【解析】解:(1)∵抛物线y =ax 2+bx +4(a ≠0)与x 轴交于点C(−2,0),且经过点B(8,4),∴{0=4a −2b +44=64a +8b +4, 解得:{a =−15b =85, ∴抛物线解析式为:y =−15x 2+85x +4,∵:y =−15x 2+85x +4=−15(x −4)2+365, ∴顶点坐标为(4,365)故答案为:y =−15x 2+85x +4,(4,365);(2)点N 在直线AC 上,理由如下:∵抛物线y =−15x 2+85x +4与y 轴交于点A ,∴点A(0,4),即OA =4,∵点B(8,4),∴AB//x 轴,AB =8,∴AB ⊥AO ,∴∠OAB =90°,∴∠OAM +∠BAM =90°,∵AM ⊥OB ,∴∠BAM +∠B =90°,∴∠B =∠OAM ,∴tan∠B =tan∠OAM =OA AB =48=12,∵将Rt △OMA 沿y 轴翻折,∴∠NAO =∠OAM ,∴tan∠NAO =tan∠OAM =12,∵OC =2,OA =4,∴tan∠CAO =OC OA =12,第15页,共21页 ∴tan∠CAO =tan∠NAO ,∴∠CAO =∠NAO ,∴AN ,AC 共线,∴点N 在直线AC 上;(3)∵点B(8,4),点O(0,0),∴直线OB 解析式为y =12x ,∵Rt △OMA 沿着OB 平移后,得到Rt △DEF ,∴AF//OB ,∴直线AF 的解析式为:y =12x +4,联立方程组:{y =12x +4y =−15x 2+85x +4解得:{x 1=0y 1=4或{x 2=112y 2=274∴点F(112,274),∵Rt △OMA 沿着OB 平移后,得到Rt △DEF ,∴Rt △OMA≌Rt △DEF ,OA =DF ,OA//DF∴S △OMA =S △DEF ,四边形OAFD 是平行四边形,∵四边形AMEF 的面积=S 四边形AMDF +S △DEF =S 四边形AMDF +S △OAM =S 四边形OAFD , ∴四边形AMEF 的面积=S 四边形OAFD =4×112=22.(1)将点B ,点C 坐标代入解析式可求a ,b 的值,由配方法可求顶点坐标;(2)由余角的性质可得∠MAO =∠B ,利用三角函数可求tan∠MAO =tan∠NAO =tan∠CAO =12,可得∠CAO =∠NAO ,可得AC 与AN 共线,即可求解; (3)先求出OB 解析式,AF 解析式,联立方程组可求点F 坐标,由四边形AMEF 的面积=S 四边形AMDF +S △DEF =S 四边形AMDF +S △OAM =S 四边形OAFD ,可求解.本题是二次函数综合题,考查了待定系数法求解析式,锐角三角函数,直角三角形的性质,折叠的性质,平移的性质,平行四边形的性质等知识,求出点F 的坐标是本题的关键.。

黔南布依族苗族自治州2020版中考数学试卷A卷

黔南布依族苗族自治州2020版中考数学试卷A卷

黔南布依族苗族自治州2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 7的相反数是()A .B . 7C .D . -72. (2分)若分式有意义,则x的取值范围是()A . x≠-1B . x≠1C . x≥-1D . x≥13. (2分)球的三视图是()A . 三个圆B . 三个圆且其中一个包括圆心C . 两个圆和一个半圆弧D . 以上都不对4. (2分) (2018七上·合浦期中) 地球的表面积约为5110000该数据用科学记数法可表示为()A . 5.11×106B . 5.11×107C . 5.11×108D . 5.11×1095. (2分)在平面直角坐标系中,点P(-2,5)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)(2017·盐城) 数据6,5,7.5,8.6,7,6的众数是()A . 5B . 6C . 7D . 87. (2分)(2017·丰县模拟) 下列计算正确的是()A . (﹣5)0=0B . x2+x3=x5C . 2a2•a﹣1=2aD . (ab2)3=a2b58. (2分) (2016九上·萧山月考) 已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A . y1<y2<y3B . y3<y2<y1C . y3<y1<y2D . y2<y3<y19. (2分)如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF. 其中正确结论有()A . ①②③④B . ①②③C . ①③④D . ①②④10. (2分) (2016九上·兖州期中) 如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A . 60°B . 90°C . 120°D . 150°二、填空题 (共4题;共5分)11. (2分)(2019·河北) 已知:整式A=(n2﹣1)2+(2n)2 ,整式B>0.尝试化简整式A .发现 A=B2 ,求整式B .联想由上可知,B2=(n2﹣1)2+(2n)2 ,当n>1时,n2﹣1,2n , B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣12n B勾股数组Ⅰ/8________勾股数组Ⅱ35/________12. (1分)(2017·漳州模拟) 在一个不透明的布袋中装有4个红球和a个白球,它们除颜色不同外,其余均相同,若从中随机摸出一球,摸到红球的概率是,则a的值是________.13. (1分) (2017八下·洛阳期末) 如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=5,DA=5 ,则BD的长为________.14. (1分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2;④不等式kx+b>0的解集是x>2.其中说法正确的有________(把你认为说法正确的序号都填上).三、解答题 (共9题;共89分)15. (5分)(2020·广西模拟) 计算: .16. (10分) (2020八下·江苏月考) 计算:(1)(2)17. (3分) (2015七上·海南期末) 某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是________;(2)体重正常比体重偏重的职工多占________ %;(3)体重偏轻的职工有________人.18. (5分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)19. (10分)(2020·成华模拟) 如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式及点A的坐标;(2)若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.20. (15分)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相较于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:△ABC≌△EBF(2)试判断BD与⊙O的位置关系,并说明理由(3)若AB=1,求HG•HB的值.21. (11分)某学校开展“科技创新大赛”活动,设计遥控车沿直线轨道做匀速直线运动的模型.现在甲、乙两车同时分别从不同起点A,B出发,沿同一轨道到达C处.设t(分)后甲、乙两遥控车与B处的距离分别为d1 , d2 ,且d1 , d2与t的函数关系如图,若甲的速度是乙的速度的1.5倍,试根据图象解决下列问题:(1)填空:乙的速度是________ 米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过20米时信号不会产生相互干扰,试探求什么时间两遥控车的信号会产生相互干扰?22. (15分) (2020八下·萧山期末) 如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F 不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1. 一组数据:−5,−2,0,3,则该组数据中最大的数为( ) A.−5 B.−2 C.0 D.32. 下面四个图形中,∠1=∠2一定成立的是( ) A.B.C.D.3. 如图是一个三棱柱笔筒,则该物体的主视图是( )A.B.C.D.4. 一组数据:1,−1,3,x ,4,它有唯一的众数是3,则这组数据的中位数为( ) A.−1 B.1 C.3 D.45. 下列运算正确的是( ) A.a 3⋅a =a 3B.(−2a 2)3=−6a 5C.a 5+a 5=a 10D.8a 5b 2÷2a 3b =4a 2b6. 下列说法中正确的是( ) A.√2化简后的结果是√22B.9的平方根为3C.√8是最简二次根式D.−27没有立方根7. 函数y =x−2的自变量x 的取值范围在数轴上表示正确的是( ) A.B.C.D.8. 王杰同学在解决问题“已知A 、B 两点的坐标为A(3, −2)、B(6, −5)求直线AB 关于x 轴的对称直线A′B′的解析式”时,解法如下:先是建立平面直角坐标系(如图),标出A 、B 两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3, 2),B′(6, 5);然后设直线A′B′的解析式为y =kx +b(k ≠0),并将A′(3, 2)、B′(6, 5)代入y =kx +b 中,得方程组{3k +b =26k +b =5 ,解得{k =1b =−1 ,最后求得直线A′B′的解析式为y =x −1.则在解题过程中他运用到的数学思想是( )A.分类讨论与转化思想B.分类讨论与方程思想C.数形结合与整体思想D.数形结合与方程思想9. 如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(−3, 4),顶点C 在x 轴的负半轴上,函数y =kx (x <0)的图象经过顶点B ,则k 的值为( )A.−12B.−27C.−32D.−3610. 如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30∘,⊙O 的半径为5cm ,则圆心O 到弦CD 的距离为()A.52cm B.3cm C.3√3cm D.6cm11. y=√k−1x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为( )A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根12. 如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.13. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c< 0;③方程ax2+bx+c=0的两根之和大于0;④a−b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(共6小题,每小题4分,满分24分)若ab=2,a−b=−1,则代数式a2b−ab2的值等于________.计算:√12+6(2016−π)0−(13)−1+|−2|−cos30∘=________.如图,在△ABC中,∠C=90∘,∠B=30∘,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为________.如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为________.在平面直角坐标系中,对于平面内任一点(a, b),若规定以下三种变换:①△(a, b)=(−a, b);②(a, b)=(−a, −b);③Ω(a, b)=(a, −b),按照以上变换例如:△((1, 2))=(1, −2),则(Ω(3, 4))等于________.为解决都市停车难的问题,计划在一段长为56米的路段规划出如图所示的停车位,已知每个车位是长为5米,宽为2米的矩形,且矩形的宽与路的边缘成45∘角,则该路段最多可以划出________个这样的停车位.(取√2=1.4,结果保留整数)三、解答题(本大题共8小题,满分74分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90∘后得到△A2B2C2,如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.解方程:xx−2−8x 2−4=1x+2.“2016国际大数据产业博览会”于5月25日至5月29日在贵阳举行.参展内容为:A −经济和社会发展;B −产业与应用;C −技术与趋势;D −安全和隐私保护;E −电子商务,共五大板块,为了解观众对五大板块的“关注情况”,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:(1)本次随机调查了多少名观众?(2)请补全统计图,并求出扇形统计图中“D −安全和隐私保护”所对应的扇形圆心角的度数.(3)据相关报道,本次博览会共吸引力90000名观众前来参观,请估计关注“E −电子商务”的人数是多少?为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.已知二次函数y =x 2+bx +c 的图象与y 轴交于点C(0, −6),与x 轴的一个交点坐标是A(−2, 0).(1)求二次函数的解析式,并写出顶点D 的坐标;(2)将二次函数的图象沿x 轴向左平移52个单位长度,当y <0时,求x 的取值范围.如图,AB 是⊙O 的直径,点D 是AE^上一点,且∠BDE =∠CBE ,BD 与AE 交于点F .(1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF ⋅DB ;(3)在(2)的条件下,延长ED 、BA 交于点P ,若PA =AO ,DE =2,求PD 的长.都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x 张(x <参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y 与x 之间的函数关系式.(3)在(2)的方案下,请求出当x =30时,购买单程火车票的总费用.如图,四边形OABC 是边长为4的正方形,点P 为OA 边上任意一点(与点O 、A 不重合),连接CP ,过点P 作PM ⊥CP 交AB 于点D,且PM =CP ,过点M 作MN // AO ,交BO 于点N ,连结ND 、BM ,设OP =t . (1)求点M 的坐标(用含t 的代数式表示);(2)试判断线段MN 的长度是否随点P 的位置的变化而改变?并说明理由.(3)当t 为何值时,四边形BNDM 的面积最小;(4)在x 轴正半轴上存在点Q ,使得△QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用含t 的式子表示).参考答案与试题解析2016年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.【答案】D【考点】有理数大小比较【解析】根据正数大于0、大于负数、两个负数绝对值大的小,进行比例大小即可求得答案.【解答】∵正数>0>负数,∴3>0>−2>−5,∴最大的数为3,2.【答案】B【考点】邻补角三角形的外角性质平行线的性质对顶角【解析】根据对顶角、邻补角、平行线的性质及三角形的外角性质,可判断;【解答】解:A,∠1、∠2是邻补角,∠1+∠2=180∘,不一定相等,故本选项错误;B,∠1、∠2是对顶角,对顶角大小相等,故本选项正确;C,根据平行线的性质:同位角相等,同旁内角互补,内错角相等,所以若两直线平行,∠1和∠2互补,不一定相等,故本选项错误;D,根据三角形的外角一定大于与它不相邻的内角,∠2>∠1,故本选项错误.故选B.3.【答案】C【考点】简单几何体的三视图【解析】从正面看三棱柱笔筒,得出主视图即可.【解答】如图是一个三棱柱笔筒,则该物体的主视图是,4.【答案】C【考点】中位数众数【解析】先根据数据:1,−1,3,x,4有唯一的众数是3,求得x的值,再计算中位数的大小.【解答】∵数据:1,−1,3,x,4有唯一的众数是3,∴x=3,∴这组数据按大小排序后为:−1,1,3,3,4,∴这组数据的中位数为3.5.【答案】D【考点】合并同类项同底数幂的乘法幂的乘方与积的乘方整式的除法【解析】根据同底数幂的乘法、积的乘方、合并同类项以及多项式的除法法则判断即可.【解答】a3⋅a=a4,A错误;(−2a2)3=−8a6,B错误;a5+a5=2a5,C错误;8a5b2÷2a3b=4a2b,D正确,6.【答案】A【考点】平方根立方根的实际应用最简二次根式分母有理化【解析】根据平方根、立方根的定义、最简二次根式的定义、二次根式的化简法则一一判断即可.【解答】A、√2=√22,故正确.B、9的平方根为±3,故错误.C、√8=2√2,√8不是最简二次根式,故错误.D、−27的立方根为−3,故错误.7.【答案】B【考点】函数自变量的取值范围在数轴上表示不等式的解集【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】根据题意得,x−2>0,解得:x>2,8.【答案】D【考点】一次函数图象与几何变换待定系数法求一次函数解析式一次函数与二元一次方程(组)【解析】根据轴对称的性质属于形,点的坐标属于数,可知运用了数形结合的数学思想;根据解方程组,求得未知数的值,可知运用了方程思想.【解答】第一步:建立平面直角坐标系,标出A、B两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3, 2),B′(6, 5),这是依据轴对称的性质求得点的坐标(有序实数对),运用了数形结合的数学思想;第二步:设直线A′B′的解析式为y=kx+b(k≠0),并将A′(3, 2)、B′(6, 5)代入y=kx+b中,得方程组{3k+b=2 6k+b=5,解得{k=1b=−1,最后求得直线A′B′的解析式为y=x−1,这里根据一次函数图象上点的坐标特征,列出方程求得待定系数,运用了方程思想;所以王杰同学在解题过程中,运用到的数学思想是数形结合与方程思想.9.【答案】C【考点】菱形的性质反比例函数图象上点的坐标特征【解析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【解答】∵A(−3, 4),∴OA=√32+42=5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为−3−5=−8,故B的坐标为:(−8, 4),将点B的坐标代入y=kx 得,4=k−8,解得:k=−32.10. 【答案】A【考点】垂径定理【解析】根据垂径定理知圆心O到弦CD的距离为OE;由圆周角定理知∠COB=2∠CDB=60∘,已知半径OC的长,即可在Rt△OCE中求OE的长度.【解答】解:连接CB,如图:∵AB是⊙O的直径,弦CD⊥AB于点E,∴圆心O到弦CD的距离为OE.∵∠COB=2∠CDB(同弧所对的圆周角是所对的圆心角的一半),又∠CDB=30∘,∴∠COB=60∘,∴∠OCE=30∘,在Rt△OCE中,OC=5cm,OE=12OC,∴OE=52cm.故选A.11.【答案】A【考点】一次函数的定义根的判别式【解析】由一次函数的定义可求得k的取值范围,再根据一元二次方程的判别式可求得答案.【解答】解:∵y=√k−1x+1是关于x的一次函数,∴√k−1≠0,∴k−1>0,解得k>1,又一元二次方程kx2+2x+1=0的判别式Δ=4−4k,∴Δ<0,∴一元二次方程kx2+2x+1=0无实数根.故选A.12.【答案】B【考点】动点问题【解析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=12×1×√32=√34,②当1<x≤2时,重叠三角形的边长为2−x,高为√3(2−x)2,y=12(2−x)×√3(2−x)2=√34x2−√3x+√3,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,13.【答案】B【考点】二次函数图象与系数的关系【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【解答】∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程ax2+bx+c=0的两根为x1、x2,由对称轴x>0,可知x1+x22>0,即x1+x2>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:−1<x<0,∴当x=−1时,y=a−b+c<0,故④正确.二、填空题(共6小题,每小题4分,满分24分)【答案】−2【考点】因式分解-提公因式法整式的加减–化简求值因式分解-运用公式法【解析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a−b=−1,∴a2b−ab2=ab(a−b)=2×(−1)=−2.故答案为:−2.【答案】5+3√32【考点】实数的运算零指数幂、负整数指数幂负整数指数幂特殊角的三角函数值【解析】原式利用二次根式性质,零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】原式=2√3+6−3+2−√32=5+3√32.【答案】6【考点】线段垂直平分线的性质含30度角的直角三角形【解析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30∘,易得∠ADC=60∘,∠CAD=30∘,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30∘角所对的直角边等于斜边的一半可得BD=2DE,得结果.【解答】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30∘,∴∠ADC=60∘,∴∠CAD=30∘,∴AD为∠BAC的角平分线,∵∠C=90∘,DE⊥AB,∴DE=CD=3,∵∠B=30∘,∴BD=2DE=6,【答案】18【考点】勾股定理矩形的性质平行线分线段成比例【解析】先根据勾股定理求得AC长,再根据平行线分线段成比例定理,求得OE、CE的长,最后计算四边形OECD的周长.【解答】∵AB=6,BC=8,∴AC=√62+82=10,∵矩形ABCD的对角线AC的中点为O,∴OD=12AC=5,又∵OE⊥BC,∴OE // AB,∴CE=12BC=4,OE=12AB=3,∵CD=AB=6,∴四边形OECD的周长为5+3+4+6=18.【答案】(−3, 4)【考点】点的坐标【解析】根据三种变换规律的特点解答即可.【解答】解:(Ω(3, 4))=(3, −4)=(−3, 4).故答案为:(−3,4).【答案】18【考点】矩形的性质解直角三角形的应用【解析】本题考查了解直角三角形的应用,主要是三角函数及运算.【解答】解:如图,∵CE=2,DE=5,且∠BCE=∠CBE=∠ABD=∠ADB=45∘,∴BE=CE=2,BD=DE−BE=3,∴BC=2÷sin45∘=2√2,AB=(5−2)×sin45∘=(5−2)×√22=3√22,设至多可划x个车位,依题意可列不等式2√2x+3√22≤56,整理,得:2x+32≤28√2,x≤14√2−34,将√2=1.4代入不等式得,x≤18.85,因为是正整数,所以x=18,所以这个路段最多可以划出18个这样的停车位.故答案为:18.三、解答题(本大题共8小题,满分74分)【答案】①如图所示,△A1B1C1为所求三角形;②画出图形,如图所示,∵A1B1=√1+1=√2,∴点B1旋转到B2的路径长l=90π×√2180=√2π2.【考点】作图-平移变换作图-旋转变换【解析】①根据△ABC沿BA方向平移,在网格中画出当点A移动到点A1时的△A1B1C1即可;②画出△A1B1C1绕点A1按逆时针方向旋转90∘后得到△A2B2C2,求出点B1旋转到B2的路径长即可.【解答】①如图所示,△A1B1C1为所求三角形;②画出图形,如图所示,∵A1B1=√1+1=√2,∴点B1旋转到B2的路径长l=90π×√2180=√2π2.【答案】方程两边乘(x−2)(x+2),得x(x+2)−8=x−2,x2+x−6=0,(x+3)(x−2)=0,解得x1=−3,x2=2.经检验:x1=−3是原方程的根,x2=2是增根.∴原方程的根是x=−3.【考点】解一元二次方程-因式分解法解分式方程【解析】观察可得最简公分母是(x−2)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】方程两边乘(x−2)(x+2),得x(x+2)−8=x−2,x2+x−6=0,(x+3)(x−2)=0,解得x1=−3,x2=2.经检验:x1=−3是原方程的根,x2=2是增根.∴原方程的根是x=−3.【答案】随机调查的人数为80÷8%=1000(名);补全图形如图所示,在扇形统计图中“D−安全和隐私保护”所对应的扇形圆心角的度数为20100×360∘=72∘.∵32100×90000=28800,∴关注“E−电子商务”的人数是28800名.【考点】用样本估计总体扇形统计图条形统计图【解析】(1)根据A−经济和社会发展在扇形统计图所占的比例和条形图中的数据,得出结论;(2)根据扇形统计图和条形图统计图的对应数据补全统计图;(3)根据样本估计总体,得出结论.【解答】随机调查的人数为80÷8%=1000(名);补全图形如图所示,在扇形统计图中“D−安全和隐私保护”所对应的扇形圆心角的度数为20100×360∘=72∘.∵32100×90000=28800,∴关注“E−电子商务”的人数是28800名.【答案】她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=112.【考点】列表法与树状图法概率公式【解析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【解答】她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=112.【答案】解:(1)∵把C(0, −6)代入抛物线的解析式得:C=−6,把A(−2, 0)代入y=x2+bx−6得:b=−1,∴ 抛物线的解析式为y =x 2−x −6. ∴ y =(x −12)2−254.∴ 抛物线的顶点坐标D(12, −254).(2)二次函数的图形沿x 轴向左平移52个单位长度得:y =(x +2)2−254.令y =0得:(x +2)2−254=0,解得:x 1=12,x 2=−92.∵ a >0,∴ 当y <0时,x 的取值范围是−92<x <12.【考点】抛物线与x 轴的交点二次函数图象与几何变换 【解析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x 轴的交点坐标,最后依据y <0可求得x 的取值范围. 【解答】解:(1)∵ 把C(0, −6)代入抛物线的解析式得:C =−6,把A(−2, 0)代入y =x 2+bx −6得:b =−1, ∴ 抛物线的解析式为y =x 2−x −6. ∴ y =(x −12)2−254.∴ 抛物线的顶点坐标D(12, −254).(2)二次函数的图形沿x 轴向左平移52个单位长度得:y =(x +2)2−254.令y =0得:(x +2)2−254=0,解得:x 1=12,x 2=−92.∵ a >0,∴ 当y <0时,x 的取值范围是−92<x <12. 【答案】证明:∵ AB 是⊙O 的直径, ∴ ∠AEB =90∘,∴ ∠EAB +∠ABE =90∘,∵ ∠EAB =∠BDE ,∠BDE =∠CBE ,∴ ∠CBE +∠ABE =90∘,即∠ABC =90∘, ∴ AB ⊥BC ,∴ BC 是⊙O 的切线; 证明:∵ BD 平分∠ABE , ∴ ∠1=∠2, 而∠2=∠AED , ∴ ∠AED =∠1,∵ ∠FDE =∠EDB , ∴ △DFE ∽△DEB , ∴ DE:DF =DB:DE , ∴ DE 2=DF ⋅DB ; 连结OD ,如图, ∵ OD =OB , ∴ ∠2=∠ODB , 而∠1=∠2,∴ ∠ODB =∠1, ∴ OD // BE ,∴ △POD ∽△PBE , ∴ PDPE =POPB , ∵ PA =AO ,∴ PA =AO =BO , ∴ PDPE =23,即PDPD+2=23, ∴ PD =4.【考点】圆与相似的综合 圆与函数的综合 圆与圆的综合与创新 【解析】(1)利用圆周角定理得到∠AEB =90∘,∠EAB =∠BDE ,而∠BDE =∠CBE ,则∠CBE +∠ABE =90∘,则根据切线的判定方法可判断BC 是⊙O 的切线;(2)证明△DFE ∽△DEB ,然后利用相似比可得到结论;’(3)连结DE ,先证明OD // BE ,则可判断△POD ∽△PBE ,然后利用相似比可得到关于PD 的方程,再解方程求出PD 即可. 【解答】证明:∵ AB 是⊙O 的直径, ∴ ∠AEB =90∘,∴ ∠EAB +∠ABE =90∘,∵ ∠EAB =∠BDE ,∠BDE =∠CBE ,∴ ∠CBE +∠ABE =90∘,即∠ABC =90∘, ∴ AB ⊥BC ,∴ BC 是⊙O 的切线; 证明:∵ BD 平分∠ABE , ∴ ∠1=∠2, 而∠2=∠AED ,∴ ∠AED =∠1, ∵ ∠FDE =∠EDB , ∴ △DFE ∽△DEB , ∴ DE:DF =DB:DE , ∴ DE 2=DF ⋅DB ; 连结OD ,如图, ∵ OD =OB , ∴ ∠2=∠ODB , 而∠1=∠2,∴ ∠ODB =∠1, ∴ OD // BE ,∴ △POD ∽△PBE , ∴ PDPE =POPB , ∵ PA =AO ,∴ PA =AO =BO , ∴ PDPE =23,即PDPD+2=23, ∴ PD =4.【答案】设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人, 根据题意得:{95(3m +n)=617560(m +2m)+60×0.75n =3150 , 解得:{m =5n =50, 则2m =10.答:参加社会实践的老师、家长与学生各有5、10与50人. 由(1)知所有参与人员总共有65人,其中学生有50人, ①当50≤x <65时,最经济的购票方案为:学生都买学生票共50张,(x −50)名成年人买二等座火车票,(65−x)名成年人买一等座火车票.∴ 火车票的总费用(单程)y 与x 之间的函数关系式为:y =60×0.75×50+60(x −50)+95(65−x), 即y =−35x +5425(50≤x <65);②当0<x <50时,最经济的购票方案为:一部分学生买学生票共x 张,其余的学生与家长老师一起购买一等座火车票共(65−x)张.∴ 火车票的总费用(单程)y 与x 之间的函数关系式为:y =60×0.75x +95(65−x), 即y =−50x +6175(0<x <50)∴ 购买单程火车票的总费用y 与x 之间的函数关系式为:y ={−50x +6175(0<x <50)−35x +5425(50≤x <65) .∵ x =30<50,∴ y =−50x +6175=−50×30+6175=4675, 答:当x =30时,购买单程火车票的总费用为4675元. 【考点】一次函数的应用 【解析】(1)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得到方程组,求出方程组的解即可;(2)有两种情况:①当50≤x <65时,学生都买学生票共50张,(x −50)名成年人买二等座火车票,(65−x)名成年人买一等座火车票,得到解析式:y =60×0.75×50+60(x −50)+95(65−x);②当0<x <50时,一部分学生买学生票共x 张,其余的学生与家长老师一起购买一等座火车票共(65−x)张,得到解析式是y =−50x +6175;(3)由(2)小题知:当x =30时,y =−50x +6175,代入求解即可求得答案. 【解答】设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人, 根据题意得:{95(3m +n)=617560(m +2m)+60×0.75n =3150 , 解得:{m =5n =50, 则2m =10.答:参加社会实践的老师、家长与学生各有5、10与50人. 由(1)知所有参与人员总共有65人,其中学生有50人, ①当50≤x <65时,最经济的购票方案为:学生都买学生票共50张,(x −50)名成年人买二等座火车票,(65−x)名成年人买一等座火车票.∴ 火车票的总费用(单程)y 与x 之间的函数关系式为:y =60×0.75×50+60(x −50)+95(65−x), 即y =−35x +5425(50≤x <65);②当0<x <50时,最经济的购票方案为:一部分学生买学生票共x 张,其余的学生与家长老师一起购买一等座火车票共(65−x)张.∴ 火车票的总费用(单程)y 与x 之间的函数关系式为:y =60×0.75x +95(65−x), 即y =−50x +6175(0<x <50)∴ 购买单程火车票的总费用y 与x 之间的函数关系式为:y ={−50x +6175(0<x <50)−35x +5425(50≤x <65) .∵ x =30<50,∴ y =−50x +6175=−50×30+6175=4675, 答:当x =30时,购买单程火车票的总费用为4675元. 【答案】如图1所示,作ME ⊥OA 于点E , ∴ ∠MEP =∠POC =90∘, ∵ PM ⊥CP , ∴ ∠CPM =90∘,∴ ∠OPC +∠MPE =90∘, 又∵ ∠OPC +∠PCO =90∘, ∴ ∠MPE =∠PCO , ∵ PM =CP ,∴ △MPE ≅△PCO(AAS),∴ PE =CO =4,ME =PO =t , ∴ OE =4+t ,∴点M的坐标为(4+t, t)(0<t<4);线段MN长度不变,理由:∵OA=AB=4,∴点B(4, 4),∴直线OB的解析式为:y=x,∵点N在直线OB上,MN // OA,M(4+t, t),∴点N(t, t),∵MN // OA,M(4+t, t),∴MN=|(4+t)−t|=4,即MN的长度不变;由(1)知,∠MPE=∠PCO,又∵∠DAP=∠POC=90∘,∴△DAP∽△POC,∴ADOP =APOC,∵OP=t,OC=4,∴AP=4−t,∴ADt =4−t4,得AD=t(4−t)4,∴BD=4−t(4−t)4=t2−4t+164,∵MN // OA,AB⊥OA,∴MN⊥BD,∵S四边形BNDM =12MN∗BD=12×4×t2−4t+164=12(t−2)2+6,∴当t=2时,四边形BNDM的面积最小,最小值6;在x轴正半轴上存在点Q,使得△QMN是等腰三角形,此时点Q的坐标为:Q1(t+2, 0),Q2(4+t−√16−t2, 0),Q3(4+t+√16−t2, 0)Q4(t+√16−t2, 0)其中(0<t<4),Q5(t−√16−t2, 0)理由:当(2)可知,OP=t(0<t<4),MN=PE=4,MN // x轴,所以共分为以下几种请:第一种情况:当MN为底边时,作MN的垂直平分线,与x轴的交点为Q1,如图2所示PQ1=12PE=12MN=2,∴OQ1=t+2,∴Q1(t+2, 0)第二种情况:如图3所示,当MN为腰时,以M为圆心,MN的长为半径画弧交x轴于点Q2、Q3,连接MQ2、MQ3,则MQ2=MQ3=4,∴Q2E=√MQ22−ME2=√16−t2,∴OQ2=OE−Q2E=4+t−√16−t2,∴Q2(4+t−√16−t2, 0),∵Q3E=Q2E,∵OQ3=OE+Q3E=4+t+√16−t2,∴Q3(4+t+√16−t2, 0);第三种情况,当MN为腰时,以N为圆心,MN长为半径画圆弧交x轴正半轴于点Q4,当0<t<2√2时,如图4所示,则PQ4=√NQ42−NP2=√42−t2=√16−t2,∴OQ4=OP+PQ4=t+√16−t2,即Q4(t+√16−t2, 0).当t=2√2时,则ON=4,此时Q点与O点重合,舍去;当2√2<t<4时,如图5,以N为圆心,MN为半径画弧,与x轴的交点为Q4,Q5.Q4的坐标为:Q4(t+√16−t2, 0).OQ5=t−√16−t2,∴Q5(t−√16−t2, 0)所以,综上所述,当0<t<4时,在x轴的正半轴上存在5个点Q,分别为Q1(t+2, 0),Q2(4+t−√16−t2, 0),Q3(4+t+√16−t2, 0)Q4(t+√16−t2, 0),Q5(t−√16−t2, 0)使△QMN是等腰三角形.【考点】四边形综合题【解析】(1)作ME⊥OA于点E,要求点M的坐标只要证明△OPC≅△EMP即可,根据题目中的条件可证明两个三角形全等,从而可以得到点M的坐标;(2)首先判断是否变化,然后针对判断结合题目中的条件说明理由即可解答本题;(3)要求t为何值时,四边形BNDM的面积最小,只要用含t的代数式表示出四边形的面积,然后化为顶点式即可解答本题;(4)首先写出符合要求的点Q的坐标,然后根据写出的点的坐标写出推导过程即可解答本题.【解答】如图1所示,作ME⊥OA于点E,∴∠MEP=∠POC=90∘,∵PM⊥CP,∴∠CPM=90∘,∴∠OPC+∠MPE=90∘,又∵∠OPC+∠PCO=90∘,∴∠MPE=∠PCO,∵PM=CP,∴△MPE≅△PCO(AAS),∴PE=CO=4,ME=PO=t,∴OE=4+t,∴点M的坐标为(4+t, t)(0<t<4);线段MN长度不变,理由:∵OA=AB=4,∴点B(4, 4),∴直线OB的解析式为:y=x,∵点N在直线OB上,MN // OA,M(4+t, t),∴点N(t, t),∵MN // OA,M(4+t, t),∴MN=|(4+t)−t|=4,即MN的长度不变;由(1)知,∠MPE=∠PCO,又∵∠DAP=∠POC=90∘,∴△DAP∽△POC,∴ADOP=APOC,∵OP=t,OC=4,∴AP=4−t,∴ADt=4−t4,得AD=t(4−t)4,∴BD=4−t(4−t)4=t2−4t+164,∵MN // OA,AB⊥OA,∴MN⊥BD,∵S四边形BNDM=12MN∗BD=12×4×t2−4t+164=12(t−2)2+6,∴当t=2时,四边形BNDM的面积最小,最小值6;在x轴正半轴上存在点Q,使得△QMN是等腰三角形,此时点Q的坐标为:Q1(t+2, 0),Q2(4+t−√16−t2, 0),Q3(4+t+√16−t2, 0)Q4(t+√16−t2, 0)其中(0<t<4),Q5(t−√16−t2, 0)理由:当(2)可知,OP=t(0<t<4),MN=PE=4,MN // x轴,所以共分为以下几种请:第一种情况:当MN为底边时,作MN的垂直平分线,与x轴的交点为Q1,如图2所示PQ1=12PE=12MN=2,∴OQ1=t+2,∴Q1(t+2, 0)第二种情况:如图3所示,当MN为腰时,以M为圆心,MN的长为半径画弧交x轴于点Q2、Q3,连接MQ2、MQ3,则MQ2=MQ3=4,∴Q2E=√MQ22−ME2=√16−t2,∴OQ2=OE−Q2E=4+t−√16−t2,∴Q2(4+t−√16−t2, 0),∵Q3E=Q2E,∵OQ3=OE+Q3E=4+t+√16−t2,∴Q3(4+t+√16−t2, 0);第三种情况,当MN为腰时,以N为圆心,MN长为半径画圆弧交x轴正半轴于点Q4,当0<t<2√2时,如图4所示,则PQ4=√NQ42−NP2=√42−t2=√16−t2,∴OQ4=OP+PQ4=t+√16−t2,即Q4(t+√16−t2, 0).当t=2√2时,则ON=4,此时Q点与O点重合,舍去;当2√2<t<4时,如图5,以N为圆心,MN为半径画弧,与x轴的交点为Q4,Q5.Q4的坐标为:Q4(t+√16−t2, 0).OQ5=t−√16−t2,∴Q(t−√16−t2, 0)5所以,综上所述,当0<t<4时,在x轴的正半轴上存在5个点Q,分别为Q1(t+2, 0),Q2(4+t−Array√16−t2, 0),Q3(4+t+√16−t2, 0)Q4(t+√16−t2, 0),Q5(t−√16−t2, 0)使△QMN是等腰三角形.。

相关文档
最新文档