李雅普诺夫稳定性
第5章李雅普诺夫稳定性分析

第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷
李雅普诺夫稳定性理论

x(t0 , x0 , t0 ) x0 初态
3.平衡状态:
xe f (xe , t) 0 xe 系统的平衡状态 a.线性系统 x Ax x Rn
A非奇异: Axe 0 xe 0
A奇异:
Axe 0 有无穷多个 xe
b.非线性系统
x f (xe ,t) 0 可能有多个 xe
Pij Pji
x x1 x2 xn T
李氏第二法稳定性定理
设 x f (x,t) 1)在 xe 满足 f (0,t) 0
2) xe 0 V (x, t)存在
定理1
若1)
V
(
x,
t
)
正定 xe
2)
V ( x, t )
负定
则 xe渐近稳定
3)若 x V (x)
eg. x1 x1
x2 x1 x2 x23
令 x1 0 x2 0
xe 1
0
0
0 xe3 1
0 xe2 1
5.2李雅普诺夫意义下的稳定
1.李氏意义下的稳定
如果对每个实数 0 都对应存在另一个
实数 ( ,t0 ) 0 满足 x0 xe (,t0)
则平衡状态 xe 是不稳定的
推论1 若 1)V (x,t)正定 2)V(x,t)正半定
3)x 0 V(x,t) 0 则 xe不稳定
推论2 若 1)V (x,t)正定 2)V(x,t)正半定
3)x 0 V(x,t) 0 则 xe 是李雅普
诺夫意义下的稳定
选取李氏函数的方法
1)构造一个二次型函数 V (x,t)
李雅普诺夫稳定性方法

李雅普诺夫稳定性方法李雅普诺夫第一方法又称间接法,它是通过系统状态方程的解来判断系统的稳定性。
如果其解随时间而收敛,则系统稳定;如果其解随时间而发散,则系统不稳定。
李雅普诺夫第二方法又称直接法,它不通过系统状态方程的解来判断系统的稳定性,而是借助李雅普诺夫函数对稳定性作出判断,是从广义能量的观点进行稳定性分析的。
例如有阻尼的振动系统能量连续减小(总能量对时间的导数是负定的),系统会逐渐停止在平衡状态,系统是稳定的。
由于李雅普诺夫第一方法求解通常很烦琐,因此李雅普诺夫第二方法获得更广泛的应用。
李雅普诺夫第二方法的难点在于寻找李雅普诺夫函数。
迄今为止,尚没有通用于一切系统的构造李雅普诺夫函数的方法。
对于系统[]t ,f x x= ,平衡状态为,0e =x 满足()0f e =x 。
如果存在一个标量函数()x V ,它满足()x V 对所有x 都具有连续的一阶偏导数;同时满足()x V 是正定的;则 (1)若()x V 沿状态轨迹方向计算的时间导数()dt /)(dV Vx x = 为半负定,则平衡状态稳定;(2) 若()x V 为负定,或虽然()x V 为半负定,但对任意初始状态不恒为零,则平衡状态渐近稳定。
进而当∞→∞→)(V x x 时,,则系统大范围渐近稳定;(3) 若()x V为正定,则平衡状态不稳定。
判断二次型x x x P )(V τ=的正定性可由赛尔维斯特(Sylvester )准则来确定,即正定(记作V(x)>0)的充要条件为P 的所有主子行列式为正。
如果P 的所有主子行列式为非负,为正半定(记作V(x)≥0);如果-V(x)为正定,则V(x)为负定(记作V(x)<0);如果-V(x)为正半定,则V(x)为负半定(记作V(x)≤0)。
例:[]正定。
则)(V 01121412110,041110,010x x x 1121412110x x x )(V 321321x x >---->>----=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡ 例:)x x (x x x )x x (x x x 22212122221121+--=+-=(0,0)是唯一的平衡状态。
第4章李雅普诺夫稳定性分析

第4章李雅普诺夫稳定性分析李雅普诺夫稳定性分析是数学分析中的一个重要概念,它用于判断非线性系统在其中一点附近的稳定性。
李雅普诺夫稳定性分析方法最初由俄国数学家李雅普诺夫提出,广泛应用于控制论、微分方程和动力系统等领域。
在进行李雅普诺夫稳定性分析时,首先需要确定非线性系统的平衡点。
平衡点是指系统在其中一时刻的状态不再发生变化,即各个状态变量的导数为零。
在平衡点附近,可以通过线性化的方法来近似非线性系统,即将非线性系统转化为线性系统进行分析。
接下来,利用李雅普诺夫稳定性定理可以判断线性化系统的稳定性。
根据定理的不同形式,可以分为不动点稳定性定理和周期解稳定性定理。
不动点稳定性定理是指当线性化系统的特征根都具有负的实部时,非线性系统在平衡点附近是稳定的;而当至少存在一个特征根具有正的实部时,非线性系统在平衡点附近是不稳定的。
这个定理对于线性化系统为一阶系统或者线性化系统的特征根为复数的情况适用。
周期解稳定性定理是指当线性化系统的所有特征根满足一定条件时,非线性系统在周期解附近是稳定的。
这个定理对于封闭曲线解以及周期解的情况适用。
当线性化系统无法满足上述定理时,可以使用李雅普诺夫直接法来判断非线性系统的稳定性。
李雅普诺夫直接法是基于李雅普诺夫函数的概念,通过构造合适的李雅普诺夫函数来判断非线性系统的稳定性。
李雅普诺夫函数是满足以下条件的函数:1)李雅普诺夫函数的导数在其中一区域内是负定的,即导数的每个分量都小于或等于零;2)在平衡点附近,李雅普诺夫函数取得最小值。
通过构造合适的李雅普诺夫函数,并验证满足上述条件,就可以判断非线性系统的稳定性。
如果李雅普诺夫函数的导数在整个状态空间都是负定的,则非线性系统是全局稳定的;如果李雅普诺夫函数的导数在一些有限的状态空间内是负定的,则非线性系统是局部稳定的。
总之,李雅普诺夫稳定性分析是一种有力的工具,可以用于判断非线性系统的稳定性。
不过需要注意的是,李雅普诺夫稳定性分析方法仅适用于平衡点附近的稳定性分析,对于非线性系统的全局稳定性分析还需要其他的方法。
第四章稳定性与李雅普诺夫方法

第四章稳定性与李雅普诺夫方法稳定性与李雅普诺夫方法是控制理论中的两个重要概念。
稳定性是控制系统分析中的基本问题之一,它描述了系统在受到干扰后能否回到平衡状态的能力。
李雅普诺夫方法是一种常用的稳定性分析方法,通过构造李雅普诺夫函数来判断系统的稳定性。
稳定性是控制系统设计中最基本的要求之一、一个稳定的系统能够在受到干扰后迅速恢复到平衡状态,而不会发生不可控制的震荡或不稳定的行为。
稳定性可以分为两种类型:渐近稳定性和有界稳定性。
渐近稳定性要求系统的状态能够收敛到一个稳定的平衡点,而有界稳定性要求系统的状态能够保持在一个有限范围内。
李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。
李雅普诺夫函数是一个标量函数,它满足以下条件:1)对于任意非零的向量,李雅普诺夫函数的导数都是负的或零;2)当且仅当系统达到稳定时,李雅普诺夫函数的导数为零。
通过构造李雅普诺夫函数并分析其导数的符号,可以判断系统的稳定性。
在实际应用中,人们通常使用李雅普诺夫直接法、李雅普诺夫间接法和李雅普诺夫-克拉洛夫稳定性定理等方法来进行稳定性分析。
其中,李雅普诺夫直接法是最常用的方法之一,它通过选择一个合适的李雅普诺夫函数来判断系统的稳定性。
如果可以找到一个李雅普诺夫函数,使得该函数的导数对于所有非零的初始条件都是负的,则系统是渐近稳定的。
李雅普诺夫间接法是通过构造一个李雅普诺夫方程来判断系统的稳定性。
李雅普诺夫方程是一个微分方程,其中包含系统的状态向量和一个非负标量函数,满足一定的条件。
如果可以找到一个满足李雅普诺夫方程的解,并且该解是有界的,则系统是有界稳定的。
李雅普诺夫-克拉洛夫稳定性定理是李雅普诺夫方法的重要理论基础。
该定理表明,如果系统的李雅普诺夫函数存在并且连续可导,并且李雅普诺夫函数的导数满足一定的条件,则系统是渐近稳定的。
这个定理为李雅普诺夫方法的应用提供了重要的理论依据。
总之,稳定性与李雅普诺夫方法是控制理论中基础且重要的概念。
离散条件下的李雅普诺夫稳定判据

离散条件下的李雅普诺夫稳定判据1. 概述在控制论与系统论中,稳定性是一个重要的概念。
在研究动态系统的稳定性时,我们常常需要使用稳定性判据来判断系统的稳定性。
而在离散条件下,李雅普诺夫稳定判据就是一个常用的方法。
2. 李雅普诺夫稳定判据的定义李雅普诺夫稳定判据是由俄罗斯数学家亚科夫•伊万诺维奇•李雅普诺夫在稳定性理论中提出的一种判据。
它用于判断差分方程系统在离散条件下的稳定性。
3. 离散条件下的稳定性在离散条件下,系统的状态是以离散的时间点进行更新的。
这种情况下,我们常常需要研究系统的稳定性,即系统在经过一定次数的状态更新后,是否能趋向于某一稳定状态,或者在一定范围内波动。
而李雅普诺夫稳定判据就是用来判断这种系统的稳定性的一种方法。
4. 李雅普诺夫稳定判据的原理李雅普诺夫稳定判据的核心思想是通过构造一个Lyapunov函数来判断系统的稳定性。
对于一个给定的系统,如果存在一个 Lyapunov 函数,满足对系统的任意状态进行更新后,Lyapunov 函数的值都会减小,那么系统就是稳定的。
5. Lyapunov 函数的选择在使用李雅普诺夫稳定判据时,选择合适的Lyapunov 函数是至关重要的。
一般来说,Lyapunov 函数的选择是根据系统的特点来确定的。
常见的 Lyapunov 函数包括二次型函数、指数型函数等。
不同的Lyapunov 函数对系统的稳定性判断有不同的适用条件和效果。
6. 李雅普诺夫稳定判据的应用李雅普诺夫稳定判据在控制论与系统论中有着广泛的应用。
通过使用李雅普诺夫稳定判据,我们可以对离散条件下的系统进行稳定性分析,为系统的设计与控制提供理论支持。
7. 结论离散条件下的李雅普诺夫稳定判据是系统稳定性分析中的重要工具,通过对系统的 Lyapunov 函数进行构造和分析,我们可以判断系统是否稳定,并为系统的设计与控制提供理论依据。
希望本文的介绍对您有所帮助。
基于离散条件下的李雅普诺夫稳定判据,我们将进一步探讨该方法的具体应用和细节,以及其对控制系统和动态系统的实际意义。
第4章稳定性与李雅普诺夫方法

4.3 李雅普诺夫第二法
3、希尔维斯特判据
设实对称阵
p11 p12
P
p21
p22
pn1
p1n
,
pij
p ji
pnn
i 为其各阶顺序主子式,即
1 p11 ,
2
p11 p21
p12 , p22
,n P
矩阵P或V(x)定号性的充要条件是:
22
4.3 李雅普诺夫第二法
(1)若 i 0 (i 1, 2, , n), 则 P 正定;
要条件是整个状态空间只有一个平衡点。
线性系统:渐近稳定 大范围渐近稳定 非线性系统:一般小范围渐近稳定
6
4. 不稳定
4.1.2 稳定性的几个定义
对于某个实数 和任意
,在超球域
内始终存在状态 ,使得从该状态开始的运动轨迹要 突破超球域 。
7
4.1.2 稳定性的几个定义
此三个图分别表示平衡状态为稳定、渐近稳定 和不稳定时初始扰动所引起的典型轨迹。
28
4.3 李雅普诺夫第二法
说明: (1)V (x) 0 ,则此时 V (x) C,系统轨迹将在某个曲面上,
而不能收敛于原点,因此不是渐近稳定。 (2)V (x)不恒等于0,说明轨迹在某个时刻与曲面 V (x) 相C 交,
但仍会收敛于原点,所以是渐近稳定。
x0
x0
(3)稳定判据只是充分条件而非必要条件!
于是知系统在原点处不稳定。
33
4.3 李雅普诺夫第二法
4.3.3 对李雅谱诺夫函数的讨论 (1) V(x)是正定的标量函数,V(x)具有一阶连续偏导数; (2)并不是对所有的系统都能找到V(x)来证明该系统稳定 或者不稳定; (3)V(x)如果能找到,一般是不唯一的,但关于稳定性的 结论是一致的;
李雅普诺夫Lyapunov稳定性理论李雅普诺夫

现代控制理论的稳定性判据
李雅普诺夫(Lyapunov)稳定性理论
李雅普诺夫(Lyapunov)稳定性理论
李雅普诺夫,俄国数学力学专家, 俄罗斯科学院院士,意大利林琴 科学院 以及法国巴黎科学院的外籍院士。 1892年在他的博士论文《运动稳定性的一般 问题》(The general problem of the stability motion) 中系统地研究了由微分方程描述的一般运动系统的稳定性 问题,建立了著名的Lyapunov方法,为现代控制和非线性 控制奠定了基础。 Lyapunov稳定性理论对于控制理论学科的发展产生了深刻 的影响,已成为现代控制理论的一个非常重要的组成部分。
时,从任意初态出发的解始终位于以 x e 为球心,半径为 的闭 球域S ( ) 内,即
x(t; x0 , t0 ) xe , t t0
则称系统的平衡状态 x 在李雅普诺夫意义下稳定。
e
当系统做不衰减的震荡运动
时,将描绘出一条封闭曲线 ,只要不超出 S ( ) ,则认为是 稳定的。
初始状态有界,随时间
推移,状态向量距平衡 点的距离可以维持在一 个确定的数值内,而到 达不了平衡状态。
x2
S ( )
xe
S ( )
x1
任给一个球域S ( ) ,若存在一个球域S ( ) ,使得从 S ( )出发的 轨迹不离开S ( ),则称系统的平衡状态是李雅普诺夫意义下稳定 的。 若 与初始时刻 t 0无关,则 称系统的平衡状态x e是一致
x2
S ( )
xe
S ( )
x1
近,直至到达平衡状态后
停止运动。
3、大范围渐近稳定 当初始条件扩展到整个状态空间,且平衡状态均具 有渐近稳定性时,称此平衡状态是大范围渐近稳定的。 几何意义:
稳定性与李雅普诺夫

V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如
p
Δ1
p11 , Δ2
11
p
21
p
12
p
,…
, Δn P
22
矩阵 P(或 V(x))定号性的充要条件是:
1)若 Δi 0, i (1,2,, n) ,则 P(或 V(x))为正定;
2)若
Δi
0, 0,
i为偶数 i为奇数
,则
P(或
V(x))为负定;
3)若
Δi
0, 0,
i i
(1,2,, n
需要根据舍弃旳髙 阶项再分析 采用李雅普诺夫第 二法
举例:用李雅普诺夫第一法判断下列系统旳稳定性
x1 x1 x1x2
x2
x2
x1x2
第一步:令 x1 0, x2 0
求得系统旳平衡状态 x1e (0,0)T , x1e (1,1)T
第二步:将系统在平衡状态x1e附近线性化
f1 f1
(1)V(x)是满足稳定性判据条件的一个正定的标量函数,且 对于 x 应具有连续的一阶偏导数; (2)对于一个给定系统,如果 V(x)可以找到,那么通常是非 唯一的,这并不影响结论的一致性。 (3)V(x)的最简单形式是二次型函数 V(x) = xTP x,其中 P 为 实对称方阵,它的元素可以是定常的或时变的。但 V(x)并不一 定都是简单的二次型。 (4)如果 V(x)为二次型,且可表示为:
第4章稳定性与李雅普诺夫方法

第4章稳定性与李雅普诺夫方法稳定性是评估一个系统的重要性能指标,它描述了系统在一定初始条件下是否能够保持其平衡状态。
稳定性分为两种类型,即渐近稳定性和有界稳定性。
渐近稳定性指的是系统随着时间的推移趋向于其中一平衡状态,而有界稳定性指的是系统在任意时刻的状态都保持在其中一有界范围内。
为了评估系统的稳定性,我们可以利用李雅普诺夫方法。
李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。
李雅普诺夫函数是一个满足特定条件的函数,它的导数反映了系统状态变化的趋势。
通过对李雅普诺夫函数的导数进行分析,我们可以判断系统在任意时刻的状态是否会向着平衡状态演进。
在利用李雅普诺夫方法进行稳定性分析时,通常需要满足以下条件:1.李雅普诺夫函数必须是正定函数,并且在系统的平衡点上取得最小值。
2.李雅普诺夫函数的导数必须是负定函数,即在系统的平衡点附近的任意一点,李雅普诺夫函数的导数都小于等于零。
如果满足以上条件,那么系统就是渐近稳定的。
反之,如果李雅普诺夫函数的导数是正定函数,那么系统就是不稳定的。
除了判断系统的稳定性外,李雅普诺夫方法还可以用于定量的稳定性分析。
通过分析李雅普诺夫函数的导数的大小,我们可以得到系统状态变化的速度。
如果李雅普诺夫函数的导数越小,那么系统的稳定性就越好。
反之,如果李雅普诺夫函数的导数越大,那么系统的稳定性就越差。
在实际应用中,李雅普诺夫方法广泛应用于控制系统、电路系统和机械系统等领域。
通过利用李雅普诺夫方法进行稳定性分析,我们可以评估系统的稳定性,并对系统进行控制,以保持系统的稳定状态。
总之,稳定性是一个评估系统性能的重要指标,通过利用李雅普诺夫方法可以判断系统的稳定性,并定量地分析系统的稳定性。
李雅普诺夫方法在控制系统、电路系统和机械系统等领域有广泛的应用前景。
李雅普诺夫稳定性的定义.ppt

目录(1/1)
目 录
概述 5.1 李雅普诺夫稳定性的定义 5.2 李雅普诺夫稳定性的基本定理
平衡态
平衡态(3/4)
李雅普诺夫稳定性研究的平衡 态附近(邻域)的运动变化问题。 若平衡态附近某充分小邻 域内所有状态的运动最后 都趋于该平衡态,则称该 平衡态是渐近稳定的; 若能维持在平衡态附近某 个邻域内运动变化则称为 稳定的,如上图所示。
xe
x2
xe
x1
不稳定 若发散掉则称为不稳定的, 平衡态
定义5-1 动态系统 x’=f(x,t) 的平衡态是使 f(x,t)0 的状态,并用xe来表示。 从定义5-1可知,平衡态即指状态空间 中状态变量的导数向量为零向量的 点(状态)。
平衡态
平衡态
由于导数表示的状态的运动变 化方向,因此平衡态即指能够保 持平衡、维持现状不运动的状 态,如上图所示。
1范数范数为中心在所定义的范数度量意义下的长度为半径内的各点所组成空间体称为球域记为sx1范数下球域李雅普诺夫意义下的稳定性稳定性定义14李雅普诺夫稳定性定义基于上述数学定义和符号我们有如下李雅普诺夫意义下稳定性的定义
Ch.5 李雅普诺夫稳定性 分析
本章简介(1/2)
本章简介
本章讨论李雅普诺夫稳定性分析。
概述(2/5)
也可以说,系统的稳定性就是系统在受到外界干扰后,系统状 态变量或输出变量的偏差量(被调量偏离平衡位置的数值)过 渡过程的收敛性,用数学方法表示就是
《现代控制理论》李雅普诺夫稳定性分析

1、向量空间上的欧几里德范数(即向量长度)
其欧几里德范数定义为:
一般
一、向量和矩阵的范数
预备知识
矩阵范数
矩阵 的范数定义为:
【例】
Hale Waihona Puke , 则即:矩阵每个元素平方和开根号
预备知识
2、矩阵范数
1.二次型函数:由n个变量
组成的二次齐次多项式,称(n元)二次型函数
2.二次型函数的矩阵表示
则系统在原点处的平衡状态是不稳定的。
为唯一的平衡状态。
定理4:设系统状态方程为
李雅普诺夫主要的稳定性定理
例题
[例] 设系统状态方程为
试确定系统的稳定性。
解 xe=0
,
是该系统惟一的平衡状态。
由于当
时
,所以系统在原点处的平衡状态是
大范围渐近稳定的。
选取
李雅普诺夫主要的稳定性定理
例题
[例] 已知定常系统状态方程为
定义:若所有有界输入引起的零状态响应输出有界,则称系统为有界输入输出稳定。
李雅普诺夫第一方法—间接法
定理3:连续定常系统 传递函数为: 系统 BIBO 稳定的充要条件为:传递函数的所有极点均位于S左半平面。
【例】试分析系统渐近稳定和BIBO稳定。
李雅普诺夫主要的稳定性定理
讨论续
这是一个矛盾的结果,表明
也不是系统的
受扰运动解。综合以上分析可知,
当
时,显然有
根据定理9-12可判定系统的原点平衡状态是大范围渐近稳定的。
李雅普诺夫主要的稳定性定理
线性系统稳定性分析
一.线性定常系统李雅普诺夫稳定性分析
线性定常连续系统
系统状态方程为
李雅普诺夫稳定性理论

❖推论. 1:当 V(x,t) 正定,V( x, t ) 半正定, 且 V[x(t; x0,t),t]在非零状态不恒为零时,则
原点不稳定。
.
❖推论2:V(x,t) 正定,V ( x , t ) 半正定,若
x0 ,V(x,t) 0 ,则原点是李雅普
诺夫意义下稳定(同定理3)。
几点说明:
1) V(x,t)选取不唯一,. 但没有通用办法,V(x,t)
其中是任选的微量,则称系统的平衡状态xe是 渐近稳定的。
定义三 对所有的状态(状态空间的所有点),如 果由这些状态出发的轨迹都具有渐近稳定性,则 称平衡状态xe为大范围渐近稳定。
定义四 :如果从球域 S( )出发的轨迹,无论球
域选得多么小,只要其中有一条轨迹脱离球域, 则称平衡状态xe为不稳定。
❖线性系统:如果它是渐近稳定的,必是有大 范围渐近稳定性(线性系统稳定性与初始条件的 大小无关)。
例
xx21 kxx21 k 0
V (x ,t)x 1 2 k2 2x(k 0 )
V ( x , t ) 2 x 1 x 1 2 k 2 x 2 x 2 k 1 x 2 x 2 k 1 x 2 x 0
故系统是李雅普诺夫意义下的稳定
定理四 设系统的状态方程为 xf(x,t) f(0 ,t)0 (tt0) 如果存在一个标量函数V(x,t),V(x,t)对向量x中 各分量具有连续的一阶偏导数,且满足条件:
矩阵P(或V(x))定号性的充要条件是:
(1) 若Δi >0 (i=1,2,…n),则P为正定;
(2) 若
0 i0
ii为 为奇 偶数 数 ,则 P为负定
(3) 若
0 i 0
i1,2,,n1 in
,P 则 为半正定
李雅普诺夫稳定性分析

李雅普诺夫稳定性分析
李雅普诺夫稳定性理论
李雅普诺夫理论在建立一系列关于稳定性概念的基础上,提出了判断 系统稳定性的两种方法: 间接法:利用线性系统微分方程的解来判断系统稳定性,又称之为李 雅普诺夫第一法; 直接法:首先利用经验和技巧来构造李雅普诺夫函数,进而利用李雅 普诺夫函数来判断系统稳定性,又称为李雅普诺夫第二法。
这表明, 当且仅当‖eAt‖≤ k <∞ 时,对任给的一个实数ε > 0,都对应存在和初始时 刻无关的一个实数 δ(ε)= ε /k,使得由满足不等式 ||x0 — xe|| ≤ δ(ε) (4-391) 的任一初态x0出发的受扰运动都满足不等式 xt; x0 ,0 xe e At x0 xe k , t 0 (4 392)
2)
证明 1) 设 xe 为线性定常系统(4-388+)的平衡状态,则由性质 e 0 和 Axe 0 x 可知,对于所有 t≥0 均有(可通过等式两边求微分证明下式)
xe e At xe (4 389) (4 390)
于是,考虑到 x(t; x0, 0) = eAtx0,有
x(t; x0 ,0) xe e At ( x0 xe ), t 0
2 李雅普诺夫意义下的稳定性
设系统初始状态位于以平衡状态xe为球心、δ为半径的闭球域S(δ)内,即 ||x0 - xe|| ≤ δ, t =t0 (4-385) 若能使系统方程的解x(t;x0,t0)在t→∞的过程中,都位于以xe为球心、任意规 定的半径为ε的闭球域S(ε)内,即 ||x(t;x0,t0)-xe|| ≤ ε,t≥t0 (4-386) 则称系统的平衡状态xe在李雅普诺夫意义下是稳定的。式中||· ||为欧几里德范 数,其几何意义是空间距离的尺度。 例如: ||x0 - xe||表示状态空间中, x0 点至 xe 点之间距离的尺度,数学表达式 为: ||x0 - xe|| = [(x10 – x1e)2+ (x20 – x2e)2+… +(xn0 – xne)2]1/2 (4-385)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x bx5
这时线性化方法不能用来判断它的稳定性。
李雅普诺夫理论基础
例:证明下面单摆的平衡状态 ( , 0) 是不稳定的。
MR2 b MgR sin 0
式中 R 为单摆长度,M 为单摆质量, b 为铰链的摩擦系数,
g 是重力常数。(系统的平衡点是什么?)
在 的邻域内
sin sin cos ( ) h.o.t. ( ) h.o.t. 设 ~ ,那么系统在平衡点附近的线性化结果是
以速度 1 指数收敛于 x 0 。
例2:系统 x x2 , x(0) 1它的解为 x 1/(1 t),是个慢于任 何指数函数 et ( 0) 的函数。
3、局部与全部稳定性
定义:如果渐近(或指数)稳定对于任何初始状态都能 保持,那么就说平衡点是大范围渐近(或指数)稳定的, 也称为全局渐近(或指数)稳定的。
李雅普诺夫理论基础
§2.2 线性化和局部稳定性
李雅普诺夫线性化方法与非线性系统的局部稳定性有关。
Lyapunou线性化方法说明:在实际中使用线性控制方法基
本上是合理的。
对于自治非线性系统 x f (x) ,如果 f (x) 是连续可微的,那
么系统的动态特性可以写成( f (0) 0 ):
x
f x
李雅普诺夫理论基础
第二章 Lyapunov理论基础
稳定性是控制系统关心的首要问题。
稳定性的定性描述:如果一个系统在靠近其期望工作点的某 处开始运动,且该系统以后将永远保持在此点附近运动, 那么就把该系统描述为稳定的。
例如:单摆,飞行器 李雅普诺夫的著作《动态稳定性的一般问题》,并于1892
年首次发表。 1. 线性化方法:从非线性系统的线性逼近的稳定性质得出非
x0
x
f h.o.t. (x)
用 A 表示在 x 0 处 f 关于x 的雅可比矩阵:
A f x x0
原非线性系统在平衡点0处的线性化结果为:
x Ax
李雅普诺夫理论基础
对于一个具有控制输入 u 的自治非线性系统:
x f (x,u)
x
f x
(x0,u0)
x
f u
(x0,u0)
它的时间导数
V
sin
2
2
0
可以得出原点是稳定的平衡点的结论。
不能得到关于系统渐近稳定性的结论,因为 V(x) 仅仅半负定。
李雅普诺夫理论基础
例:研究非线性系统 x1 x1 (x12 x22 2) 4x1x22 x2 4x12 x2 x2 (x12 x22 2)
在它的以原点为平衡点处附近的稳定性。给正定函数 V (x1, x2 ) x12 x22
V 2xx 2xc(x)
x 0 是一个全局渐近稳定的平衡点。
李雅普诺夫理论基础
例: 考虑系统 x1 x2 x1(x12 x22 ) x2 x1 x2 (x12 x22 )
状态空间的原点是这个系统的平衡点,设 V 是正定函数
V (x) x12 x22
V 沿任何系统轨迹的导数是
V (x) 2x1x1 2x2 x2 2(x12 x22 )2
u
fh.o.t.
(x,
u)
有:
x Ax Bu
对于闭环系统,同样可以得出上述结论。
例2.2 考虑系统
x1 x22 x1 cos x2 x2 x2 (x1 1)x1 x1 sin x2
在 x 0 处线性化。
线性化结果:
x
1 1
0 1x
李雅普诺夫理论基础
定理:(李雅普诺夫线性化方法)
1、如果线性化后的系统是严格稳定的(即如果 A的所有特
x2
V1 V2 V3
x1
V (x) V1
V V3 V V2
李雅普诺夫理论基础
例:一阶非线性系统
x c(x) 0
式中,c 是任何一个与它的标量自变量 x 有相同符号
的连续函数,即
xc(x) 0 对于 x 0
c(x)
选李雅普诺夫函数为
V x2
x
当 x 时 , V 趋向于无穷,
0
它函数是径向无界。它的导数是
§2.3 李雅普诺夫直接法
李雅普诺夫直接法的基本原理是对于下述基本物理现象的
数学上的扩展:如果一个机械(或电气)系统的全部能量
是连续消耗的,那么该系统无论是线性的还是非线性的,
最终必定稳定至某个平衡点。
非线性质量—阻尼器—弹簧系统,
非线性弹簧 与阻尼器
m
动态方程是
mx bx x k0x k1x3 0
~
b MR2
~
g R
~
0
因此,该线性近似是不稳定的;近而该非线性系统在平衡点 也是不稳定的。
李雅普诺夫理论基础
李雅普诺夫线性化定理说明 线性控制设计存在一致性问题,人们必须设计 控制器使系统保持在它的“线性范围”里。它也 说明了线性设计的主要局限性:线性范围到底有 多大?稳定范围是什么?
李雅普诺夫理论基础
征值都严格在左半复平面内),那么平衡点是渐近稳定的 (对实际的非线性系统);
2、如果线性化后的系统是不稳定的(即如果 A的所有特征
值至少有一个严格在右半复平面内),那么平衡点是不稳 定的(对实际的非线性系统);
3、如果线性化后的系统是临界稳定的(即如果 A 的所有特
征值都在左半复平面内,但至少有一个在 j 轴上),那 么不能从线性近似中得出任何结论(其平衡点对于非线性 系统可能是稳定的,渐近稳定的,或者是不稳定的)。
x1
x(t)
x(t)
李雅普诺夫理论基础
几何解释:表示 V(x) 值的点总是指向杯底,或指向越来 越小的V (x)值等高线。
二、平衡点定理
李雅普诺夫直接法的几个定理建立起李雅普诺夫函数与系 统稳定性之间的精确关系。
1、局部稳定性的李雅普诺夫定理
定理( 函数 V
局(x)部,稳它定具性有)连:续如的果一在阶球偏域导数B R,0内使,得存:在一个
不等于发散。
李雅普诺夫理论基础
例2.1 范德堡振荡器的不稳定性 3
对于范德堡方程
1
2
x (x2 1)x x 0
转换成状态方程描述
0
x(0) S(r)
x1 x2 x2 x1 (1 x12 )x2
S(R) 图2-1 稳定性概念
很容易证明该系统在原点处有一个平衡点。 并且是不稳 定的。
x2
x2
C R 1
x1
李雅普诺夫理论础
定义:如果存在两个严格正数 和 ,使得围绕原点的某
个球内
B
,
r
t, x(t) x(0) et
那么称平衡点0是指数稳定的。
也就是说,一个指数稳定的系统的状态向量以快于指数函
数的速度收敛于原点,通常称正数 为指数收敛速度。
指数收敛性的定义在任何时候都为状态提供明显的边界。
它是负定的。因此,原点是全局渐近稳定平衡点。
李雅普诺夫理论基础
3、注释 对于同一个系统可以存在许多李雅普诺夫函数。例如, 如果 V (x) 是一个李雅普诺夫函数,那么下面的 V1 (x)也是 李雅普诺夫函数:
V1 (x) V (x)
把正常数 写成后 e0 ,不难看到,经过时间 0 (1/ ) 后,状态向量的幅值减小到原值的 35%( e1),与线性 系统中的时间常数相似。
李雅普诺夫理论基础
例1:系统
x (1 sin 2 x)x
它的解是:x(t)
x(0)
t
exp{0 [1
sin 2
( x(
))]d }
x(t) x(0) et
1、稳定性和不稳定性 定义:如果对于任何 R 0 ,存在 r 0 ,使得对于所有的 t 0 ,如果 x(0) r ,就有 x(t) R ,则称平衡点x 0 是
稳定的,否则,就称平衡点是不稳定的。
R 0,r 0, x(0) r t 0, x(t) R
或者:R 0, r 0, x(0) Br t 0, x(t) BR 对于线性系统,不稳定等于发散;对于非线性系统,不稳定
x
的正定函数
2
V
(x)
,在三维空间中画出V
(x)
,它典型地对
应于一只看起来象向上的杯子的曲面,杯子的最低点位于
原点。 V
V V3 V V2 V V1
0
x2
V3 V2 V1 x1
V V3 V V2 V V1
x2 V1 V2 V3
0
x1
同样可以定义:负定、半正定、半负定等一些概念。
李雅普诺夫理论基础
标量
(1)V (x) 为正定(局部地); (2)V(x) 为半负定(局部地)。
那么平衡点0是稳定的。如果实际上导数 V(x)在 B R0 域内 局部负定,那么稳定性是渐近的。
李雅普诺夫理论基础
例:局部稳定性
具有粘滞阻尼的单摆由下列方程描述
sin 0
判断系统在原点的局部稳定性。
考察下列标量函数:V (x) (1 cos ) 2 0
为了断定一个系统的全局渐近稳定性,必须将 B R0 扩展为
整个状态空间;还有V (x) 必须是径向无界的,即 x (换句话说,当从任何方向趋向无穷远时),V (x) 。
定理(全局稳定性):假设存在状态 x 的某个具有连续一
阶导数的标量函数V (x) ,使得: (1)V (x) 是正定的, (2)V(x) 为负定的, (3)当 x 时,V (x) 。 那么平衡点0是全局渐近稳定的。
李雅普诺夫理论基础
径向无界性条件在于保证等值曲线(或高阶系统情况下的 等值曲面)V (x) Va 对应于封闭曲线。如果该曲线不是封 闭的,即使状态保持穿过对应于越来越小的 Va 的等值曲 线(面),状态轨线仍可能从平衡点漂移。 例如,对于正定函数