平方根和立方根典型题大全

合集下载

初二平方根立方根练习题100道

初二平方根立方根练习题100道

初二平方根立方根练习题100道1. 求下列数字的平方根:a) 25b) 64c) 100d) 144e) 2562. 求下列数字的立方根:a) 8b) 27c) 64d) 125e) 2163. 求下列数字的平方根和立方根:a) 81b) 121c) 169d) 729e) 10244. 求下列数字的平方根的结果保留两位小数:a) 5b) 15c) 23d) 36e) 485. 求下列数字的立方根的结果保留两位小数:a) 8b) 27c) 64d) 125e) 2166. 计算下列各式的值:a) √9 × √16b) ∛8 × √9c) √25 ÷ √5d) ∛64 ÷∛4e) ∛27 + ∛647. 当x = 16时,求以下各式的值:a) √xb) x^(1/3)c) ∛xd) x^(1/2)8. 当y = 0.04时,求以下各式的值:a) √yb) y^(2/3)c) ∛yd) y^(1/2)9. 已知a = √16 + ∛64,求a的值。

10. 如果x = √16,y = ∛27,z = √25,分别求x、y、z的平方根和立方根。

11. 如果a = √x,b = ∛y,c = √z,求a、b、c的平方根和立方根。

12. 判断下列各式是否成立:a) √16 + ∛27 = √9 + ∛64b) √25 - ∛8 = 5 - 2c) √100 + ∛125 = 12 + 5d) √36 - ∛64 = 6 - 4e) √81 + ∛125 = 9 + 513. 求下列式子的值:a) (√4 + ∛8)²b) (√9 - ∛27)³c) (√16 + ∛64)⁴d) (√25 - ∛125)⁵e) (√36 + ∛216)⁶14. 已知 x = 0.1,求 x²和 x³的值并保留三位小数。

15. 如果 a² + b² = 25,且 a = 3,b = 4,求 a³和 b³的值。

初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题在初中数学中,平方根和立方根是常见的数学概念。

学好这两个概念,不仅可以提升数学能力,还能应用到实际生活中。

下面是一些平方根和立方根的练习题,帮助大家更好地理解和掌握这两个概念。

练习题一:平方根计算1. 计算√16 + √25 = ?解答:√16 = 4,√25 = 5,所以√16 + √25 = 4 + 5 = 9。

2. 计算√121 - √49 = ?解答:√121 = 11,√49 = 7,所以√121 - √49 = 11 - 7 = 4。

3. 计算√36 × √64 = ?解答:√36 = 6,√64 = 8,所以√36 × √64 = 6 × 8 = 48。

练习题二:立方根计算1. 计算∛8 + ∛27 = ?解答:∛8 = 2,∛27 = 3,所以∛8 + ∛27 = 2 + 3 = 5。

2. 计算∛64 - ∛125 = ?解答:∛64 = 4,∛125 = 5,所以∛64 - ∛125 = 4 - 5 = -1。

3. 计算∛216 ×∛64 = ?解答:∛216 = 6,∛64 = 4,所以∛216 ×∛64 = 6 × 4 = 24。

练习题三:平方根和立方根混合计算1. 计算√36 + ∛27 = ?解答:√36 = 6,∛27 = 3,所以√36 + ∛27 = 6 + 3 = 9。

2. 计算√9 × ∛64 = ?解答:√9 = 3,∛64 = 4,所以√9 × ∛64 = 3 × 4 = 12。

3. 计算√25 ÷ ∛64 = ?解答:√25 = 5,∛64 = 4,所以√25 ÷ ∛64 = 5 ÷ 4 = 1.25。

通过对以上练习题的计算,相信大家对平方根和立方根的计算方法有了更深入的了解。

不过要注意,在实际考试或应用中,可能会出现更复杂的题目,需要进一步掌握计算的技巧和方法。

立方根和平方根试题与答案

立方根和平方根试题与答案

1.2立方根同步练习第1题. 64的立方根是( )A.4- B.4 C.4±D.不存在第2题. 若一个非负数的立方根是它本身,则这个数是( )A.0B.1C.0或1D.不存在第3题的立方根是( )A.4±B.2±C.2第4题. 求下列各数的立方根: (1)10227(2)0.008- (3)0第5题. 求下列各等式中的x :(1)3271250x -= (2)3x =(3)3(2)0.125x -=-第6题. 用计算器求下列各式的值(结果保留4个有效数字)(1(2(3(4)第7题. 用计算器求下列方程的解(结果保留4个有效数字) (1)332520x += (2)318108x -= (3)3(1)500x +=(4)32(31)57x -=第8题. 用计算器求下列各式的值(结果保留4个有效数字)(1 (2)(3)参考答案1. 答案:B2. 答案:C3. 答案:C4. 答案:(1)43(2)0.2- (3)05. 答案:(1)53x =(2)2x =- (3) 1.5x =6. 答案:(1)4.174 (2) 1.493- (3)16.44 (4) 1.913-7. 答案:(1) 4.380x ≈- (2)0.5200x ≈ (3) 6.937x ≈ (4) 1.352x ≈8. 答案:(1)0.4170 (2)39.68- (3)5.54213.2立方根情景再现:夏日的一天,欢欢的爸爸给他买了一对话眉鸟,装在一个很小的笼子里送给了他,欢欢非常高兴,每天早晨,欢欢在话眉鸟婉转的歌声中醒来,可是没几天,话眉鸟却变得无精打采,他赶紧去问爸爸,噢,原来是笼子太小,天气太热,而话眉鸟需要嬉水、玩沙以保持清洁、散发热量.小明在爸爸的建议下,准备动手做一个鸟笼,他设想:(1)如果做一个体积大约为0.125米3的正方体鸟笼,鸟笼的边长约为多少? (2)如果这个正方体鸟笼的体积为0.729立方米呢? 请你来帮他计算,好吗? 一.判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .( ) (2)任何正数都有两个立方根,它们互为相反数.( ) (3)负数没有立方根.( )(4)如果a 是b 的立方根,那么ab ≥0.( ) 二.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________.(4)64的立方根是________. 三.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x 等于( )A.xB.2xC.0D.-2x(3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10(4)如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2(5)如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对四.若球的半径为R ,则球的体积V 与R 的关系式为V =34πR 3.已知一个足球的体积为6280 cm 3,试计算足球的半径.(π取3.14,精确到0.1)参考答案 情景再现:解:∵0.125米3=125立方分米,0.729立方米=729立方分米 ∴53=125,93=729∴体积为0.125米3的正方体鸟笼边长为5分米.0.729立方米正方体鸟笼的边长为9分米.一.(1)√ (2)× (3)× (4)√二.(1)0与±1 (2)-318 (3)±4 (4)2 三.(1)D (2)C (3)D (4)D (5)B 四.解:由已知6280=34π·R 3 ∴6280≈34×3.14R 3,∴R 3=1500 ∴R ≈11.3 cm13.2立方根同步练习第1课时(一)基本训练,巩固旧知 1.填空:(1)03= ; (2)13= ; (3)23= ; (4)33= ; (5)43= ; (6)53= ; (7)0.53= ; (8)(-2)3= ;(9)(23-)3= ; 2.填空:(1)因为 3=27,所以27的立方根是 ; (2)因为 3=-27,所以-27的立方根是 ; (3)因为 3=1000,所以1000的立方根是 ; (4)因为 3=-1000,所以-1000的立方根是 ; (5)因为 3=0.027,所以0.027的立方根是 ; (6)因为 3=-0.027,所以-0.027的立方根是 ; (7)因为 3=64125,所以64125的立方根是 ; (8)因为 3=64125-,所以64125-的立方根是 . 3.判断对错:对的画“√”,错的画“×”.(1)1的平方根是1. ( ) (2)1的立方根是1. ( )(3)-1的平方根是-1. ()(4)-1的立方根是-1. ()(5)4的平方根是±2. ()(6)27的立方根是±3. ()(7)18的立方根是12. ()(8)116的算术平方根是14. ()第2课时(一)基本训练,巩固旧知1.填空:如果一个数的平方等于a,那么这个数叫做a的;如果一个数的立方等于a,那么这个数叫做a的 .2.填空:(1)正数的平方根有个,它们;正数的立方根有个,这个立方根是数.(2)0的平方根是;0的立方根是 .(3)负数平方根;负数的立方根有个,这个立方根是数.3.填空:(1)因为3=0.064,所以0.064的立方根是;(2)因为3=-0.064,所以-0.064的立方根是;(3)因为3=8125,所以8125的立方根是;(4)因为3=8125-,所以8125-的立方根是 .4.填空:(1)1000的立方根是;(2)100的平方根是;(3)100的算术平方根是;(4)0.001的立方根是;(5)0.01的平方根是;(6)0.01的算术平方根是 . 5.填空:64的 ,= ;(2)表示64的 ,= ;64的 ,= . 6.计算:= ;= .7.探究题:(1)= ,= ,所以(2)= ,= ,所以(3)由(1)(2).1.1 平方根同步练习第1题. 9的算术平方 ( )A .-3B .3C .± 3D .81第2题. 化简:(-= .第3题. 一块正方形地砖的面积为0.25平方米,则其边长是 米.第4题. 函数y =x 取值范围是 . 第5题. 0.25的平方根是______;2(3)-的平方根是_______. 第6题. 一个正数的两个平方根的和是_____,商是_____.第7题. 下列说法:(1)2(5)-的平方根是5±;(2)2a -没有平方根;(3)非负数a 的平方根是非负数;(4)因为负数没有平方根,所以平方根不可能为负.其中不正确的是( ) A.1个B.2个C.3个D.4个第8题. 求下列各数的平方根:(1)49 (2)0.36 (3)2564第9题. 25的平方根是_______,算术平方根是_______.第10题. _________的平方根是它本身,________的算术平方根是它本身. 第11题. 21x +的算术平方根是2,则x =_________.第12题. 2(7)-的算术平方根是_______;27的算术平方根是_________. 第13题. 求下列各式中的x 的值. (1)2250x -= (2)2(1)81x +=第14题. 若a b ,满足7a =,求ba 的值.参考答案1. 答案:B2.3. 答案:0.5米4. 答案:3x ≤5. 答案:0.5±;3±6. 答案:0;1-7. 答案:C8. 答案:(1)7±;(2)0.6±;(3)58±9. 答案:5±;510. 答案:0;0,111. 答案:3212. 答案:7;713. 答案:(1)5x =± (2)8x =或10x =-14. 答案:4913.1平方根同步练习1.判断正误(1) 5是25的算术平方根. ( ) (2)4是2的算术平方根. ( )(3)6. ( )(4)37是237⎛⎫- ⎪⎝⎭的算术平方根. ( )(5)56-是2536的一个平方根. ( ) (6)81的平方根是9. ( ) (7)平方根等于它本身的数有0和1. ( ) 2.填空题(1)如果一个数的平方等于a ,这个数就叫做 . (2)一个正数的平方根有 个,它们 .(3)一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示.(4)0的平方根是 ,0的算术平方根是 .(53的 ;925的算术平方根为 . (6)没有算术平方根的数是 .(7)一个数的平方为719,这个数为 .(8)若a=15±,则a2= ;若=0,则a= .若2=9,则a= .(9)一个数x 的平方根为7±,则x= .(10)若x 的一个平方根,则这个数是 . (11)比3的算术平方根小2的数是 .(12)若a 9-的算术平方根等于6,则a= .(13)已知2y x 3=-,且y 的算术平方根是4,则x= .(14的平方根是 .(16)已知1y 3=,则x= ,y= .3.选择题(1)下列各数中,没有平方根的是( )(A )0 (B )()23- (C )23- (D )()3--(2)25的算术平方根是( ).(A )5 (B (C )5- (D )5± (3)9的平方根是( ).(A )3 (B )3- (C )3± (D )81 (4)下列说法中正确的是( ).(A )5的平方根是(B )5的平方根是5(C )5-的平方根是5± (D )2-(5的值为 ( ).(A )6- (B )6 (C )8± (D )36(6)一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B ) (C (D )(70.1311==,则x 等于( ). (A )0.0172 (B )0.172 (C )1.72 (D )0.00172(82=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2± 4.求下列各数的算术平方根和平方根:(1)0.49 (2)11125 (3)()25- (4)6110(5(6)0 5.求下列各式的值:(1(2(36.求满足下列各式的未知数x :(1)2x 3= (2)2x 0.010-=(3)23x 120-= (4)()24x 125-=7.y 4=+,你能求出x ,y 的值吗?y 10+=,你能求出20032004x y +的值吗?13.1平方根(第1课时)1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= .2.求下列各式的值:= ;= ;= ;= ;= ;= . 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= .4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?13.1平方根(第2课时)1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .2.填空:(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ;(3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,即= .3.师抽卡片生口答.4.填空:(1)面积为9= ;(2)面积为7≈ (利用计算器求值,精确到0.001).5.用计算器求值:= ;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,= .13.1平方根(第3课时)1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长=;(2)面积为15的正方形,边长≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .4.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;5.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35-,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()13.1平方根(第4课时)1.填空:(1)如果一个正数的平方等于a,那么这个正数叫做a的;如果一个数平方等于a,那么这个数叫做a的 .(2)正数有个平方根,它们;0的平方根是;负数.2.填空:(1)因为()2=144,所以144的平方根是;(2)因为()2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是,169的算术平方根是;(2)964的平方根是,964的算术平方根是 .4.填空:196的,=;5的,≈(利用计算器求值,精确到0.01).5.填空:3的平方根,也就是3的平方根;(2)有意义,表示3的平方根;(3)有意义,表示3的两个;(4)表示的算术平方根;6.计算下列各式的值:=;(2)=;(3)= .7.完成下面的解题过程:求满足121x2-81=0的x的值.解:由121x2-81=0,得 .因为,所以x是的平方根.即x=, x=.13.1平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是( )A.2B.-2C.2或-2D.4(2)9的算术平方根是( )A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是( ) A.71 B.7 C.41 D.4(6)16的平方根是( )A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。

七年级数学平方根立方根试题

七年级数学平方根立方根试题

七年级数学平方根立方根试题一、平方根相关试题。

1. 求16的平方根。

- 解析:- 一个正数有两个平方根,它们互为相反数。

- 因为(±4)^2 = 16,所以16的平方根是±4。

2. 若x^2 = 25,求x的值。

- 解析:- 因为x^2 = 25,根据平方根的定义,x是25的平方根。

- 又因为(±5)^2 = 25,所以x = ±5。

3. √(49)的值是多少?- 解析:- √(49)表示49的算术平方根。

- 因为7^2 = 49,所以√(49)=7。

4. 计算√(0.09)。

- 解析:- 因为0.3^2 = 0.09,所以√(0.09)=0.3。

5. 若√(a)=3,求a的值。

- 解析:- 因为√(a)=3,根据算术平方根的定义,a = 3^2 = 9。

6. 求√(frac{1){16}}的值。

- 解析:- 因为((1)/(4))^2=(1)/(16),所以√(frac{1){16}}=(1)/(4)。

7. 一个正数的平方根是2a - 1和- a+2,求这个正数。

- 解析:- 一个正数的两个平方根互为相反数。

- 所以2a - 1+( - a + 2)=0。

- 化简得2a - 1 - a+2 = 0,即a+1 = 0,解得a=-1。

- 则其中一个平方根为2a - 1 = 2×(-1)-1=-3。

- 所以这个正数为( - 3)^2 = 9。

8. 已知√(x - 1)+√(1 - x)=y + 4,求x,y的值。

- 解析:- 要使√(x - 1)和√(1 - x)有意义,则x - 1≥slant0且1 - x≥slant0。

- 所以x - 1 = 0,即x = 1。

- 当x = 1时,√(x - 1)+√(1 - x)=0,则y+4 = 0,解得y=-4。

9. 比较√(3)与1.7的大小。

- 解析:- 因为(√(3))^2 = 3,1.7^2 = 2.89。

平方根和立方根的计算练习题

平方根和立方根的计算练习题

平方根和立方根的计算练习题在数学中,平方根和立方根是基本的运算,对于学习数学的人来说,熟练掌握计算平方根和立方根是非常重要的。

本文将给出一些平方根和立方根的计算练习题,帮助读者巩固和提高这两个运算的能力。

1. 计算以下数的平方根:a) 16b) 25c) 36d) 49e) 64f) 81g) 100解答:a) √16 = 4b) √25 = 5c) √36 = 6d) √49 = 7e) √64 = 8f) √81 = 9g) √100 = 102. 计算以下数的立方根:a) 8b) 27c) 64d) 125e) 216f) 343g) 512解答:a) ³√8 = 2b) ³√27 = 3c) ³√64 = 4d) ³√125 = 5e) ³√216 = 6f) ³√343 = 7g) ³√512 = 83. 计算以下数的平方根和立方根:a) 144c) 1296d) 4096e) 6561f) 10000解答:a) √144 = 12, ³√144 = 2b) √625 = 25, ³√625 = 5c) √1296 = 36, ³√1296 = 6d) √4096 = 64, ³√4096 = 8e) √6561 = 81, ³√6561 = 9f) √10000 = 100, ³√10000 = 104. 求以下数的平方根的近似值,取两位小数:a) 7b) 15c) 28d) 50e) 73f) 96a) √7 ≈ 2.65b) √15 ≈ 3.87c) √28 ≈ 5.29d) √50 ≈ 7.07e) √73 ≈ 8.54f) √96 ≈ 9.805. 求以下数的立方根的近似值,取两位小数:a) 9b) 20c) 37d) 64e) 91f) 125解答:a) ³√9 ≈ 2.08b) ³√20 ≈ 2.71c) ³√37 ≈ 3.30d) ³√64 ≈ 4.00e) ³√91 ≈ 4.50f) ³√125 ≈ 5.00通过以上练习题,我们可以加深对平方根和立方根的计算的理解。

平方根立方根练习题及答案

平方根立方根练习题及答案

平方根立方根练习题及答案1. 计算下列各数的平方根:- √9- √16- √252. 计算下列各数的立方根:- ∛8- ∛27- ∛643. 判断下列说法是否正确,并给出理由:- √144 = 12- ∛-8 = -24. 计算下列表达式的值:- √(2^2)- ∛(3^3)5. 解下列方程:- √x = 4- ∛y = 56. 一个数的平方根是2,求这个数。

7. 一个数的立方根是3,求这个数。

8. 一个数的平方根是它本身,求这个数。

9. 一个数的立方根是它本身,求这个数。

10. 计算下列表达式的值:- √(√81)- ∛(∛125)答案1. √9 = 3√16 = 4√25 = 52. ∛8 = 2∛27 = 3∛64 = 43. √144 = 12 是错误的,因为√144 = 12 的平方根是√12,而不是 12。

∛-8 = -2 是错误的,因为负数没有实数立方根。

4. √(2^2) = √4 = 2∛(3^3) = ∛27 = 35. √x = 4 时,x = 4^2 = 16∛y = 5 时,y = 5^3 = 1256. 一个数的平方根是2,这个数是 2^2 = 4。

7. 一个数的立方根是3,这个数是 3^3 = 27。

8. 一个数的平方根是它本身,这个数是0或1。

9. 一个数的立方根是它本身,这个数是0,1,或-1。

10. √(√81) = √9 = 3∛(∛125) = ∛ 5 = 5请注意,这些练习题和答案仅供学习和练习之用,实际应用中可能需要更复杂的计算和理解。

平方根和立方根专题(比较难)

平方根和立方根专题(比较难)

平方根和立方根专题(比较难) 平方根和立方根知识归纳】1.平方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术平方根,记为$\sqrt{x}$。

规定,$\sqrt{1}=1$。

2)一个正数的平方根有2个,它们互为相反数;只有1个平方根,它是本身;负数没有实数平方根。

3)两个公式:a)$(a+b)^2=a^2+2ab+b^2$;b)$(a-b)^2=a^2-2ab+b^2$。

2.立方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术立方根,记为$\sqrt[3]{x}$。

2)一个正数的立方根有1个,负数有1个立方根。

3)立方根的性质:a)$\sqrt[3]{a^2}=a^{\frac{2}{3}}$;b)$a^3=(\sqrt[3]{a})^3$。

4.已知某数有两个平方根分别是$a+3$与$2a-15$,求这个数。

设这个数为$x$,则有$(a+3)^2=x$,$2a-15$也是$x$的平方根,因此$(2a-15)^2=x$。

解得$a=7$,$x=64$。

5.已知:$2m+2$的平方根是$\pm4$,$3m+n+1$的平方根是$\pm5$,求$m+2n$的值。

由题意可列出方程组:begin{cases}sqrt{2m+2}=4\\sqrt{3m+n+1}=5end{cases}$解得$m=6$,$n=13$,因此$m+2n=32$。

6.已知$a<0$,$b<0$,求$4a^2+12ab+9b^2$的算术平方根。

4a^2+12ab+9b^2=(2a+3b)^2$,因此算术平方根为$|2a+3b|$。

7.甲乙二人计算$a+1-2a+a^2$的值,当$a=3$的时候,得到下面不同的答案:甲的解答:$a+1-2a+a^2=a+(1-a)^2=a+1-a=1$。

乙的解答:$a+1-2a+a^2=a+(a-1)^2=a+a-1=2a-1=5$。

哪一个解答是正确的?错误的解答错在哪里?为什么?乙的解答是正确的。

(完整版)平方根与立方根典型题大全

(完整版)平方根与立方根典型题大全

1激发兴趣,教给方法,培养习惯,塑造品格乐学,让学习更快乐乐学教育平方根与立方根典型题大全一、 填空题1 .如果 x 9,那么x = _________ ;如果 X 9,那么x _____________ 2•若一个实数的算术平方根等于它的立方根,则这个数是 ____________ ;3. __________________________________ 算术平方根等于它本身的数有 ___ 立方根等于本身的数有 ________________________________ .4. 若 -,.x 3 x,贝Vx ______ ,若•- x 2x,贝Ux ______ 。

4.的平方根是 ____________ ,V4的算术平方根是 ________ ,10 2的算术平方根是 ___________ ; 5 .当m ______时,3 m 有意义;当m _________ 时,3 m 3有意义;6.若一个正数的平方根是2a 1和a 2,则a __________ ,这个正数是 _________ ;7. _______________________________ TTH 2的最小值是 ________ 此时a 的取值是.二、 选择题 8. 若x 2a ,则()A. x 0B.x 0C.a 0D.a 08. (3)2的值是().A.3 B .3C 9D .99. 设x 、y 为实数, 且 y 45 x . x 5,则x y 的值是()A 1B、9C、4D 、510 .如果 3x 5有意义, 则x 可以「 取的最小整数为().A. 0B.1C.2D.311. 一个等腰三角形的两边长分别为5 2和2 3,则这个三角形的周长是( )A 、10 .2 2 3B 、5 .2 4 3C 、10 2 2.3 或 5 2 4 3D 、无法确定12.若x 5能开偶次方,则x 的取值范围是( )A. x 0B.x 5C.x 5D.x 513.若n 为正整数,则姑'、1 1等于( )A. -1B.1C.± 1D. 2n 114.若正数a 的算术平方根比它本身大, 则()底」乐学教育2 激发兴趣,教给方法,培养习惯,塑造品格A. 0 a 1B. a 0C. a 1D. a 1三、解方程12. (2x 1)38 13 .4(x+1) 2=8 14. (2x 3)225 12x四、解答题15.已知:实数a、b满足条件a 1 (ab 2)20试求1 1 1 1的值ab (a 1)(b 1) (a 2)(b 2) (a 2004)(b 2004)乐学,让学习更快乐。

初中数学-立方根、平方根典型例题及答案

初中数学-立方根、平方根典型例题及答案
典型例题一
例 01 判断正误
1.8 的立方根是 2
2.0.27 的立方根是 0.3. 3.-4 是 64 的立方根. 4.-125 的立方根是-5. 5.-2 是-4 的平方根.
6. a 表示 a 的平方根.
7. 25 5 .
8. 3 81 9 .
9.-0.5 是-0.125 的立方根.
10. 3 27 3
典型例题十二
例 12.下列说法对不对,为什么?
(1)64 的立方根是 4 ;
(2) 3 125 无意义;
1
1
(3) 的平方根是 ;
25
5
(5) 8 的立方根是 2 ;
125
5
(4) 3 27 和 3 27 相等;
(6)零的平方根、算术平方根、立方根都等
于零.
分析:立方根与平方根的性质有很大的区别,要特别注意两种方根的表示方法和叙述的
典型例题七
例 07.下列语句对不对?为什么? (1)0.027 的立方根是 0.3.
(2) 3 a 不可能是负数.
(3)如果 a 是 b 的立方根,那么 ab 0 .
(4)一个数的平方根与其立方根相同,则这个数是 1. 分析 立方根的定义是解题的基础,一个数的立方等于 a,那么这个数叫做 a 的立方 根.因为开立方与立方互为逆运算,我们知道正数有一个正的立方根,负数有一个负的立方 根,0 的立方根是零.也就是说,一个数的立方根是惟一的,这是与平方根的最主要的区别.从 这些出发考虑问题,上述题不难解答.
a 0 时也是正确的,只不过相当于等式两边调换了位置,所以⑤是正确的.
解答 B 说明 考查立方根的定义及性质.
典型例题三
例 03.设 x 27 ,则 x2 , 3 x , 3 x2 分别等于( ) 8

平方根与立方根试题

平方根与立方根试题

平方根与立方根试题姓名:一、选择题1.一个数若有两个不同的平方根,则这两个平方根的和为( )A 、大于0B 、等于0C 、小于0D 、不能确定2.若a ≥0,则24a 的算术平方根是( )A 、2aB 、±2aC 、a 2D 、| 2a |3.下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有( )A 、 0个B 、1个C 、2个D 、3个4.若一个数的平方根与它的立方根完全相同,则这个数是()A 、 1B 、 -1C 、 0D 、±1, 05.使(x -1)2=4成立,则x 的值是( )A 、3B 、-1C 、3或-1D 、±26.若一个数的平方根是8±,则这个数的立方根是( ).A 、2B 、±2C 、4D 、±47.若22(5)a =-,33(5)b =-,则a b +的所有可能值为( ).A 、0B 、-10C 、0或-10D 、0或±108.27-的立方根与81的平方根之和是( ).A 、0B 、6C 、-12或6D 、0或-69.若a ,b 满足23|1|(2)0a b ++-=,则ab 等于( ). A 、2 B 、12 C 、-2 D 、-12二、填空题(每题2分,共24分)10.2(4)-的平方根是 ,35±是 的平方根. 11.在下列各数中0,254,31()3--,2(5)--, 16中算数平方根最大的是12. 144的算术平方根是 ,16的平方根是 ;13.327= , 64-的立方根是 ;14.7的平方根为 ,21.1= ;15.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;16.平方数是它本身的数是 ;平方数是它的相反数的数是 ;17.当x 时,13-x 有意义;当x 时,325+x 有意义;18.若162=x ,则x= ;若813=n ,则n= ;19.若0|2|1=-++y x ,则x+y= ;20.计算:381264273292531+-+= ; 21.若m 的平方根是51a +和19a -,则m = .三、解答题22、(30分)(1)1712=+x (2) (x-1)2-3=0(3 ) 264(3)90x --= (4) 2(41)225x -=(5 )22)6(-=x( 6 ) 6432=x(7) 233(1)8|13|-+--- (8)23151()(1)(1)393----(9)3712 1.758-÷- (10)3331513432782125--+--23.(7分)已知312x -,332y -互为相反数,求代数式12x y+的值.24.(7分)已知34x =,且2(21)30y x z -++-=,求x y z ++的值.25.(7分)已知:x -2的平方根是±2, 2x+y+7的立方根是3,求x 2+y2的平方根.26.(7分)若12112+-+-=x x y ,求x y 的值。

平方根与立方根的练习题及解答

平方根与立方根的练习题及解答

平方根与立方根的练习题及解答数学中的平方根和立方根是我们常常会遇到的概念,它们在实际生活中的应用也非常广泛。

本文将介绍一些平方根和立方根的练习题,并提供详细解答,希望能够帮助读者更好地理解和运用这两个概念。

一、平方根的练习题及解答1. 求以下数的平方根:a) 25b) 36c) 64d) 81解答:a) √25 = 5b) √36 = 6c) √64 = 8d) √81 = 92. 求以下数的平方根(结果保留一位小数):a) 2b) 5c) 10解答:a) √2 ≈ 1.4b) √5 ≈ 2.2c) √10 ≈ 3.2d) √17 ≈ 4.13. 求以下数的平方根(结果保留两位小数):a) 7b) 13c) 20d) 29解答:a) √7 ≈ 2.65b) √13 ≈ 3.61c) √20 ≈ 4.47d) √29 ≈ 5.39二、立方根的练习题及解答1. 求以下数的立方根:a) 8c) 64d) 125解答:a) ∛8 = 2b) ∛27 = 3c) ∛64 = 4d) ∛125 = 52. 求以下数的立方根(结果保留一位小数):a) 1b) 10c) 25d) 100解答:a) ∛1 ≈ 1.0b) ∛10 ≈ 2.2c) ∛25 ≈ 3.0d) ∛100 ≈ 4.63. 求以下数的立方根(结果保留两位小数):b) 125c) 216d) 512解答:a) ∛81 ≈ 4.31b) ∛125 ≈ 5.00c) ∛216 ≈ 6.00d) ∛512 ≈ 8.00综上所述,本文介绍了一些平方根和立方根的练习题,并提供了详细的解答。

通过反复的练习,读者可以更加熟悉和灵活运用平方根和立方根的计算方法,从而更好地应用于实际问题中。

希望本文对您的数学学习有所帮助!。

(完整版)平方根与立方根测试题

(完整版)平方根与立方根测试题

平方根与立方根测试题时间:120分 满分:150分一、选择(每题2分,共40分)1.若a x =2,则( )A 、x>0B 、x≥0C 、a>0D 、a≥02.一个数若有两个不同的平方根,则这两个平方根的和为( ) A 、大于0 B 、等于0 C 、小于0 D 、不能确定 3.一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±=D 、a b =4.若a≥0,则24a 的算术平方根是( )A 、2aB 、±2aC 、a 2D 、| 2a | 5.若正数a 的算术平方根比它本身大,则( ) A 、0<a<1 B 、a>0 C 、a<1 D 、a>1 6.若n 为正整数,则121+-n 等于( )A 、-1B 、1C 、±1D 、2n+17.若a<0,则aa 22等于( )A 、21 B 、21- C 、±21 D 、0 8.若x-5能开偶次方,则x 的取值范围是( ) A 、x≥0 B 、x>5 C 、x≥5 D 、x≤59.下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有( )A 、 0个B 、1个C 、2个D 、3个 10.若一个数的平方根与它的立方根完全相同,则这个数是()A 、 1B 、 -1C 、 0D 、±1, 011.若x使(x-1)2=4成立,则x的值是( )A 、3B 、-1C 、3或-1D 、±212.如果a 是负数,那么2a 的平方根是( ).A .a B .a - C .a ± D.13a 有( ).A 、0个B 、1个C 、无数个D 、以上都不对 14.下列说法中正确的是( ).A 、若0a <0< B 、x 是实数,且2x a =,则0a >C有意义时,0x ≤ D 、0.1的平方根是0.01± 15.若一个数的平方根是8±,则这个数的立方根是( ).A 、2B 、±2C 、4D 、±416.若22(5)a =-,33(5)b =-,则a b +的所有可能值为( ).A 、0B 、-10C 、0或-10D 、0或±10 17.若10m -<<,且n =,则m 、n 的大小关系是( ).A 、m n >B 、m n <C 、m n =D 、不能确定 18.27-).A 、0B 、6C 、-12或6D 、0或-619.若a ,b满足2|(2)0b +-=,则ab 等于( ).A 、2B 、12 C 、-2 D 、-1220.下列各式中无论x 为任何数都没有意义的是( ).ABCD二、填空(每题2分,共34分)21的平方根是 ,35±是 的平方根.22.在下列各数中0,254,21a +,31()3--,2(5)--,222x x ++,|1|a -,||1a -方根的个数是 个.23. 144的算术平方根是 ,16的平方根是 ; 24.327= , 64-的立方根是 ; 25.7的平方根为 ,21.1= ;26.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 27.平方数是它本身的数是 ;平方数是它的相反数的数是 ; 28.当x= 时,13-x 有意义;当x= 时,325+x 有意义;29.若164=x ,则x= ;若813=n ,则n= ;30.若3x x =,则x= ;若x x -=2,则x ;31.若0|2|1=-++y x ,则x+y= ;32.计算:381264273292531+-+= ; 33.代数式3-的最大值为 ,这是,a b 的关系是 .3435=-,则x =,若6=,则x = .354k =-,则k 的值为 .36.若1n n <<+,1m m <<+,其中m 、n 为整数,则m n += .37.若m 的平方根是51a +和19a -,则m = .三、解答题(共76分)38、(40分)解方程:0324)1(2=--x (2) 125-8x3=0(3 ) 264(3)90x --= (4) 2(41)225x -=(5 )31(1)802x -+= ( 6 )3125(2)343x -=-(7)|1 (8(9(1039.(6互为相反数,求代数式12xy+的值.40.(6分)已知ax=M的立方根,y=x的相反数,且37M a=-,请你求出x的平方根.41.(6分)若y=,求2x y+的值.42.(64=,且2(21)0y x-++=,求x y z++的值.43.(6分)已知:x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.44.(6分)若12112--+-=xxy,求x y的值。

平方根与立方根练习题及答案

平方根与立方根练习题及答案

平方根与立方根练习题及答案【篇一:平方根;立方根经典练习题(非常好)】p> 2.已知x?3?3,则7x?73.若|3x-y-1|和2x?y?4互为相反数,求x+4y的算术平方根。

4.m是25的平方根,n?()2,则m,n的关系是5.若一个正数的平方根是3a+2和2a+1,求这个数。

6.若|a|?2,b2?3,且a?b?0,则a?b的值是。

7.已知2a-1的平方根是?3,3a+b-1的算术平方根是4,求a+2b的平方根。

8.已知|a|=6,b?16,求a+b的平方根。

9.x2?4,y?24且x?y,求x?10y 的平方根。

a2?4?4?a2?410.已知a,b满足b?,求|a?2b|?ab的值a?211.x?4y?3,(4x?3y)??8,x?y. 312.若x?3?4,则3(x?10)的值13.a?4?4,则(a?67)3的值为 222a,b在数轴上的位置如图所示,化简:a?b?(a?b)【篇二:平方根与立方根练习题】>一、填空题:1、144的算术平方根是,的平方根是;2、27, ?64的立方根是;3、7的平方根为,.21=;4、一个数的平方是9,则这个数是,一个数的立方根是1,则这个数是; 5、平方数是它本身的数是;平方数是它的相反数的数是; 6、当x= 时,x?1有意义;当x=时,x?2有意义; 111a22222a10、已知正方形的边长为a,面积为s,则()a.s??a c.a.a??s11、算术平方根等于它本身的数()a、不存在;b、只有1个;c、有2个;d、有无数多个; 27、若x4?16,则3n?81,则n= ; 8、若x?x,则;若x2??x,则x;9、若x?1?|y?2|?0,则x+y=; 10、计算:12539?227364??311、若m的平方根是5a?1和a?19,则m= . 12、0.25的平方根是;125的立方根是; 13、计算:214=___;?338=___;14、若x的算术平方根是4,则x=___;若x=1,则x=___;15、若(x?1)2-9=0,则x=___;若27x3+125=0,则x=___; 16、当x___时,代数式2x+6的值没有平方根;17、如果x、y满足x?y?|x?2|=0,则x=,y=___; 18、如果a的算术平方根和算术立方根相等,则a等于;二、选择题1、若x2?a,则()a、x0 b、x≥0 c、a0 d、a≥0 2、一个数若有两个不同的平方根,则这两个平方根的和为()a、大于0 b、等于0 c、小于0d、不能确定 3、一个正方形的边长为a,面积为b,则()a、a是b的平方根b、a是b的的算术平方根c、a??bd、b?a4、若a≥0,则4a2的算术平方根是()c.a的算术立方根a;d.-a的立方根是-a.13、满足-2<x<3的整数x共有()a.4个;b.3个;c.2个;d.1个. 14、如果a、b两数在数轴上的位置如图所示,则?a?b?2的算术平方根是();a、a+b;b、a-b;c、b-a;d、-a-b;a -1 0b 1 15、如果-?x?1?2有平方根,则x的值是()a、x≥1;b、x≤1;c、x=1;d、x≥0;16a是正数,如果a的值扩大100) a、扩大100倍;b、缩小100倍;c、扩大10倍;d、缩小10倍;20、若a0,则a21112a19、通过计算不难知道:2223?23,338?338,4415?4415,则按此规律,下一个式子是___;16.若a2?(?5)2,b3?(?5)3,则a?b的所有可能值为().a.0b.?10 c.0或?10 d.0或?10 三、计算题1、8?22?22、??8?30.493、24?45?200?94、?0.973?(?10)2?2?35、216??3?38?400;6、64??64-2?1202.四、解答题1、解方程:(x?1)2?324?02、解方程:(2x?3)2?25?12x3、若2a?1和?3b互为相反数,求ab的值。

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全平方根与立方根典型题大全一、填空题1.如果$x=9$,那么$x=$ 3;如果$x^2=9$,那么$x=$ 3 或$-3$。

2.若一个实数的算术平方根等于它的立方根,则这个数是1.3.算术平方根等于它本身的数有 1,立方根等于本身的数有 1.4.若$x=3\sqrt{x}$,则$x=0$ 或 $x=9$;若$x^2=-x$,则$x=0$ 或 $x=-1$。

5.当$m3$时,$3m-3$有意义。

6.若一个正数的平方根是$2a-1$和$-a+2$,则$a=2$,这个正数是 3.7.$a+1+2$的最小值是 2,此时$a$的取值是 $-1$。

二、选择题8.若$x^2=a$,则 $|x|\geq 0$,即$x$可以是正数或零,选项B。

8.$(-3)^2=9$,选项D。

9.$y=4+5-x+x-5=-1$,$x-y=x+1$,选项A。

10.当$3x-5>0$时,$x>\frac{5}{3}$,最小整数为2,选项C。

11.一个等腰三角形的周长是 $2\times 5+3\sqrt{2}$,选项D。

12.若$x-5$能开偶次方,则$x\geq 5$,选项C。

13.$2n+1-1=2n$,选项D。

14.正数$a$的算术平方根比它本身大,即$\sqrt{a}>a$,移项得$\sqrt{a}-a>0$,两边平方得$a>1$,选项D。

三、解方程12.$(2x-1)=-8$,解得$x=-\frac{7}{2}$。

13.$4(x+1)^2=8$,解得$x=\pm\sqrt{2}-1$。

14.$(2x-3)^2=25$,解得$x=2$ 或 $x=-\frac{1}{2}$。

四、解答题15.已知:实数$a$、$b$满足条件$a-1+(ab-2)^2=$试求$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}$$解:将$a-1$移到等式右边,得$$(ab-2)^2=-a+1+(ab-2)^2$$两边同时除以$(ab-2)^2$,得$$1=\frac{-a+1}{(ab-2)^2}+1$$移项得$$\frac{1}{ab-2}=\frac{-a+1}{(ab-2)^2}$$两边同时乘以$\frac{1}{ab}$,得$$\frac{1}{ab(ab-2)}=\frac{-1}{ab-2}+\frac{1}{ab}$$移项得$$\frac{1}{ab}=\frac{1}{ab-2}+\frac{1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab}=\frac{ab-2+1}{ab(ab-2)}+\frac{1}{ab(ab-2)}$$化简得$$\frac{1}{ab}=\frac{ab-1}{ab(ab-2)}$$两边同时乘以$\frac{1}{a+1}$,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(a+2)(ab-2)}$$化简得$$\frac{1}{ab(a+1)(a+2)}=\frac{b(ab-1)}{ab(a+2)(ab-2)(a+1)}$$同理,将左边的式子乘以$\frac{1}{a+2}$,得$$\frac{1}{ab(a+1)(a+2)}=\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$将两个式子相加,得$$\frac{2}{ab(a+1)(a+2)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)(a+2)}+\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$通分并化简得$$\frac{2}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{ab(a+1)(a+2)(ab-2)}$$移项得$$\frac{1}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}$$所以$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}=\frac{1}{ab}\left(\frac{1}{a+1}+\frac{ 1}{a+2}+\cdots+\frac{1}{a+2004}\right)\left(\frac{1}{b+1}+\frac {1}{b+2}+\cdots+\frac{1}{b+2004}\right)$$$$=\frac{1}{ab(a+1) (a+2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+200 4}\right)$$$$=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+2004}\r ight)$$。

平方根立方根练习题

平方根立方根练习题

平方根立方根练习题1. 计算下列各数的平方根:- 4- 9- 16- 25- 362. 找出下列数的平方根:- 64- 81- 100- 144- 1693. 计算下列各数的立方根:- 8- 27- 64- 125- 2164. 确定下列数的立方根:- 512- 729- 1000- 1728- 21975. 判断下列说法是否正确,正确的打“√”,错误的打“×”: - √8的平方根是2。

- ×9的平方根是3。

- √64的平方根是8。

- ×√49的立方根是7。

- √√125的立方根是5。

6. 填空题:- √64的值是______。

- √144的值是______。

- 立方根27的值是______。

- 立方根64的值是______。

- √225的值是______。

7. 解释下列各数的平方根和立方根:- √36- √49- 立方根8- 立方根27- √1218. 计算下列各数的平方根和立方根:- √289- √484- 立方根343- 立方根512- √10249. 用适当的数字填空:- √______ = 6- ______的立方根 = 3- √______ = 7- ______的立方根 = 4- √______ = 810. 根据题目要求,写出下列数的平方根和立方根: - √121- √196- 立方根343- 立方根512- √625。

平方根立方根练习题及答案

平方根立方根练习题及答案

平方根立方根练习题及答案平方根立方根练习题及答案【篇一:平方根立方根练习题】一、填空题1.如果x?9,那么x=________;如果x?9,那么x?________2.如果x的一个平方根是7.12,那么另一个平方根是________. 3.?的相反数是, 3?1的相反数是;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7的平方根是_______的算术平方根是_________,10?2的算术平方根是;8.若一个数的平方根是?8,则这个数的立方根是;9.当m______时,?m有意义;当m______时,m?3有意义;10.若一个正数的平方根是2a?1和?a?2,则a?____,这个正数是;11.已知2a?1?(b?3)2?0,则2ab? ; 312.a?1?2的最小值是________,此时a的取值是________.13.2x?1的算术平方根是2,则x=________.二、选择题14.下列说法错误的是()a(?1)2?1b3?13??1 c、2的平方根是?2d、?81的平方根是?9215.(?3)的值是(). 2a.?3 b.3 c.?9 d.916.设x、y为实数,且y?4??x?x?5,则x?y的值是()a、1b、9c、4d、517.下列各数没有平方根的是().a.-﹙-2﹚ b.(?3)3 c.(?1)2 d.11.118.计算25?8的结果是().a.3b.7c.-3d.-719.若a=?32,b=-∣-2∣,c=?(?2)3,则a、b、c的大小关系是().a.a>b>cb.c>a>bc.b>a>cd.c>b>a20.如果3x?5有意义,则x可以取的最小整数为().a.0b.1 c.2 d.321.一个等腰三角形的两边长分别为52和2,则这个三角形的周长是()a、2?2b、52?4c、2?2或52?43d、无法确定三、解方程22.x?25?023. (2x?1)3??8 24.4(x+1)=8 22四、计算25.1.25的算术平方根是;平方根是 .2.3的平方根是,它的平方根的和是 .3.49?14426.4144949 27.?31 ?1625的平方根是;的算术平方根是 . 644. -27的立方根是,的立方根是-4.5.21?, ??,4?62?6.318? , ?3? ,?3?0.008?827;绝对值是 .8.若x2?64,则x=.9.若无理数a满足:1a4,请写出两个你熟悉的无理数:,? .10.一个数的算术平方根是8,则这个数的立方根是 .11.一个正数的平方根是3a+1和7+a,则a =.12.化简(1)2?5 =; (2)3??=.13.满足?3?x?6的所有整数的和.14..15.比较大小:(2)-6; (3)? ?3(4)1?.16a和b之间,a?b,那么a=___ ,b= .17.已知坐标平面内一点a(-2,3),将点a,,得到a′,则a′的坐标为.二、选择题20.下列各式中,无意义的是( )a.21.下列说法错误的是( ) ..a.无理数没有平方根; b.一个正数有两个平方根;c.0的平方根是0;d.互为相反数的两个数的立方根也互为相反数.22.下列命题中,正确的个数有( )①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零;④-4没有算术平方根.a.1个b.2个c.3个d.4个23. 若a为实数,下列式子中一定是负数的是( )a.?ab.??a?1?c. ?ad.??a?1 21; 6112b.(?2) c.?44 d.?2 22?24.a,则下列结论正确的是()a. 4.5?a?5.0b. 5.0?a?5.5c. 5.5?a?6.0d. 6.0?a?6.525. 下列各式估算正确的是( )a30 b250 c5.2d4.126. 面积为10的正方形的边长为x,那么x的范围是( )a.1?x?3 b.3?x?4 c.5?x?10d.10?x?10027.下列等式不一定成立的是( )a?a c.a?a d.(a)3?a28. 实数a,b在数轴上对应点的位置如图所示,则必有()a.a?b?0 b.a?b?0 c.ab?00 d.23a?0 b29. 如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心、正方形对角线长为半径画弧,交数轴正半轴于点a,则点a表示的数是() a. 11 2 b. 1.4 c. 3 d. 230. 在?,2,732.121121112中,无理数的个数是()a.1b.2c.3d.431. 如图,数轴上表示1a、点b.若点b关于点a的对称点为点c,则点c所表示的数为()a1 b.1.2 d.2三、解答题32. 求的算术平方根、平方根、立方根.33. 求下列各式的值(?3)235. 将下列各数按从小到大的顺序重新排成一列,并用“”连接:22,,?2,0,36. 已知m,n为实数,且m?0,求m?n的值.37. 已知2?x??y?0,且x?y?y?x,求x?y的值.38. 求下列各式中的x.(1)x2?25(2)(x?1)2?9(3)x3??64(4)(2x?1)2?216?0.1.6【篇二:平方根立方根练习题】一、填空题1、 121的平方根是____,算术平方根_____.3、(-2)的平方根是_____,算术平方根是____.4、 0的算术平方根是___,立方根是____.5、-是____的平方根. 26、64的平方根的立方根是_____.2x?9x?9,那么7、如果,那么x=________;如果x?________9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.10、若一个实数的算术平方根等于它的立方根,则这个数是________;11、的平方根是_______,4的算术平方根是_________,10?2的算术平方根是;12、若一个数的平方根是?8,则这个数的立方根是;13、当m______时,3?m有意义;当m______时,m?3有意义;14、若一个正数的平方根是2a这个正数是; ?1和?a?2,则a?____,2ab?2a?1?(b?3)?015、已知,则;3216、a?1?2的最小值是________,此时a的取值是________.17、2x?1的算术平方根是2,则x=________.二、选择题1、 169的平方根是()2、0.49的算术平方根是()a,0.49 b,-0.7 c,0.7 d,0.73、81的平方根是()4、下列等式正确的是()15、-8的立方根是()111a,-16、当x=-8时,则x2的值是()7、下列语句,写成式子正确的是()a,3是9的算术平方根,即9??3c,2是2的算术平方根,即2=2d,-8的立方根是-2,即?8=-28、下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()a, 0个b,1个c,2个 d,3个10、下列说法错误的是()a、(?1)2?1b、?13??1c、2的平方根是?2d、?81的平方根是?901、2(?3)11、的值是().a.?3 b.3 c.?9 d.912、如果3x?5有意义,则x可以取的最小整数为().a.0b.1 c.2 d.313、下列各数没有平方根的是().32(?1)(?3)a.-﹙-2﹚ b. c. d.11.125?的结果是(). 14、计算a.3b.7c.-3d.-73?(?2)15、若a=?3,b=-∣-2∣,c=,则a、b、c 2的大小关系是().a.a>b>cb.c>a>bc.b>a>cd.c>b>a16、设x、()a、1b、9c、4d、5三、解方程1、x2y为实数,且y?4??x?x?5,则x?y的值是?25?02、(2x?1)??8233、4(x+1)=8四、计算491441、? 2、4149 3、?316?4 14494、求下列各数的平方根和算术平方根:(1)121;(2)(-3)2;(3)1(4)?36;(5)625.5、求下列各数的立方根:(1)-127;(2)0.064;(3)169(4) 64;(5)512-1.116;-78; 31【篇三:平方根;立方根经典练习题(非常好)】p> 2.已知x?3?3,则7x?73.若|3x-y-1|和2x?y?4互为相反数,求x+4y的算术平方根。

平方根立方根计算题50道

平方根立方根计算题50道

平方根立方根计算题50道一、平方根计算题(25道)1. 计算√(4)- 解析:因为2^2 = 4,所以√(4)=2。

2. 计算√(9)- 解析:由于3^2 = 9,所以√(9)=3。

3. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。

4. 计算√(25)- 解析:由于5^2 = 25,所以√(25)=5。

5. 计算√(36)- 解析:因为6^2 = 36,所以√(36)=6。

6. 计算√(49)- 解析:由于7^2 = 49,所以√(49)=7。

7. 计算√(64)- 解析:因为8^2 = 64,所以√(64)=8。

8. 计算√(81)- 解析:由于9^2 = 81,所以√(81)=9。

9. 计算√(100)- 解析:因为10^2 = 100,所以√(100)=10。

10. 计算√(121)- 解析:由于11^2 = 121,所以√(121)=11。

11. 计算√(144)- 解析:因为12^2 = 144,所以√(144)=12。

12. 计算√(169)- 解析:由于13^2 = 169,所以√(169)=13。

13. 计算√(196)- 解析:因为14^2 = 196,所以√(196)=14。

14. 计算√(225)- 解析:由于15^2 = 225,所以√(225)=15。

15. 计算√(0.04)- 解析:因为0.2^2 = 0.04,所以√(0.04)=0.2。

16. 计算√(0.09)- 解析:由于0.3^2 = 0.09,所以√(0.09)=0.3。

17. 计算√(0.16)- 解析:因为0.4^2 = 0.16,所以√(0.16)=0.4。

18. 计算√(0.25)- 解析:由于0.5^2 = 0.25,所以√(0.25)=0.5。

19. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16),因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。

平方根 立方根 实数 测试题

平方根 立方根 实数 测试题

平方根立方根实数测试题1. 平方根定义平方根是指某个数字的平方等于另一个数字,那么这个数字就是该数字的平方根。

以数学符号表示为:若 a^2 = b,则 a 就是 b 的平方根。

例题计算以下各数的平方根:a)16b)25c)2解答:a)16 的平方根为 4,因为 4^2 = 16。

b)25 的平方根为 5,因为 5^2 = 25。

c) 2 的平方根约为 1.41,因为 1.41^2 约为 2。

2. 立方根定义立方根是指某个数字的立方等于另一个数字,那么这个数字就是该数字的立方根。

数学符号表示为:若 a^3 = b,则 a 就是 b 的立方根。

例题计算以下各数的立方根:a)8b)27c)3解答:a)8 的立方根为 2,因为 2^3 = 8。

b)27 的立方根为 3,因为 3^3 = 27。

c) 3 的立方根约为 1.44,因为 1.44^3 约为 3。

3. 实数定义实数是由有理数和无理数组成的数集。

有理数包括整数、分数和小数,可以表示为有限小数或无限循环小数。

无理数无法表示为两个整数的比值,例如根号2和圆周率π。

实数在数轴上可以进行比较和排列。

例题判断以下数是有理数还是无理数:a)2b) 1.5c)√5解答:a) 2 是有理数,可以表示为 2/1。

b) 1.5 是有理数,可以表示为 3/2。

c)√5 是无理数,无法表示为有理数的比值。

4. 测试题问题1.计算 3 的平方根。

2.计算 8 的立方根。

3.判断 0.2 是否为有理数。

4.判断 2 的平方根是否为有理数。

答案1. 3 的平方根约为 1.73,因为 1.73^2 约为 3。

2.8 的立方根为 2,因为 2^3 = 8。

3.0.2 是有理数,可以表示为 1/5。

4. 2 的平方根为无理数,无法表示为有理数的比值。

以上就是关于平方根、立方根和实数的测试题文档。

希望对您有所帮助!#。

平方根与立方根(人教版)(含答案)

平方根与立方根(人教版)(含答案)
C.2 D.3
答案:C
解题思路:
3.1415926和0.2是有限小数, 是分数, 0.7, 3,
因此它们都是有理数; 为无理数, 且 为无理数.
故选C.
试题难度:三颗星知识点:无理数的概念
16.下列说法正确的是( )
A.一个数的平方根有两个B.有理数与数轴上的点一一对应
C.两个无理数的和不一定是无理数D.绝对值最小的实数不存在
3.平方根等于它本身的数是______,立方根等于它本身的数是______.空格上依次填写正确的是( )
A.±1和0,1和0 B.1和0,±1和0
C.0,±1和0 D.0,±1
答案:
解题思路:
1的平方根是±1,0的平方根是0,所以平方根等于它本身的只有0;
1的立方根是1,0的立方根是0,-1的立方根是-1,
A.8 B.-8
C.8或-8 D.4或-4
答案:C
解题思路:
4的平方根为2或-2,因此这个数为2或-2,2的立方为8,-2的立方为-8.
故选C.
试题难度:三颗星知识点:平方根
10.-27的立方根与 的平方根之和为( )
A.0 B.6
C.0或-6 D.0或6
答案:C
解题思路:
-27的立方根是-3, ,9的平方根为±3,-3与±3的和为0或-6,
A. B.
C. D.
答案:D
解题思路:
因为 , , ,…,
可以发现一个数如果扩大100倍,那么它的算术平方根扩大10倍,
由于20是0.2的100倍,所以 .
故选D.
试题难度:三颗星知识点:平方根
13.若 ,则( )
A.a>1 B.a<1
C.a≧1 D.a≦1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8、当x=时, 有意义;当x=时, 有意义;
9、若 ,则x=;若 ,则n=;
10、若 ,则x=;若 ,则x;
12.若 ,则 ,若 ,则 .
13.若 ,则 的值为.
2.已知 , 互为相反数,求代数式 的值.
3.已知 是M的立方根, 是 的相反数,且 ,请你求出 的平方根.
4.已知 ,且 ,求 的值.
5.已知:x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.
17.(本题6分)观察
,即 ;
,即 ;
猜想: 等于什么,并通过计算验证你的猜想。
3、一个正方Leabharlann 的边长为a,面积为b,则()A、a是b的平方根B、a是b的的算术平方根C、 D、
4、若a≥0,则 的算术平方根是()A、2a B、±2a C、 D、| 2a |
5、若正数a的算术平方根比它本身大,则()A、0<a<1 B、a>0 C、a<1 D、a>1
(1) ;(2) (精确到0. 01);
(3) ;(4) (保留三位有效数字)。
13.比较大小,并说理(每小题5分,共10分)
(1) 与6;(2) 与 。
14.写出所有适合下列条件的数(每小题5分,共10分)
(1)大于 小于 的所有整数;(2)绝对值小于 的所有整数。
16.(本题5分)
一个正数x的平方根是2a 3与5 a,则a是多少?
A,3B,-1C,3或-1D,±2
12.如果 是负数,那么 的平方根是( ).A. B. C. D.
13.使得 有意义的 有( ).A. 个 B.1个 C.无数个 D.以上都不对
14.下列说法中正确的是( ).
A.若 ,则 B. 是实数,且 ,则
C. 有意义时, D.0.1的平方根是
16.若 , ,则 的所有可能值为( ).
四、解答题
15.已知:实数a、b满足条件
试求 的值
一、选择题(每小题4分,共16分)
1.有下列说法中正确的说法的个数是()
(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;
(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
A.1 B.2 C.3 D.4
3.若 ,则 的值是()A. B. C. D.
11.一个等腰三角形的两边长分别为 和 ,则这个三角形的周长是( )
A、 B、 C、 或 D、无法确定
12.若 能开偶次方,则 的取值范围是( )
A. B. C. D.
13.若 为正整数,则 等于( )A.-1 B.1 C.±1 D.
14.若正数 的算术平方根比它本身大,则( )A. B. C. D.
平方根与立方根典型题大全
一、填空题
2.若一个实数的算术平方根等于它的立方根,则这个数是_________;
3.算术平方根等于它本身的数有________,立方根等于本身的数有________.
4.若 ,若 。
4. 的平方根是_______, 的算术平方根是_________, 的算术平方根是;
5.当 时, 有意义;当 时, 有意义;
A.0 B. 10 C.0或 10 D.0或 10
17.若 ,且 ,则 、 的大小关系是( ).
A. B. C. D.不能确定
19.若 , 满足 ,则 等于( ).
A.2 B. C. 2 D.
20.下列各式中无论 为任何数都没有意义的是( ).
A. B. C. D.
二,填空
7、平方数是它本身的数是;平方数是它的相反数的数是;
6.若一个正数的平方根是 和 ,则 ,这个正数是;
7. 的最小值是________,此时 的取值是________.
二、选择题
8.若 ,则( )A. B. C. D.
8. 的值是( ).A. B.3 C. D.9
9.设 、 为实数,且 ,则 的值是( )
A、1 B、9 C、4 D、5
10.如果 有意义,则x可以取的最小整数为( ).A.0 B.1 C.2 D.3
4.若 , ,则 ()A. 8 B.±8 C.±2 D.±8或±2
二、填空题(每小题3分,共18分)
6. 的相反数是;绝对值是。
7.在数轴上表示 的点离原点的距离是。8.若 有意义,则 =。
9.若 ,则± =。
10.若一个数的立方根就是它本身,则这个数是。
三、解答题(本大题共66分)
11.计算(每小题5分,共20分)
7、若a<0,则 等于()A、 B、 C、± D、0
9下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()
A,0个B,1个C,2个D,3个
10若一个数的平方根与它的立方根完全相同,则这个数是()
A,1B, -1C,0D,±1,0
11,若x使(x-1)2=4成立,则x的值是()
相关文档
最新文档