第2章电阻电路的等效变换习题及答案解析
(完整版)电阻电路的等效变换习题及答案
![(完整版)电阻电路的等效变换习题及答案](https://img.taocdn.com/s3/m/d5aa3399763231126edb11f0.png)
第2章 习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
2Ω3Ω(a)(b)题2-1图解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。
ab8Ωab8Ω(a)(b)题2-2图解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。
8Ωab(a) (b)题2-3图解:(a )开关打开时(84)//43ab R =+=Ω开关闭合时4//42ab R ==Ω(b )开关打开时(612)//(612)9ab R =++=Ω开关闭合时6//126//128ab R =+=Ω2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b)所示电路的电压U 。
6Ω6Ω(a) (b)题2-4图解:(a )从左往右流过1Ω电阻的电流为1I 21/(16//123//621/(142)3A =++++=)=从上往下流过3Ω电阻的电流为36I 32A 36=⨯=+ 从上往下流过12Ω电阻的电流为126I 31A 126=⨯=+ 所以 312I I -I =1A =(b )从下往上流过6V 电压源的电流为 66I 4A 1.5===(1+2)//(1+2)从上往下流过两条并联支路的电流分别为2A 所以 U 22-12=2V =⨯⨯2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。
2Ω(a)(b)题2-5图解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥1a所以 111//11332ab R =++=Ω()()(b )将图中的两个Y 形变成△形,如图所示2Ωab即得4021Ωab所以 1.269ab R =Ω2-6计算题2-6图所示电路中a b 、两点间的等效电阻。
电路(第版)第二章习题答案
![电路(第版)第二章习题答案](https://img.taocdn.com/s3/m/5dba9549aaea998fcc220ed4.png)
–
b 图(2)
Uab 4 Rab 4 5 20V
【2-13】图示电路中R1 =R3= R4 ,R2=2 R1, uc=4R1i1 ,利用电源的等效变换求电压 u10 。
【解】 在图(2)中:
ic
uc R2
4i1 R1 2 R1
2i1
R R2 /( / R3 R4) R1
i1 R1 ① R3
+
+
uS
–
u10
–
R2
+
uc
–
R4
0
图(1)
u10 3i1R1
i1 R1 ① 3i1
uS i1R1 3i1R1 4i1R1
所以:
u10
3 4
uS
0.75uS
+
+ ic
uS
–
u10
–
0
R
图(2)
由电压源变换为电流源:
i 1
us
u
R
转换
u /R s
i
Ru
1'
由电流源变换为电压源:
Rab= (R1+ R3) ∥(R2+R4)
3 1.5
2
a
R1
R2
S
R3
b
R5
R4
(c)
桥形连接
惠斯通电桥
R1
I5
R3
R5
若: R1R4 = R2R3 则: I5 = 0
R2
R4
RS +
U_ S
电桥平衡
所以: 可将 R5 开路或短路。
【2-4】 求各电路的等效电阻Rab,其中R1 =R2= 1Ω ,R3= R4 =2Ω, R5=4Ω
答案第2章 电阻电路的等效变换(含答案)
![答案第2章 电阻电路的等效变换(含答案)](https://img.taocdn.com/s3/m/064de5b5aef8941ea76e0592.png)
第二章 电阻电路的等效变换一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) .1. 如图所示电路的等效电阻为12122R R R R +- [√]解:212122122R R UU R R U R R U U R U I -+=-+=22221-+==R R R R I UR eq.2. 当R11、R2与R3并联时等效电阻为:123123R R R R R R ++ [×].3. 两只额定电压为110V 的电灯泡串联起来总可以接到220V 的电压源上使用。
[×] 解:功率不同的不可以。
.4. 电流相等的两个元件必属串联,电压相等的两个元件必属并联。
[×].5. 由电源等效变换可知, 如图A所示电路可用图B电路等效代替,其中/s s i u R =则图A 中的R i 和R L 消耗的功率与图B中R i 和R L 消耗的功率是不变的。
[×] 解:对外等效,对内不等效。
可举例说明。
.6. 一个不含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个线性电阻。
[√].7. 一个含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个电压源与一个电阻串联或一个电流源与一个电阻并联。
[√] .8.已知图示电路中A、B两点电位相等,则AB支路中必然电流为零。
[×] 解:根据KVL 有: B A BA AB BA U U R I U R I E -+=+=55 5R E I BA =.9. 图示电路中, 既然AB两点电位相等, 即UAB =0,必有I AB =0 [×]解:A I AB 195459424=⨯+-⨯+=4Ω2ΩIAB9AA B.10. 理想电压源不能与任何理想电流源等效。
[√] 二、选择题(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) .1. 图示电路 AB间的等效电阻为_C_AB20Ω20Ω20Ω10Ω6Ω12Ω12Ω2Ω解:二个电阻并联等效成一个电阻,另一电阻断开。
第2章 电路的等效变换例题
![第2章 电路的等效变换例题](https://img.taocdn.com/s3/m/cdc1ad8d783e0912a3162ad4.png)
第2章电路的等效变换例题第2章电路的等效变换例题第二章电阻电路的等效变换例2-1求图2-1所示电路的等效电阻R。
2-1 例2-1电路图解对原电路作等效变形如图2-6(b)所示。
可以看出电路的联接关系:R 1、R 2、R 3并联再串联R 4。
所以ab端的等效电阻为R ab =R 1R 2R 3+R 4=R 1R 2R 3+R 4 R 1R 2+R 2R 3+R 3R 1例2-2 图2-2(a)所示电路中,已知u s =24V ,R 1=6Ω,R 2=5Ω,R 3=4Ω,R 4=3Ω, R 5=2Ω, R 6=1Ω。
求各支路电流。
解先进行等效化简,再求各支路电流。
(1)等效化简。
其过程如图(b)~(e)所示。
R 7=R 5+R 6=3ΩR 4R 7R 8==1. 5ΩR 4+R 7R 9=R 8+R 3=5. 5ΩR R 2R 910=R R =2. 62Ω又R 1+R 10=8. 62Ω(2)各支路电流。
电流参考方向如图所示。
图(e)中,1=R R =2. 78 1+10u bo =i 1R 10=7. 28V 图(d)中,2=R =1. 46A3=R =1. 32A也可采用分流公式计算。
图(d)中,4=R +R i 3=0. 66AR i 45=R i 3=0. 66A 4+R 7 ,例2-3 :求图2-3(a)所示电路中的电压u ab 。
解:a,b端子右侧电路是一个由电阻组成的无源二端网络,利用等效变换先计算ab端的等效电阻R ab ,如图2-3(d )所示。
将接点①、②、③内的Δ联接电路用等效Y 联接电路替代,得到图(b )所示电路。
其中4Ω⨯6ΩR 1==1. 2Ω 4Ω+6Ω+10Ω4Ω⨯10ΩR 2==2Ω 4Ω+6Ω+10Ω6Ω⨯10ΩR 3==3Ω 4Ω+6Ω+10Ω然后利用电阻串、并联等效的方法得到图(c)、(d)电路,计算得到R ab 12Ω⨯8Ω=1. 2Ω++24Ω= 12Ω+8Ω1. 2Ω+4. 8Ω+24Ω=30ΩV 由图(d)得 u ab =5A ⨯30Ω=150另一种方法是用Δ联接电路等效替代接点①、③、④内的Y 联接电路(以接点②为Y 联接的公共点),如图2-4所示。
第2章电阻电路的等效变换习题及答案
![第2章电阻电路的等效变换习题及答案](https://img.taocdn.com/s3/m/27155d8bcf84b9d528ea7acb.png)
第2章习题与解答2-1试求题2-1图所示各电路血端的等效电阻心,。
解:(a)心,=1 + 4//(2 + 6//3) = 30(b)心=4//(6//3 + 6//3) = 2C 2 —2试求题2-2图所示各电路弘〃两点间的等效电阻IQ 5G_| ------ [ ----- 1.5Q 4G(a)(b)题2—2图解:(a) 心=3 + [(8 + 4)//6 + (l + 5)]//10 = 8G(b) R ah =[(4//4 + 8)//10 + 4]//9 + 4 + l ・5 = 10C2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻尺血oIQ 4Q3G(b)(a)题2—3图 解:(a)开关打开时心=(8 + 4)//4 = 3。
开关闭合时^,=4/74 = 20(b)开关打开时 R ah =(6 + 12)/7(6+12) = 90开关闭合时心=6//12 + 6//12 = 8。
2—4试求题2—4图(a)所示电路的电流/及题2—4图(b)所示电路的电压U 。
解:(a)从左往右流过1G 电阻的电流为I] =21/(1 + 6//12 + 3//6)二21/(l+4 + 2) = 3A 从上往下流过3 O 电阻的电流为I.= —x3 = 2A3 + 6 从上往下流过120电阻的电流为I p =—^-x3 = lA12 + 6 所以1 =【3叫2 = 1 A⑹从下往上流过6V 电压源的电流为"击莎1Q + O1V3Q 6Q(a)12Q6Q题2—4图从上往下流过两条并联支路的电流分别为2A所以U = 2x2-lx2=2V2 — 5试求题2 — 5图所示各电路ab端的等效电阻R ah,其中/?] = = 1。
2Q题2-5图解:(a)如图,对原电路做厶-丫变换后,得一平衡电桥所以心,=(*+*)//(1 + 1)= *°(b)将图中的两个Y形变成△形,如图所示2.5Q5Q 白804Q 4QT50T T2Q即得所以陰=L269G2 —6计算题2 —6图所示电路中弘b两点间的等效电阻。
电路原理(邱关源)习题解答第二章课件-电阻电路的等效变换练习
![电路原理(邱关源)习题解答第二章课件-电阻电路的等效变换练习](https://img.taocdn.com/s3/m/127e571b0912a2161479293a.png)
第二章 电阻电路的等效变换“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。
所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。
由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。
等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。
等效变换的目的是简化电路,方便地求出需要求的结果。
深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。
2-1 电路如图所示,已知12100,2,8s u V R k R k ==Ω=Ω。
若:(1)38R k =Ω;(2)处开路)33(R R ∞=;(3)处短路)33(0R R =。
试求以上3种情况下电压2u 和电流23,i i 。
解:(1)2R 和3R 为并联,其等效电阻84R k ==Ω,则总电流 mA R R u i s 3504210011=+=+=分流有 mA i i i 333.86502132==== V i R u 667.666508222=⨯==(2)当∞=3R ,有03=imA u i s 10100212===V i R u 80108222=⨯==(3)03=R ,有0,022==u imA R u i s 50210013===2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。
求:(1)电压2u 和电流2i ;(2)若电阻1R 增大,对哪些元件的电压、电流有影响?影响如何?解:(1)对于2R 和3R 来说,其余部分的电路可以用电流源s i 等效代换,如题解图(a )所示。
因此有 32332R R i R i += 32322R R i R R u s+=(2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。
第二章电阻电路的等效变换习题
![第二章电阻电路的等效变换习题](https://img.taocdn.com/s3/m/807690bcc77da26925c5b0b0.png)
R12
R23
R1 R2
R3
解:等效电路如图(b)
R12 R23 R31 R
R12 R31 R 9 R1 3 R12 R23 R31 3 3
同理
R2 R3 3
第五版题2-5题解(△-Y变换)
R13
R1
R3
R41
R4
R34
解:等效电路如图(b)
(a)
(b)
同理
R1 R3 R4 R R1 R3 R13 R1 R3 3 R 27 R4
R34 R41 27
第五版题2-6
第五版题2-7图;第四版2-5
2-5 题 解
uS 1 uS 2 24 6 iS 3 mA R1 R2 12k 6k
等效变换条件
电压源模型
实际电源的两种电路模型
电流源模型 两种模型的相互等效变换
外加电压源法
单口电路的输入电阻及求法
外加电流源法 开路短路法
控制量为1法
用等效变换法分析计算电路
第四、五版题2-2图题解
(a) 解(1):等效电路如图(a)所示
R3 i2 iS R3 R2
(2)因u2不变,R1的增大, 仅对uR1、uiS产生影响。 使uR1增大,uiS减小。
2-14 求输入电阻Rab
第五版题2-15;第四版2-13
u1
u1
R2
求图(a)的输入电阻Ri (题解)
解:外加电压u,如图(b),有
Ri
R3
R1
u R1i1 u1 R1i1 u
u i1 i R3 u u R1 ( i ) u R3
(a)
电路-第2章习题-电阻电路的等效变换
![电路-第2章习题-电阻电路的等效变换](https://img.taocdn.com/s3/m/ac6aec046137ee06eef91822.png)
2-1、求电路的入端电阻R AB 。
R= 2//2+4//6AB答案 3.4Ω2-2、求各电路的入端电阻R AB。
(6//6+9)//102-3、求各电路的入端电阻R AB。
→解:(a)(3//6+1)//6=2Ω(b) 等效电路如图所示:即2-4、试求下图所示电路中的电流I。
答案-1.1A2-5、求图示电路中的电流i。
答案:- 0.1A2-6、电路如图所示,求B点的电位V B。
解:该电路图可以改变成如下图所示的形式2-7、电路如图所示,求电流I和电压U AB。
解:原电路可以等效变换为如下电路152-8、电路如图所示,求AB端的等效电阻R AB。
解:在AB端外加电源,使u、i对二端电路来说是关联参考方向。
由图可得:得到2-9、求图 (a) 和 (b) 所示两电路的输入电阻。
2-10、用电源等效变换法求图示电路中负载R L 上的电压U 。
12A5ΩR L+ -14V +-4Ω14-2Ω 2Ω2Ω2-11、化简为一个等效的电压源支路。
(a) (b) (c) (d)其中111R U I S S =,222R U I S S =,21S S S I I I +=,)(2121R R R R R S +=,S S S I R U =。
恒流源与恒压源的串联和并联两种情况(1) (2)2-12、化简图示电路。
(a) (b) (c) (d)2-13、在图(a )所示电路中,已知V 12=S U ,Ω=31R ,A 5=S I ,Ω=62R ,试求2R 支路中的电流2I 。
(a) (b) (c)解: 3)5312(633)(12112=++=++=S S I R U R R R I A10;2-14、在图示电路中,N为一个实际的直流电源。
当开关S断开时,电压表读数为V1。
试求该直流电源N的电压源模型与电流源模型。
当开关S闭合时,电流表读数为A解:等效电路如图:,2-15、电路如图所示。
已知Ω=61R ,Ω=1.02R ,98.0=α,Ω=53R ,V U 9.4=。
第2章电阻电路的等效变换习题及参考答案
![第2章电阻电路的等效变换习题及参考答案](https://img.taocdn.com/s3/m/b639f34bf18583d04964596d.png)
精心整理第2章习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
(a) (b)题2-1图解:(a )14//(26//3)3ab R =++=Ω(b 2-2解:(a (b 2-3(a)(b)解:(a (b 2-4(a) (b)题2-4图解:(a )从左往右流过1Ω电阻的电流为从上往下流过3Ω电阻的电流为36I 32A 36=⨯=+ 从上往下流过12Ω电阻的电流为126I 31A 126=⨯=+ 所以312I I -I =1A =(b )从下往上流过6V 电压源的电流为66I 4A 1.5===(1+2)//(1+2) 从上往下流过两条并联支路的电流分别为2A所以U 22-12=2V =⨯⨯2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。
(a) (b)题2-5图解:(a(b 即得所以ab R 2-6解:(a 所以ab R (b 所以ab R 2-7U 及总电压ab U 题2-7图解:将图中的Y 形变成△形,如图所示所以(32.5//526//2)//2655510ab R =++=+=Ω回到原图已知128I I +=348I I +=1310840I I +=245240I I +=联立解得1 2.4I A =2 5.6I A =32I A =46I A =所以121054U I I V =-+=2-8试求题2-8图所示电路的输入电阻in R 。
(a)(b)题2-8图解:(a )如图所示,在电路端口加电压源U ,求I 所以21(1)in U R R R Iμ==+- (b )如图所示,在电路端口加电压源U ,求I12R R U 2-(b 2-62-题2-11图解:先化简电路,如图所示43Ω所以有41(2933i i +-=3i A = 2-12题2-12图所示电路中全部电阻均为1Ω,试求电路中的电流i 。
题2-12图解:先求电路右边电阻块的等效电阻ab R ,如图所示将中间的Y 形化成△形。
第2章电阻电路的等效变换习题及答案
![第2章电阻电路的等效变换习题及答案](https://img.taocdn.com/s3/m/c2c0506433d4b14e852468fb.png)
GAGGAGAGGAFFFFAFAF第2章 習題與解答2-1試求題2-1圖所示各電路ab 端的等效電阻ab R 。
2Ω3Ω(a)(b)題2-1圖解:(a )14//(26//3)3ab R =++=Ω(b )4//(6//36//3)2ab R =+=Ω2-2試求題2-2圖所示各電路a b 、兩點間的等效電阻ab R 。
ab8Ωab8Ω(a)(b) 題2-2圖解:(a )3[(84)//6(15)]//108ab R =++++=Ω(b )[(4//48)//104]//94 1.510ab R =++++=ΩGAGGAGAGGAFFFFAFAF2-3試計算題2-3圖所示電路在開關K 打開和閉合兩種狀態時的等效電阻ab R 。
8Ωab(a) (b)題2-3圖解:(a )開關打開時(84)//43ab R =+=Ω開關閉合時4//42ab R ==Ω(b )開關打開時(612)//(612)9ab R =++=Ω開關閉合時6//126//128ab R =+=Ω2-4試求題2-4圖(a )所示電路的電流I 及題2-4圖(b )所示電路的電壓U 。
6Ω6Ω(a)(b) 題2-4圖GAGGAGAGGAFFFFAFAF解:(a )從左往右流過1Ω電阻的電流為1I 21/(16//123//621/(142)3A =++++=)=從上往下流過3Ω電阻的電流為36I 32A 36=⨯=+ 從上往下流過12Ω電阻的電流為126I 31A 126=⨯=+ 所以 312I I -I =1A =(b )從下往上流過6V 電壓源的電流為66I 4A 1.5===(1+2)//(1+2) 從上往下流過兩條并聯支路的電流分別為2A 所以 U 22-12=2V =⨯⨯2-5試求題2-5圖所示各電路ab 端的等效電阻ab R ,其中121R R ==Ω。
2Ω(a)(b) 題2-5圖解:(a )如圖,對原電路做△-Y 變換后,得一平衡電橋GAGGAGAGGAFFFFAFAF1a所以 111//11332ab R =++=Ω()()(b )將圖中的兩個Y 形變成△形,如圖所示2Ωab即得4021Ωab所以 1.269ab R =Ω2-6計算題2-6圖所示電路中a b 、兩點間的等效電阻。
第二章 电阻电路的等效变换
![第二章 电阻电路的等效变换](https://img.taocdn.com/s3/m/e07f1a2f43323968011c92ad.png)
一.串联电路
1.串联电路:各电阻依次连接且流过同 一电流的一段电路称为电阻串联电路.如 图2-1所示
返回本章开头
2.串联电路的特点
⑴电流关系
I I1 I 2 I n
⑵电压关系
U U1 U 2 U n
R R R R Rk
K k 1 U I G
当两个电阻并联时, ②此时分流公式
R2 I I 1 R1 R2 R1 I 2 I R1 R2
R1 R2 ①总电阻 R R1 R2
三.串并联电路
1.电阻串并联电路:既有串联又有并联的电阻 电路称为电阻串并联电路。 2.举例说明电阻串并联电路的简化过程。 例2-1 如图所示电路,求ab两端口的等效电 阻。
n n k 1 k 1
2
P Pk Rk I Rk I
2
2
⑸各电阻分压关系
Rk U k Rk I U R
k 1.2. n
二.并联电路
1.并联电路:各电阻元件接在同一对节 点之间,且各电阻元件两端电压相同, 称为电阻并联电路。 如图2-2所示
2.并联电路的特点 ⑴电压关系
由图(b)可求得
2 28 8 Rab 3.2 2 2 8 8
28 Rab 2 3.2 28
2-2 2-3
由图(c)可求得
作业: 习题二
返回本章开头
解从端口看,先将能直观看出串联或 并联的电阻进行等效,剩余的部分就 会显示出明朗的串并联关系,按这样 思路做下去,可将电路进行简化。 如例2-1 的a图简化成b图
则得
Rcd Rab
4 6 2.4 46 4 3.6 1.84 4 3.6
第2章电阻电路的等效变换习题及答案解析
![第2章电阻电路的等效变换习题及答案解析](https://img.taocdn.com/s3/m/0adc85de7c1cfad6195fa759.png)
第2章 习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
2Ω3Ω(a)(b)题2-1图解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。
ab8Ωab8Ω(a)(b)题2-2图解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。
8Ωab(a) (b)题2-3图解:(a )开关打开时(84)//43ab R =+=Ω开关闭合时4//42ab R ==Ω(b )开关打开时(612)//(612)9ab R =++=Ω开关闭合时6//126//128ab R =+=Ω2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。
6Ω6Ω(a) (b)题2-4图解:(a )从左往右流过1Ω电阻的电流为1I 21/(16//123//621/(142)3A =++++=)=从上往下流过3Ω电阻的电流为36I 32A 36=⨯=+ 从上往下流过12Ω电阻的电流为126I 31A 126=⨯=+ 所以 312I I -I =1A =(b )从下往上流过6V 电压源的电流为 66I 4A 1.5===(1+2)//(1+2)从上往下流过两条并联支路的电流分别为2A 所以 U 22-12=2V =⨯⨯2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。
2Ω(a)(b)题2-5图解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥1a所以 111//11332ab R =++=Ω()()(b )将图中的两个Y 形变成△形,如图所示2Ωab即得4021Ωab所以 1.269ab R =Ω2-6计算题2-6图所示电路中a b 、两点间的等效电阻。
电阻电路的等效变换习题解答第2章
![电阻电路的等效变换习题解答第2章](https://img.taocdn.com/s3/m/daf6842cddccda38366baf27.png)
第二章(电阻电路的等效变换)习题解答一、选择题1.在图2—1所示电路中,电压源发出的功率为 B 。
A .4W ;B .3-W ;C .3W ;D .4-W2.在图2—2所示电路中,电阻2R 增加时,电流I 将 A 。
A .增加;B .减小;C .不变;D .不能确定3.在图2—3所示电路中,1I = D 。
A .5.0A ;B .1-A ;C .5.1A ;D .2A4.对于图2—4所示电路,就外特性而言,则 D 。
A . a 、b 等效; B . a 、d 等效; C . a 、b 、c 、d 均等效; D . b 、c 等效5.在图2—5所示电路中,N 为纯电阻网络,对于此电路,有 C 。
A .S S I U 、都发出功率; B .S S I U 、都吸收功率; C .S I 发出功率,S U 不一定; D .S U 发出功率,S I 不一定二、填空题1. 图2—6(a )所示电路与图2—6(b )所示电路等效,则在图2—6(b )所示电路中,6=S U V ,Ω=2R 。
2.图2—7(a )所示电路与图2—7(b )所示电路等效,则在图2—7(b )所示电路中,1=S I A ,Ω=2R 。
3.在图2—8所示电路中,输入电阻Ω=2ab R 。
4.在图2—9所示电路中,受控源发出的功率是30-W 。
5.在图2—10所示电路中,2A 电流源吸收的功率是20-W 。
三、计算题1.对于图2—11所示电路,试求:1).电压1U 、2U ;2).各电源的功率, 并指出是吸收还是发出。
解:21=U V , 3132-=-⨯=)(U V 621122=⨯+=)(V P W (发出),11221-=⨯+=)(U P A W (吸收1-W ,发出1W) 2.计算图2—12所示电路中的电流I 。
解:将图2—12所示电路中Ω1电阻和Ω2电阻的串联用Ω3的电阻等效,将4A 电流源和Ω3电阻的并联用12V 电压源和Ω3电阻的串联等效,可得图2—12所示电路的等效电路如图2—12(a )。
电阻电路的等效变换习题及答案解析
![电阻电路的等效变换习题及答案解析](https://img.taocdn.com/s3/m/5de5eebaf61fb7360b4c6577.png)
第2章 习题与解答2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
2Ω3Ω(a)(b)题2-1图解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。
ab8Ωab8Ω(a)(b)题2-2图解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。
8Ωab(a) (b)题2-3图解:(a )开关打开时(84)//43ab R =+=Ω开关闭合时4//42ab R ==Ω(b )开关打开时(612)//(612)9ab R =++=Ω开关闭合时6//126//128ab R =+=Ω2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b)所示电路的电压U 。
6Ω6Ω(a) (b)题2-4图解:(a )从左往右流过1Ω电阻的电流为1I 21/(16//123//621/(142)3A =++++=)=从上往下流过3Ω电阻的电流为36I 32A 36=⨯=+ 从上往下流过12Ω电阻的电流为126I 31A 126=⨯=+ 所以 312I I -I =1A =(b )从下往上流过6V 电压源的电流为 66I 4A 1.5===(1+2)//(1+2)从上往下流过两条并联支路的电流分别为2A 所以 U 22-12=2V =⨯⨯2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。
2Ω(a)(b)题2-5图解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥1a所以 111//11332ab R =++=Ω()()(b )将图中的两个Y 形变成△形,如图所示2Ωab即得4021Ωab所以 1.269ab R =Ω2-6计算题2-6图所示电路中a b 、两点间的等效电阻。
第二章电阻电路的等效变换作业纸答案2009
![第二章电阻电路的等效变换作业纸答案2009](https://img.taocdn.com/s3/m/dd8417c3aa00b52acfc7ca55.png)
2-3求图示电路中a、b两端的等效电阻。
解:(a)
Rab=(1/3+1/6)//2+1=1.4Ω
(b)
Rab=6//((8//8)+(3//6+1)//4)=120/41Ω
2-6将图示各电路分别等效变换为最简形式。
解:(a)
(b)
(c)(d)ຫໍສະໝຸດ (e)(f)2-9如图所示电路,求电流I。
解:根据电源等效原理,可将原电路等效成:
则:I=6*(3/(3+6))=2A
2-11求图示电路的ab端口的特性方程,并计算等效电阻。
解:
可将原电路等效成以下电路形式:
应用外加电压源的方法如图:
在节点A处应用KCL有:
(4/3)I+(4/3)U=U
Rab=U/I=-4Ω
2-12求图示电路的ab端口等效电阻。
解:采用外加电源的方法。在A节点应用KCL得:
I=I1+I2(1)
在环路1应用KVL有:
6I1=5I1+4I2(2)
所以,I1=4I2(3)
将(3)代入到(1)得:I=5I2
在环路2应用KVL有:
U=6I1+2I=34I2
Rab=U/I=34/5Ω=6.8Ω
2-13利用等效变换方法计算如图所示电路的电流I。
解:原电路可等效变换成:
因电流I为被求量,所以,3U的受控电压源与2Ω电阻的等效化简就不要进行下去了。在A点应用KCL有:
U/2+U/2=2.5+3U
所以:U=-1.25V
I=U/2=-0.625A
2-14,求图示电路中10Ω电阻的电流i。
解:根据电源等效方法,可将原电路等效成:
答案第2章 电阻电路的等效变换(含答案)
![答案第2章 电阻电路的等效变换(含答案)](https://img.taocdn.com/s3/m/064de5b5aef8941ea76e0592.png)
第二章 电阻电路的等效变换一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) .1. 如图所示电路的等效电阻为12122R R R R +- [√]解:212122122R R UU R R U R R U U R U I -+=-+=22221-+==R R R R I UR eq.2. 当R11、R2与R3并联时等效电阻为:123123R R R R R R ++ [×].3. 两只额定电压为110V 的电灯泡串联起来总可以接到220V 的电压源上使用。
[×] 解:功率不同的不可以。
.4. 电流相等的两个元件必属串联,电压相等的两个元件必属并联。
[×].5. 由电源等效变换可知, 如图A所示电路可用图B电路等效代替,其中/s s i u R =则图A 中的R i 和R L 消耗的功率与图B中R i 和R L 消耗的功率是不变的。
[×] 解:对外等效,对内不等效。
可举例说明。
.6. 一个不含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个线性电阻。
[√].7. 一个含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个电压源与一个电阻串联或一个电流源与一个电阻并联。
[√] .8.已知图示电路中A、B两点电位相等,则AB支路中必然电流为零。
[×] 解:根据KVL 有: B A BA AB BA U U R I U R I E -+=+=55 5R E I BA =.9. 图示电路中, 既然AB两点电位相等, 即UAB =0,必有I AB =0 [×]解:A I AB 195459424=⨯+-⨯+=4Ω2ΩIAB9AA B.10. 理想电压源不能与任何理想电流源等效。
[√] 二、选择题(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) .1. 图示电路 AB间的等效电阻为_C_AB20Ω20Ω20Ω10Ω6Ω12Ω12Ω2Ω解:二个电阻并联等效成一个电阻,另一电阻断开。
电路理论基础课后习题解析 第二章
![电路理论基础课后习题解析 第二章](https://img.taocdn.com/s3/m/851c4d14227916888486d7d6.png)
US
R I2
R I3
R
I1
3U S R
I2
I3
2U S R
I1 _
+ US
I1: I2 : I3=3:2:2
3.求电流I=?
I 10A
2 6 2
10A
4
2 6
图(a)
Rab= 3
I
10
3 34
30 2
4.286
a 6
I
6
4 6
6
b 6
Rab
a
10A I 4 3
U 1
3I1
U 2I
Rab=2
4.求输入电阻Rab=?
2I
1 3 6
a
I
Rab
3
2I
b
8I
4
图(b)
U (1 3 2)I 4I 8I 10I
Rab=10
a I 1 +
U
2I
_
b
8I
I 3 2I 2 4 I
b
3.求电流I=?2A
1
3 6 1
6V 12V
I
4A 2
2A 1
I
2 1 2
图(b) 2A
1
1
3
I
8V
2V 1 I
6 1
2A
2A
2
2
2
I= 1A
4.求输入电阻Rab=? a I
U 1
Uo
I1
3I1
2U o 4
U 3U0
b
图(a)
2U0 4I1
I
天津理工电路习题及答案 第二章电阻电路的等效变换
![天津理工电路习题及答案 第二章电阻电路的等效变换](https://img.taocdn.com/s3/m/8cdce129482fb4daa58d4b95.png)
求图2.8所示含T形的电路中电压源中的电流,其中E=13V,R=2kΩ。
图2.8
解法1:利用电阻电路的Δ-Y变换,把图2.8中虚线框内的Δ联接的三个1kΩ电阻变换成Y联接,如图2.8(a)所示,
图2.8(a)
求得等效电阻为:
所以:
解法2:本题也可以把图2.8(b)中虚线框内Y联接的三个1kΩ电阻变换成Δ联接,如图2.8(c)所示。
I2=90V/18Ω=5A;U3=610=60V;
I3=15-5=10A;U4=90V-60V=30V;
I4=30V/4Ω=7.5A;I5=10-7.5=2.5A。
【例题2】:电阻元件的组合,即电阻元件的串、并联;分流和分压的计算。
求图2.6所示电路的I1,I4,U4
图2.6
解:①用分流方法做:
I4=-0.5I3= -0.25I2= -0.125I1= -3/2R;
(4)三角形与星形连接的等效变换
2、典型例题分析
【例题1】:电阻元件的组合,即电阻元件的串、并联;分流和分压的计算。
电路如图2.5所示,计算各支路的电压和电流。
图2.5
解:这是一个电阻串、并联电路,首先求出等效电阻Reg=11Ω,
则各支路电流和电压为:
I1=165V/11Ω=15A;U2=615=90V;
第二章电阻电路的等效变换
1、重点和难点
(1)等效与近似概念的认识
①等效:同一物体在不同的场合(情况)下,其作用效果相同,称之为等效。在电路分析中有两种形式的等效:其一:站在电源立场,等效负载(电阻)。即求等效电阻。如图2.1所示。其二:站在负载(电阻)立场,等效电源。即求等效电源。如图2.2所示。图2.3所示的电路不是等效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 习题与解答
2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。
2Ω
3Ω
(a)
(b)
题2-1图
解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω
2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。
a b
8Ω
a
b
8Ω
(a)
(b)
题2-2图
解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω
2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。
8Ω
a
b
(a) (b)
题2-3图
解:(a )开关打开时(84)//43ab R =+=Ω
开关闭合时4//42ab R ==Ω
(b )开关打开时(612)//(612)9ab R =++=Ω
开关闭合时6//126//128ab R =+=Ω
2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b
)所示电路的电压U 。
6Ω6Ω
(a) (b)
题2-4图
解:(a )从左往右流过1Ω电阻的电流为
1I 21/(16//123//621/(142)3A =++++=)=
从上往下流过3Ω电阻的电流为36
I 32A 36
=
⨯=+ 从上往下流过12Ω电阻的电流为126
I 31A 126
=
⨯=+ 所以 312I I -I =1A =
(b )从下往上流过6V 电压源的电流为66
I 4A 1.5
=
==(1+2)//(1+2)
从上往下流过两条并联支路的电流分别为2A 所以 U 22-12=2V =⨯⨯
2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。
2Ω
(a)
(b)
题2-5图
解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥
1
a
所以 111
//11332
ab R =++=Ω()()
(b )将图中的两个Y 形变成△形,如图所示
2Ω
a
b
即得
4021
Ωa
b
所以 1.269ab R =Ω
2-6计算题2-6图所示电路中a b 、两点间的等效电阻。
a
8Ω
a
b
(a)
(b)
题2-6图
解:(a )将图中的Y 形变成△形,如图所示
8Ω
8Ω
所以 12//64ab R ==Ω
(b )将图中的Y 形变成△形,如图所示
a
b
所以 123//47
ab R ==
Ω 2-7对题2-7图所示电路,应用Y —△等效变换求电路ab 端的等效电阻ab R 、对角线电压U
及总电压ab U 。
5Ω
8
题2-7图
解:将图中的Y 形变成△形,如图所示
a
5Ω
所以 (32.5//526//2)//2655510ab R =++=+=Ω
10880ab U V =⨯=
回到原图
5Ω
8
已知128I I +=348I I +=1310840I I +=245240I I += 联立解得1 2.4I A =2 5.6I A =
32I A =46I A = 所以 121054U I I V =-+=
2
-8试求题2-8图所示电路的输入电阻in R 。
1
1
R (a)
(b)
题2-8图
解:(a )如图所示,在电路端口加电压源U ,求I
1
U
211U R I u u μ=-+11u R I =
所以 21(1)in U
R R R I
μ=
=+- (b )如图所示,在电路端口加电压源U ,求I
1
R 11U R i =-112
U i i I R β++=
112()U U U I R R R β-
+-+=121112
111
()(1)R I U U R R R R R ββ=++=++ 所以 1221
(1)in R R U
R I R R β
=
=++ 2-9 将题2-9图所示各电路化为最简形式的等效电路。
55V -+
1(a)
(b)
题2-9图
解:(a )化简过程如图所示
5
Ω
5
Ω
55V
(b )化简过程如图所示
5
5V
10
V
515V
2-10 利用含源支路等效变换,求题2-10图所示电路中的电流I 。
4V +-
题2-10图
解:先化简电路,如图所示
4V
2Ω
4V 2Ω
4V
2V
4V 4Ω
4V
4Ω
4V
6 所以 2I A =
2-11试求题2-11图所示电路中的电流i ,已知12
342,4,1R R R R =Ω=Ω==Ω。
9+-
题2-11图
解:先化简电路,如图所示
9
43
Ω 所以有 41(2)933
i i +-=3i A =
2-12题2-12图所示电路中全部电阻均为1Ω,试求电路中的电流i 。
4V +-
题2-12图
解:先求电路右边电阻块的等效电阻ab R ,如图所示
a
b
a
b
将中间的Y 形化成△形。
1a
b
[(1//3)(1//3)]//(1//3)1/2ab R =+=Ω
化简电路为
1/2
4V
4V 2i
4V
65
i
列写KVL
86
455
i i -= 所以 10i A =
2-13利用含源支路等效变换,求题2-13图所示电路中电压o u 。
已知
122,R R ==Ω341,10S R R i A ==Ω=。
o u +-
u +-
题2-13图
解:先化简电路,如图所示
u
u 0
所以有 030
32100
2i u i u u u i
-+=+== 解得 06u V =
2-14题2-14图所示电路中13421,2,R R R R R ===CCVS 的电压为114,d u R i =利用含源支路等效变换求电路中电压比
o
S
u u 。
4
R S u +-
题2-14图
解:先化简电路,如图所示
u 34
R R
+
u 234//()
R R R +
u 34234
()d u R R R R R +++
已知114d u R i =13421,2,R R R R R === 列KVL
3423234
411234()]()
[d s R R R R i u R R u R R R R R R ++
++=++++
即 134111342312344
()
2()4[]s R R R R R i i R R R R R u R R R +=++++
+++
又 011s u u i R -=
解得 034
s u u = 2-15将题2-15图所示各电路化为最简形式的等效电路。
-+
6V (a) (b)
题2-
15图
解:(a )化简电路,如图所示
(b )化简电路,如图所示
2-16求题2
-16图所示各电路的最简等效电路。
+-
S u
S i (a) (b)
题2
-16图
解:(a )化简电路,如图所示
2
s u
(b )化简电路,如图所示
2-17题2-17图所示电路中,已知128,4,3,3S S U V R R I A ==Ω=Ω=。
试求电源输出的功率和电阻吸收的功率。
U +-
题2-17图
解:1R 上流过的电流11824
S R U I A R =
==1R 吸收功率11
2
14416R R P R I W ==⨯= 2R 上流过的电流3S I A =2R 吸收功率22
23927R S P R I W ==⨯=
因为1231R S I I I A =-=-=-
所以S U 功率8S U S P U I W ==-(非关联,负值为吸收8W ) 因为29817S S U R I U V =+=+=
所以S I 功率31751S I S P I U W ==⨯=(非关联,正值为输出51W ) 电路功率平衡。
2-18试求题2-18图所示电路中的电压U 。
+
-
U
题2-18图
解:由KVL 11055U V =-⨯+=-。