数据结构 按层次遍历二叉树
二叉树的遍历和应用
内蒙古科技大学本科生课程设计说明书题目:数据结构课程设计——二叉树的遍历和应用学生姓名:学号:专业:班级:指导教师:2013年5月29日内蒙古科技大学课程设计说明书内蒙古科技大学课程设计任务书I内蒙古科技大学课程设计说明书目录内蒙古科技大学课程设计任务书..............................................................错误!未定义书签。
目录 (II)第一章需求分析 (3)1.1课程设计目的 (3)1.2任务概述 (3)1.3课程设计内容 (3)第二章概要设计 (5)2.1设计思想 (5)2.2二叉树的遍历 (5)2.3运行界面设计 (6)第三章详细设计 (7)3.1二叉树的生成 (7)3.2二叉树的先序遍历 (7)3.3 二叉树的中序遍历 (8)3.4二叉树的后续遍历 (8)3.5主程序的设计 (8)第四章测试分析 (11)4.1二叉树的建立 (11)4.2二叉树的先序、中序、后序遍历 (11)第五章课程设计总结 (12)附录:程序代码 (13)致谢 ···········································································································错误!未定义书签。
二叉树的遍历及常用算法
⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
东北大学22春“计算机科学与技术”《数据结构Ⅱ》期末考试高频考点版(带答案)试卷号:5
东北大学22春“计算机科学与技术”《数据结构Ⅱ》期末考试高频考点版(带答案)一.综合考核(共50题)1.假设一棵完全二叉树按层次遍历的顺序依次存放在数组BT[m]中,其中根结点存放在BT[0],若BT[i]中的结点有左孩子,则左孩子存放在A.BT[i/2]B.BT[2*i]C.BT[2*i-1]D.BT[2*i+1]参考答案:D2.若要在O(1)的时间复杂度上实现两个循环链表头尾相接,则应对两个循环链表各设置一个指针,分别指向()。
A.各自的头结点B.各自的尾结点C.各自的第一个元素结点D.一个表的头结点,另一个表的尾结点参考答案:B3.对长度为15的有序顺序表进行二分查找,在各记录的查找概率均相等的情况下,查找成功时所需进行的关键字比较次数的平均值为A.55/15B.51/15C.49/15D.39/15参考答案:C4.栈和队列都是A.顺序存储的线性结构D.链式存储的线性结构参考答案:C5.下列程序段 for(i=1;iA.O(n)B.O(1+n)C.O(1)D.O(0)参考答案:A6.树有先根遍历和后根遍历,树可以转化为对应的二叉树。
下面的说法正确的是A.树的后根遍历与其对应的二叉树的后根遍历相同B.树的后根遍历与其对应的二叉树的中根遍历相同C.树的先根遍历与其对应的二叉树的中根遍历相同D.以上都不对参考答案:B7.如果在排序过程中,每次均将一个待排序的记录按关键字大小加入到前面已经有序的子表中的适当位置,则该排序方法称为()。
A.插入排序B.归并排序C.冒泡排序D.堆排序参考答案:A8.当采用分快查找时,数据的组织方式为A.数据分成若干块,每块(除最后一块外)中数据个数需相同B.数据分成若干块,每块内数据有序,每块内最大(或最小)的数据组成索引块C.数据分成若干块,每块内数据有序D.数据分成若干块,每块内数据不必有序,但块间必须有序,每块内最大(或最小)的数据组成索引块9.在一个单链表中,若删除*p结点的后继结点,则执行操作()。
二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)
⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。
对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。
由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。
⽐⽅堆了。
所以。
对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。
四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。
求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。
然后在訪问左⼦树和右⼦树。
所以。
对于随意结点node。
第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。
若为空。
则须要訪问右⼦树。
注意。
在訪问过左孩⼦之后。
判断完全二叉树
判断完全二叉树
要判断一颗二叉树是否为完全二叉树,首先应该看一下完全二叉树的定义:
完全二叉树(来自数据结构课本的定义):约定从根起,自上而下,自左而右,给满二叉树中的每个结点从1到n连续编号,编号为i的结点可称为i结点。
深度为k且且含n个结点的二叉树,如果其每个结点都与深度为k的满二叉树中编号从1至n一一对应,则称为完全二叉树。
有定义可见,“从根起,自上而下,自左而右”。
可见我们应该用层次遍历的思路。
层次遍历二叉树:按二叉树的层次从小到大且每层从左到右的顺序一次访问结点。
第6章_数据结构习题题目及答案_树和二叉树_参考答案
一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。
【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。
【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。
本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。
虽然解法也对,但步骤多且复杂,极易出错。
6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。
【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。
6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。
【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。
若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。
6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。
数据结构-二叉树的存储结构和遍历
return(p); }
建立二叉树
以字符串的形式“根左子树右子树”定义 一棵二叉树
1)空树 2)只含一个根 结点的二叉树 A 3)
B C
A
以空白字符“ ”表示
以字符串“A ”表示
D
以下列字符串表示 AB C D
建立二叉树 A B C C
T
A ^ B ^ C^ ^ D^
D
建立二叉树
Status CreateBiTree(BiTree &T) {
1 if (!T) return;
2 Inorder(T->lchild, visit); // 遍历左子树 3 visit(T->data); } // 访问结点 4 Inorder(T->rchild, visit); // 遍历右子树
后序(根)遍历
若二叉树为空树,则空操
根
左 子树
右 子树
作;否则, (1)后序遍历左子树; (2)后序遍历右子树; (3)访问根结点。
统计二叉树中结点的个数
遍历访问了每个结点一次且仅一次
设置一个全局变量count=0
将visit改为:count++
统计二叉树中结点的个数
void PreOrder (BiTree T){ if (! T ) return; count++; Preorder( T->lchild); Preorder( T->rchild); } void Preorder (BiTree T,void( *visit)(TElemType& e)) { // 先序遍历二叉树 1 if (!T) return; 2 visit(T->data); // 访问结点 3 Preorder(T->lchild, visit); // 遍历左子树 4 Preorder(T->rchild, visit);// 遍历右子树 }
数据结构课后习题(第6章)
【课后习题】第6章树和二叉树网络工程2010级()班学号:姓名:一、填空题(每空1分,共16分)1.从逻辑结构看,树是典型的。
2.设一棵完全二叉树具有999个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个度为1的结点。
3.由n个权值构成的哈夫曼树共有个结点。
4.在线索化二叉树中,T所指结点没有左子树的充要条件是。
5.在非空树上,_____没有直接前趋。
6.深度为k的二叉树最多有结点,最少有个结点。
7.若按层次顺序将一棵有n个结点的完全二叉树的所有结点从1到n编号,那么当i为且小于n时,结点i的右兄弟是结点,否则结点i没有右兄弟。
8.N个结点的二叉树采用二叉链表存放,共有空链域个数为。
9.一棵深度为7的满二叉树有___ ___个非终端结点。
10.将一棵树转换为二叉树表示后,该二叉树的根结点没有。
11.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的遍历结果是一样的。
12.一棵Huffman树是带权路径长度最短的二叉树,权值的外结点离根较远。
二、判断题(如果正确,在对应位置打“√”,否则打“⨯”。
每题0.5分,共5分)1.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i-1个结点。
2.二叉树的前序遍历并不能唯一确定这棵树,但是,如果我们还知道该二叉树的根结点是那一个,则可以确定这棵二叉树。
3.一棵树中的叶子结点数一定等于与其对应的二叉树中的叶子结点数。
4.度≤2的树就是二叉树。
5.一棵Huffman树是带权路径长度最短的二叉树,权值较大的外结点离根较远。
6.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的前序遍历结果是一样的。
7.不存在有偶数个结点的满二叉树。
8.满二叉树一定是完全二叉树,而完全二叉树不一定是满二叉树。
9.已知二叉树的前序遍历顺序和中序遍历顺序,可以惟一确定一棵二叉树;10.已知二叉树的前序遍历顺序和后序遍历顺序,不能惟一确定一棵二叉树;三、单项选择(请将正确答案的代号填写在下表对应题号下面。
数据结构练习题--树(题)
第六章树一.名词解释:1 树 2。
结点的度 3。
叶子 4。
分支点 5。
树的度6.父结点、子结点 7兄弟 8结点的层数 9树的高度 10 二叉树11 空二叉树 12 左孩子、右孩子 13孩子数 14 满二叉树 15完全二叉树16 先根遍历 17 中根遍历 18后根遍历 19二叉树的遍历 20 判定树21 哈夫曼树二、填空题1、树(及一切树形结构)是一种“________”结构。
在树上,________结点没有直接前趋。
对树上任一结点X来说,X是它的任一子树的根结点惟一的________。
2、一棵树上的任何结点(不包括根本身)称为根的________。
若B是A的子孙,则称A是B的________3、一般的,二叉树有______二叉树、______的二叉树、只有______的二叉树、只有______ 的二叉树、同时有______的二叉树五种基本形态。
4、二叉树第i(i>=1)层上至多有______个结点。
5、深度为k(k>=1)的二叉树至多有______个结点。
6、对任何二叉树,若度为2的节点数为n2,则叶子数n0=______。
7、满二叉树上各层的节点数已达到了二叉树可以容纳的______。
满二叉树也是______二叉树,但反之不然。
8、具有n个结点的完全二叉树的深度为______。
9、如果将一棵有n个结点的完全二叉树按层编号,则对任一编号为i(1<=i<=n)的结点X有:(1)若i=1,则结点X是______;若i〉1,则X的双亲PARENT(X)的编号为______。
(2)若2i>n,则结点X无______且无______;否则,X的左孩子LCHILD(X)的编号为______。
(3)若2i+1>n,则结点X无______;否则,X的右孩子RCHILD(X)的编号为______。
10.二叉树通常有______存储结构和______存储结构两类存储结构。
11.每个二叉链表的访问只能从______结点的指针,该指针具有标识二叉链表的作用。
数据结构二叉树习题含答案
第 6 章树和二叉树1.选择题( 1)把一棵树变换为二叉树后,这棵二叉树的形态是()。
A.独一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子( 2)由 3 个结点能够结构出多少种不一样的二叉树?()A. 2 B . 3 C . 4 D. 5( 3)一棵完整二叉树上有1001 个结点,此中叶子结点的个数是()。
A. 250 B . 500 C . 254 D. 501( 4)一个拥有 1025 个结点的二叉树的高h 为()。
A. 11 B . 10 C.11 至 1025 之间 D .10 至 1024 之间( 5)深度为 h 的满 m叉树的第 k 层有()个结点。
(1=<k=<h)k-1B kCh-1 hA. m . m-1 . m D.m-1( 6)利用二叉链表储存树,则根结点的右指针是()。
A.指向最左孩子 B .指向最右孩子 C .空 D .非空( 7)对二叉树的结点从 1 开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采纳()遍历实现编号。
A.先序 B. 中序 C. 后序 D.从根开始按层次遍历(8)若二叉树采纳二叉链表储存结构,要互换其全部分支结点左、右子树的地点,利用()遍历方法最适合。
A.前序B.中序C.后序D.按层次(9)在以下储存形式中,()不是树的储存形式?A.双亲表示法 B .孩子链表表示法 C .孩子兄弟表示法D.次序储存表示法( 10)一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树必定满足()。
A.全部的结点均无左孩子B.全部的结点均无右孩子C.只有一个叶子结点D.是随意一棵二叉树( 11)某二叉树的前序序列和后序序列正好相反,则该二叉树必定是()的二叉树。
A.空或只有一个结点B.任一结点无左子树C.高度等于其结点数 D .任一结点无右子树( 12)若 X 是二叉中序线索树中一个有左孩子的结点,且 X 不为根,则 X 的前驱为()。
数据结构实验三——二叉树基本操作及运算实验报告
《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。
问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。
由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。
处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。
算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。
输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。
对二叉树的一些运算结果以整型输出。
程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。
计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。
对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。
测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。
数据结构自考题-2
数据结构自考题-2(总分:105.00,做题时间:90分钟)一、单项选择题(总题数:15,分数:30.00)1.用二分查找法对具有n个结点的线性表查找一个结点所需的平均比较次数为( )A.O(n2) B.O(nlog2n) C.O(n) D.O(log2n)(分数:2.00)A.B. √C.D. √解析:2.如果我们采用二分查找法查找一个长度为n的有序表,则查找每个元素的平均比较次数( )对应的判定树的高度(假设树高h≥2)。
A.大于 B.小于 C.等于 D.无法确定(分数:2.00)A.B. √C.D.解析:3.对一棵非空二叉树进行中序遍历,则根结点的左边( )A.只有左子树上的所有结点 B.只有右子树上的所有结点C.只有左子树上的部分结点 D.只有右子树上的部分结点(分数:2.00)A. √B.C.D.解析:4.在按层次遍历二叉树的算法中,需要借助的辅助数据结构是 ( )A.队列 B.栈 C.线性表 D.有序表(分数:2.00)A. √B.C.D.解析:5.从具有n个结点的单链表中查找值等于x的结点时,在查找成功的情况下,平均需比较( )个结点。
A.n B.n/2 C.(n-1)/2 D.(n+1)/2(分数:2.00)A.B.C.D. √解析:6.设二叉树根结点的层次为0,一棵高度为h的满二叉树中的结点个数是( )A.2h B.2h-1 C.2h-1 D.2h+1-1(分数:2.00)A.B.C.D. √解析:7.下面的查找方式中,可以对无序表进行查找的是( )A.顺序查找 B.二分查找 C.二叉排序树 D.B-树上的查找(分数:2.00)A. √B.C.D.解析:8.具有12个记录的序列,采用冒泡排序最少的比较次数是( )A.1 B.144 C.11 D.66(分数:2.00)A.B.C. √D.解析:9.线性结构中的一个结点代表一个数据元素,通常要求同一线性结构的所有结点所代表的数据元素具有相同的特性,这意味着( )A.每个结点所代表的数据元素都一样B.每个结点所代表的数据元素包含的数据项的个数要相等C.不仅数据元素所包含的数据项的个数要相同,而且对应数据项的类型要一致D.结点所代表的数据元素有同一特点(分数:2.00)A.B.C. √D.解析:10.下列排序算法中,其时间复杂度和记录的初始排列无关的是 ( ) A.插入排序 B.堆排序 C.快速排序 D.冒泡排序(分数:2.00)A.B. √C.D.解析:11.若用邻接矩阵表示一个有向图,则其中每一列包含的"1"的个数为 ( ) A.图中每个顶点的入度 B.图中每个顶点的出度C.图中弧的条数 D.图中连通分量的数目(分数:2.00)A. √B.C.D.解析:12.具有24个记录的序列,采用冒泡排序最少的比较次数是( )A.1 B.23 C.24 D.529(分数:2.00)A.B. √C.D.解析:13.邻接表存储结构下图的深度优先遍历算法结构类似于于叉树的( ) A.先序遍历 B.中序遍历 C.后序遍历 D.按层遍历(分数:2.00)A. √B.C.D.解析:14.树最适合用来表示( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据(分数:2.00)A.B.C. √D.解析:15.若用冒泡排序法对序列18,14,6,27,8,12,16,52,10,26,47,29,41,24从小到大进行排序,共要进行( )次比较。
数据结构实验报告-二叉树的实现与遍历
《数据结构》第六次实验报告学生姓名学生班级学生学号指导老师一、实验内容1) 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作,求所有叶子及结点总数的操作。
2) 输出树的深度,最大元,最小元。
二、需求分析遍历二叉树首先有三种方法,即先序遍历,中序遍历和后序遍历。
递归方法比较简单,首先获得结点指针如果指针不为空,且有左子,从左子递归到下一层,如果没有左子,从右子递归到下一层,如果指针为空,则结束一层递归调用。
直到递归全部结束。
下面重点来讲述非递归方法:首先介绍先序遍历:先序遍历的顺序是根左右,也就是说先访问根结点然后访问其左子再然后访问其右子。
具体算法实现如下:如果结点的指针不为空,结点指针入栈,输出相应结点的数据,同时指针指向其左子,如果结点的指针为空,表示左子树访问结束,栈顶结点指针出栈,指针指向其右子,对其右子树进行访问,如此循环,直至结点指针和栈均为空时,遍历结束。
再次介绍中序遍历:中序遍历的顺序是左根右,中序遍历和先序遍历思想差不多,只是打印顺序稍有变化。
具体实现算法如下:如果结点指针不为空,结点入栈,指针指向其左子,如果指针为空,表示左子树访问完成,则栈顶结点指针出栈,并输出相应结点的数据,同时指针指向其右子,对其右子树进行访问。
如此循环直至结点指针和栈均为空,遍历结束。
最后介绍后序遍历:后序遍历的顺序是左右根,后序遍历是比较难的一种,首先需要建立两个栈,一个用来存放结点的指针,另一个存放标志位,也是首先访问根结点,如果结点的指针不为空,根结点入栈,与之对应的标志位也随之入标志位栈,并赋值0,表示该结点的右子还没有访问,指针指向该结点的左子,如果结点指针为空,表示左子访问完成,父结点出栈,与之对应的标志位也随之出栈,如果相应的标志位值为0,表示右子树还没有访问,指针指向其右子,父结点再次入栈,与之对应的标志位也入栈,但要给标志位赋值为1,表示右子访问过。
数据结构二叉树遍历实验报告
问题一:二叉树遍历1.问题描述设输入该二叉树的前序序列为:ABC##DE#G##F##HI##J#K##〔#代表空子树〕请编程完成以下任务:⑴请根据此输入来建立该二叉树,并输出该二叉树的前序、中序和后序序列;⑵按层次遍历的方法来输出该二叉树按层次遍历的序列;⑶求该二叉树的高度。
2. 设计描述〔 1 〕二叉树是一种树形构造,遍历就是要让树中的所有节点被且仅被一次,即按一定规律罗列成一个线性队列。
二叉〔子〕树是一种递归定义的构造,包含三个局部:根结点〔 N〕、左子树〔 L〕、右子树〔 R〕。
根据这三个局部的次序对二叉树的遍历发展分类,总共有 6种遍历方案: NLR 、LNR 、LRN 、NRL 、RNL和 LNR 。
研究二叉树的遍历就是研究这 6种具体的遍历方案,显然根据简单的对称性,左子树和右子树的遍历可互换,即 NLR与 NRL 、LNR与 RNL 、LRN与 RLN ,分别相类似,于是只需研究 NLR 、LNR和 LRN 三种即可,分别称为先序遍历〞、中序遍历〞和后序遍历〞。
采用递归方式就可以容易的实现二叉树的遍历,算法简单且直观。
〔2〕此外,二叉树的层次遍历即按照二叉树的层次构造发展遍历,按照从上到下,同一层从左到右的次序各节点。
遍历算法可以利用队列来实现,开场时将整个树的根节点入队,然后每从队列中删除一个节点并输出该节点的值时,都将它的非空的摆布子树入队,当队列完毕时算法完毕。
〔3〕计算二叉树高度也是利用递归来实现:假设一颗二叉树为空,则它的深度为 0 ,否则深度等于摆布子树的最大深度加一。
3 .源程序1 #include <stdio.h>2 #include <stdlib.h>3 #include <malloc.h>4 #define ElemType char5 struct BTreeNode {6 ElemType data;7 struct BTreeNode* left;8 struct BTreeNode* right;9 };10 void CreateBTree(struct BTreeNode** T)11 {12 char ch;1314 if (ch == '#') *T = NULL;15 else {16 (*T) = malloc(sizeof(struct BTreeNode));17 (*T)->data = ch;18 CreateBTree(&((*T)->left));19 CreateBTree(&((*T)->right));20 }21 }22 void Preorder(struct BTreeNode* T)23 {24 if (T != NULL) {2526 Preorder(T->left);27 Preorder(T->right);28 }29 }30 void Inorder(struct BTreeNode* T)31 {32 if (T != NULL) {33 Inorder(T->left);3435 Inorder(T->right);36 }37 }38 void Postorder(struct BTreeNode* T)39 {40 if (T != NULL) {41 Postorder(T->left);42 Postorder(T->right);4344 }45 }46 void Levelorder(struct BTreeNode* BT)47 {48 struct BTreeNode* p;49 struct BTreeNode* q[30];50 int front=0,rear=0;51 if(BT!=NULL) {52 rear=(rear+1)% 30;53 q[rear]=BT;54 }55 while(front!=rear) {56 front=(front+1)% 30;57 p=q[front];5859 if(p->left!=NULL) {60 rear=(rear+1)% 30;61 q[rear]=p->left;62 }63 if(p->right!=NULL) {64 rear=(rear+1)% 30;65 q[rear]=p->right;66 }67 }68 }69 int getHeight(struct BTreeNode* T)70 {71 int lh,rh;72 if (T == NULL) return 0;73 lh = getHeight(T->left);74 rh = getHeight(T->right);7576 }77 void main(void)78 {79 struct BTreeNode* T;80 CreateBTree(&T);81 前序序列:82 Preorder(T);8384 中序序列:85 Inorder(T);-4.运行结果问题二:哈夫曼编码、译码系统1. 问题描述 对一个ASCII 编码的文本文件中的字符发展哈夫曼编码,生成编码文件; 反过来,可将编码文件译码复原为一个文本文件〔选做〕 。
计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编9
计算机专业基础综合数据结构(树和二叉树)历年真题试卷汇编9(总分:60.00,做题时间:90分钟)一、设计题(总题数:30,分数:60.00)1.在一棵以二叉链表表示的二叉树上,试写出用按层次顺序遍历二叉树的方法,统计树中具有度为1的结点数目的算法。
【同济大学2000三、2(12分)】【山东大学1993二(12分)】【上海交大1999三(12分)】【天津大学2005七(10分)】【北京理工200l九(8分)2006七、1(15/2分)】【南京航空航天大学2004二、3(12分)】(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:层次遍历二叉树,需要使用队列。
在遍历中统计度为1的结点的个数。
核心语句段如下:QueueInit(Q);QueueIn(Q,bt);//Q是以二叉树结点指针为元素的队列while(!QueueEmpty(Q)) {p=Queueout(Q); cout<data;//出队,访问结点 if(p一>ichild&&!P一>rchild||!p->ichild&&P 一>rchild)num++;//度为1的结点if(p一>ichild)QueueIn(Q,p->Ichild);//非空左子女入队if(p 一>rchild)QueueIn(Q,p->rchild);//非空右子女入队 })解析:2.设一棵二叉树以二叉链表为存储结构,结点结构为(1child,data,rchild),设计一个算法将二叉树中所有结点的左、右子树相互交换。
【福州大学1998四、2(10分)】(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:采用后序遍历和前序遍历都可以。
数据结构课程设计_二叉树操作
数据结构课程设计_⼆叉树操作数据结构课程设计题⽬:⼆叉树的操作学⽣姓名:学号:系部名称:计算机科学与技术系专业班级:指导教师:课程设计任务书第⼀章程序要求1)完成⼆叉树的基本操作。
2)建⽴以⼆叉链表为存储结构的⼆叉树;3)实现⼆叉树的先序、中序和后序遍历;4)求⼆叉树的结点总数、叶⼦结点个数及⼆叉树的深度。
第⼆章算法分析建⽴以⼆叉链表为存储结构的⼆叉树,在次⼆叉树上进⾏操作;1先序遍历⼆叉树的操作定义为:若⼆叉树唯恐则为空操作;否则(1)访问根节点;(2)先序遍历做字数和;(3)先序遍历有⼦树;2中序遍历⼆叉树的操作定义为:若⼆叉树为空,则空操作;否则(1)中序遍历做⼦树;(2)访问根节点;(3)中序遍历有⼦树;3后续遍历⼆叉树的操作定义为:若⼆叉树为空则为空操作;否则(1)后序遍历左⼦树;(2)后序遍历右⼦树;(3)访问根节点;⼆叉树的结点总数、叶⼦结点个数及⼆叉树的深度。
第三章⼆叉树的基本操作和算法实现⼆叉树是⼀种重要的⾮线性数据结构,是另⼀种树形结构,它的特点是每个节点之多有两棵⼦树(即⼆叉树中不存在度⼤于2的结点),并且⼆叉树的结点有左右之分,其次序不能随便颠倒。
1.1⼆叉树创建⼆叉树的很多操作都是基于遍历实现的。
⼆叉树的遍历是采⽤某种策略使得采⽤树形结构组织的若⼲年借点对应于⼀个线性序列。
⼆叉树的遍历策略有四种:先序遍历中续遍历后续遍历和层次遍历。
基本要求1 从键盘接受输⼊数据(先序),以⼆叉链表作为存储结构,建⽴⼆叉树。
2 输出⼆叉树。
3 对⼆叉树进⾏遍历(先序,中序,后序和层次遍历)4 将⼆叉树的遍历打印出来。
⼀.问题描述⼆叉树的很多操作都是基于遍历实现的。
⼆叉树的遍历是采⽤某种策略使得采⽤树型结构组织的若⼲结点对应于⼀个线性序列。
⼆叉树的遍历策略有四种:先序遍历、中序遍历、后序遍历和层次遍历。
⼆.基本要求1.从键盘接受输⼊数据(先序),以⼆叉链表作为存储结构,建⽴⼆叉树。
2.输出⼆叉树。
完全二叉树操作演示
安徽省巢湖学院计算机与信息工程学院课程设计报告课程名称《数据结构》课题名称完全二叉树操作演示专业班级计算机科学与技术专升本1班学号********、********、********姓名李鹏王帅李泳波联系方式指导教师严小燕完成日期: 2014年12月27 日目录1 数据结构课程设计任务书 (1)1.1题目 (1)1.2目的 (1)1.3要求 (1)2 总体设计 (1)2.1功能模块设计 (1)2.2所有功能模块流程图 (1)3 详细设计 (2)3.1程序中所采用的数据结构及存储结构的说明 (2)3.2算法设计思想 (3)3.3主要的功能函数 (3)4 调试与测试 (3)4.1调试方法与步骤 (4)4.2测试结果分析与讨论 (4)4.3测试过程中遇到的主要问题及采取的解决措施 (5)5 时间复杂度分析 (6)6 程序清单 (6)7 总结 (12)参考文献 (13)1 数据结构课程设计任务书1.1题目完全二叉树操作演示1.2目的(1)掌握二叉树的概念和性质。
(2)掌握完全二叉树存储结构。
(3)掌握完全二叉树的基本操作。
1.3 要求(1)创建完全二叉树(用字母表示节点)(用顺序方式存储)。
(2)求二叉树的深度和叶子结点数。
(3)实现二叉树的前序、中序、后序和层次遍历。
(4)查找给定结点的双亲、祖先和左右孩子节点。
2 总体设计2.1 功能模块设计根据课程设计题目的功能要求,各个功能模块的组成框图如图1:图 1 功能组成框图2.2 所有功能模块流程图设计好功能模块后,各个模块的关系如下图2:图 2 流程图3 详细设计3.1程序中所采用的数据结构及存储结构的说明(1)整个程序采用结构体与顺序表相结合的编程方法一共完成了7个功能。
在你输入错误时有报错消息,这样使整个程序运行起来更加完整。
程序中有若干个子函数被主函数调用执行。
结构体定义如下:#define MAX 100 //定义100个节点typedef struct{char dat; //节点信息}node;typedef struct Tree //节点组成树{int length;node *r; //指向根节点}Tree;3.2 算法设计思想完全二叉树具有以下几个性质,由此可设计出相应算法。
二叉树的遍历
T->rchild= CreatBiTree(); /*构造右子树*/ 扩展先序遍历序列
}
2021/2/21
return (T) ;}
A B Φ D Φ Φ C Φ 17Φ
T
T
T
ch=B
ch=Φ
Λ
T
T= Λ, Creat(T)
ch=A T
A
B creat(T L)
ΛB 返回
creat(T L)
creat(T R)
A
p=p->RChild;
}
2021/2/21
}
top
A
B
C
D
top
B
top
A
A
top
D
A
top
A
top
C
13
top
中序遍历二叉树的非递归算法:
A
void InOrder(BiTree T)
{ InitStack(&S); 相当于top=-1;
p=T;
B
C
while(p!=NULL | | !IsEmpty(S)) 相当于top==-1;
}
后序遍历二叉树的递归算法:
void PostOrder (BiTree T)
{ if(T!=NULL)
{ PostOrder (T->lchild);
PostOrder (T->rchild);
printf(T->data); }
2021/2/21
15
}
先序遍历二叉树的递归算法: void PreOder (BiTree T) { if(T! =NULL){ printf (T->data); PreOrder (T->lchild); PreOrder (T->rchild); } }
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#define ERROR 0
typedef char TElemType;
typedef int Status;
typedef struct BiTNode
{
TElemType data;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
q=p->que;
Q.front->next=p->next;
if(Q.rear==p) Q.rear=Q.front;
free(p);
return OK;
}
Status CreateBiTree(BiTree &T)
{
char ch;
scanf("%c",39;) T=NULL;
{
QueuePtr p=(QueuePtr)malloc(sizeof(QNode));
if(!p) exit(OVERFLOW);
p->que=q;p->next=NULL;
Q.rear->next=p;Q.rear=p;
return OK;
}
Status EmptyQueue(LinkQueue Q)
typedef BiTree QElemType;
typedef struct QNode
{
QElemType que;
struct QNode *next;
}QNode,*QueuePtr;
typedef struct
{
QueuePtr front;
QueuePtr rear;
}LinkQueue;
system("pause");
return 0;
}
if(q->rchild!=NULL) EnQueue(Q,q->rchild);
}
}
int main(int argc, char* argv[])
{
BiTree T;
printf("请按先序输入二叉树:\n");
CreateBiTree(T);
printf("\n层次输出二叉树为:\n");
LevelTraverse(T);
{
if(Q.front==Q.rear) return OK;
else return ERROR;
}
Status DeQueue(LinkQueue &Q,QElemType &q)
{
if(EmptyQueue(Q)==1) return ERROR;
QueuePtr p=Q.front->next;
Status InitQueue(LinkQueue &Q)
{
Q.front=Q.rear=(QueuePtr)malloc(sizeof(QNode));
if(!Q.front) exit(OVERFLOW);
Q.front->next=NULL;
return OK;
}
Status EnQueue(LinkQueue &Q,QElemType q)
else
{
if(!(T=(BiTree)malloc(sizeof(BiTNode)))) return OVERFLOW;
T->data=ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);
}
return OK;
}
void LevelTraverse(BiTree T)
实验六
实验要求:按层次遍历二叉树
点击此处运行程序Demo_6.exe
实验源程序:
#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#define OVERFLOW -1
{
LinkQueue Q;
QElemType q;
InitQueue(Q);
EnQueue(Q,T);
while(EmptyQueue(Q)!=1)
{
DeQueue(Q,q);
printf("%c",q->data);
if(q->lchild!=NULL) EnQueue(Q,q->lchild);