计量经济学知识点总结培训资料

合集下载

计量经济学期末复习总结(1)培训讲学

计量经济学期末复习总结(1)培训讲学

第一章导论1.计量经济学是一门什么样的学科?答:“经济计量学”不仅要研究经济问题的计量方法,还要研究经济问题发展变化的数量规律。

可以认为,计量经济学是以经济理论为指导,以经济数据为依据,以数学、统计方法为手段,通过建立、估计、检验经济模型,揭示客观经济活动中存在的随机因果关系的一门应用经济学的分支学科。

2.计量经济学与经济理论、数学、统计学的联系和区别是什么?答:计量经济学是经济理论、数学、统计学的结合,是经济学、数学、统计学的交叉学科(或边缘学科)。

6.计量经济学模型的检验包括哪几个方面?为什么要进行模型的检验?答:对模型的检验通常包括经济意义经验、统计推断检验、计量经济检验、模型预测检验四个方面。

8.计量经济学模型中的被解释变量和解释变量、内生变量和外生变量是如何划分的?答:在联立方程计量经济学模型中,按是否由模型系统决定,将变量分为内生变量(endogenous variables)和外生变量(exogenous variables)两大类。

内生变量是由模型系统决定同时可能也对模型系统产生影响的变量,是具有某种概率分布的随机变量,外生变量是不由模型系统决定但对模型系统产生影响的变量,是确定性的变量。

9.计量经济学模型中包含的变量之间的关系主要有哪些?答:计量经济学模型中变量之间的关系主要是解释变量与被解释变量之间的因果关系,包括单向因果关系、相互影响关系、恒等关系。

12.计量经济学中常用的数据类型有哪些?答:根据生成过程和结构方面的差异,计量经济学中应用的数据可分为时间序列数据(time series data)、截面数据(cross sectional data)、面板数据(panal data)和虚拟变量数据(dummy variables data)。

13.什么是数据的完整性、准确性、可比性、一致性?答:1)完整性,指模型中所有变量在每个样本点上都必须有观察数据,所有变量的样本观察数据都一样多。

计量经济学复习资料

计量经济学复习资料

计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。

它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。

计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。

本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。

二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。

2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。

三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。

2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。

3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。

4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。

四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。

2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。

3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。

4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。

五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。

2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。

计量经济学复习要点

计量经济学复习要点

计量经济学复习要点164590(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--计量经济学复习要点第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念 习题:C1、C2第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。

简单线性回归模型是只有一个解释变量的线性回归模型。

回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。

2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。

3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。

4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。

总体回归模型与样本回归模型的主要区别是:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。

②建立模型的依据不同。

总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。

总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。

线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定) 普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。

(完整版)计量经济学重点知识归纳整理

(完整版)计量经济学重点知识归纳整理

1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。

普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。

2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。

从此意义看,加权最小二乘法也称为广义最小二乘法。

3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。

4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。

5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。

6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。

7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。

如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。

9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。

计量经济学 主要知识点

计量经济学  主要知识点

《计量经济学》《经济计量学》《Econometrics》一、主要知识点第一章绪论第一节计量经济学一、经济计量学的产生过程1930 世界经济计量学会二、经济计量学与其他学科的关系计量经济学的定义第二节建立计量经济学模型的步骤和要点一、数据类型1、时间序列数据2、截面数据3、面板数据二、经济变量与经济参数(一)、经济变量1、内生变量和外生变量内生变量(endogenous variable):随机变量,模型自身决定;内生变量影响模型中内生变量,同时又受外生变量和其它内生变量影响。

外生变量(exogenous variable):通常为非随机变量,在模型之外决定。

而外生变量只影响模型中的内生变量,不受模型中任何其它变量影响。

2、解释变量与被解释变量3、滞后变量与前定变量(二)建模步骤和要点。

模型假定把所研究的经济变量之间的关系用适当的数学模型表达出来。

估计参数模型检验:经济意义的检验、统计推断的检验、计量经济的检验、预测的检验第三节计量经济学模型的应用模型应用:政策评价、经济预测、结构分析、检验和发展经济理论第二章一元线性回归模型第一节概述一、相关关系与回归分析1、函数关系与统计相关关系2、相关分析与回归分析的区别和联系二、总体回归模型与样本回归模型1、总体回归模型(PRF):总体回归函数随机扰动项2、样本回归模型(SRF):样本回归函数残差第二节简单线性回归模型的参数估计一、对线性回归模型的假设(古典假定)如何表示?1、零均值假定2、同方差假定3、无自相关假定4、 与解释变量不相关5、 正态性假定二、普通最小二乘法(OLS )1、 OLS 的思想 参数估计式2、Y i 的分布三、普通最小二乘估计量的统计性质 高斯—马尔可夫定理 BLUE1、参数估计量的性质 高斯-马尔科夫定理2、 总体方差/随机扰动项方差的估计式3、 参数估计量的概率分布四、最大似然估计的概念第三节 简单线性回归模型的检验一、对估计值的直观判断(经济意义的检验) 二、拟和优度的检验1、 TSS=ESS+RSS2、 TSS ESS RSS 各自的含义3、 R2的构造4、 ∑∑==22212ˆiyx TSSESS R iβ5、 2R [0,1]三、对1β的显著性检验(T 检验) 检验步骤 四、均值预测与个值预测的置信区间 P49 第三章 多元线性回归模型 第一节 概述一、基本概念偏回归系数及其解释二、多元线性回归的基本假定如何表示和理解?1、零均值假定2、同方差假定3、无自相关假定4、无多重共线性5、扰动项与解释变量不相关6、正态性假定第二节多元线性回归模型的最小二乘估计一、矩阵形式的OLS参数估计式二、总体方差/随机扰动项方差的OLS估计式三、参数估计量的性质:同一元情形四、样本容量问题第三节多元回归模型的检验一、拟和优度检验1、判定系数2、调整后的判定系数二、对单个回归系数的显著性检验(T检验)检验步骤三、总体回归模型的显著性检验(F检验)检验步骤第四节预测对个值预测、区间预测的理解:p74第五节可以线性化的其他函数形式一、线性回归模型的形式:对参数而言是线性的回归系数的含义:边际效应二、几种常见的线性回归模型1、 双对数模型 回归系数的经济含义:弹性2、 半对数模型3、 倒数变换模型第六节 受约束回归 基本思想和检验步骤 第四章 违背经典假设的回归模型第一节 异方差一、异方差1、 异方差,指的是回归模型中的随机误差项的方差不是常数。

计量经济学重点知识整理

计量经济学重点知识整理

计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体〔动身点、回宿、核心〕:经济现象及数量变化规律研究的工具〔手段〕:模型数学和统计方法必须明确:方法手段要服从研究对象的实质特征〔与数学不同〕,方法是为经济咨询题效劳2注重:计量经济研究的三个方面理论:即讲明所研究对象经济行为的经济理论——计量经济研究的根底数据:对所研究对象经济行为瞧测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估量、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济咨询题4区不:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估量,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估量参数、验证经济理论的全然依据●经济现象不能作实验,只能被动地瞧测客瞧经济现象变动的既成事实,只能依靠于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论根底区不:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型动身,研究模型参数的估量和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是依据其它经济理论,应用计量经济方法将这些理论数量化。

4、计量经济学什么缘故是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。

1、经济理论所作的陈述或假讲大多数是定性性质的,计量经济学对大多数经济理论给予经验内容。

计量经济学复习要点

计量经济学复习要点

计量经济学复习要点第一篇:计量经济学复习要点计量经济学复习要点第一章、概率论基础1.随机事件的概念P22.古典概行例题P5例1.1P2例1.2利用第一章的知识说明抽签的合理性如何利用第一章的知识估计一个池塘有多少鱼还有一个关于晚上紧急集合穿错鞋的题目,记不太清楚了3.期望与方差的概念,切比雪夫不等式,看例题1.4-例题1.8,不要求求出数4.变异系数的概念P175.大数定律和中心极限定律(具有独立同分布的随机变量序列的有限和近似地服从正态分布)的概念P24、P25第二章、矩阵代数1.矩阵的定义,加(page29)、减(page29)、乘(page30)、转置(page30)、逆(page31)知道怎么回事2.最小二乘法P39-P41(定义最小二乘解)3.第三节没有听,求听课学霸补充第三章、数据的分析方法和参数的统计推断1.数据的分析方法(算数平均、加权算数平均、几何平均、移动平均)(1)几种分析方法的定义(2)几中分析方法的不同(3)每种分析方法的具体作用(4)移动平均法中k的选择(5)指数平滑法的意义,α的选择,P552.t分布的概率密度函数3.矩估计法定义4.几大似然估计法P65,例题3.7例题3.85.贝叶斯估计和极大极小估计(应该是只看一下概念就可以了)6.假设检验(1)基本思想P75(2)双边假设检验(3)单边假设检验(4)参数检验P807.方差分析的思想、作用和模型第四章、一元线性回归(计算题)回归方程的求法,显著性检验,经济解释(各参数的解释),不显著的解释第六章、虚拟变量的回归模型1.虚拟变量的作用及模型2.应用虚拟变量改变回归直线的截距、斜率3.对稳定性的检验第二篇:2007计量经济学复习要点2007年计量经济学课程要点归纳1.十大经典假设的证明(关于两变量模型的性质检验)2.BLUE估计量的证明3.自相关检验方法(检验方法一定要记住)4.异方差检验方法(至少三种)5.孙老师讲过的附录要留意6.异方差与自相关的补救措施7.违反十大经典假设情况下的问题怎么解决(如多重共线性,异方差,自相关问题,虚拟变量的估计)注:以上重点均是提供参考,不做考试说明计量考察的重点是对计量模型的建立与估算,结果评价与补救思路的考察,没有大量的数学计算,请同学们放心!建议大家根据参考要点确定进度,并根据孙老师上课的重点决定自己的复习范围!希望同学们认真复习,考出好成绩!王琳第三篇:计量经济学复习笔记计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

计量经济学知识点总结+名词解释重点+简答题

计量经济学知识点总结+名词解释重点+简答题

计量经济学知识点总结什么是OLS估计?原理ols估计是指样本回归函数尽可能好的拟合这组织,即样本回归线上的点与真实观测点的总体误差尽可能小的估计方法。

一、什么是计量经济学?答:计量经济学以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系与及经济活动数量规律的研究,并以建立和应用随机性的经济计量模型为核心的一门经济学科。

计量经济学模型揭示经济活动中各种因素之间的定量关系,用随机性的数量方程加以描述。

二、建立计量经济学模型的步骤和要点1.理论模型的设计(确定模型所包含的变量,确定模型的数量形式,拟定理论模型中的待估参数的理论期望值)2.样本数据的收集(常用的样本数据:时间序列数据,截面数据,虚变量数据)3.模型参数的估计(选择模型参数估计方法,应用软件的使用)4.模型的检验模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。

经济意义检验——需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;统计检验——需要检验模型参数估计值的可靠性,即检验模型的统计学性质;计量经济学检验——需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验——主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。

5.模型成功的三要素:理论、方法、数据三、计量经济学模型的应用方面(功能)答:结构分析,经济预测,政策评价,检验与发展经济理论四、引入随机干扰项的原因,内容?原因:1.代表未知的影响因素2.代表数据观测误差3.代表残缺数据4.代表模型设定误差5.代表众多细小影响因素6.变量的内在随机性内容:1.被遗漏的影响因素(由于研究者对客观经济现象了解不充分,或是由于经济理论上的不完善,以至于使研究者在建立模型时遗漏了一些对被解释变量有重要影响的变量);2.变量的测量误差(在观察和测量变量时,种种原因使观测值并不等于他的真实值而造成的误差);3.随机误差(在影响被解释变量的诸因素中,还有一些不能控制的因素);4.模型的设定误差(在建立模型时,由于把非线性关系线性化,或者略去模型)五、什么是随机误差项和残差,他们之间的区别是什么随机误差项u=Y-E(Y/X),而总体回归函数Y=Y^+e,其中e就是残差,利用Y^估计Y时带来的误差e=Y-Y^是对随机变量u的估计六、一元线性回归模型的基本假设主要有哪些?违背基本假设是否就不能进行估计1.回归模型是正确设定的;2.解释变量X是确定性变量不是随机变量;在重复抽样中取固定值。

计量经济学总复习知识点汇总

计量经济学总复习知识点汇总

计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。

方差:变量的每个样本与均值的距离大小的概念。

标准差:对方差开根号就是标准差。

总体方差:抽样方差: 总体标准偏差:抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。

假设检验的步骤:第一步,设定假设条件。

原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。

第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。

第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。

第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。

如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。

第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) Nu x Ni ∑-=22)(σ1)(22--=∑n x x s ni 2σσ=2s s =nu x Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov文字解释:(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。

通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。

第三步:求一阶导数等于零,二阶导数大于零来得出估计方程中的对数。

第四步:同样求出统计量t 、F 进行假设检验。

解释回归结果的步骤:第一步:根据判定系数来判断方程回归结果的好坏。

计量经济学基础知识梳理(超全)

计量经济学基础知识梳理(超全)
“微小”的含义取决于具体情况。
2.自然对数
近似计算的作用: 定义y对x的弹性(elasticity)为
y x %y x y %x
换言之,y对x的弹性就是当x增加1%时y的百分数变化。
若y是x的线性函数:y 0 1x ,则这个弹性是
y x
x y
1
x y
1
0
x
1x
它明显取决于x的取值(弹性并非沿着需求曲线保持不变)。
在经验研究工作中还经常出现使用对数函数的其他可 能性。假定y>0,且
logy 0 1x 则 logy 1x ,从而 100 logy 100 1x。
由此可知,当y和x有上述方程所示关系时,
%y 100 1x
例: 对数工资方程
假设小时工资与受教育年数有如下关系:
logwage 2.78 0.094edu
y 0 1 x;dy dx 1 2 x1 2
y 0 1logx;dy dx 1 x y exp0 1x;dy dx 1 exp0 1x
4.微分学
当y是多元函数时,偏导数的概念便很重要。假定y=f
(x1,x2),此时便有两个偏导数,一个关于x1,另一个关
于 x1的x2普。通y对导x1数的。偏类导似数的记,为yxy1就,是就固是定把xx12时看方做程常对数x时2的方导程数对。
的最大值出现在x*=8/4=2处,并且这个最大值是6+8×2-
2×(2)2=14。
y 16
14
12
10
8
6
4
2
0
x
0
1
2
3
4
1.二次函数
对方程式 y 0 1x 2x2
2 0 意味着x对y的边际效应递减,这从图中清晰可

计量经济学知识点(超全版)

计量经济学知识点(超全版)

1.经济变量:经济变量是用来描述经济因素数量水平的指标。

(3分)2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。

(1分)3.被解释变量:是作为研究对象的变量。

(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。

(2分)4.内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。

(1分)5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。

(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定。

(1分)6.滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。

(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。

(2分)8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。

(1分)9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。

(1分)10.函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。

(3分)11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。

(3分)12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。

(3分)13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。

计量经济学复习知识要点

计量经济学复习知识要点

第一章导论第一节计量经济学的涵义和性质计量经济学是以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技师,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。

计量经济学是经济学的一个重要分支,以揭示经济活动中客观存在的数量关系的理论与方法为主要内容,其核心是建立计量经济学模型。

第二节计量经济学的内容体系及与其他学科的关系一、计量经济学与经济学、统计学、数理统计学学科间的关系计量经济学是经济理论、统计学和数学的综合。

经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。

统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。

数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。

计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程。

因此计量经济学是经济理论、统计学和数学三者的统一。

二、计量经济学的内容体系1、按范围分为广义计量经济学和狭义计量经济学。

2、按研究内容分为理论计量经济学和应用计量经济学。

理论计量经济学的核心内容是参数估计和模型检验。

应用计量经济学的核心内容是模型设定和模型应用。

第三节基本概念(4、5、7、8了解即可)1.经济变量:经济变量是用来描述经济因素数量水平的指标。

2.解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。

3.被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。

它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。

4.内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。

计量经济学知识点总结

计量经济学知识点总结

计量经济学知识点总结基本概念:变量与参数:变量是可以随着时间或其他因素而变化的量,而参数是在模型中不变的常量。

线性关系与非线性关系:线性关系是两个变量之间的关系可以用一条直线来表示,而非线性关系则不符合这一特点。

动态关系与静态关系:动态关系是指变量之间的关系随着时间的推移而变化,而静态关系则在一个时间点上成立。

研究内容:理论计量经济学:研究如何运用、改造和发展数理统计的方法,使之成为经济关系测定的特殊方法。

应用计量经济学:在一定的经济理论的指导下,以反映事实的统计数据为依据,用经济计量方法研究经济数学模型的实用化或探索实证经济规律。

主要原理:样本与总体:样本是从总体中选取的一部分个体或观测值,用于进行研究和分析。

总体指全部个体或观测值的集合。

样本必须具有代表性、随机性和独立性,才能保证统计推断的准确性。

回归分析:常用的统计工具,用于研究变量之间的关系,以及预测某个变量的取值。

包括简单线性回归、多元线性回归等。

假设检验:用于检验某个假设是否成立的重要方法。

多重共线性:回归方程中自变量之间存在高度相关关系的问题,可能导致回归系数的不准确性和不同自变量的解释能力的降低。

异方差性:回归模型中误差项方差不同的现象,可能导致回归系数的偏误和统计推断的不准确性。

特点与意义:研究对象发生变化:从确定性问题转向非确定性问题,其对象的性质和意义将发生巨大的变化。

研究方法发生根本变化:基于概率论和数理统计,是一种新的数学形式。

研究结果发生变化:计量经济学模型的结论是概率意义上的,不太确定。

应用领域:金融市场分析:研究金融市场中的价格变动、波动性和流动性等。

风险管理:评估金融风险,并开发相应的风险管理策略。

资产定价:解释金融资产价格的变动和波动性,并预测未来的价格走势。

市场微观结构分析:研究金融市场的微观结构和市场行为。

经济政策分析:评估经济政策对金融市场的影响,并提供相应的政策建议。

以上总结仅供参考,计量经济学是一个涉及多个领域的复杂学科,如需更详细或更深入的理解,建议参考相关教材或咨询经济学专家。

计量经济学知识点

计量经济学知识点

计量经济学知识点
1、计量经济学的学科性质及与其它学科的关系
2、根据研究内容计量经济学的类别划分(P10)
3、计量经济模型的构成(4部分)
4、计量经济模型中变量可以划分为哪些
5、计量模型中某个参数表示的意义
6、计量经济模型的应用(4个方面)
7、计量分析中时间序列数据和截面数据的区别
8、计量经济学的分析步骤(4个),每个步骤的主要任务
9、计量经济模型中随机误差项的产生原因
10、古典线性回归模型的基本假定有哪些
11、统计检验包含的主要内容(每种检验的检验目的)
12、拟合优度的内涵
13、t统计量服从怎样的统计分布
14、异方差性的内涵及表现
15、异方差性的产生原因
16、异方差性的检验方法
17、异方差性的解决办法(加权最小二乘法)
18、自相关性的内涵及表现
19、自相关性的产生原因
20、自相关性的检验方法(DW判断标准)
21、多重共线性的内涵及表现
22、多重共线性的产生原因
23、多重共线性的检验方法(见书本,4种)
24、多重共线性的解决方法(见书本,4种)。

计量经济学知识点汇总

计量经济学知识点汇总

计量经济学知识点汇总1. 计量经济学概念
- 定义和作用
- 理论基础和研究方法
2. 数据处理
- 数据收集和探索性分析
- 异常值处理和缺失值处理
- 数据转换和规范化
3. 回归分析
- 简单线性回归
- 多元线性回归
- 回归假设和诊断
4. 时间序列分析
- 平稳性和单位根检验
- 自相关和偏自相关
- ARIMA模型和Box-Jenkins方法
5. 面板数据分析
- 固定效应模型和随机效应模型
- hausman检验
- 动态面板数据模型
6. 内生性和工具变量
- 内生性问题及其检验
- 工具变量法
- 两阶段最小二乘法
7. 离散选择模型
- 二项Logit/Probit模型
- 多项Logit/Probit模型
- 计数数据模型
8. 模型评估和选择
- 模型适合度检验
- 信息准则
- 交叉验证和预测评估
9. 计量经济学软件应用
- R/Python/Stata/EViews等软件使用 - 数据导入和清洗
- 模型构建和结果解释
10. 实证研究案例分析
- 经典文献阅读和评析
- 实证研究设计和实施
- 结果分析和政策建议
以上是计量经济学的主要知识点汇总,每个知识点都包含了相关的理论基础、模型方法和实践应用,可根据具体需求进行深入学习和研究。

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点

计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。

2、计量经济学是统计学、经济学和数学的结合。

3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。

4、计量经济学是经济学的一个分支学科。

第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。

2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。

3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。

4、参数估计量的评价标准:无偏性、有效性、一致性。

5、OLS估计量的统计特征:线性特性、无偏性、有效性。

6、可决系数R²的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。

第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。

2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。

3、参数最小二乘估计的性质:线性性质、无偏性、有效性。

4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。

5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。

6、当R²=0时,F=0;当R²越大时,F值也越大;当R²=1时,F→∞。

(完整word版)计量经济学知识点总结

(完整word版)计量经济学知识点总结
产生多重共线性的原因?
(1)经济变量之间具有共同变化趋势(2)模型中包含滞后变量(3)利用截面数据建立模型也可能出现多重共线性(4)样本数据自身的原因
完全多重共线性的后果?
(1)参数的估计值不确定(2)参数估计值的方差无限大
不完全多重共线性下产生得到后果?
(1)参数估计值的方差与协方差增大(2)对参数区间估计时,置信区间趋于变大
异方差性的补救措施?
(1)对模型变换(2)加权最小二乘法(3)模型的的对数变换
自相关:指总体回归模型的随机误差项ui之间存在的相关关系
自相关产生的原因?
(1)经济系统的惯性(2)经济活动的滞后效应(3)数据处理造成的相关(4)蛛网现象(5)模型设定偏误
自相关的后果?
(1)一阶自回归形式的性质:自协方差均不为零。
可决系数 =1-
修正的决定系数 及其作用。
解答: (2分)其作用有:(1)用自由度调整后,可以消除拟合优度评价中解释变量多少对决定系数计算的影响;(2分)(2)对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低,但不能用原来未调整的决定系数来比较(1分)。
多重共线性:指解释变量之间存在精确或近似的线性关系
(4)数据转换(5)获取补充数据或新数据(6)选择有偏估计量
异方差性:其他假设均不变,但模型中随机误差项 的方差Var( )= (i=1,2..n)
则 具有异方差性
异方差性产生的原因?
(1)模型设定误差(2)测量误差的变化(3)截面数据中总体名单的差异
异方差性产生的后果?
(1)对参数估计式统计特性的影响:参数的OLS估计仍然具有无偏性。参数OLS估计式得到方差不再是最小的
(4)随机扰动项ui与解释变量Xi不想管

计量经济学复习重点

计量经济学复习重点

计量经济学复习重点第一章1. 计量经济学的性质计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论(计量经济研究的基础)数据:对所研究对象经济行为观测所得到的信息(计量经济研究的原料或依据)方法:模型的方法与估计、检验、分析的方法(计量经济研究的工具与手段2. 计量经济学与相关学科的联系与区别联系:●计量经济学研究的主体—经济现象和经济系的数量规律●计量经济学必须以经济学提供的理论原则和经济运行规律为依据●经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容3. 学习计量经济学的必要性4. 计量经济学研究的基本思路和步骤模型设定(选择变量和数学关系式)、估计参数(确定变量间的数量关系)、模型检验(检验所得结论的可靠性)、模型应用(作经济分析和经济预测)5。

模型的设定、参数估计、模型检验的要求模型设定要求●要有科学的理论依据●选择适当的数学形式(单一方程、联立方程线性形式、非线性形式)●模型要兼顾真实性和实用性●包含随机误差项●方程中的变量要具有可观测性参数估计要求参数的估计值:所估计参数的具体数值参数的估计式:估计参数数值的公式6. 模型中的变量及其类型从变量的因果关系区分:被解释变量(应变量)—-要分析研究的变量解释变量(自变量)—说明应变量变动主要原因的变量(非主要原因归入随机误差项)从变量的性质区分内生变量—其数值由模型所决定的变量,是模型求解的结果外生变量—其数值由模型以外决定的变量(相关概念:前定内生变量、前定变量) 注意:外生变量数值的变化能够影响内生变量的变化,内生变量却不能反过来影响外生变量7. 计量经济研究中数据的类型时间数列数据(同一空间、不同时间)、截面数据(同一时间、不同空间)、混合数据(面板数据 Panel Data)、虚拟变量数据8。

(完整word版)计量经济学知识点总结

(完整word版)计量经济学知识点总结

(完整word版)计量经济学知识点总结第一章:1计量经济学研究方法:模型设定,估计参数,模型检验,模型应用2.计量经济模型检验方式:①经济意义:模型与经济理论是否相符②统计推断:参数估计值是否抽样的偶然结果③计量经济学:是否复合基本假定④预测:模型结果与实际杜比3.计量经济学中应用的数据类型:①时间序列数据(同空不同时)②截面数据(同时不同空)③混合数据(面板数据)④虚拟变量数据(学历,季节,气候,性别)第二章:1.相关关系的类型:①变量数量:简单相关/多重相关(复相关)②表现形式:线性相关(散布图接近一条直线)/非线性相关(散布图接近一条直线)③变化的方向:正相关(变量同方向变化,同增同减)/负相关(变量反方向变化,一增一减不相关)2.引入随机扰动项的原因:①未知影响因素的代表(理论的模糊性)②无法取得数据的已知影响因素的代表(数据欠缺)③众多细小影响因素综合代表(非系统性影响)④模型可能存在设定误差(变量,函数形式设定)⑤模型中变量可能存在观测误差(变量数据不符合实际)⑥变量可能有内在随机性(人类经济行为的内在随机性)3.OLS回归线数学性质:①剩余项的均值为零②OLS回归线通过样本均值③估计值的均值等于实际观测值的均值④被解释变量估计值与剩余项不相关⑤解释变量与剩余项不相关4.OLS估计量”尽可能接近”原则:无偏性,有效性,一致性5.OLS估计式的统计性质/优秀品质:线性特征,无偏性特征,最小方差性特征第三章:1.偏回归系数:控制其他解释变量不变的条件下,第j个解释变量的单位变动对被解释变量平均值的影响,即对Y平均值直接或净的影响2.多元线性回归中的基本假定:①零均值②同方差③无自相关④随机扰动项与解释变量不相关⑤无多重共线性⑥正态性…一元中有123463. OLS回归线数学性质:同第二章34. OLS估计式的统计性质:线性特征,无偏性特征,最小方差性特征5.为什么用修正可决系数不用可决系数?可决系数只涉及变差没有考虑自由度,如果用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比困难第四章:1.多重共线性背景:①经济变量之间具有共同变化趋势②模型中包含滞后变量③利用截面数据建立模型可出现..④样本数据自身原因2.后果:A完全①参数估计值不确定②csgj值方差无限大B不完全①csgj量方差随贡献程度的增加而增加②对cs区间估计时,置信区间区域变大③假设检验用以出现错误判断④可造成可决系数较高,但对各cs 估计的回归系数符号相反,得出错误结论3.检验:A简单相关系数检验法:COR 解释变量.大于0.8,就严重B方差膨胀因子法:因子越大越严重;≥10,严重C直观判断法:增加或剔除一个解释变量x,估计值y发生较大变化,则存在;定性分析,重要x标准误差较大并没通过显著性检验时,则存在;x回归系数所带正负号与定性分析结果违背,则存在;x相关矩阵中,x之间相关系数较大,则存在D逐步回归检验法:将变量逐个引入模型,每引入一个x,都进行F检验,t检验,当原来引入的x由于后面引入的x不显著是,将其剔除.以确保每次引入新的解释变量之前方程种植包含显著变量.4.补救措施:①剔除变量法②增大样本容量③变换模型形式:自相关④利用非样本先验信息⑤截面数据与时序数据并用:异方差⑥变量变换第五章:1.异方差产生原因:①模型中省略了某些重要的解释变量②模型设定误差③数据测量误差④截面数据中总体各单位的差异2.后果:A参数估计统计特性:参数估计的无偏性仍然成立;参数估计方差不再是最小B参数显著性检验:t统计量进行参数检验失去意义C 预测影响:将无效3检验:A图示①相关图形分析data x y,看散点图,quick→graph→x,y→OK→scatter diagram→OK,可以看到x,y散点图②残差图形分析data x y,sort x;ls y c x;再回归结果的子菜单点resid,可以看残差分析图Bgoldfeld-quanadt:data x y;sort x;smpl 1 n1;ls y c x(RSS1);smpl n2 n;ls y c x(RSS2);计算F*=RSS2/RSS1,取α=0.05,查F分布表,得F0.05((n-c)/2,(n-c)/2),将F值与此对比.若F*>F(0.05),拒绝原假设,存在异方差Cwhite:data x y;ls y c x;在回归结果的子菜单中点击view-residual test-white heteroskedasticity,可以看到辅助回归模型的估计结果D arch;E:glejser:data x y;ls y c x;genr E1=resid;genr E2=abs(E1);genr XH=X^h;ls E2 c xh;依次根据XH的T值判断E2与XH之间是否存在异方差4.补救措施:A模型变换法:genr y1=y/根号x^h; genr x2=1/根号x^h ; genr x3=x/根号x^h;ls y1 x2 x3;B加权最小二乘法wls:权数:w1t=1/xt;w2t=1/xt^2;w3t=1/根号xt.电脑操作:genr w1=1/x;genr w2=1/(x^2);genr w3=1/sqr(x);ls (w=w1t) y c x;ls (w2=w2t) y c x;ls (w3=w3t) y c x. 第六章:1.自相关产生原因:①经济系统的惯性②经济活动的滞后效应③数据处理造成的相关④蛛网现象⑤模型设定偏误2.表现形式:自相关性质可以用自相关系数符号判断.即ρ<0为负相关, ρ>0为正相关.当|ρ|接近1时,表示相关的程度很高.自相关形式:见公式.3.后果:见公式.4.检验:A图示检验:data x y;ls y c x;再回归模型的子菜单点击resids,可以看到模型残差分布图;genr e=resid;data e e(-1);view-graph-scatter-simple scatter.B.DW检验:data x y;ls y c x;根据回归结果得出DW值,然后判断是否自相关.(正相关0~dl,无法判断dl~du,正相关du~2~4-du,无法判断4-du~4-dl,负相关4-dl~4).5.补救:A广义差分法:data x y;ls y c x;根据DW求ρ尖>(ρ尖=1-DW/2);smpl 2 n;genr yi=y-ρ尖*y(-1); genr xi=x-ρ尖*x(-1);ls y1 c x1;运用DW检验判断是否消除了自相关B:Cochrane orcutt迭代法:data x y;la y c x ar(1);运用DW检验判断C其他方法:①一阶差分法:data x y;ls y c x;smpl 2 n;genr y1=y-y(-1); genr x1=x-x(-1);ls y1 c x1; 运用DW检验判断②德宾两步法:data x y;smpl 2 n;ls y c y(-1)根据输出结果看y(-1)前系数,求出ρ尖; genr yi=y-ρ尖*y(-1); genr xi=x-ρ尖*x(-1);ls y1 c x1;运用DW检验判断第七章:1.虚拟变量0和1选取原则:0基期,比较的基础,参照物;1报告期:被比较类型2.虚拟变量数量的设置规则:①若定性因素具有m≥2个相互排斥属性,当回归模型有截距项时,只能引入m-1个变量②当回归模型无截距项时,引入m个变量3.虚拟解释变量的回归:加法截距:①解释变量只有一个分为两种相互排斥类型的定性变量而无定量变量②解释变量包含一个定量变量和一个分为两种类型的定性变量③解释变量包含一个定量变量和一个两种以上类型的定性变量④解释变量包含一个定量变量和两个定性变量.乘法斜率:①截距不变情形②结局斜率均发生变化③分段回归分析描述的精度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学知识点总
第一章:1计量经济学研究方法:模型设定,估计参数,模型检验,模型应用
2. 计量经济模型检验方式:①经济意义:模型与经济理论是否相符②统计推断:参数估计值是否抽样的偶然结果③计量经济学:是否复合基本假定④预测:模型结果与实际杜比
3. 计量经济学中应用的数据类型:①时间序列数据(同空不同时)②截面数据(同时不同空)③混合数据(面板数据)④虚拟变量数据(学历,季节,气候,性别)第二章:1.相关关系的类型:①变量数量:简单相关/多重相关(复相关)②表现形式:线性相关(散布图接近一条直线”非线性相关(散布图接近一条直线)③变化的方向:正相关(变量同方向变化,同增同减”负相关(变量反方向变化,一增一减不相关)2•引入随机扰动项的原因:①未知影响因素的代表(理论的模糊性)②无法取得数据的已知影响因素的代表(数据欠缺)③众多细小影响因素综合代表(非系统性影响)④模型可能存在设定误差(变量,函数形式设定)⑤模型中变量可能存在观测误差(变量数据不符合实际)⑥变量可能有内在随机性(人类经济行为的内在随机性) 3.0LS回归线数学性质:①剩余项的均值为零②OLS回归线通过样本均值③估计值的均值等于实际观测值的均值④被解释变量估计值与剩余项不相关⑤解释变量与剩余项不相关
4.0LS估计量”尽可能接近”原则:无偏性,有效性,一致性
5.0LS估计式的统计性质/优秀品质:线性特征,无偏性特征,最小方差性特征第三章:1.偏回归系数:控制其他解释变量不变的条件下,第j个解释变量的单位变动对被解释变量平均值的影响,即对丫平均值直接或净的影响
2. 多元线性回归中的基本假定:①零均值②同方差③无自相关④随机扰动项与解释变
量不相关⑤无多重共线性⑥正态性…一元中有12346
3. OLS回归线数学性质:同第二章3
4. OLS估计式的统计性质:线性特征,无偏性特征,最小方差性特征
5. 为什么用修正可决系数不用可决系数?可决系数只涉及变差没有考虑自由度,如果用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比困难
第四章:1.多重共线性背景:①经济变量之间具有共同变化趋势②模型中包含滞后变量
③利用截面数据建立模型可出现..④样本数据自身原因
2. 后果:A完全①参数估计值不确定②csgj值方差无限大B不完全①csgj量方差随贡献程度的增加而增加②对cs区间估计时,置信区间区域变大③假设检验用以出现错误判断④可造成可决系数较高,但对各cs估计的回归系数符号相反,得出错误结论
3. 检验:A简单相关系数检验法:COR解释变量.大于0.8,就严重B方差膨胀因子
法:因子越大越严重;>10,严重C直观判断法:增加或剔除一个解释变量x,估计值y 发生较大变化,则存在;定性分析,重要x标准误差较大并没通过显著性检验时,则存在;x回归系数所带正负号与定性分析结果违背,则存在;x相关矩阵中,x之间相关系数较大,则存在D逐步回归检验法:将变量逐个引入模型,每引入一个x,都进行F检验,t检验,当原来引入的x由于后面引入的x不显著是,将其剔除.以确保每次引入新的解释变量之前方程种植包含显著变量.
4. 补救措施:①剔除变量法②增大样本容量③变换模型形式:自相关④利用非样本先验信息⑤截面数据与时序数据并用:异方差⑥变量变换
第五章:1.异方差产生原因:①模型中省略了某些重要的解释变量②模型设定误差③数据测量误差④截面数据中总体各单位的差异
2. 后果:A参数估计统计特性:参数估计的无偏性仍然成立;参数估计方差不再是最小B参数显著性检验:t统计量进行参数检验失去意义C预测影响:将无效
3检验:A图示①相关图形分析data x y看散点图,quick—graph—x,y—OK—scatter diagram—OK,可以看到x,y散点图②残差图形分析data x y,sort x;ls y c x; 再回归结果的子菜单点resid,可以看残差分析图Bgoldfeld-quanadt:data x y;sort x;smpl 1 n 1;ls y c x(RSS1);smpl n2 n;ls y c x(RSS2)计算F*=RSS2/RSS1 取a =0.05,查F 分布表,得F0.05((n-c)/2,(n-c)/2),将 F 值与此对比.若F* > F(0.05)拒绝原假设,存在异方差Cwhite:data x y;ls y c x;在回归结果的子菜单中点击viewresidual test-white heteroskedasticity可以看到辅助回归模型的估计结果 D
arch;E:glejser:data x y;ls y c x;genr E1=resid;genr E2=abs(E1);genr XH=X A h;ls E2 c xh;依次根据XH的T值判断E2与XH之间是否存在异方差
4补救措施:A 模型变换法:genr y1=y/根号xAh; genr x2=1/根号xAh ; genr x3=x/根号xAh;ls y1 x2 x3;B 加权最小二乘法wls:权数:w1t=1/xt;w2t=1/xtA2;w3t=1/ 根号xt. 电脑操作:genr w仁1/x;genr w2=1/(xA2);genr w3=1/sqr(x);ls (w=w1t) y c x;ls
(w2=w2t) y c x;ls (w3=w3t) y c x.
第六章:1.自相关产生原因:①经济系统的惯性②经济活动的滞后效应③数据处理造成的相关④蛛网现象⑤模型设定偏误
2.表现形式:自相关性质可以用自相关系数符号判断.即p<0为负相关,p>0为正相关.当P接近1时,表示相关的程度很高.自相关形式:见公式.
3后果:见公式4检验:A图示检验:data x y;ls y c x;再回归模型的子菜单点击
resids可以看至U模型残差分布图;genr e=resid;data e e(-1);view-graph-scatter-simple scatter.B.DW检验:data x y;ls y c x;根据回归结果得出DW值然后判断是否自相
关.(正相关O~dl,无法判断dl~du,正相关du~2~4-du无法判断4-du~4-dl,负相关4-
dl~4).
5. 补救:A广义差分法:data x y;ls y c x根据DW求卩尖>(p尖=1-DW/2);smpl 2 n;genr yi=y- p 尖y(-1); genr xi=x- p 尖x(-1);ls y1 c x1;运用DW 检验判断是否消除了自相关B:Cochrane orcutt迭代法:data x y;la y c x ar(1);运用DW 检验判断C其他方法:①一阶差分法:data x y;ls y c x;smpl 2 n;genr y1=y-y(-1); genr x1=x-x(-1);ls y1 c x1;运用DW检验判断②德宾两步法:data x y;smpl 2 n;ls y c y(-1)根据输出结果看y(-1)前系数,求出p 尖genr yi=y- p 尖y(-1); genr xi=x- p 尖x(-1);ls y1 c x1;运用DW检验判断
第七章:1.虚拟变量0和1选取原则:0基期,比较的基础,参照物;1报告期:被比较类型
2. 虚拟变量数量的设置规则:①若定性因素具有m》2个相互排斥属性,当回归模
型有截距项时,只能引入m-1个变量②当回归模型无截距项时,引入m个变量
3. 虚拟解释变量的回归:加法截距:①解释变量只有一个分为两种相互排斥类型的
定性变量而无定量变量②解释变量包含一个定量变量和一个分为两种类型的定性变量③解释变量包含一个定量变量和一个两种以上类型的定性变量④解释变
量包含一个定量变量和两个定性变量.乘法斜率:①截距不变情形②结局斜率均发生变化③分段回归分析描述的精度•。

相关文档
最新文档