【人教版】高中化学选修3知识点总结:第二章分子结构与性质
【人教版】高中化学选修3知识点总结
第一章原子结构一. 原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴结构原理:跟着核电荷数递加,大部分元素的电中性基态原子的电子按右图次序填入核外电子运动轨道(能级),叫做结构原理。
①依据结构原理,基态原子核外电子的排布按照图①箭头所示的次序。
①依据结构原理,能够将各能级按能量的差异分红能级组如图①所示,由下而上表示七个能级组,其能量挨次高升;在同一能级组内,从左到右能量挨次高升。
基态原子核外电子的排布按能量由低到高的次序挨次排布。
能级交织:由结构原理可知,电子先进入4s 轨道,后进入3d 轨道,这类现象叫能级交织。
(2)能量最低原理现代物质结构理论证明,原子的电子排布按照结构原理能使整个原子的能量处于最低状态,简称能量最低原理。
结构原理和能量最低原理是从整体角度考虑原子的能量高低,而不限制于某个能级。
(3)泡利(不相容)原理:基态多电子原子中,不行能同时存在 4 个量子数完整同样的电子。
换言之,一个轨道里最多只好容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利( Pauli )原理。
(4)洪特规则:当电子排布在同一能级的不一样轨道(能量同样)时,老是优先独自占有一个轨道,并且自旋方向同样,这个规则叫洪特(Hund)规则。
比方,p3的轨道式为↑↑↑或↓↓↓ ,而不是↑↓ ↑。
洪特规则特例:当 p、d、f 轨道填补的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即 p0、d0、f 0、p3、 d5、f7、p6、 d10、f 14时,是较稳固状态。
前 36 号元素(复习)中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、 24Cr 3d54s1、 25Mn 3d54s2、33As 4s24p3;全充满状态的有 10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、 36Kr 4s24p6。
人教版高中化学选修3课件 第二章 分子结构与性质 复习课件(共21张PPT)
讨论2:(10江苏)乙炔是有机合成工业的一种原料。工业上
曾用CaC2与水反应生成乙炔。
(1)CaC2中C22-与O22+互为等电子
体,O22+的电子式可表示为 ;1molO22+中含有的π键数目
为
。
(2)将乙炔通入[Cu(NH3)2 ]Cl 溶液生成 Cu2C2 红棕色沉淀。基态核
外电子排布式为
。
谢谢
常见分子中的键角:CO2分子中的键角
为 180,°为
形直分线子;H2O分子中键角为
105°,为 形(V 或 形)分角子;CH4分子中键
角为109°28′,为
形分正四子面。体
[特别提醒]
(1)共价单键全为σ键,双键中有一个σ键和一个π键, 三
键中有一个σ键和两个π键。
(2)一般σ键比π键稳定,但N2分子中的σ键比π键键能小。 (3)稀有气体分子中没有化学键。
酒精等)能溶解非极性物质(Br2、I2等)
注意:常用有机物的溶解度的判断,亲水 基越多,憎水基越小溶解度越大,
(3)化学性质(无机含氧酸的酸性、热稳 定性)
无机含氧酸可写成
(HO)mROnm≥1,n≥0)高,n值越大,R的正电 性越 ,R使R—O—H中O的电子向 偏移,
在水电分离子出的H作+ 用下容易 强 ,酸性越 < 。
如HClO< HClO2< HClO3 HClO4,
HNO2 <HNO3
H2SO3 H<2SO4。
注意:次磷酸 亚磷酸 磷酸酸性强弱的比较 硼酸如何体现一元弱酸的性质 碳酸中非羟基氧的数目是1,为什么是弱酸
(3)手性
(1)手性异构:具有完全相同的组成和原子排列 的一对分子,如左手和右手一样互为 镜像,在 三维空间里 不能重叠的现象。
人教版选修3高中化学 第2章第2节 分子的立体构型(第2课时)
锥形
sp 杂化和 sp2 杂化这两种形式中,原子还有未参与杂化的 p 轨道,可用于形成 π 键,而杂化轨道只能用于形成 σ 键或 者用来容纳未参与成键的孤电子对。
指出下列分子中,中心原子可能采取的杂化轨道类 型,并预测分子的立体构型。 (1)BeCl2:__________ (2)PCl3:__________ (3)BCl3:____________ (4)CS2:__________ (5)SCl2:____________
4.如图是甲醛分子的模型。根据该图和所学化学键知识回 答下列问题:
甲醛分子的比例模型 甲醛分子的球棍模型 (1)甲醛分子中碳原子的杂化方式是________________, 作出该判断的主要理由是_____________________。 (2) 下 列 是 对 甲 醛 分 子 中 碳 氧 键 的 判 断 , 其 中 正 确 的 是 ________(填序号)。 ①单键 ②双键 ③σ 键 ④π 键 ⑤σ 键和 π 键
(3)sp3 杂化 sp3 杂化轨道是由一个__s____轨道和三个_____p____轨道杂 化 而 得 , 杂 化 轨 道 间 的 夹 角 为 __1_0_9_°__2_8_′_ , 立 体 构 型 为 _正__四__面__体___形,如 CH4 分子。
(1)在形成多原子分子时,中心原子价电子层上的某些能量 相近的原子轨道发生混杂,重新组合成一组新的轨道的过 程,叫做轨道的杂化。双原子分子中,不存在杂化过程。 (2)只有能量相近的轨道才能杂化(ns,np)。
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.
(完整版)【人教版】高中化学选修3知识点总结:第二章分子结构与性质
.手性
如左手和右手一样互为镜像,在三维空间里不
.无机含氧酸分子的酸性
(HO)mROn,如果成酸元素R相同,则n值越大,R的正电性越高,使
—O—H中O的电子向R偏移,在水分子的作用下越易电离出H+,酸性越强,如HClO
HClO
<HClO3<HClO4。
分子结构与性质
了解共价键的主要类型键和键,能用键长、键能和键角等说明简单分子的某些性质
了解杂化轨道理论及常见的杂化轨道类型(sp、sp2、sp3),能用价层电子对互斥理论或者
了解简单配合物的成键情况。
了解化学键合分子间作用力的区别。
了解氢键的存在对物质性质的影响,能列举含氢键的物质。
.分子的性质
分子间作用力的比较
.分子的极性
极性分子:正电中心和负电中心不重合的分子。
非极性分子:正电中心和负电中心重合的分子。
.溶解性
“相似相溶”规律:非极性溶质一般能溶于非极性溶剂,
若存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性
“相似相溶”还适用于分子结构的相似性,如乙醇和水互
键参数
①键能:气态基态原子形成1 mol化学键释放的最低能量,键能越大,化学键越稳定。
②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。
③键角:在原子数超过2的分子中,两个共价键之间的夹角。
等电子原理[来源:学§科§网]
.分子的立体构型
.分子构型与杂化轨道理论
分子构型与价层电子对互斥模型 孤对电子时,两者的构型一致;
当中心原子有孤对电子时,两者的构型不一致。
配位化合物
1)配位键与极性键、非极性键的比较
2)配位化合物
高中化学(人教版,选修3)第二章分子结构与性质2.2.1_最新修正版
第二节 分子的立体构型 第 1 课时 价层电子对互斥理论
[目标要求 ] 1.认识共价分子结构的多样性和复杂性。 3.能根据有关理论判断简单分子或离子的构型。
2.理解价层电子对互斥理论的含义。
一、形形色色的分子 1.三原子分子
分子 CO 2 H 2O 2.四原子分子 分子 CH 2O (甲醛 ) NH 3
CH 4、 CCl 4
(2)中心原子上有孤电子对的分子的空间构型 对于中心原子上有孤电子对 (未用于形成共价键的电子对 )的分子, 中心原子上的孤电子对
也要占据中心原子周围的空间,并参与 ____________ ,使分子呈现不同的立体构型。
3.VSEPR 模型和分子的立体构型 H2O 的中心原子上有 ________对孤电子对,与中心原子上的 ________键电子对相加等于
(5)CO 2____________ (6)SO2____________
+
(7)H 3O ____________
(8)SO
2- 4
____________
练基础落实 知识点 1 常见分子的立体构型
1.下列分子构型为正四面体形的是 ( ) ①P4 ② NH 3 ③CCl 4 ④ CH 4 ⑤H2S ⑥ CO2
________,它们相互排斥形成 ____________ 形 VSEPR 模型。略去 VSEPR 模型中的中心原子 上的孤电子对,因而 H 2O 分子呈 ________形。
1.下列分子中,各原子均处于同一平面上的是
()
A . NH 3
B. CCl 4
C. P4
D . CH2 O
2.用价层电子对互斥模型预测下列粒子的立体结构是直线形的是
4.若 AB n 的中心原子 A 上没有孤对电子, 运用价层电子对互斥模型, 下列说法正确的是
高中化学第二章分子结构与性质第2节第1课时价层电子对互斥模型讲义+精练含解析新人教版选修3
第1课时 价层电子对互斥模型[知 识 梳 理]一、形形色色的分子1.三原子分子立体构型⎩⎪⎨⎪⎧直形线,如CO 2分子V 形,如H 2O 分子2.四原子分子立体构型⎩⎪⎨⎪⎧平面三角形,如甲醛分子三角锥形,如氨分子3.五原子分子立体构型:最常见的是正四面体,如CH 4,键角为109°28′。
【自主思考】下列分子根据其分子立体构型连线。
分子A :H 2O B :CO 2C :NH 3D :CH 2OE :CH 4分子的立体构型①直线形②V形③平面三角形④三角锥形⑤正四面体形答案 A —② B —① C —④ D —③ E —⑤二、价层电子对互斥理论 1.价层电子对互斥理论分子的立体构型是“价层电子对”相互排斥的结果。
2.价层电子对互斥模型(VSEPR模型)与分子(离子)的立体结构【自主思考】如何确定AB n型分子空间构型?答案(1)确定中心原子(A)的价层电子对数。
(2)根据计算结果找出理想的VSEPR模型。
(3)略去孤电子对在价层电子对互斥模型中占有的空间,剩下的便是分子的立体构型。
[效果自测]1.判断正误,正确的打“√”;错误的打“×”。
(1)所有的三原子分子都是直线形结构。
()(2)所有的四原子分子都是平面三角形结构。
()(3)五原子分子的空间构型都是正四面体。
()(4)P4和CH4都是正四面体分子且键角都为109°28′。
()(5)NH3分子中有一对未成键的孤电子对,它对成键电子的排斥作用较强。
()(6)VSEPR模型和分子的立体构型,二者可能是不同的。
()答案(1)×(2)×(3)×(4)×(5)√(6)√2.H2O的中心原子上有对孤电子对,与中心原子上的键电子对相加等于,它们相互排斥形成形VSEPR模型。
略去VSEPR模型中的中心原子上的孤电子对,因而H2O分子呈形。
答案 2 σ 4 四面体V3.用价层电子对互斥模型预测下列粒子的立体结构。
高中化学人教版 选修三 第2章 分子结构与性质 杂化轨道理论
高中化学人教版选修三第2章分子结构与性质杂化轨道理论选择题下列关于杂化轨道的叙述正确的是(? )A.杂化轨道可用于形成σ键,也可用于形成π键B.杂化轨道可用来容纳未参与成键的孤电子对C.NH3中N原子的sp3杂化轨道是由N原子的3个p轨道与H 原子的s轨道杂化而成的D.在乙烯分子中,1个碳原子的3个sp2杂化轨道与3个氢原子的s轨道重叠形成3个C?H σ键【答案】B【解析】杂化轨道只用于形成σ键,或用来容纳未参与成键的孤电子对,不能用来形成π键,故B项正确,A项不正确;NH3中N原子的sp3杂化轨道是由N原子的1个s轨道和3个p轨道杂化而成的,C项不正确;乙烯分子中的C原子采用sp2杂化,1个碳原子中的2个sp2杂化轨道与2个氢原子的s轨道重叠形成2个C?H σ键,剩下的1个sp2杂化轨道与另一个碳原子的sp2杂化轨道重叠形成1个C?C σ键,D项不正确。
选择题对H3O+的说法正确的是(? )A.O原子采取sp2杂化B.O原子采取sp3杂化C.离子中无配位键D.离子中配体为O原子【答案】B【解析】H3O+的中心原子的价层电子对数是4,采取的是sp3杂化,H2O和H+之间形成配位键。
选择题下列烃分子中,每个碳原子的杂化轨道数最多的是(? )A.C6H6B.C2H6C.C2H4D.C2H2【答案】B【解析】苯分子和乙烯分子中的C原子都是采取sp2杂化,生成3个杂化轨道;乙烷分子中的C原子采取sp3杂化,生成4个杂化轨道;乙炔分子的C原子采取sp杂化,生成2个杂化轨道。
选择题鲍林被认为是20世纪对化学科学影响最大的人之一,他也是两位获得诺贝尔奖不同奖项的人之一。
杂化轨道是鲍林为了解释分子的立体构型提出的,下列对sp3、sp2、sp杂化轨道的夹角的比较,得出结论正确的是(? )A.sp杂化轨道的夹角最大B.sp2杂化轨道的夹角最大C.sp3杂化轨道的夹角最大D.sp3、sp2、sp杂化轨道的夹角相等【答案】A【解析】sp3、sp2、sp杂化轨道的夹角分别为109°28’、120°、180°。
人教版高中数学选修三第二章 分子结构与性质.docx
高中化学学习材料唐玲出品第二章分子结构与性质第二节分子间作用力1 根据人们的实践经验,一般说来,极性分子组成的溶质易溶于极性分子组成的溶剂,非极性分子组成的溶质易溶于非极性分子组成的溶剂。
试判断下列叙述是否正确。
(1)氯化氢易溶于水,不易溶于苯(非极性分子)。
(2)碘易溶于CCl4(非极性分子),也易溶于水。
(3)食盐易溶于水,不易溶于汽油(非极性分子的混合物)。
2 H2O与H2S结构相似,都是V型的极性分子,但是H2O的沸点是100℃,H2S的沸点是—60.7℃。
引起这种差异的主要原因是A.范德华力B.共价键C.氢键D.相对分子质量3 下列叙述正确的是A.分子晶体中都存在共价键B.F2、C12、Br2、I2的熔沸点逐渐升高与分子间作用力有关C.含有极性键的化合物分子一定不含非极性键D.只要是离子化合物,其熔点一定比共价化合物的熔点高4 下列各组物质的熔沸点高低只与范德华力有关的是A. HI HBr HCl HFB. Li Na K RbC. LiCl HCl HBr RbClD. F2 Cl2 Br2 I25 在解释下列物质性质的变化规律与物质结构间的因果关系时,与键能无关的变化规律是A.HF、HCl、HBr、HI的热稳性依次减弱B.金刚石的硬度大于硅,其熔、沸点也高于硅C.NaF、NaCl、NaBr、NaI的熔点依次降低D.F2、Cl2、Br2、I2的熔、沸点逐渐升高6 有下列两组命题B组中命题正确,且能用A组命题加以正确解释的是A.Ⅰ① B.Ⅱ② C.Ⅲ③ D.Ⅳ④A组B组Ⅰ.H—I键键能大于 H—Cl键键能①HI比HCI稳定Ⅱ.H—I键键能小于H—C1键键能②HCl比HI稳定Ⅲ.HI分子间作用力大于HCl分子间作用力③HI沸点比HCl高Ⅳ.HI分子间作用力小于HCl分子间作用力④HI沸点比HCl低7 自然界中往往存在许多有趣也十分有意义的现象,下表列出了若干化合物的结构简式、化学式、相对分子质量和沸点。
高二化学选修3第2章小结
人 教 版 化 学
第二章 分子结构与性质
[答案]
(1)4s24p1
(2)d
0
N2
CN -
(3)CH4 、
人 教 版 化 学
CH3OH (4)正四面体 [点评]
M
N X Y
人 教 版 化 学
第二章 分子结构与性质
(1)M与Y形成的化合物中含________键,属________分
子(填“极性”或“非极性”)。
(2)N 元 素 形 成 的 单 质 分 子 中 的 化 学 键 类 型 及 数 目 是 ________(填σ键π键)。在化学反应中________易断裂。 (3)由N、Y的氢化物相互作用所生成的物质的电子式为 ________。其中的化学键有________。 (4)写出M单质与X元素最高价氧化物对应的水化物的化 学反应方程式________。
人 教 版 化 学
第二章 分子结构与性质
(3)在CH4 、CO、CH3OH中,碳原子采取sp3 杂化的分
子有________。
(4) 根 据 VSEPR 理 论 预 测 ED4 - 离 子 的 空 间 构 型 为 ________。B、C、D、E原子相互化合形成的分子中,所有 原子都满足最外层8电子稳定结构的电子式为 __________________(写2种)。
第二章 分子结构与性质
【例3】
下表中实线是元素周期表的部分边界,其中
上边界并未用实线标出。 ..........
人 教 版 化 学
第二章 分子结构与性质
新课标人教版选修三第二章 分子结构与性质全部课件
(二)共价键的存在:
非金属单质 H2、O2、Cl2、C… 共价化合物 HCl、CO2… 含有原子团的离子化合物中复杂离子内 部的非金属原子之间
如:NaOH中的 O-H;NH4Cl中的 N-H; Na2O2中的 O-O
(三)键的类型:
非极性键:同种元素原子间如H2; 极性键:不同元素原子间如HCl、CO2…
键长、键能决定共价键的强弱和分子的 稳定性:原子半径越小,键长越短,键能越 大,分子越稳定。例如HF、HCl、HBr、 HI分子中: X原子半径:F<Cl<Br<I H-X键键长:H-F<H-Cl<H-Br<H-I H-X键键能:HF>HCl>HBr>HI H-X分子稳定性:HF>HCl>HBr>HI
S-S重叠
S-P重叠
P-P重叠
特点:轴对称(即以形成化学键的两原子核为连线 为轴作旋转操作,共价键电子云的图形不变)
2、π键:两个原子沿键轴平行以“肩碰肩”方式发生原 子轨道(电子云)重叠所形成的共价键称为π键。(只有在 生成σ 键后,余下的p轨道才能生成π 键)
z
z
z
z
y
y
x x x
特点:镜像对称(重叠形成的电子云由两块形成, 分别位于两原子核构成的平面的两侧,互为镜像)
7、离子键的强弱主要影响离子化合物的熔沸点, 离子键越强,熔沸点就 越高 。
例:判断下列各组物质的熔点高低: MgCl2 > NaCl ; NaF > NaCl
课堂练习
练习1、下列用电子式表示化合物的形成过程正确的是: A K B Cl
O
Ba
K Cl
K
[ ]K 2 [ Cl ] [ Ba] [ Cl ]
人教版高中化学选修3 第二章 分子结构与性质 复习课件
十、溶解性
(一)相似相溶原理
1.极性溶剂(如水)易溶解极性物质 2.非极性溶剂(如苯、汽油、四氯化碳、
酒精等)能溶解非极性物质(Br2、I2等) 3.含有相同官能团的物质互溶,如水中含
羟基(-OH)能溶解含有羟基的醇、酚、 羧酸。
(1)分子中必须有一个与电负性极大的 元素原子形成强极性键的氢原子;
(2)分子中必须有带孤电子对、电负性大、 而且原子半径小的原子。
实际上只有F、O、N等原子与H原子结合 的物质,才能形成较强的氢键。
3. 氢键对化合物性质的影响
分子间形成氢键时,可使化合物的熔、沸点 显著升高。
在极性溶剂中,若溶质分子和溶剂分子间 能形成氢键,则可使溶解度增大。
D.氨气分子是极性分子而甲烷是非极性分子
答案:C
5.(2007海南新课标,23)用价层电子对 互斥理论预测H2S和BF3的立体结构,两 个结论都正确的是 A.直线形;三角锥形 B.V形;三角锥形 C.直线形;平面三角形 D.V形;平面三角形
答案:D
6.向盛有硫酸铜水溶液的试管里加入氨水,首
先形成难溶物,继续添加氨水,难溶物溶解得到
2.判断一种有机物是否具有手性异构体,可 以看其含有的碳原子是否连有四 个不同的原 子或原子团,符合上述条件的碳原子叫做手性 碳原子。
十一、无机含氧酸的酸性
1.对于同一种元素的含氧酸来说,该元素的化合 价越高,其含氧酸的酸性越 强 。原因:无机含 氧则n酸值可越以大写,成R(的H正O)电mR性On,越如高果成,酸导元致素RR—相O同—,H 中的O的电子向R偏移,因而在水分子的作用下, 也就越 容易 电离出H+,即酸性越 强 。
高中化学第二章分子结构与性质2.3分子的性质(第1课时)分子的性质(1)新人教版选修3
第二章分子结构与性质第三节分子的性质第1课时分子的性质(1)知识归纳一、键的极性和分子的极性1.键的极性共价键分类极性共价键非极性共价键成键原子不同种元素的原子同种元素的原子电子对发生偏移_________________成键原子的电性一个原子呈正电性(δ+),一个原子呈负电性(δ—)电中性示例-、H2、O2、Cl22.分子的极性分子有极性分子和非极性分子之分。
分子产生极性是由于分子中的原子对共用电子对的吸引能力不同导致的。
(1)极性分子:分子中的正电中心和负电中心_____________,使分子的某一部分呈正电性(δ+),另一部分呈负电性(δ−),这样的分子是极性分子。
如H2O、CH3Cl分子等。
(2)非极性分子:分子中的正电中心和负电中心________,这样的分子是非极性分子。
如P4、CO2分子等.3.键的极性与分子的极性关系分子的极性是分子中化学键的极性的____________。
由非极性键形成的双原子或多原子分子,其正电中心和负电中心重合,所以都是非极性分子。
例如H2、N2、C60、P4等。
含极性键的分子有没有极性,必须依据分子中极性键的极性的向量和是否等于零而定。
当分子中各个键的极性的向量和等于零时,是非极性分子,如CO2、BF3、CH4等;当分子中各个键的极性的向量和不等于零时,是极性分子,如HCl、H2O、H2O2、NH3等.可见,只含有非极性键的分子一定是非极性分子,含有极性键的分子不一定是极性分子。
在进行有关分子极性的判断时,一定要具体情况具体分析.4.分子极性的判断由于极性分子、非极性分子的概念比较抽象,下面介绍几种简单的判断分子极性的经验规则:(1)一般情况下,单质分子为非极性分子(但O3为极性分子),而AB型的分子均为极性分子。
(2)若分子结构呈几何空间对称,为正某某图形,则为非极性分子.二、范德华力及其对物质性质的影响1.范德华力对气体加压降温,可使其液化;对液体降温时,可使其凝固,这表明分子之间存在着相互作用力。
化学人教版选修3第二章《分子的结构与性质》总结课课件(共25张PPT)
探究与讨论: 1、写出H、C、N、O等原子的电子式:
原子
电子式
可形成 共用电子对数
H
C
N
O
H·
· ·C ·
·N··:
·O···:
1
4
3
2
2、写出CO2、H2O、NH3、CH2O、CH4等分子的电子 式、结构式及分子的空间结构:
0 1 2 0 1 0 0 0 0
中心原子结合的原 子数
空间构型
2
直线形
2
V形
2
V型
3
平面三角形
3
三角锥形
4
正四面体
4
四面体
4
正四面体
4
正四面体
分子或离子 结构式
VSEPR模型
HCN H C N
NH4 + H3O+
H+
HNH H
H+
O
H
H
SO2
O =S =O
F
BF3
B
F
F
立体结构模型
例:用VSEPR模型预测下列分子或离子的立体结构,
价电子都用于形成共价键,这种分子中,中心原子周
围的原子数(n)决定着分子的立体结构。
n2
3
4
5
6
模型 直线形 平面三角形 正四面体 三角双锥体 正八面体
另一类是中心原子上有孤对电子(未用于形成共价键的 电子对)的分子,由于中心原子上的孤对电子也要占据 中心原子周围的空间,并参与互相排斥。所以H2O的 空间结构为V形;NH3的空间结构为三角锥形。
无
平面 正 三角形 四面体
人教版化学选修3第2章知识点汇总
人教版化学选修三《物质结构》知识总结第二章分子结构与性质第一节共价键一、共价键1共价键的本质和特征1)本质:原子之间形成共用电子对。
2)特征:饱和性、方向性。
2.共价键的形成条件同种非金属原子或不同种非金属原子之间、不活泼的金属原子与非金属原子之间形成共价键(其成键原子的最外层电子排布不一定具有与稀有气体相同的稳定结构,即最外层电子不一定达到饱和状态)。
(1)共价键的成键微粒为原子,形成共价键的两种原子对应元素的电负性相差较小。
(2)AlCl3的组成元素均为较活泼的元素,但AlCl3为共价化合物。
类似的还有BeCl2等,也为共价化合物。
(3)共价键可分为极性共价键和非极性共价键。
3、共价键的类型1)σ键形成成键原子的s轨道或p轨道“头碰头”重叠而形成类型ss型sp型p p型特征①以形成化学键的两原子核的连线为轴作旋转操作,共价键电子云的图形不变,这种特征称为轴对称。
②σ键的强度较大。
2 π键形成由两个原子的p轨道、“肩并肩”重叠形成的pp型特征①每个π键的电子云由两块组成,分别位于由两原子核构成平面的两侧,如果以它们之间包含原子核的平面为镜面,它们互为镜像,这种特征称为镜面对称。
②π键不能旋转,不如σ键牢固,较易断裂3 σ键与π键的比较共价键类型σ键π键电子云重叠方式沿键轴方向相对重叠沿键轴方向平行重叠电子云重叠部位两原子核之间,在键轴处键轴上方和下方,键轴处为零电子云重叠程度大小键的强度较大较小化学活泼性不活泼活泼成键规律共价单键是σ键;共价双键中一个是σ键,一个是π键;共价三键中一个是σ键,两个是π键1)所有的共价键都有饱和性,但不是所有的共价键都有方向性,如两个1s轨道H原子与H 原子重叠形成的ss σ键没有方向性。
2)共价分子中可以只存在σ键但不能只存在π键,因为两个原子间可以只形成σ键,但不能只形成π键(也就是说π键必须与σ键共存)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 分子结构与性质
课标要求
1.了解共价键的主要类型键和键,能用键长、键能和键角等说明简单分子的某些性质
2.了解杂化轨道理论及常见的杂化轨道类型(sp 、sp2、sp3),能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的空间结构。
3.了解简单配合物的成键情况。
4.了解化学键合分子间作用力的区别。
5.了解氢键的存在对物质性质的影响,能列举含氢键的物质。
要点精讲
一.共价键
1.共价键的本质及特征
共价键的本质是在原子之间形成共用电子对,其特征是具有饱和性和方向性。
2.共价键的类型
①按成键原子间共用电子对的数目分为单键、双键、三键。
②按共用电子对是否偏移分为极性键、非极性键。
③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性。
3.键参数
①键能:气态基态原子形成1 mol 化学键释放的最低能量,键能越大,化学键越稳定。
②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。
③键角:在原子数超过2的分子中,两个共价键之间的夹角。
④键参数对分子性质的影响
键长越短,键能越大,分子越稳定.
4.等电子原理[来源:学§科§网]
原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。
二.分子的立体构型
1.分子构型与杂化轨道理论
杂化轨道的要点
当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。
杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同。
σ
π
2分子构型与价层电子对互斥模型
价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。
(1)当中心原子无孤对电子时,两者的构型一致;
(2)当中心原子有孤对电子时,两者的构型不一致。
3.配位化合物
(1)配位键与极性键、非极性键的比较
(2)配位化合物
①定义:金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物。
②组成:如[Ag(NH3)2]OH,中心离子为Ag+,配体为NH3,配位数为2。
三.分子的性质
1.分子间作用力的比较
2.分子的极性
(1)极性分子:正电中心和负电中心不重合的分子。
(2)非极性分子:正电中心和负电中心重合的分子。
3.溶解性
(1)“相似相溶”规律:非极性溶质一般能溶于非极性溶剂,
极性溶质一般能溶于极性溶剂.若存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。
(2)“相似相溶”还适用于分子结构的相似性,如乙醇和水互
溶,而戊醇在水中的溶解度明显减小.
4.手性
具有完全相同的组成和原子排列的一对分子,如左手和右手一样互为镜像,在三维空间里不能重叠的现象。
5.无机含氧酸分子的酸性
无机含氧酸可写成(HO)mROn,如果成酸元素R相同,则n值越大,R的正电性越高,使R—O—H中O的电子向R偏移,在水分子的作用下越易电离出H+,酸性越强,如HClO <HClO2<HClO3<HClO4。