轴强度校核例题与方法
轴的计算与校核
35SiMn,38CrMnMo
52
420(2Cr13/3Cr13)
52
材料切变模量G数据库
材料
G(GPa)
碳钢
79.4
合金钢,不锈钢
79.4
灰口铸铁,白口铸铁
44
球墨铸铁
73~76
纯铜,锰青铜
39
黄铜,铝青铜
41
铝合金
26
扎制铝
24~26
木材
0.5
许用扭转刚度[φ]经验库
传动精度要求
[φ](°/m)
轴的计算与校核
轴选用的材料
45
[τ](Mpa)
40
第一步,根据负载算出最小传动轴径(3选1)
当直连回转体负载时 T=J*α
负载参数
单位
输入与计算
备注
转动惯量J
kg.mm²
1000
SW中查惯性张量
正常转速n
r/min
60
电机启动时间t
s
0.5
参考右侧库
转动加速度α
rad/s²
12.57
α=△ω/△t
=2π*n/60/t
精密传动
0.25~0.5
一般传动
0.5~1
要求不高的轴
≥1
说明:
对于受扭转轴的校核分为扭转强度校核和刚度校核
1,扭转强度校核公式:τ=T/Wt≤[τ]
其中τ的量纲Mpa(N/mm²),T为转矩,量纲N.mm,Wt为扭转截面系数,量纲mm³,可查询机械设计手册第5版3-105或通过以下公式计算得到:
实心轴:Wt=πd³/16;空心轴:Wt=π(D4-d4)/(16*D)
981.75
刚度φ
°/m
轴的强度校核(例题一)
1. 将外载荷分解到水平面和垂直面。求垂直面支撑反
力FV和水平面支撑反力FH ;
2. 作垂直弯矩MV图和弯矩MH图 ;
3. 作合成弯矩M图; M =
M
2 H
+
MV2
4. 作转矩T图;
5. 弯扭合成,作当量弯矩Me图; Me = M 2 + (αT )2
6. 计算危险截面轴径: d ≥ 3 Me
mm
0.1[σ−1b]
d2 Fr Fa FA =Fa
F1v M’av Mav
F2v
5) 绘制水平面的弯矩图
Ft
F1H
MaH F2H
M aH = F1H ⋅ LM/a2V = 8700 × 0.193 / 2
F
= 840 N ⋅ m
F1F F2F
6) 求F力产生的弯矩图
a
M 2F = FM⋅ KaV = 4500 × 0.206
10)计算危险截面处轴的直径 选45钢,调质,σb =650 MPa, [σ-1b] =60 MPa
d
≥
3
Me
0 .1[σ −1b ]
=3
1600 × 10 3 0.1 × 60
= 64 .4 mm
求考虑到键槽对轴的削弱,将d值增大4%,故得:
d ≈ 67 mm 符合直径系列。
按弯扭合成强度计算轴径的一般步骤:
a
L/2 a L
1 Ft Fr Fa 2
P247
K F
解:1) 求垂直面的支反力和轴
a
P247
向力
对2点取矩
d
F1v
=
Fr
⋅L
2 − Fa L
⋅ d2
2 = 2123
13-5轴的强度校核计算
小结: 1轴的强度校核计算 2 轴的刚度校核 作业:P228.7
e
" C2
=615.7(Nm) , [
M
e 3
1
]b
=59MPa,
[ ]b
M W
e
615 . 7 10 0 . 1 70
3
3
= 18.0MPa <
0 .1d
1
=
59MPa (2)剖面 D 处虽然仅受转矩,但其直径较小,则该剖面也 为危险剖面。
M
D
M W
( T )
M
2
T
' RA
F RB
'
=(Fa2d2/2+71 Fr2)/142=2011(N)
3)画弯矩图(如图 b、c、d) 剖面 C 处的弯矩 水 平 面 上 的 弯 矩 : MC = 71
FRA×10-3=71×2923.5×10-3=207.6(Nm) 垂
' RA
直
面
上
的
弯
矩
:
M
' C1
=
71 F ×10-3=71×139×10-3=9.87(Nm)
H7/k6; 滚动轴承 内圈与轴的配合
图 12-31
采用基孔制,轴得尺寸公差为 k6。 3、确定各段轴径直径和长度 如图所示。 轴径:从联轴器开始向左取 ф 55→ф 62→ф 65→ф 70→ф 80→ф 70→ф 65 轴长:取决于轴上零件得宽度及他们得相对位臵。选用 7213C 轴承,其宽度为 23mm;齿轮端面至箱体壁间得距离取 a=15mm;考虑到箱体得铸造误差,装配时留有余地,取滚动 轴承与箱体内边距 s=5mm;轴承处箱体凸缘宽度,应按箱盖与
轴的强度校核方法
第二章 轴的强度校核方法常用的轴的强度校核计算方法进展轴的强度校核计算时,应根据轴的详细受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于传动轴应按改变强度条件计算。
对于心轴应按弯曲强度条件计算。
对于转轴应按弯扭合成强度条件计算。
按改变强度条件计算:这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用改变切应力的方法予以考虑。
通常在做轴的构造设计时,常采用这种方法估算轴径。
实心轴的改变强度条件为:由上式可得轴的直径为为改变切应力,MPa 式中:T 为轴多受的扭矩,N ·mmT W 为轴的抗扭截面系数,3m mn 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm为许用改变切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表:T τnPA d 0≥[]T T T dn PW T ττ≤2.09550000≈3=[]T τ空心轴改变强度条件为:dd 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。
例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,那么可根据上式进展最小直径估算,假设最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。
根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,那么mm n P A d 36.15960475.2112110min =⨯== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,那么:mm d d 43.16%)71(36.15%)71(min 'min =+⨯=+=另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,那么外伸段轴径与电动机轴径不能相差太大,否那么难以选择适宜的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,那么:mm d d 4.3038*8.08.0'min ===电动机轴综合考虑,可取mm d 32'min =通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。
轴的强度校核方法
轴的强度校核方法摘要轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。
轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、结构、强度和刚度。
其中对于轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。
本文根据轴的受载及应力情况采取相应的计算方法,对于1、仅受扭矩的轴2、仅受弯矩的轴3、既承受弯矩又承受扭矩的轴三种受载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安全系数做了具体的简绍。
校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。
轴的强度校核方法可分为四种:1)按扭矩估算2)按弯矩估算3)按弯扭合成力矩近视计算4)精确计算(安全系数校核)关键词:安全系数;弯矩;扭矩目录第一章引言--------------------------------------- 11.1轴的特点---------------------------------------------1 1.2轴的种类---------------------------------------------1 1.3轴的设计重点-----------------------------------------1第二章轴的强度校核方法----------------------------42.1强度校核的定义-------------------------------------4 2.2轴的强度校核计算-----------------------------------4 2.3几种常用的计算方-----------------------------------5 2.3.1按扭转强度条件计算-------------------------------5 2.3.2按弯曲强度条件计算-------------------------------6 2.3.3按弯扭合成强度条件计算---------------------------7 2.3.4精确计算(安全系数校核计算)----------------------9 2.4 提高轴的疲劳强度和刚度的措施---------------------12第三章总结------------------------------------------13参考文献--------------------------------------------14第一章引言1.1轴的特点:轴是组成机械的主要零件之一。
轴的强度校核方法
中国石油大学(北京)现代远程教育毕业设计(论文)轴的强度校核方法姓名:学号:性别:专业:批次:电子邮箱:联系方式:学习中心:指导教师:2XXX年X月X日中国石油大学(北京)现代远程教育毕业设计(论文)轴的强度校核方法摘要轴是用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递的重要的零件。
为实现机械产品的完整和可靠设计,轴的设计应考虑选材、结构、强度和刚度等要求。
并应对轴的材料或设备的力学性能进行检测并调节,轴的强度校核应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
最后确定轴的设计能否达到使用要求,对轴的设计十分重要。
本文根据轴的受载及应力情况,介绍了几种典型的常用的对轴的强度校核计算的方法,并对如何精确计算轴的安全系数做了具体的介绍。
当校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。
最后,本文对提高轴的疲劳强度和刚度提出相应改进方法,并对新材料,新技术的应用进行了展望。
关键词:轴;强度;弯矩;扭矩;目录第一章引言 (5)1.1轴类零件的特点 (5)1.2轴类零件的分类 (6)1.3轴类零件的设计要求 (6)1.3.1、轴的设计概要 (6)1.3.2、轴的材料 (6)1.3.3、轴的结构设计 (7)1.4课题研究意义 (9)第二章轴的强度校核方法 (11)2.1强度校核的定义 (11)2.2常用的轴的强度校核计算方法 (11)2.2.1按扭转强度条件计算: (11)2.2.2按弯曲强度条件计算: (13)2.2.3按弯扭合成强度条件计算 (13)2.2.4精确计算(安全系数校核计算) (20)第三章提高轴的疲劳强度和刚度的措施 (25)3.1合理的选择轴的材料 (25)3.2合理安排轴的结构和工艺 (25)3.3国内外同行业新材料、新技术的应用现状 (26)总结 (31)参考文献 (32)第一章引言1.1轴类零件的特点轴是组成各类机械的主要和典型的零件之一,主要起支承传动零部件,传递扭矩和承受载荷的作用。
轴的强度校核方法
河南工业大学机电工程学院毕业设计(论文)轴的强度校核方法姓名:学号:性别:专业:联系方式:学习中心:指导教师:2XXX年X月X日河南工业大学毕业设计(论文)轴的强度校核方法摘要轴是用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递的重要的零件。
为实现机械产品的完整和可靠设计,轴的设计应考虑选材、结构、强度和刚度等要求。
并应对轴的材料或设备的力学性能进行检测并调节,轴的强度校核应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
最后确定轴的设计能否达到使用要求,对轴的设计十分重要。
本文根据轴的受载及应力情况,介绍了几种典型的常用的对轴的强度校核计算的方法,并对如何精确计算轴的安全系数做了具体的介绍。
当校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。
最后,本文对提高轴的疲劳强度和刚度提出相应改进方法,并对新材料,新技术的应用进行了展望。
关键词:轴;强度;弯矩;扭矩;目录第一章引言 (5)1.1轴类零件的特点 (5)1.2轴类零件的分类 (6)1.3轴类零件的设计要求 (6)1.3.1、轴的设计概要 (6)1.3.2、轴的材料 (6)1.3.3、轴的结构设计 (7)1.4课题研究意义 (9)第二章轴的强度校核方法 (11)2.1强度校核的定义 (11)2.2常用的轴的强度校核计算方法 (11)2.2.1按扭转强度条件计算: (11)2.2.2按弯曲强度条件计算: (13)2.2.3按弯扭合成强度条件计算 (13)2.2.4精确计算(安全系数校核计算) (20)第三章提高轴的疲劳强度和刚度的措施 (25)3.1合理的选择轴的材料 (25)3.2合理安排轴的结构和工艺 (25)3.3国内外同行业新材料、新技术的应用现状 (26)总结 (31)参考文献 (32)第一章引言1.1轴类零件的特点轴是组成各类机械的主要和典型的零件之一,主要起支承传动零部件,传递扭矩和承受载荷的作用。
T型机械臂辅助定位机构传动轴强度校核计算
T 型机械臂辅助机构设计计算一、辅助机构电机和减速器选取计算根据机械臂辅助机构采用电机带动齿轮齿条传动机构,选择齿轮为m=2,Z=20,则齿轮分度圆直径d= mz =40mm 。
辅助机构的齿条运行速度为200/0.2/v mm s m s ==由齿轮分度圆直径与齿条运动速度的关系如:60vd nπ=则齿轮转速606020096/min 40v n r d ππ⨯===⨯ 则根据齿轮转速可求出所需电机的减速器减速比i 。
已知电机转速为3000r/min ,则减速比300031.496i == 选取电机减速器减速比为1:30。
根据辅助机构所需电机带动的负载即为克服气缸的摩擦力,这里选取10kgf 。
则克服的力F=100N 。
根据电机输出负载转矩=20.710040==91m20.731.4FD T D T mN ηη⨯⋅⨯⨯转转:齿轮分度圆直径:电机传动效率,这里选取则根据9550p n 53496====7.8w n 955095500.7T T P η⨯⨯,则(根据浦江电机减速器选型样本)由于该电机功率较小,根据选型样本得知电机的轴径都很小。
在电机轴上还要装有气动离合器。
气动离合器最小的孔径为10mm ,选取的气动离合器为YSC-2,上海炎拓机械设备XXX 的产品。
由气动离合器内孔直径10mm ,选取的电机型号为Z3D ,功率为25w 。
这样电机+减速器的型号为Z3D20W+3GN30K ,减速器减速比为30。
电机的厂家为浦江电机。
二、辅助机构传动轴的校核计算 辅助机构中的传动轴结构如下:1、按轴的扭转强度计算轴径最小值由33d n=-#=n=r/min 0.025d 12096P A A ≥≥(103126),材质为45钢P 0.025KW ,96设计中的传动轴最小轴径为10mm ,所以符合要求。
2、按轴的扭转刚度计算轴径最小值3d n P B ≥式中B 按以上表格选取,则B=77。
330.025d 779.8n 96P B mm≥== 此计算结果也符合要求。
轴的设计计算校核
轴的设计、计算、校核以转轴为例,轴的强度计算的步骤为:一、轴的强度计算1、按扭转强度条件初步估算轴的直径机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的;这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径;根据扭转强度条件确定的最小直径为:mm式中:P为轴所传递的功率KWn为轴的转速r/minAo为计算系数,若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%;以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计;在轴的结构具体化之后进行以下计算;2、按弯扭合成强度计算轴的直径l绘出轴的结构图2绘出轴的空间受力图3绘出轴的水平面的弯矩图4绘出轴的垂直面的弯矩图5绘出轴的合成弯矩图6绘出轴的扭矩图7绘出轴的计算弯矩图8按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值:a扭切应力理论上为静应力时,取α=;b考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=;c对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力;9校核危险断面的当量弯曲应力计算应力:式中:W为抗扭截面摸量mm3,;为对称循环变应力时轴的许用弯曲应力,;如计算应力超出许用值,应增大轴危险断面的直径;如计算应力比许用值小很多,一般不改小轴的直径;因为轴的直径还受结构因素的影响;一般的转轴,强度计算到此为止;对于重要的转轴还应按疲劳强度进行精确校核;此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形;二、按疲劳强度精确校核按当量弯矩计算轴的强度中没有考虑轴的应力集中、轴径尺寸和表面品质等因素对轴的疲劳强度的影响,因此,对于重要的轴,还需要进行轴危险截面处的疲劳安全系数的精确计算,评定轴的安全裕度;即建立轴在危险截面的安全系数的校核条件;安全系数条件为:式中:为计算安全系数;、分别为受弯矩和扭矩作用时的安全系数;、为对称循环应力时材料试件的弯曲和扭转疲劳极限;、为弯曲和扭转时的有效应力集中系数,为弯曲和扭转时的表面质量系数;、为弯曲和扭转时的绝对尺寸系数;、为弯曲和扭转时平均应力折合应力幅的等效系数;、为弯曲和扭转的应力幅;、为弯曲和扭转平均应力;S为最小许用安全系数:~用于材料均匀,载荷与应力计算精确时;~用于材料不够均匀,载荷与应力计算精确度较低时;~用于材料均匀性及载荷与应力计算精确度很低时或轴径>200mm时;三、按静强度条件进行校核静强度校核的目的在于评定轴对塑性变形的抵抗能力;这对那些瞬时过载很大,或应力循环的不对称性较为严重的的轴是很有必要的;轴的静强度是根据轴上作用的最大瞬时载荷来校核的;静强度校核时的强度条件是:式中:——危险截面静强度的计算安全系数;——按屈服强度的设计安全系数;=~,用于高塑性材料≤制成的钢轴;=~,用于中等塑性材料=~制成的钢轴;=~2,用于低塑性材料制成的钢轴;=2~3,用于铸造轴;——只考虑安全弯曲时的安全系数;——只考虑安全扭转时的安全系数;式中:、——材料的抗弯和抗扭屈服极限,MPa ;其中=~;Mmax、Tmax——轴的危险截面上所受的最大弯矩和最大扭矩,;Famax——轴的危险截面上所受的最大轴向力,N;A——轴的危险截面的面积,m;W、W T——分别为危险截面的抗弯和抗扭截面系数,m;四、轴的设计用表表1 轴的常用材料及其主要力学性能材料牌号热处理毛坯直径mm硬度HBS抗拉强度极限σb屈服强度极限σs弯曲疲劳极限σ-1剪切疲劳极限τ-1许用弯曲应力σ-1备注Q235A 热轧或锻后空冷≤100400~42022517010540用于不重要及受载荷不大的轴>100~250375~39021545正火回火≤10170~21759029522514055应用最广泛>100~300162~217570285245135调质≤200217~2556403552751556040Cr 调质≤100>100~300241~28673568554049035535520018570用于载荷较大,而无很大冲击的重要轴40CrNi 调质≤100>100~300270~300240~27090078573557043037026021075用于很重要的轴38SiMnMo 调质≤100>100~300229~286217~26973568559054036534521019570用于重要的轴,性能近于40CrNi38CrMoAlA 调质≤60>60~100>100~160293~321277~302241~27793083578578568559044041037528027022075用于要求高耐磨性,高强度且热处理氮化变形很小的轴20Cr 渗碳淬火回火≤60渗碳56~62HRC64039030516060用于要求强度及韧性均较高的轴3Cr13调质≤100≥24183563539523075用于腐蚀条件下的轴1Cr18Ni9Ti 淬火≤100≤19253019519011545用于高低温及腐蚀条件下的轴180110100~200490QT600-3190~270600370215185用于制造复杂外形的轴QT800-2245~335800480290250表2 零件倒角C与圆角半径R的推荐值直径d>6~10>10~18>18~30>30~50>50~80>80~120>120~180 C或R表3 轴常用几种材料的和A0值轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi 12~2012~2520~3030~4040~52A0160~135148~125135~118118~107107~98表4 抗弯抗扭截面模量计算公式。
轴的强度校核方法
轴的强度校核方法轴是指承受转矩或轴向载荷的机械零件,其强度校核是为了保证轴在工作过程中不产生变形、断裂等失效情况,从而确保机械系统的可靠运行。
轴的强度校核方法可以分为理论计算方法和实验测试方法两类。
一、理论计算方法1.强度校核理论基础:强度校核的理论基础是材料力学和工程力学,其中最基本的理论是应力和应变的关系,即胡克定律。
按照强度校核的要求,轴的应力必须小于其材料的抗拉强度,即σ<σt。
其中,σ为轴上的应力值,σt为材料的抗拉强度。
2.强度校核方法:强度校核方法根据所受力的不同可以分为两类:弯曲强度校核和扭转强度校核。
-弯曲强度校核:弯曲强度校核是指轴在承受弯曲力矩时的强度校核。
轴在工作过程中往往会受到弯曲力矩的作用,而产生弯曲应力。
弯曲强度校核需要计算轴的最大弯曲应力值σb和抗拉强度σt比较,其中σb计算公式为:σb=(M*c)/I其中,M为轴所受的弯曲力矩,c为轴上一点到中性轴的距离,I为轴的截面惯性矩。
-扭转强度校核:扭转强度校核是指轴在受扭矩作用时的强度校核。
轴在工作过程中也会受到扭矩的作用,而产生扭转应力。
扭转强度校核需要计算轴的最大扭转应力值τt和剪切强度τs比较,其中τt计算公式为:τt=(T*r)/J其中,T为轴所受的扭矩,r为轴的半径,J为轴的极限挠率。
3.动载荷和疲劳强度校核:在实际工作中,轴往往还会承受动载荷并产生疲劳应力,因此需要对轴进行动载荷和疲劳强度校核。
动载荷强度校核需要考虑轴在受动载荷作用下的应力变化情况,疲劳强度校核需要考虑轴在工作过程中的疲劳寿命。
动载荷和疲劳强度校核方法与静载荷强度校核方法类似,但需要考虑应力的变化规律。
二、实验测试方法1.材料强度测试:2.离心试验:离心试验是指将轴样品固定在离心试验机上,并施加拉力或扭矩进行加载,观察轴的变形情况,以评估轴的强度性能。
3.振动试验:振动试验是指给轴样品施加振动载荷,观察轴的疲劳寿命。
振动试验可以模拟轴在实际工作环境中的振动情况,从而评估轴的疲劳性能。
销轴强度校核
第三节 销轴连接销轴连接是起重机金属结构常用的连接形式,例如起重机臂架根部的连接(图4-30a )以及拉杆或撑杆的连接等(图4-30b ),通常都采用销轴连接。
图4-30 销轴连接示例 (a ) 臂架根部;(b ) 拉杆。
一、销轴计算(一)销轴抗弯强度验算[]W W WMσσ≤=(4-43)式中 M ──销轴承受的最大弯矩; 323d W π=──销轴抗弯截面模数;[]W σ──许用弯曲应力,对于45号钢[]W σ = 360MPa 。
(二)销轴抗剪强度验算[]τππτ≤⋅=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛==243max 3166412d Q d d d Q Ib QS (4-44)式中 Q ──把销轴当作简支梁分析求得的最大剪力;[]τ──销轴许用剪应力,45号钢[]τ=125MPa 。
二、销孔拉板的计算 (一)销孔壁承压应力验算[]c c d Pσδσ≤⋅=(4-45)式中 P ──构件的轴向拉力,即销孔拉板通过承压传给销轴的力; δ──销孔拉板的承压厚度;d ──销孔的直径;[]c σ──销孔拉板的承压许用应力,[][]σσ4.1=c 。
(二)销孔拉板的强度计算首先根据销孔拉板承受的最大拉力P 求出危险截面(图4-31a 中的水平截面b -b 及垂直截面a -a )上的内力,然后用弹性曲梁公式求出相应的应力,并进行强度校核。
图4-31 销孔拉板计算简图1. 内力计算拉板承受的拉力P 是通过销孔壁以沿孤长分布压力P 的形式传给销轴,假定P 沿弧长按正弦规律分布,即ϕsin max ⋅=p p(4-46)由图4-31a ,根据拉板的平衡条件可得 2sin 2sin 2max202max 20rp d rp rd p P π=ϕ⋅ϕ⋅=ϕ⋅ϕ⋅=⎰⎰ππ则rP p π=2max(4-47)根据拉板结构和受力的对称性,可知拉板上反对称的内力(即剪力)等于零。
若沿销孔中心线截开拉板,则截面上只有轴力N b 及弯矩M b ,如图4-31b 所示。
销轴强度校核
销轴强度校核第三节销轴连接销轴连接是起重机⾦属结构常⽤的连接形式,例如起重机臂架根部的连接(图4-30a )以及拉杆或撑杆的连接等(图4-30b ),通常都采⽤销轴连接。
图4-30 销轴连接⽰例 (a ) 臂架根部;(b ) 拉杆。
⼀、销轴计算(⼀)销轴抗弯强度验算[]W W WMσσ≤=(4-43)式中 M ──销轴承受的最⼤弯矩; 323d W π=──销轴抗弯截⾯模数;[]W σ──许⽤弯曲应⼒,对于45号钢[]W σ = 360MPa 。
(⼆)销轴抗剪强度验算[]τππτ≤?===243max 3166412d Q d d d Q Ib QS (4-44)式中 Q ──把销轴当作简⽀梁分析求得的最⼤剪⼒;[]τ──销轴许⽤剪应⼒,45号钢[]τ=125MPa 。
⼆、销孔拉板的计算(⼀)销孔壁承压应⼒验算[]c c d P式中 P ──构件的轴向拉⼒,即销孔拉板通过承压传给销轴的⼒;δ──销孔拉板的承压厚度;d ──销孔的直径;[]c σ──销孔拉板的承压许⽤应⼒,[][]σσ4.1=c 。
(⼆)销孔拉板的强度计算⾸先根据销孔拉板承受的最⼤拉⼒P 求出危险截⾯(图4-31a 中的⽔平截⾯b -b 及垂直截⾯a -a )上的内⼒,然后⽤弹性曲梁公式求出相应的应⼒,并进⾏强度校核。
图4-31 销孔拉板计算简图1. 内⼒计算拉板承受的拉⼒P 是通过销孔壁以沿孤长分布压⼒P 的形式传给销轴,假定P 沿弧长按正弦规律分布,即sin max =p p(4-46)由图4-31a ,根据拉板的平衡条件可得 2sin 2sin 2max202max 20rp d rp rd p P π===?ππ则(4-47)根据拉板结构和受⼒的对称性,可知拉板上反对称的内⼒(即剪⼒)等于零。
若沿销孔中⼼线截开拉板,则截⾯上只有轴⼒N b 及弯矩M b ,如图4-31b 所⽰。
根据平衡条件0=∑Y ,得2P N b =(4-48)由于根据平衡⽅程解不出M b ,故是⼀次超静定问题,须根据变形条件求M b 。
轴结构设计和强度校核
一、轴的分类按承受的载荷不同, 轴可分为:转轴——工作时既承受弯矩又承受扭矩的轴。
如减速器中的轴。
虚拟现实。
心轴——工作时仅承受弯矩的轴。
按工作时轴是否转动,心轴又可分为:转动心轴——工作时轴承受弯矩,且轴转动。
如火车轮轴。
固定心轴——工作时轴承受弯矩,且轴固定。
如自行车轴。
虚拟现实。
传动轴——工作时仅承受扭矩的轴。
如汽车变速箱至后桥的传动轴。
固定心轴转动心轴转轴传动轴二、轴的材料轴的材料主要是碳钢和合金钢。
钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。
由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。
合金钢比碳钢具有更高的力学性能和更好的淬火性能。
因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。
必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。
但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。
各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。
高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。
轴的常用材料及其主要力学性能见表。
三、轴的结构设计轴的结构设计包括定出轴的合理外形和全部结构尺寸。
轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的类型、尺寸、数量以及和轴联接的方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等。
由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。
轴的强度校核方法
轴的强度校核方法
轴的强度校核是工程设计中的重要环节,其目的是确保轴能够承受工作条件下的受力,并不产生过度弯曲或断裂的现象。
轴的强度校核方法可以根据不同的应用背景和需求而有所不同,下面将介绍几种常见的轴的强度校核方法。
1.强度计算法:
强度计算法是最常用的校核方法之一,通过应力与材料的允许应力值进行比较,判断轴的强度是否满足要求。
这种方法适用于轴的受力分布较均匀,且形状规则的情况。
计算的核心步骤是确定轴的截面尺寸和应力分布,并且要考虑到加载的动态条件。
2.基于理论公式的校核方法:
根据轴的受力特点和材料性能,可以应用一些基于理论公式的校核方法,如蒙弗赛尔公式、纳迦公式等。
这些公式是基于应力、材料和几何形状之间的关系建立的,通过将轴的尺寸和材料强度带入公式中,计算轴的强度。
3.材料试验法:
对于特殊情况下的轴,如复合材料轴或特殊工况下的轴,可以采用材料试验法进行强度校核。
这种方法通过对轴材料进行拉伸、压缩、弯曲等试验,获取材料的强度参数,并结合轴的几何尺寸进行强度分析。
试验法能够充分考虑材料的非线性、破坏等特点,对于复杂工况下的轴强度校核非常有效。
4.有限元分析方法:
有限元分析是一种计算机辅助工程分析方法,可以模拟轴在受力条件下的应力分布情况。
通过将轴的几何模型进行离散化,并应用合适的边界条件和加载条件,可以计算出轴在不同点上的应力分布。
有限元分析方法适用于复杂几何形状和非均匀应力分布的轴的强度校核。
总之,轴的强度校核方法需要基于具体的工程应用和材料特性进行选择。
在实际设计中,常常需要综合考虑多种校核方法,以确保轴的强度满足设计要求并具有良好的可靠性。
(完整word版)轴的强度校核例题及方法
1.2 轴类零件的分类根据承受载荷的不同分为:1)转轴:定义:既能承受弯矩又承受扭矩的轴2)心轴:定义:只承受弯矩而不承受扭矩的轴3)传送轴:定义:只承受扭矩而不承受弯矩的轴4)根据轴的外形,可以将直轴分为光轴和阶梯轴;5)根据轴内部状况,又可以将直轴分为实心轴和空。
1.3轴类零件的设计要求1.3。
1、轴的设计概要⑴轴的工作能力设计。
主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。
⑵轴的结构设计.根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。
一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。
1.3。
2、轴的材料轴是主要的支承件,常采用机械性能较好的材料。
常用材料包括:碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。
常用牌号有:30、35、40、45、50。
采用优质碳素钢时应进行热处理以改善其性能。
受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。
45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。
合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。
设计中尤其要注意从结构上减小应力集中,并提高其表面质量。
40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。
轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50—58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。
精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。
这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。
机械设计-轴例题
轴的结构与强度设计例题 四、轴的强度计算 3.作垂直面受力图 1) 求垂直面支反力 d4 M a Fa 4 2
B
(一) 按许用弯曲应力计算
L
L1
L2
Fa4 引起的压应力忽略
M
0
A
B
d4 Fa 4 L2 Fr 4 2 RAV L1 L2 d Fr 4 L1 Fa 4 4 2 M A 0 RBV L1 L2
轴的结构与强度设计例题 几 种 不 同 的 结 构 方 案
方案 a
方案 b
轴的结构与强度设计例题 几 种 不 同 的 结 构 方 案
方案 a
方案 c
轴的结构与强度设计例题 三、轴的结构设计
轴的结构与强度设计例题 四、轴的强度计算 (一) 按许用弯曲应力计算
1. 画出轴的空间受力图并求出齿轮4上的作用力
轴向固定一侧用套筒定位,另一侧用轴
承端盖定位,轴承的周向固定用过盈配合联接。
轴的结构与强度设计例题 三、轴的结构设计 5.轴上零件装拆与配合 齿轮及右侧零件从右装拆;齿轮左侧零件从左装拆。 齿轮、轴承采用
H7 k6
联轴器采用
H7
m6
轴的结构与强度设计例题 三、轴的结构设计 6.轴的加工工艺 1) 全部各轴段过渡圆角用R1 主要考虑联轴器、齿轮处圆角半径为1.5左右,为统一 起见用R1,(也可按各段查手册)。 2)为加工方便同一轴上所开多个键槽应在同一母线上。 3)轴端倒角 1.5X45°
38
47
轴的结构与强度设计例题 三、轴的结构设计 2. 轴的各段直径的确定 第三段直径:装轴承处 d3=50mm
第六段直径:装轴承处 d6=50mm
第五段直径:装齿轮4处d5=54mm (非定位轴肩 h=1.5~2mm)
30轴径轴的设计计算及校核实例
30轴径轴的设计计算及校核实例轴径的设计计算及校核是机械设计中的重要环节之一、下面将以一个实际案例来详细介绍如何进行轴径的设计计算及校核。
案例描述:企业需要设计一根工作在静止负载下的轴。
轴承间距为300mm,轴材料为45#钢,要求寿命为5000小时。
计算步骤:1.估计承载能力:根据轴材料的强度性能,可以利用矩截面方法估计轴的承载能力。
假设轴的直径为d,则轴的面积为A=πd²/4,假设静拉强度为σt,轴承间距为l,则轴的最大弯矩为Mmax=Pl/4,其中P为轴上的负载。
根据梁的受力分析,轴的抗弯应力为σ=(32Mmax)/(πd³),根据强度设计准则,轴的承载能力应满足σ<=σt。
通过迭代计算可以得到合适的轴直径d。
2.计算寿命:根据轴承间距和负载大小,可以计算出轴的载荷。
根据标准或经验公式,可以估计出轴的等效动载荷Pf,然后根据所选轴承的寿命公式,可以计算出滚动轴承的额定寿命L10。
比对所需寿命和额定寿命,确定滚动轴承的类型和尺寸。
根据轴承类型和尺寸,可以计算出轴的等效动载荷Pu,然后根据寿命公式计算出轴的寿命。
3.校核轴的强度:根据轴的设计尺寸和载荷,可以计算出轴的应力。
根据材料的拉应力-应变曲线,可以确定材料的屈服应力和折断应力。
比较轴的应力和屈服应力,判断轴是否满足屈服条件。
在轴径比较大时,也需要考虑轴的韧性,比较轴的应力和折断应力,判断轴是否满足韧性条件。
4.校核轴的刚度:根据轴的设计尺寸和载荷,可以计算出轴的弯曲刚度和扭转刚度。
然后根据设计要求,比较轴的刚度和挠度,判断轴是否满足刚度要求。
以上就是轴径的设计计算及校核的主要步骤。
需要注意的是,设计计算及校核的结果应予以合理性的评估,并结合实际情况进行合理调整。
同时,需要根据所选轴承类型和尺寸,以及轴的工作环境和使用条件,进行综合评估和优化设计。
在实际工作中,还需要注意轴的加工和装配误差、轴的表面质量要求、轴与其他零件之间的配合等问题。
轴强度校核
1.轴I 的强度校合(1)求作用在齿轮上的力111221386333381.3082t T F N d ⨯=== 11tan 203381.3tan 201230.69r t F F N =︒=⨯︒= (2)求轴承上的支反力垂直面内:NV1F 917=N NV2F 314=N 水平面内:12518NH F N = NH2F 863N = (1) 画受力简图与弯矩图根据第四强度理论且忽略键槽影响[]170M MPa Wσσ-==〈=(M =332W dπ=)69.210W -=⨯[]531161.93101025.69709.210ca M Mpa MPa W σσ---⨯⨯===〈=⨯()[]53132 2.34101020.69700.10.045ca M Mpa MPa W σσ--⨯⨯===〈=⨯ 所以轴的强度足够 2.校合轴II 的强度(1)求作用在齿轮上的力 21t t F F == 3381.30N 21r r F F ==1230.69N33225880239967118t T F N d ⨯===Ⅱ3tan tan 2099673739cos cos14.6n r ta F F N β︒==⨯=︒tan 9967tan142485a t F F N β==⨯︒=(2)求轴承上的支反力水平面内:31323(8511897)97(11897)2NV r r a d F F F F ⨯+++⨯=⨯++⨯求得1NV F =162N3232(8511897)(11885)852NV r a r d F F F F ⨯+++⨯++⨯=⨯求得NV2F =-2670N 垂直面内:123(8511897)(11897)97NH t t F F F ⨯++=⨯++⨯求得1NH F =5646N232(8511897)(85118)85NH t t F F F ⨯++=⨯++⨯求得2NH F =7700N(2) 画受力简图与弯矩图(4)按弯扭合成应力校核轴的强度在两个轴承处弯矩有最大值,所以校核这两处的强度[]22170()a caMP T Mσασ-+= 332W dπ=351.251032W dπ-==⨯162.4ca Mpaσ==259ca Mpa σ==精确校核轴的疲劳强度1)判断:危险面为A 面与B 面 2)对截面III 截面III 左侧抗弯截面系数 3320.10.11250050W d mm ==⨯= 抗扭截面系数 3320.20.22500050W d mm ==⨯= 截面A 左侧的弯矩M 为 3858802323035997M N mm =⨯=•截面A 左侧的扭矩T 为 2588023T T N mm ==• 截面A 上的弯曲应力 18.4b M MPa W σ==截面A 上的扭转切应力23.52b TMPa Wtσ== 轴的材料为40Cr ,调质处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 轴类零件的分类根据承受载荷的不同分为:1)转轴:定义:既能承受弯矩又承受扭矩的轴2)心轴:定义:只承受弯矩而不承受扭矩的轴3)传送轴:定义:只承受扭矩而不承受弯矩的轴4)根据轴的外形,可以将直轴分为光轴和阶梯轴;5)根据轴内部状况,又可以将直轴分为实心轴和空。
1.3轴类零件的设计要求1.3.1、轴的设计概要⑴轴的工作能力设计。
主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。
⑵轴的结构设计。
根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。
一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。
1.3.2、轴的材料轴是主要的支承件,常采用机械性能较好的材料。
常用材料包括:碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。
常用牌号有:30、35、40、45、50。
采用优质碳素钢时应进行热处理以改善其性能。
受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。
45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。
合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。
设计中尤其要注意从结构上减小应力集中,并提高其表面质量。
40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。
轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。
精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。
这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。
与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性,是目前工业中应用最广泛的氮化钢。
铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。
它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。
1.3.3、轴的结构设计根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。
合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。
1). 轴的组成轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。
轴主要由三部分组成。
轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。
轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。
2). 结构设计步骤设计中常采用以下的设计步骤:1.分析所设计轴的工作状况,拟定轴上零件的装配方案和轴在机器中的安装情况。
2.根据已知的轴上近似载荷,初估轴的直径或根据经验确定轴的某径向尺寸。
3.根据轴上零件受力情况、安装、固定及装配时对轴的表面要求等确定轴的径向(直径)尺寸。
4.根据轴上零件的位置、配合长度、支承结构和形式确定轴的轴向尺寸。
5.考虑加工和装配的工艺性,使轴的结构更合理。
3). 零件在轴上的安装保证轴上零件可靠工作,需要零件在工作过程中有准确的位置,即零件在轴上必须有准确的定位和固定。
零件在轴上的准确位置包括轴向和周向两个方面。
⑴零件在轴上的轴向定位和固定常见的轴向定位和固定的方法采用轴肩、各种挡圈、套筒、圆螺母、锥端轴头等的多种组合结构。
轴肩分为定位轴肩和非定位轴肩两种。
利用轴肩定位结构简单、可靠,但轴的直径加大,轴肩处出现应力集中;轴肩过多也不利于加工。
因此,定位轴肩多在不致过多地增加轴的阶梯数和轴向力较大的情况下使用,定位轴肩的高度一般取3-6mm,滚动轴承定位轴肩的高度需按照滚动轴承的安装尺寸确定。
非定位轴肩多是为了装配合理方便和径向尺寸过度时采用,轴肩高度无严格限制,一般取为1-2mm。
套筒定位可以避免轴肩定位引起的轴径增大和应力集中,但受到套筒长度和与轴的配合因素的影响,不宜用在使套筒过长和高速旋转的场合。
挡圈的种类较多,且多为标准件,设计中需按照各种挡圈的用途和国标来选用。
⑵零件在轴上的周向定位和固定常见的周向定位和固定的方法采用键、花键、过盈配合、成形联结、销等多种结构。
键是采用最多的方法。
同一轴上的键槽设计中应布置在一条直线上,如轴径尺寸相差不过大时,同一轴上的键最好选用相同的键宽。
4)、轴的结构工艺性⑴从装配来考虑:应合理的设计非定位轴肩,使轴上不同零件在安装过程中尽量减少不必要的配合面;为了装配方便,轴端应设计45°的倒角;在装键的轴段,应使键槽靠近轴与轮毂先接触的直径变化处,便于在安装时零件上的键槽与轴上的键容易对准;采用过盈配合时,为了便于装配,直径变化可用锥面过渡等。
⑵从加工来考虑:当轴的某段须磨削加工或有螺纹时,须设计砂轮越程槽或退刀槽;根据表面安装零件的配合需要,合理确定表面粗糙度和加工方法;为改善轴的抗疲劳强度,减小轴径变化处的应力集中,应适当增大其过渡圆角半径,但同时要保证零件的可靠定位,过渡圆角半径又必须小于与之相配的零件的圆角半径或倒角尺寸。
轴的设计时应考虑多方面因素和要求,需要解决的问题是轴的选材、结构、强度和刚度。
因此轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。
合理的进行轴的强度校核是轴设计的主要内容,也是评定轴的设计成败得先决条件。
校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。
1.4课题研究意义在科学技术高速发展的今天,轴是机械设备中最常见的一种零件,也是机械传动系统中重要的零件。
对于不同类型的轴,在工作中常常受到多个载荷作用,这些载荷产生的应力计算是轴的强度计算中的重要内容。
轴的强度校核在材料力学和机械零件等课程中具有重要的地位。
例如转轴一般都是工作在弯曲与扭转共同作用的复合应力状态下,对它的强度校核,一般是采用当量应力法或疲劳安全裕度的方法。
这些强度校核计算方法的理论依据是塑性材料屈服失效理论(最大切应力理论与歪形能理论),并且考虑轴危险剖面上的弯曲正应力与扭转切应力的循环特性,以及轴的绝对尺寸、表面质量和应力集中等因素对疲劳强度的影响。
研究轴的强度校核方法对于提高机械设备可靠性具有重要意义。
随着计算机技术的广泛应用,轴类零件的设计正逐步从手工走向计算机自动化设计,不仅提高了设计质量,减少了设计工作量,同时为现代高速、多变、小批量生产的设计提供了必要的保障手段。
研究轴的强度校核方法有助于我们更好的掌握轴的强度校核原理,并进一步与计算机应用技术相结合,提高设计水平。
第二章 轴的强度校核方法 2.1强度校核的定义在机械系统中,金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。
强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标。
强度是机械零部件首先应满足的基本要求。
强度校核就是对材料或设备的力学性能进行检测并调节的一种方式,如抗冲击强度,抗弯曲强度等,并且这种方式以不破坏材料或设备性能为前提。
强度的校核研究是综合性的研究,主要是通过其应力状态来研究零部件的受力状况以及预测破坏失效的条件和时机。
2.2常用的轴的强度校核计算方法进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于传动轴应按扭转强度条件计算。
对于心轴应按弯曲强度条件计算。
对于转轴应按弯扭合成强度条件计算。
2.2.1按扭转强度条件计算:这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。
通常在做轴的结构设计时,常采用这种方法估算轴径。
实心轴的扭转强度条件为:由上式可得轴的直径为为扭转切应力,MPa 式中: T τnP A d 0≥[]TT T d n P W T ττ≤2.09550000≈3=T 为轴多受的扭矩,N ·mmT W 为轴的抗扭截面系数,3mmn 为轴的转速,r/minP 为轴传递的功率,KWd 为计算截面处轴的直径,mm为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表:表1 轴的材料和许用扭转切应力空心轴扭转强度条件为:dd 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6这样求出的直径只能作为承受扭矩作用的轴段的最小直径。
例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。
根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则mm n P A d 36.15960475.2112110min =⨯== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则:mm d d 43.16%)71(36.15%)71(min 'min =+⨯=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适[]T τ的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则:mm d d 4.3038*8.08.0'min ===电动机轴 综合考虑,可取mm d 32'min =通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。
2.2.2按弯曲强度条件计算:由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。
则 其中:M 为轴所受的弯矩,N ·mmW 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册B19.3-15~17.][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册B19.1-12.2.3按弯扭合成强度条件计算由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。