【猿辅导几何模型】初中数学常见几何模型解析
【猿辅导几何模型】中考必会几何模型:相似模型
中考必考几何模型(猿辅导)最新讲义相似模型模型1:A、8模型已知∠1=∠2结论:△ADE∽△ABC模型分析如图,在相似三角形的判定中,我们通过做平行线,从而得出A型或8型相似.在做题使,我们也常常关注题目由平行线所产生的相似三角形.模型实例【例1】如图,在ABC中,中线AF、BD、CE相交于点O,求证:12 OF OE ODOA OC OB===.解答:证法一:如图①,连接DE.∵D、E是中点,∴12DEBC=.,DE//BC∴△EOD∽△COB(8模型)∴12OE DEOC BC==.同理:12OFOA=,12ODOB=.∴12 OF OE ODOA OC OB===.证法二:如图②,过F作FG//AC交BD于点G,∵F是中点,∴12 GF BFAD BC==.∵AD=CD,∴12GFAD=.∵FG//AD,∴△GOF∽△DOA(8模型)∴12OF GFOA AD==.同理12OEOC=,12ODOB=.∴12OF OE ODOA OC OB===.【例2】如图,点E、F分别在菱形ABCD的边AB、AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若AFDF=2,求HFBG的值.解答:∵四边形ABCD是菱形,∴AB=BC=CD=AD.设DF=a,则DF=AE=a,AF=EB=2a.∵HD//AB,∴△HFD∽△BF A∴12HD DF HFAB AF FB===,∴HD=1.5a,13FHBH=,∴FH=13BH∵HD//EB,∴△DGH∽△EGB,∴1.5324HG HD aGB EB a===,∴47BGHB=∴BG=47HB,∴1734127BHHFBG BH==跟踪练习:1.如图,D、E分别是△ABC的边AB、BC上的点,且DE//AC,AE、CD相交于点O,若S△DOE:S△COA=1:25.则S△BD E与S△CDE的比是____________.解答:∵DE//AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴15 DE AC=∵DE//AC,∴15BE DEBC AC==,∴14BEBC=,∴的比是1:4.2.如图所示,在ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有___________对.解:∵四边形ABCD是平行四边形,∴AD//BC,AB//CD∴(1)△ABD∽△CDB;(2)△ABE∽△FDE;(3)△AED∽△GEB;(4)△ABG∽△FCG∽△FDA,可以组成3对相似三角形.∴图形中一共有6对相似三角形.3.如图,在△ABC中,中线BD、CE相交于点O,连接AO并延长,交BC于点F,求证:F是BC的中点.证明:连接DE交AF于点G,则DE//BC,DE=12BC,∴G为AF中点∴12EGBF=,12EG OE DEFC OC BC===,∴BF=FC,即点F是BC的中点4.在△ABC中,AD是角平分线,求证:AB AC BD CD=.方法一:过点C CE//AB 交AD 延长线于点E ,∴∠1=∠3,∴△ABD ∽△ECD,∴AB BDCE CD=∵∠1=∠2,∴∠2=∠3,AC=CE,∴AB BDAC CD=方法二:设ABC 中BC 边上的高为h ,则,12ABD S BD h =V g ,12ACD S CD h =V g 过D 分别作DEAB ,于E ,DFAC 于F ,则12ABDS AB DE =V g ,12ACD S AC DF =V g 11221122ABDACDBD h AB DES S CD h AC DF ==V V g g g g ,又∵1=2,∴DE=DF ,∴AB BDAC CD =5.如图,△ABC 为等腰直角三角形,D 是直角边BC 的中点,E 在AB 上,且AE :EB =2:1,求证:CE ⊥AD .证明:过点B 做BF//AC ,交CE 延长线于点F ,则∠CBF=90°,△AEC ∽△BEF∵AE :EB=2:1,∴BF=12AC=12BC=CD ,又AC=CB ,∠ACD=∠CBF=90° ∴△ACD ≌△CBF ,∴∠1=∠2,∵∠1+∠3=90°,∴∠2+∠3-90°∴∠4=90°,∴CE ⊥AD模型2 共边共角型已知:∠ 1=∠2 结论:△ACD ∽△ABCDAC B12模型分析上图中,不仅要熟悉模型,还要熟记模型的结论,有时候题目中会给出三角形边的乘积关系或者比例关系,我们要能快速判断题中的相似三角形,模型中由△ACD ∽△ABC 进而可以得到:AC 2=AD g AB 模型实例例1 如图,D 是△ABC 的边BC 上一点,AB =4,AD =2,∠DAC =∠B ,如果△ABD 的面积为15.那么△ACD 的面积为 .AC DB解答:∵∠DAC =∠B ,∠C =∠C ,∴△ACD ∽△BCA .∵AB =4,AD =2, ∴14ACD ABC S S ∆∆=,∴13ACD ABD S S ∆∆=,∵S △ABD =15,∴S △ACD =5 例2如图,在Rt △ABC 中,∠BAC =90o ,AD ⊥BC 于D . (1)图中有多少对相似三角形?(2)求证:AB 2=BD g BC ,AC 2=CD g CB ,AD 2=BD g CD (3)求证:AB g AC =BC g ADDC BA解答(1)三对.分别是:△ABD ∽△CBA ;△ACD ∽△BCA ;△ABD ∽△CAD (2)∵△ABD ∽△CBA ,∴AB BD BC AB=.∴AB 2=BD g BC ,∵△ACD ∽△BCA ∴AC CD CB AC =.∴AC 2=CD g CB ,∵△ABD ∽△CAD ,∴AD BD CD AD =,∴AD 2=BC g CD (3)1122ABC S AB AC BC AD ==V g g ,∴AB g AC =BC g AD跟踪练习:1.如图所示,能判定△ABC ∽△DAC 的有 . ①∠B =∠DAC ②∠BAC =∠ADC③AC 2=DC g BC④AD 2=BD g BCB DC A【答案】①②③2.已知△AMN 是等边三角形,∠BAC =120o .求证:(1)AB 2=BM g BC ;(2)AC 2=CN g CB ;(3)MN 2=BM g NC .CNM BA【答案】证明:∵∠BAC =120o,∴∠B +∠C =60o.∵△AMN 是等边三角形,∴∠B +∠1=∠AMN =60o ,∠C +∠2=∠ANM =60o.∴∠1=∠C ,∠2=∠B . (1)∵∠1=∠C ,∠B =∠B ,∴△BAM ∽△BCA .∴BM AB AB BC=.∴AB 2=BM g BC (2)∵∠2=∠B ,∠C =∠C ,∴△CAN ∽△CBA .∴CN AC AC CB =.∴AC 2=CN g CB (3)∵∠1=∠C ,∠2=∠B ,∴△BAM ∽△ACN .∴BM AMAN CN=. ∴BM g CN =AN g AM ∵AN =AM =MN ,∴AB 2=BM g BC3.如图,AB 是半圆O 的直径,C 是半圆上一点,过C 作CD ⊥AB 于D ,AC =210,AD :DB =4:1.求CD 的长.OCB【答案】连接BC ,设AD =4x ,则DB =x .∴AB =5x .∵AB 是半圆O 的直径,∴∠ACB =90o又∵CD ⊥AB .∴△ACD ∽△ABC .∴AC 2=AD g AB ,即2(210)45x x =g ,解得:x =2(舍负).∴AD =42.∴CD =2222AC AD -=4.如图①,R t △ABC 中,∠ACB =90o ,CD ⊥AB ,我们可以利用△ABC ∽△ACD 证明AC 2=AD g AB ,这个结论我们称之为射影定理,结论运用:如图②,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,过点C 作CF ⊥BE ,垂足为F ,连接OF .(1)试利用射影定理证明△BOF ∽△BED ; (2)若DE =2CE ,求OF 的长.图①DCBA【答案】(1)∵四边形ABCD 为正方形,∴OC ⊥BO ,∠BCD =90o .∴BC 2=BO g BD . ∵CF ⊥BE ,∴BC 2=BF g BE .∴BO g BD =BF g BE .即BO BFBE BD =,又∵∠OBF =∠EBD ,∴△BOF ∽△BED .(2)∵BC =CD =6,而DE =2CE ,∴DE =4,CE =2.在Rt △BCE 中,BE 2226+=210 在Rt △OBC 中,OB 232BC =BOF ∽△BED , ∴OF BODE BE =,即324210OF =∴65OF .模型3 一线三等角型已知,如图①②③中:∠B =∠ACE =∠D结论:△ABC ∽△CDE模型分析如图①,∵∠ACE+∠DCE=∠B+∠A,又∵∠B=∠ACE,∴∠DCE=∠A.∴△ABC∽△CDE.图②③同理可证△ABC∽△CDE.在一线三等角的模型中,难点在于当已知三个相等的角的时候,容易忽略隐含的其他相等的角,此模型中的三垂直相似应用较多,当看见该模型的时候,应立刻能看出相应的相似三角形.模型实例例1 如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60o,BP=1,CD=23.则△ABC的边长为.60oDP CA解答∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60o.∵∠APC=∠B+∠BAP,即∠APD+∠DPC=∠B+∠BAP,又∵∠APD=∠B=60o,∴∠DPC=∠BAP.又∵∠B=∠C,∴△PCD∽△ABP.∴DC PC BP AB=.设AB=x,则PC=x-1,2131xx-=,解得x=3.例2 如图,∠A=∠B=90o,AB=7,AD=2,BC=3,在边AB上取一点P,使得△P AD与△PBC 相似,则这样的P点共有个.P C BDA 解答设AP =x ,则有PB =AB -AP =7-x ,当△PDA ∽△CPB 时,DA PB AP BC =,即273xx -=, 解得:1x =或6x =,当△PDA ∽△PCB 时,AD AP BC PB =,即237xx=-, 解得:145x =,则这样的的点P 共有3个.练习:1.如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上一动点(不与B 、C 点重合),∠ADE =45°.(1)求证:△ABD ∽△DCE ;(2)设BD x =,AE y =,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.ED CBA1.解答:0(1)901ABC BAC AB AC ∆∠===Q 中,,,045.ABC ACB ∴∠=∠=045ADE ∠=Q ,0135BDA CDE ∴∠+∠=,0135BDA BAD ∠+∠=Q 又,.BAD CDE ∴∠=∠.ABD DCE ∴∆∆:22222,.,...1) 1.1ABD DCE AB BD CD CE BD x CD BC BD x x CE CE x AE AC CE x x y x ∆∆∴==∴=-==∴=-∴=-=--=-+=+Q :Q ()即(3)当△ADE 是等腰三角形时,第一种可能是AD =DE .,.1.2 1.,2 2.ABD DCE ABD DCE CD AB BD BD CE AE AC CE ∆∆∴∆≅∆∴==∴=-=∴=-=-Q :Q 又当△ADE 是等腰三角形时,第二种可能是ED =EA . 0045,90.ADE DEA ∠=∴∠=Q 此时有即△ADE 为等腰直角三角形.11.22AE DE AC ∴=== 当AD =EA 时,点D 与点B 重合,不合题意,所以舍去. 122.2AE -因此的长为或2.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B 、C 重合),∠ADE =∠B =a ,DE 交AC 于点E ,且4cos 5α=.下列结论: ①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等; ③△DCE 为直角三角形时,BD 等于8或252; ④0 6.4≤CE <其中正确的结论是 .(把你认为正确的序号都填上) 2.解答:1,.,..AB AC B C ADE B ADE C ADE ACD =∴∠=∠∠=∠∴∠=∠∴∆∆Q Q :()又 故①正确.4210,,cos .542cos 21016.56,10..,().AB AC ADE B a a BC AB B BD DC AB DC ABD DCE BAD CDE B C AB DC ABD DCE ASA =====∴==⨯⨯==∴=∴=∆∆∠=∠⎧⎪∠=∠⎨⎪=⎩∴∆≅∆Q ()在和中故②正确.(3)当∠AED =900时,由可知:△ADE ∽△ACD . ∴ ∠ADC =∠AED . ∵ ∠AED =900, ∴ ∠ADC =900. 即 AD ⊥BC. ∵ AB =AC , ∴ BD =CD .4cos 108.5ADE B a a AB BD ∴∠=∠====且,,当∠CDE =900时,易得△CDE ∽△BAD .004cos 108.59090.4cos ,10,54cos .525.2ADE B a a AB BD CDE BAD B a a AB AB B BD BD ∴∠=∠====∠=∴∠=∠===∴∠==∴=Q Q 且,,,且故③正确.(4)易证△CDE ∽△BAD ,由②可知BC=16,22,,.10.1616646410.(8)6410.0 6.4BD y CE x AB BD DC CE y y xy y x y x x ==∴=∴=--+=--=-∴≤设整理得:即<故④正确,故答案为:①②③④.P A BD C O3.如图,已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处,折叠与边BC 交于O ,连接AP 、OP 、OA . (1)求证:△OCP ∽△PDA ; (2)若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.3.解答0001,,,90.,,,.90.90,,,.214,1.22,2,ABCD AD BC DC AB DAB B C D AP AB PO BO PAO BAO APO B APO APD CPO POC D C APD POC OCP PDA OCP PDA OC OP CPPD PA DAPD OC PA OP D ∴==∠=∠=∠=∠===∠=∠∠=∠∴∠=∴∠=-∠=∠∠=∠∠=∠∴∆∆∆∆:∴===∴==Q Q :Q ()四边形是矩形由折叠可得:()与的面积比为02222.848.,,8.,90,4,,8,(8)4.5.210.A CP AD CP BC OP x OB x CO x Rt PCDC CP OP x CO x x x x AB AP OP ==∴=====-∆∠====-∴=-+=∴===Q Q ,,设则在中解得:模型4 倒数型条件:AF ∥DE ∥BC 结论:111AF BC DE+=模型分析∵AF ∥DE ∥BC ,∴△BDE ∽△BAF ,△ADE ∽ABCABCDEFB∴DE BD AF AB =,DE ADBC AB=. ∴1DE DE BD AD AB AF BC AB AB AB +=+== 即1DE DE AF BC += ∴111AF BC DE+=(两边同时除以DE ) 仔细观察,会发现模型中含有两个A 型相似模型,它的结论是由两个A 型相似的结论相加而得到的,该模型的练习有助于提高综合能力水平.模型实例如图,AF ∥BC ,AC 、BF 相交于E ,过E 作ED ∥AF 交AB 于D . 求证:111ABFABCABES S S ∆∆∆+=.证明: 分别过点C 、E 、F 作直线AB 的垂线,垂足分别是K 、H 、G则111AF BC DE+=(模型结论). ,.,,.111.111.111.111222111.ABF ABC ABEDEH BCK AF DE BC k FG EH CKAFG AF kFG DE kEH BC kCK kFG kCK kEH FG CK EHAB FG AB CK AB EH S S S ∆∆∆∆∆∴===∴===∴+=∴+=∴+=∆∴+=g Q g g ∽∽设跟踪练习1. 如图,在△ABC 中,CD ⊥AB 于点D ,正方形EFGH 的四个顶点都在△ABC 的边上.求证:111.AB CD EF+= 答案:1、证明: 方法一:如图①ABCDEFE图1CGHABGFD CA EG F4321H DEA∵ 四边形EFGH 是正方形, ∴ EF ⊥AB ∵ CD ⊥AB , ∴ EF ∥CD ,∴ △AEF ∽△ACD . ∴EF AECD AC =① ∵ EH ∥AB ,∴ △CEH ∽△CAB∴EH CEAB AC =∵ EH =EF ,∴EF CEAB AC=② ①+②得,1,EF EF AE CECD AB AC AC+=+= ∴111.AB CD EF+= 方法二:如图②,构造模型4过点C 作AB 的平行线交AH 的延长线于点K , 依题意有,CK ∥EH ∥AB ,∴ 111.AB CK EH+= ∵,,EH AE EFEH EF CK AC CD === ∴ CK =CD .∴111.AB CD EF+=2.正方形ABCD 中,以AB 为边作等边三角形ABE ,连接DE 交AC 于F ,交AB 于G ,连接BF .求证:(1) AF +BF =EF ; (2)111.AF BF GF+=答案:(1)如图①,在EF 上截取FH =AF . ∵ ∠EAB =600,∠BAD =900,AE =AD , ∴ ∠1=∠2=150. ∠3=∠2+∠4=600. ∴ △AFH 为等边三角形. ∴ ∠EAH =∠BAF . ∴ △EAH ≌△BAF . ∴ EH =BF .∴ AF +BF =FH +EH =EF .G F图2123KH CA EPOCDB A(2),如图②,过点G 作GK ∥BF 交AC 于点K . 由①可得∠BFC =600, ∴ AH ∥GK ∥BF .∴ 由模型4,得111.AH BF GK+= ∵ AH =AF ,GK =GF ,∴ 111.AF BF GF+=模型5 与圆有关的简单相似CCDC图3图2图1DPAOABD BEB模型分析图①中,由同弧所对的圆周角相等,易得△P AC ∽△PDB .图②中,由圆的内接四边形的一个外角等于它的内对角,易得△ABD ∽△AEC . 图③中,已知AB 切⊙O 于点A ,如下图,过A 作直径AE ,连接DE ,则有∠EAD +∠E =900. 又∠BAD +∠EAD =900,∠BAD =∠E =∠C . 从而△BAD ∽△BCA .模型实例如图,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. 求证:P A ﹒PB =PD ﹒PC .答案:证明:作直线OP 交⊙O 于C 、D 两点,连接BC 、AD .∵ ∠B =∠D ,∠C =∠A ,∴ △PBC ∽△PDA .∴.PB PCPD PA= ∴ P A ﹒PB =PD ﹒PC =(r +d )(r -d )= r 2-d 2DC连接AD 、B C .∵四边形ADCB 内接于⊙O , ∴∠1=∠2. 又∵∠P =∠P , ∴△P AD ∽△PCB . ∴PA PD PC PB=. ∴PA PB PD PC ⋅=⋅.练习1.如图,P 是⊙O 内的一点,AB 是过点P 的一条弦,设圆的半径为r ,OP d =.求证:22PA PB r d ⋅=-.答案证明:作直线OP 交⊙O 于C 、D 两点,连接BC 、A D . ∵∠A =∠D ,∠C =∠A , ∴△PBC ∽△PD A . ∴PB PCPD PA=. ∴()()22PA PB PC PD r d r d r d ⋅=⋅=+-=-2.如图,已知AB 为⊙O 的直径,C 、D 是半圆的三等分点,延长AC 、BD 交于点E . (1)求∠E 的度数;(2)点M 为BE 上一点,且满足2EM EB CE ⋅=,连接CM ,求证:CM 是⊙O 的切线.BA答案ABMDE CO(1)连接OC 、O D .∵C 、D 是半圆的三等分点, ∴»»»AC CD DB ==. ∵AB 为⊙O 的直径,∴∠AOC =∠COD =∠DOB =60°. ∴OA =OC =OD =OB ,∴△AOC 、△DOB 为等边三角形. ∴∠EAB =∠EBA =60°. ∴∠E =60°. (2)连接BC ,∵2EM EB CE ⋅=, ∴EM CE CE EB =. ∵∠E =∠E ,∴△CEM ∽△BE C . ∵AB 为⊙O 的直径, ∴∠ACB =90°. ∴∠ECB =90°,∴∠EMC =∠ECB =90°. ∵C 、D 是半圆三等分点, ∴∠AOC =∠DOB =60°, ∴OC ∥BE .∴∠OCM =∠EMC =90°. ∴OC ⊥CM .∴CM 为⊙O 的切线.模型6 相似和旋转如图①,已知DE ∥BC ,将△ADE 绕点A 旋转一定的角度,连接BD 、CE ,得到如图②. 结论:△ABD ∽△ACE .绕点A 旋转△ADEEDCBACBEDA模型分析BCPA∵DE ∥BC ,∴AD AEAB AC=, 如图②,∠DAE =∠BAC , ∴∠BAD =∠CAE ∴△ABD ∽△ACE .该模型难度较大,常出现在压轴题中,以直角三角形为背景出题,对学生的综合能力要求较高,考察知识点有相似、旋转、勾股定理、三角函数等,是优等生必须掌握的—种题型.模型实例如图,在Rt △ABC 中,∠BAC =60°,点P 在△ABC 内,且3PA =,PB =5,PC =2. 求ABC S V .解答:如图,作△ABQ ,使得∠QAB =∠P AC ,∠ABQ =∠ACP , 则△ABQ ∽△ACP .∴AQ AB AP AC =,即AQ APAB AC =. 又∠QAP =∠BAC =60°, ∴△AQP ∽△ACB∴∠APQ=∠ACB =90°.∴AQ =2AP =23,PQ =3AP =3. ∴△APQ 与△APC 的相似比为2AQAP=. ∴24BQ CP ==. ∴22225BP BQ PQ ==+.∴∠BQP =90°.过A 点作AM ∥PQ ,延长BQ 交AM 于点M . ∴AM =PQ ,MQ =AP .∴()()222222883AB AM QM BQ PQ AP BQ =++=++=+ 故21367373sin 6032ABC S AB AC AB +=⋅︒===+V . 练习1.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CA E +∠ CBE =90°,连接BF .(1)求证:△CAE ∽△CBF ;(2)若BE =1,AE =2,求CE 的长.解:(1)∵△ABC 和△CEF 均为等腰直角三角形.∴AC CEBC CF== ∴∠ACB =∠ECF =45°. ∴∠ACE =∠BCF . ∴△CAE ∽△CBF . ∴∠ACB =∠ECF =45°. ∴∠ACE =∠BCF . ∴△CAE ∽△CBF .(2)∵△CAE ∽△CBF , ∴∠CAE =∠CBF,AE ACBF BC=又∵AE ACBF BC=,AE =2.∴2BF=BF又∵∠CAE +∠CBE =90°. ∴∠CBF +∠CBE =90°. ∴∠EBF =90°.∴2222213EF BE BF =+=+=.∴EF ∵2226CE EF ==,∴CE =2.已知,在△ABC 中,∠BAC =60°.(1)如图①.若AB =AC ,点P 在△ABC 内,且∠APC =150°,P A =3,PC =4,把△APC 绕着点A 顺时针旋转,使点C 旋转到点B 处,得到△ADB ,连接DP . ①依题意补全图1; ②直接写出PB 的长;(2)如图②,若AB =AC ,点P 在△ABC 外,且P A =3,PB =5,PC =4,求∠APC 的度数;(3)如图③,若AB =2AC ,点P 在△ABC 内,且P APB =5,∠APC =120°,请直接写出PC 的长.EBFCA B C P 图②图①PC B A 图③PCBADQAB CP解:(1)如图,由旋转有,AD =AP ,BD =PC ,∠DAB =∠P AC , ∴∠DAP =∠BAC =60°.∴△ADP 为等边三角形.∴DP =P A =3,∠ADP =60°. ∴∠ADB =∠APC =150°, ∴∠BDP =90°,在Rt △BDP 中,BD =4,DP =3. 根据勾股定理得:PB =5.(2)把△APC 绕点A 顺时针旋转,使点C 与点B 重合,得到△ADB ,连接PD , ∴△APC ≌△AD B .∴AD =AP =3,DB =PC =4,∠P AC =∠DAB ,∠APC =∠2. ∴∠DAP =∠BAC , ∵∠BAC =60°, ∴∠DAP =60°,∴△DAP 是等边三角形. ∴PD =3,∠1=60°,∴222222345PD DB PB +=+==. ∴∠PDB =90°. ∴∠2=30°. ∴∠APC =30°.(3)作△ABQ ,使得∠QAB =∠P AC ,∠ABQ =∠ACP ,则△ABQ ∽△ACP ,∴∠AQB =∠APC =120°. ∵AB =2AC ,∴△ABQ 与△ACP 的相似比为2. ∴AQ =2AP =23,BQ =2CP ,∠QAP =∠QAB +∠BAP =∠P AC +∠BAP =∠BAC =60°. 取AQ 中点D ,连接PD , ∵AQ =2AP ,∴AD =AP .∴△APD 是等边三角形.∴DP =DQ . ∴∠DPQ =∠DQP =30°.∴∠APQ =90°. ∴PQ =3.∴∠BQP =∠AQB -∠AQP =120°-30°=90°.根据勾股定理得,224BQ PB PQ-=.∴122PC BQ==.赠送—高中数学知识点第一章空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
初中几何46种模型大全
初中几何46种模型大全初中几何46种模型大全正文:几何是初中数学的重要分支,其中涉及到的模型数量和种类非常丰富。
下面,我们将介绍初中几何中的46种模型,包括它们的定义、性质、应用等。
1. 等腰三角形模型定义:一个等腰三角形的两条边长度相等,且它们的腰角度数相等。
性质:1. 等腰三角形的两条底边长度相等;2. 等腰三角形的两条顶角角度数相等;3. 等腰三角形的顶角和等于180度-底边长度的夹角。
应用:等腰三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。
2. 直角三角形模型定义:一个直角三角形的两条直角边长度相等,且它们的斜角角度数相等。
性质:1. 直角三角形的两条直角边长度相等;2. 直角三角形的斜角角度数相等;3. 直角三角形的斜边长度等于两条直角边长度的乘积。
应用:直角三角形模型可以用来解决直角三角形相关问题,如勾股定理等。
3. 等边三角形模型定义:一个等边三角形的三条边长度相等。
性质:1. 等边三角形的三条边长度相等;2. 等边三角形的任意两边长度都大于第三边;3. 等边三角形的任意角度数都小于180度。
应用:等边三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。
4. 正方形模型定义:一个正方形的四条边长度相等。
性质:1. 正方形的四条边长度相等;2. 正方形的任意一个角都是90度;3. 正方形的任意两个角都是直角。
应用:正方形模型可以用来解决正方形相关问题,如面积、周长等。
5. 长方形模型定义:一个长方形的两条边长度相等,且它们的长度之和等于宽度。
性质:1. 长方形的两条边长度相等;2. 长方形的长、宽相等;3. 长方形的任意一个角都是直角。
应用:长方形模型可以用来解决长方形相关问题,如面积、周长等。
6. 菱形模型定义:一个菱形的四条边长度相等且互相平分,对角线互相垂直且相等。
性质:1. 菱形的四条边长度相等且互相平分;2. 菱形的对角线互相垂直且相等;3. 菱形的任意一个角都是45度。
常用几何模型及构造方法大全
常用几何模型及构造方法大全全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型注:以角的平分线为轴,使角的两边互相弥补或使边的垂线形成对称同余。
用相同数量的边或角度替换这两条边,以创建连接。
垂直度也可以作为对称全等的轴。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型描述:旋转半角的特点是相邻等线段形成的角包含一个半角,和为一半的另外两个角通过旋转拼接在一起,形成对称同余。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变换说明:模型变形主要是两个正多边形或等腰三角形之间夹角的变化,另一种是等腰直角三角形和正方形的混合。
当复杂图形找不到旋转同余时,先找到两个正多边形或等腰三角形的公共顶点,在公共顶点周围找到两组相邻的相等线段,然后组合成三角形证明同余。
中点旋转:描述:两个正方形、两个等腰直角三角形或一个正方形、一个等腰直角三角形和两个图形的顶点连线的中点,证明另外两个顶点和中点形成的图形是等腰直角三角形。
证明方法是将待证明等腰直角三角形的直角边对折,转化为待证明等腰直角三角形与已知等腰直角三角形(或正方形)的公共旋转顶点,通过证明旋转全等三角形,证明倍长大三角形是等腰直角三角形。
几何最终模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称性进行等价代换,换算成两点之间的距离和点到直线的距离。
【猿辅导几何模型】中考必会几何模型:截长补短辅助线模型
中考必考几何模型(猿辅导)最新讲义截长补短辅助线模型模型:截长补短如图①,若证明线段AB、CD、EF之间存在EF=AB+CD,可以考虑截长补短法.截长法:如图②,在EF上截取EG=AB,再证明GF=CD即可.补短法:如图③,延长AB至H点,使BH=CD,再证明AH=EF即可.模型分析截长补短的方法适用于求证线段的和差倍分关系. 截长,指在长线端中截取一段等于已知的线段;补短,指将一条短线端延长,延长部分等于已知线段. 该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程.模型实例例1:如图,已知在△ABC中,∠C=2∠B,∠1=∠2 .求证:AB=AC+CD .证法一,截长法:如图①,在AB上取一点E,使AE=AC,连接DE.∵AE=AC,∠1=∠2,AD=AD,∴△ACD≌△AED ,∴CD=DE,∠C=∠3 .∵∠C=2∠B,∴∠3=2∠B=∠4+∠B ,∴∠4=∠B ,∴DE=BE ,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD .证法二,补短法:如图②,延长AC到点E,使CE=CD,连接DE .∵CE=CD,∴∠4=∠E .∵∠3=∠4+∠E,∴∠3=2∠E .∵∠3=2∠B,∴∠E=∠B .∵∠1=∠2,AD=AD,∴△EAD≌△BAD,∴AE=AB.又∵AE=AC+CE,∴∴AB=AC+CD .例2:如图,已知OD平分∠AOB,DC⊥OA于点C,∠A=∠GBD . 求证:AO+BO=2CO .证明:在线段AO上取一点E,使CE=AC,连接DE .∵CD=CD,DC⊥OA,∴△ACD≌△ECD,∴∠A=∠CED .∵∠A=∠GBD ,∴∠CED=∠GBD ,∴1800-∠CED=1800-∠GBD ,∴∠OED=∠OBD .∵OD平分∠AOB,∴∠AOD=∠BOD .∵OD=OD,∴△OED≌△OBD ,∴OB=OE,∴AO+BO=AO+OE=OE+2CE+OE=OE+CE+OE+CE=2(CE+OE)=2CO .跟踪练习1. 如图,在△ABC中,∠BAC=600,AD是∠BAC的平分线,且AC=AB+BD .求∠ABC 的度数 .【答案】证法一:补短延长AB 到点E ,使BE =BD . 在△BDE 中, ∵BE =BD ,∴∠E =∠BDE , ∴∠ABC =∠BDE +∠E =2∠E . 又∵AC =AB +BD ,∴AC =AB +BE ,∴AC =AE .∵AD 是∠BAC 的平分线,∠BAC =600, ∴∠EAD =∠CAD =600÷2=300 . ∵AD =AD ,∴△AED ≌△ACD ,∴∠E =∠C . ∵∠ABC =2∠E ,∴∠ABC =2∠C . ∵∠BAC =600,∴∠ABC +∠C =1800-600=1200,∴32∠ABC =1200,∴∠ABC =800 . 证法二:在AC 上取一点F ,使AF =AB ,连接DF. ∵AD 是∠BAC 的平分线, ∴∠BAD =∠FAD . ∵AD =AD ,∴△BAD ≌△FAD ,∴∠B =∠AFD ,BD =FD .∵AC =AB +BD ,AC =AF +FC ∴FD =FC ,∴∠FDC =∠C . ∵∠AFD =∠FDC +∠C , ∴∠B =∠FDC +∠C =2∠C . ∵∠BAC +∠B +∠C =1800, ∴32∠ABC =1200,∴∠ABC =800 .2. 如图,在△ABC 中,∠ABC =600,AD 、CE 分别平分∠BAC 、∠ACB . 求证:AC =AE +CD .【答案】如图,在AC 边上取点F ,使AE =AF ,连接OF . ∵∠ABC =600,∴∠BAC +∠ACB =1800-∠ABC =1200 . ∵AD 、CE 分别平分∠BAC 、∠ACB , ∴∠OAC =∠OAB =2BAC Ð,∠OCA =∠OCB =2ACBÐ, ∴∠AOE =∠COD =∠OAC +∠OCA =2BAC ACB??=600,∴∠AOC=1800-∠AOE=1200 .∵AE=AF,∠EAO=∠FAO,AO=AO,∴△AOE≌△AOF(SAS),∴∠AOF=∠AOE=600,∴∠COF=∠AOC-∠AOF=600,∴∠COF=∠COD .∵CO=CO,CE平分∠ACB,∴△COD≌△COF(ASA),∴CD=CF .∵AC=AF+CF,∴AC=AE+CD,3. 如图,∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB .求证:AB+CD=BC .【答案】证法一:截长如图①,在BC上取一点F,使BF=AB,连接EF .∵∠1=∠ABE,BE=BE,∴△ABE≌△FBE,∴∠3=∠4 .∵∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB,∴∠1+∠2=12∠ABC+12∠DCB=12×1800=900,∴∠BEC=900,∴∠4+∠5=900,∠3+∠6=900 .∵∠3=∠4 ,∴∠5=∠6 .∵CE=CE,∠2=∠DCE ,∴△CEF≌△CED,∴CF=CD .∵BC=BF+CF,AB=BF,∴AB+CD=BC证法二:补短如图②,延长BA到点F,使BF=BC,连接EF .∵∠1=∠ABE,BE=BE,∴△BEF≌△BEC,∴EF=EC,∠BEC=∠BEF .∵∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB,∴∠1+∠2=12∠ABC+12∠DCB=12×1800=900,∴∠BEC=900,∴∠BEF=∠BEC=900,∴∠BEF+∠BEC=1800,∴C、E、F三点共线 .∵AB∥CD,∴∠F=∠FCD .∵EF=EC,∠FEA=∠DEC,∴△AEF≌△DEC,∴AF=CD .∵BF=AB+AF,∴BC=AB+CD .4.如图,在△ABC中,∠ABC=900,AD平分∠BAC交BC于D,∠C=300,BE⊥AD于点E .求证:AC-AB=2BE .【答案】延长BE交AC于点M .∵BE⊥AD,∴∠AEB=∠AEM=900.∵∠3=900-∠1,∠4=900-∠2,∠1=∠2,∴∠3=∠4,∴AB=AM .∵BE⊥AE,∴BM=2BE .∵∠ABC=900,∠C=300,∴∠BAC=600.∵AB=AM,∴∠3=∠4=600,∴∠5=900-∠3=300,∴∠5=∠C,∴CM=BM,∴AC-AB=CM=BM=2BE .5. 如图,Rt△ACB中,A=BC,AD平分∠BAC交BC于点D,CE⊥AD交AD于点F,交AB于点E .求证:AD=2DF+CE .【答案】在AD上取一点G,使AG=CE,连接CG .∵CE⊥AD,∴∠AFC=900,∠1+∠ACF=900.∵∠2+∠ACF=900,∴∠1=∠2 .∵AC=BC,AG=CE,∴△ACG≌△CBE,∴∠3=∠B=450,∴∠2+∠4=900-∠3=450.∵∠2=∠1=12∠BAC=22.50,∴∠4=450-∠2=22.50,∴∠4=∠2=22.50.又∵CF=CF,DG⊥CF,∴△CDF≌△CGF,∴DF=GF .∵AD=AG+DG,∴AD=CE+2DF .6. 如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠E=1800.求证:AD平分∠CDE.【答案】如图,延长CB到点F,使BF=DE,连接AF、AC .∵∠1+∠2=1800,∠E+∠1=1800,∴∠2=∠E .∵AB=AE,∠2=∠E,BF=DE,∴△ABF≌△AED,∴∠F=∠4,AF=AD .∵BC+DE=CD,∴BC+BF=CD,即FC=CD .又∵AC=AC,∴△ACF≌△ACD,∴∠F=∠3 .∵∠F=∠4,∴∠3=∠4,∴AD平分∠CDE .。
【猿辅导几何模型】中考必会几何模型:三垂直全等模型
中考必考几何模型(猿辅导)最新讲义三垂直全等模型模型三垂直全等模型如图:∠D=∠BCA=∠E=90°,BC=AC.结论:Rt△BCD≌Rt△CAE.模型分析说到三垂直模型,不得不说一下弦图,弦图的运用在初中直角三角形中占有举足轻重的地位,很多利用垂直求角,勾股定理求边长,相似求边长都会用到从弦图支离出来的一部分几何图形去求解.图①和图②就是我们经常会见到的两种弦图.图①图②三垂直图形变形如下图③、图④,这也是由弦图演变而来的.图③图④DEABC例1如图,AB⊥BC,CD⊥BC,AE⊥DE,AE=DE,求证:AB+CD=BC.D证明:∵AE⊥DE,AB⊥BC,DC⊥BC,∴∠AED=∠B=∠C=90°.∴∠A+∠AEB=∠AEB+∠CED=90°.∴∠BAE=∠CED.在△ABE和△ECD中,AB C A CED AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ECD .∴AB =EC ,BE =CD .∴AB +CD =EC +BE =BC.例2 如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE 于D ,AD =2.5cm ,BE =0.8cm ,则DE 的长为多少? E DAB解答:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°.∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CEB ≌△ADC .∴BE =DC =0.8cm ,CE =AD =2.5cm .∴DE =CE -CD =2.5-0.8=1.7cm .例3 如图,在平面直角坐标系中,等腰Rt △ABC 有两个顶点在坐标轴上,求第三个顶点的坐标.xy图①BA (0,3)C (-2,0)O解答:(1)如图③,过点B 作BD ⊥x 轴于点D .∴∠BCD +∠DBC =90°.由等腰Rt △ABC 可知,BC =AC ,∠ACB =90°,∴∠BCD +∠ACO =90°.∴∠DBC =∠ACO .在△BCD 和△CAO 中,BDC AOC DBC ACO BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCD ≌△CAO .∴CD =OA ,BD =OC .∵OA =3,OC =2.∴CD =3,BD =2.∴OD =5.∴B (-5,2).(2)如图④,过点A 作AD ⊥y 轴于点D .在△ACD 和△CBO 中,ADC COB DAC OCB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBO .∴CD =OB ,AD =CO .∵B (-1,0),C (0,3)∴OB =1,OC =3.∴AD =3,OD =2.∴OD =5.∴A (3,2). 跟踪练习1.如图,正方形ABCD ,BE =CF .求证:(1)AE =BF ;(2)AE ⊥BF .F证明:(1)∵四边形ABCD 是正方形,∴AB =BD ,∠ABC =∠BCD =90°.在△ABE 和△BCF 中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCF .∴AE =BF .(2)∵△ABE ≌△BCF .∴∠BAE =∠CBF .∵∠ABE =90°,∴∠BAE +∠AEB =90°.∴∠CBF +∠AEB =90°.∴∠BGE =90°,∴AE ⊥BF .2.直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别是5和11,则b 的面积是_____.解答:∵a 、b 、c 都是正方形,∴AC =CD ,∠ACD =90°.∵∠ACB +∠DCE =∠ACB +∠BAC =90°,∴∠BAC =∠DCE .在△ABC 和△CBE 中,ABC CED BAC DCE AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△CDE .∴AB =CE ,BC =DE .在Rt △ABC 中,2AC =2AB +2BC =2AB +2DE即b S =a S +c S =5+11=16.3.已知,△ABC 中,∠BAC =90°,AB =AC ,点P 为BC 上一动点(BP <CP ),分别过B 、C 作BE ⊥AP 于E 、CF ⊥AP 于F .(1)求证:EF =CF -BE ;(2)若P 为BC 延长线上一点,其它条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.P解答:∵BE ⊥AP ,CF ⊥AP ,∴∠AEB =∠AFC =90°.∴∠F AC +∠ACF =90°,∵∠BAC =90°,∴∠BAE +∠F AC =90°,∴∠BAE =∠ACF .在△ABE 和△CAF 中,AEB AFC BAE ACF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE -AF ,∴EF =CF -BE .(2)如图,EF =BE +CF .理由:同(1)易证△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE +AF ,∴EF = BE + CF .4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,设∠BCD =α,以D 为旋转中心,将 腰DC 绕点D 逆时针旋转90°至DE .(1)当α=45°时,求△EAD 的面积;(2)当α=45°时,求△EAD的面积;(3)当0°<α<90°,猜想△EAD的面积与α大小有无关系?若有关,写出△EAD的面积S与α的关系式;若无关,请证明结论.EADB解答:(1)1;(2)1;(3)过点D作DG⊥BC于点G,过点E作EF⊥AD交AD延长线于点F.∵AD∥BC,DG⊥BC,∴∠GDF=90°.又∵∠EDC=90°,∴∠1=∠2.在△CGD和△EFD中,12DGE DFECD DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCG≌△DEF∴EF=CG,∵AD∥BC,AB⊥BC,AD=2,BC=3,∴BG=AD=2,∴CG=1.∴EADSV=12AD·EF=1.∴△EAD的面积与α大小无关.5.向△ABC的外侧作正方形ABDE、正方形ACFG,过A作AH⊥BC于H,AH的反向延长线与EG交于点P. 求证:BC=2AP.PFD E AG解答:过点G 作GM ⊥AP 于点M ,过点E 作EN ⊥AP 交AP 延长线于点N . ∵四边形ACFG 是正方形,∴AC =AG ,∠CAG =90°.∴∠CAH +∠GAM =90°.又∵AH ⊥BC ,∴∠CAH +∠ACH =90°.∴∠ACH =∠GAM .在△ACH 和△GAM 中,AHC GMAACH GAM AC GA∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ACH ≌△GAM∴CH =AM ,AH =GM .同理可证△ABH ≌△EAN∴BH =AN ,AH =EN .∴EN =GM .在△EPN 和△GPM 中,EPN GPMENP GMP EN GM∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△EPN ≌△GPM .∴NP =MP ,∴BC =BH +CH=AN +AM=AP +PN +AP -PM=2AP .。
初中数学54个几何模型
初中数学54个几何模型初中数学中,几何模型是非常重要的内容之一。
几何模型是通过对几何图形的研究和探索,从而得到的一种抽象的数学模型。
根据初中数学课程的要求,我们需要了解和掌握的几何模型共有54个。
这些几何模型包括了点、线、面等基本几何元素,以及由它们组成的各种复杂的几何图形。
我们来看一些基本的几何模型。
第一个是点,它是几何学中最基本的概念之一。
点没有大小和形状,只有位置。
第二个是线段,它是由两个端点和它们之间的所有点组成的。
线段是几何学中最简单的一维图形。
第三个是射线,它是由一个起点和一个方向组成的。
射线是一维的,但没有终点。
第四个是直线,它是由无数个点组成的,它没有起点和终点。
接下来,我们来看一些由基本几何元素组成的几何模型。
首先是三角形,它是由三条线段组成的。
三角形有很多种分类,比如按照边长可以分为等边三角形、等腰三角形和普通三角形;按照角度可以分为锐角三角形、直角三角形和钝角三角形。
第二个是四边形,它是由四条线段组成的。
四边形有很多种分类,比如矩形、正方形、平行四边形等。
第三个是多边形,它是由多条线段组成的。
多边形有很多种分类,比如五边形、六边形等。
除了以上提到的几何模型,还有一些特殊的几何模型。
比如圆,它是由一个圆心和一条半径组成的。
圆是一个非常重要的几何模型,它有很多特性和性质,比如圆周率π。
另一个特殊的几何模型是球,它是由一个球心和一条半径组成的。
球是三维的,它有很多特性和性质,比如球体积和表面积的计算公式。
除了以上提到的几何模型,还有一些与三角形有关的几何模型。
比如正弦函数、余弦函数和正切函数。
这些函数是由三角形的边长比值定义的。
它们在数学和物理中有着广泛的应用。
总的来说,初中数学中的几何模型有很多,它们是数学中非常重要的一部分。
通过对这些几何模型的学习和探索,我们可以更好地理解和应用数学知识。
同时,几何模型也是培养我们的空间想象力和创造力的重要工具。
希望同学们能够认真学习和掌握这些几何模型,提升自己的数学水平。
【猿辅导几何模型】中考必会几何模型:中点四大模型
中考必考几何模型(猿辅导)最新讲义中点四大模型模型1 倍长中线或类中线(与中点有关的线段)构造全等三角形②图①图构造全等倍长类中线倍长中线DCBAFF ACABCDCA模型分析如图①,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS ). 如图②,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS )当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移.模型实例如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF =EF ,求证:AC =BE .FECA1.如图,在△ABC 中,AB =12,AC =20,求BC 边上中线AD 的范围.BA解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC与△EDB中,⎪⎩⎪⎨⎧=∠=∠=DEADBDEADCCDBD,∴△ADC≌△EDB(SAS),∴EB=AC=20,根据三角形的三边关系定理:20-12<AE<20+12,∴4<AD<16,故AD的取值范围为4<AD<16.2.如图,在△ABC中,D是BC的中点,DM⊥DN,如果BM2+CN2=DM2+DN2.求证:AD2=41(AB2+AC2).NMD CA证明:如图,过点B作AC的平行线交ND的延长线于E,连ME.∵BD =DC , ∴ED =DN .在△BED 与△CND 中,∵⎪⎩⎪⎨⎧=∠=∠=DN ED CDN BDE DC BD ∴△BED ≌△CND (SAS ). ∴BE =NC . ∵∠MDN =90°,∴MD 为EN 的中垂线. ∴EM =MN .∴BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2, ∴△BEM 为直角三角形,∠MBE =90°. ∴∠ABC +∠ACB =∠ABC +∠EBC =90°. ∴∠BAC =90°. ∴AD 2=(21BC )2=41(AB 2+AC 2).模型2 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.ABCDDCBA模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到: “边等、角等、三线合一”. 模型实例如图,在△ABC 中,AB =AC =5,BC =6,M 为BC 的中点,MN ⊥AC 于点N ,求MN 的长度.NM CB A解答: 连接AM .∵AB =AC =5,BC =6,点M 为BC 中点, ∴AM ⊥BC ,BM =CM =21BC =3. ∵AB =5, ∴AM =4352222=-=-BM AB .∵MN ⊥AC ,∴S △ANC =21MC ·AM =21AC ·MN . 即:21×3×4=21×5×MN .∴MN =512跟踪练习1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AE ⊥DE ,AF ⊥DF ,且AE =AF ,求证:∠EDB =∠FDC .F证明:连结AD ,∵AB =AC ,D 是BC 的中点, ∴AD ⊥BC ,∠ADB =∠ADC =90° 在Rt △AED 与Rt △AFD 中,⎩⎨⎧==ADAD AFAB , ∴Rt △AED ≌Rt △AFD .(HL ) ∴∠ADE =∠ADF , ∵∠ADB +∠ADC =90°, ∴∠EDB =∠FDC .2.已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当∠EDF 绕D 点旋转到DF ⊥AC 于E 时(如图①),求证:S △DEF +S △CEF =21S △ABC ; (2)当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、S △CEF 、S △ABC 又有怎样的数量关系?请写出你的猜想,不需要证明.③图②图①图ABDEFACDDCA解:(1)连接CD ;如图2所示: ∵AC =BC ,∠ACB =90°,D 为AB 中点, ∴∠B =45°,∠DCE =21∠ACB =45°,CD ⊥AB ,CD =21AB =BD , ∴∠DCE =∠B ,∠CDB =90°,∵∠EDF =90°,∴∠1=∠2,在△CDE 和△BDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠B DCB BD CD 21, ∴△CDE ≌△BDF (ASA ),∴S △DEF +S △CEF =S △ADE +S △BDF =21S △ABC ; (2)不成立;S △DEF −S △C EF =21S △ABC ;理由如下:连接CD ,如图3所示:同(1)得:△DEC ≌△DBF ,∠DCE =∠DBF =135° ∴S △DEF =S 五边形DBFEC , =S △CFE +S △DBC ,=S △CFE +21S △ABC , ∴S △DEF -S △CFE =21S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF -S △CEF =21S △ABC . 21ABCDE模型3 已知三角形一边的中点,可考虑中位线定理构造中位线取另一边中点EDDA模型分析在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理:DE ∥BC ,且DE =21BC 来解题.中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型实例如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M ,N .求证:∠BME =∠CNE .NM FEDCBA解答如图,连接BD ,取BD 的中点H ,连接HE 、HF . ∵E 、F 分别是BC 、AD 的中点, ∴FH =21AB ,FH ∥AB ,HE =21DC ,HE ∥NC . 又∵AB =CD ,∴HE =HF .∴∠HFE =∠HEF . ∵FH ∥MB ,HE ∥NC ,∴∠BME =∠HFE ,∠CNE =∠FEH . ∴∠BME =∠CNE .练习:1.(1)如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AD ⊥BD ,AE ⊥CE ,垂足分别为D ,E ,连接DE ,求证:DE ∥BC ,DE =12(AB +BC +AC );(2)如图2,BD ,CE 分别是△ABC 的内角平分线,其他条件不变,上述结论是否成立? (3)如图3,BD 是△ABC 的内角平分线,CE 是△ABC 的外角平分线,其他条件不变,DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中一种情况进行证明.E D CBA图1G FEDCBA图2FED CBA图31.解答(1)如图①,分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌ △BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12HK .又∵HK =BK +BC +CH =AB +BC +AC . ∴DE =12(AB +AC +BC ).(2)猜想结果:图②结论为DE =12(AB +AC -BC ) 证明:分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB同理可证,AE =HE ,AC =HC . ∴DE =12HK . 又∵HK =BK +CH -BC =AB +AC -BC∴DE =12(AB +AC -BC )GABCDEKHF 图2(3)图③的结论为DE =12(BC +AC -AB ) 证明:分别延长AE ,AD 交BC 或延长线于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12KH . 又∵HK =BH -BK =BC +CH -BK =BC +AC -AB∴DE =12(BC +AC -AB ).ABCD EKHF图32.问题一:如图①,在四边形ABCD 中,AB 与CD 相交于点O ,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF ,分别交DC ,AB 于点M ,N ,判断△OMN 的形状,请直接写出结论.问题二:如图②,在△ABC 中,AC >AB ,D 点在AC 上,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC =60°,连接GD ,判断△AGD 的形状并证明.图1NMO F E DC BAE图2G ABCDF2.证明(1)等腰三角形(提示:取AC 中点H ,连接FH ,EH ,如图①)(2)△AGD 是直角三角形如图②,连接BD ,取BD 的中点H ,连接HF ,HE . ∵F 是AD 的中点, ∴HF ∥AB ,HF =12AB . ∴∠1=∠3.同理,HE ∥CD ,HE =12CD , ∴∠2=∠EFC , ∴AB =CD , ∴HF =HE . ∴∠1=∠2.∵∠EFC =60°,∴∠3=∠EFC =∠AFG =60°. ∴△AGF 是等边三角形. ∴AF =FG . ∴GF =FD .∴∠FGD =∠FDG =30°.∴∠AGD =90°,即△AGD 是直角三角形.图2321G A BCDF H模型4 已知直角三角形斜边中点,可以考虑构造斜边中线DCBA模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12AB ,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用. 模型实例如图,在△ABC 中,BE ,CF 分别为AC ,AB 上的高,D 为BC 的中点,DM ⊥ EF 于点M ,求证:FM =EM .M FEDCBA证明连接DE ,DF .BE ,CF 分别为边AC ,AB 上的高,D 为BC 的中点,DF =12BC ,DE =12BC .DF =DE ,即△DEF 是等腰三角形. DM ⊥EF ,点M 是EF 的中点,即FM =EM .ABCDEFM练习:1.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB =10,求DM 的长度.1.解答取AB 中点N ,连接DN ,MN .在Rt △ADB 中,N 是斜边AB 上的中点, ∴DN =12AB =BN =5.∴∠NDB =∠B .在△ABC 中,M ,N 分别是BC ,AB 的中点, ∴MN ∥AC∴∠NMB =∠C ,又∵∠NDB 是△NDM 的外角, ∴∠NDB =∠NMD +∠DNM .即∠B =∠NMD +∠DNM =∠C +∠DNM . 又∵∠B =2∠C ,∴∠DNM =∠C =∠NMD . ∴DM =DN . ∴DM =5.N MD CBA2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,M 为DE 的中点,连接MB ,MC ,求证:MB =MC .MEDCBA2.证明延长BM 交CE 于G ,∵△ABD 和△ACE 都是直角三角形, ∴CE ∥BD .∴∠BDM =∠GEM .又∵M 是DE 中点,即DM =EM , 且∠BMD =∠GME , ∴△BMD ≌△GME . ∴BM =MG .∴M 是BG 的中点,∴在Rt △CBG 中,BM =CM .3.问题1:如图①,三角形ABC 中,点D 是AB 边的中点,AE ⊥ BC ,BF ⊥AC ,垂足分别为点E ,F .AE 、BF 交于点M ,连接DE ,DF ,若DE =kDF ,则k 的值为 . 问题2:如图②,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥ AC ,垂足分别为点E ,F ,连接DE ,DF ,求证:DE =DF .问题3:如图③,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他 条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.图1MF E DCBA图2ABCDFM图3ABCDF M3.解答∵(1)AE ⊥BC ,BF ⊥AC ,∴△AEB 和△AFB 都是直角三角形, ∵D 是AB 的中点, ∴DE =12AB ,DF =12AB .∴DE =DF . ∵DE =KDF , ∴k =1. (2)∵CB =CA , ∴∠CBA =∠CAB . ∵∠MAC =∠MBC ,∴∠CBA -∠MBC =∠CAB -∠MAC ,即∠ABM =∠BAM . ∴AM =BM .∵ME ⊥BC ,MF ⊥AC , ∴∠MEB =∠MF A =90°. 又∵∠MBE =∠MAF ,∴△MEB ≌△MF A (AAS ) ∴BE =AF .∵D 是AB 的中点,即BD =AD , 又∵∠DBE =∠DAF ,∴△DBE ≌△DAF (SAS ) ∴DE =DF .图1M F E DCB A(3)DE=DF.如图,作AM的中点G,BM的中点H,连DG,FG,DH,EH. ∵点D是边AB的中点,∴DG∥BM,DG=12 BM.同理可得:DH∥AM,DH=12AM.∵ME⊥BC于E,H是BM的中点.∴在Rt△BEM中,HE=12BM=BH.∴∠HBE=∠HEB.∴∠MHE=2∠HBE.又∵DG=12BM,HE=12BM,∴DG=HE.同理可得:DH=FG. ∠MGF=2∠MAC.∵DG∥BM,DH∥GM,∴四边形DHMG是平行四边形.∴∠DGM=∠DHM.∵∠MGF=2∠MAC,∠MHE=2∠MBC,∠MBC=∠MAC,∴∠MGF=∠MHE.∴∠DGM+∠MGF=∠DHM+∠MHE.∴∠DGF=∠DHE.在△DHE与△FGD中DG HEDGF DHEDH FG=⎧⎪∠=∠⎨⎪=⎩∴△DHE≌△FGD(SAS)∴DE=DF.图2AB CD FM高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q =②02b x a->,则()M f p = xxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f (p) f (q)()2bf a-g0x x>O-=f(p) f(q)()2b f a-0x gx<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x gx<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-gx。
七年级几何模型知识点梳理
七年级几何模型知识点梳理在初中数学学习中,几何模型是一个非常重要的部分。
几何是指研究空间中各种图形的性质及它们之间的关系的数学学科。
几何模型也就是在数学上对各种图形的抽象理解和表示。
为了帮助七年级的学生更好地学习几何模型,我们在这里将几何模型的知识点进行了梳理和总结。
一、平面图形1. 三角形三角形是最基本的平面图形之一,由三个线段组成。
三角形根据边长和角度的大小可以分为等边三角形、等腰三角形和一般三角形。
学生需要掌握三角形的基本性质,如内角和为180度、直角三角形斜边平方等于两直角边平方和等。
2. 矩形矩形是由四条直线组成的平面图形,其中,对于任意一个矩形,它有两组平行的边,且每组对应的边相等。
学生需要熟悉矩形的特性,如对角线相等,以及各边的性质。
3. 正方形正方形是一种矩形,它的四条边相等,四个角都是直角。
正方形具有对称性,并且有许多相等的特点,如对角线相等、面积等于边长的平方等。
4. 长方形长方形是一种矩形,其中它的两组对边都是平行的,但是它的相邻边不相等。
学生需要学会如何计算长方形的周长和面积,如周长等于两倍长和两倍宽、面积等于长乘以宽等。
二、立体图形1. 立方体立方体是一种由六个正方形组成的平面图形,它的所有边长都相等,所有面都是正方形。
立方体具有许多特点,如有六个平面、十二条边、八个顶点,以及可以计算出它的面积和体积等。
2. 圆锥圆锥是由一个圆锥面和一个顶点组成的立体图形。
学生需要学会计算圆锥的半径、高度、直截线、母线、侧面积和体积等。
3. 圆柱圆柱是由底面和上面上下平行的底面的侧面组合而成的立体图形。
学生需要学会计算圆柱的底面积、侧面积、总面积和体积等。
4. 球体球体是由曲面上每一点到固定点的距离都相等的点的集合。
它具有许多特点,如表面积等于4πr²、体积等于(4/3)πr³等。
综上所述,七年级数学中几何模型的知识点非常丰富,需要学生们认真掌握。
从平面图形的三角形、矩形、正方形、长方形,到立体图形的立方体、圆锥、圆柱和球体,每一个几何模型都有它独特的特点和应用。
初中几何46种模型大全
初中几何46种模型大全篇一:初中几何46种模型大全引言几何是初中数学的重要分支,其知识点涵盖了平面几何、立体几何、向量等多个方面。
在学习几何时,掌握各种几何模型是非常重要的,这些模型可以帮助我们理解和解决几何问题,提高解题能力。
本文将介绍初中几何中的46种常见的模型,包括它们的名称、定义、性质和应用。
正文1. 正方形模型正方形模型是几何中最基本的模型之一,它是一种边长相等的矩形。
正方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
正方形模型的性质有:- 正方形的四条边相等;- 正方形的对角线相等;- 正方形的面积等于其边长的平方。
2. 长方形模型长方形模型是有两个相等的长和两个不相等的宽的英雄。
长方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和小于斜边的平方。
长方形模型的性质有:- 长方形的两条对角线相等;- 长方形的宽比长大,长比宽大;- 长方形的长和宽相等。
3. 平行线模型平行线模型是相互平行的直线。
平行线模型的定义如下:- 两直线平行,当且仅当它们的对应角相等且且它们的方向相同。
平行线模型的性质有:- 平行线之间有且仅有一个交点;- 平行线上的点的横坐标相等;- 平行线的方向相同。
4. 菱形模型菱形模型是具有四个相等的直角边的矩形。
菱形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方,且任意两条边的长度小于第三条边的长度。
菱形模型的性质有:- 菱形的四条边相等;- 菱形的对角线相等;- 菱形的面积等于其四条边长度的平方和。
5. 等腰三角形模型等腰三角形模型是有一个相等的腰部的两个三角形。
等腰三角形模型的定义如下:- 在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
等腰三角形模型的性质有:- 等腰三角形的两条直角边相等;- 等腰三角形的底角相等;- 等腰三角形的顶角平分线相等。
6. 等边三角形模型等边三角形模型是具有三个相等的边长的三角形。
(word完整版)初中数学——最全:初中数学几何模型
最全:初中数学几何模型几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形;遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等;遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
初中数学几何模型汇总
初中数学几何模型汇总前言几何是数学中的一个重要分支,它研究空间、形状和大小等数学对象的性质和关系。
初中阶段是数学知识的基础阶段,对于几何的学习也是初步了解和探索的阶段。
在初中数学教学中,几何模型是培养学生几何直观理解能力的重要工具。
本文将对初中数学中常用的几何模型进行汇总,以帮助学生更好地掌握几何知识。
平面几何模型直线、线段和射线直线是平面上的一条无限延伸的轨迹,没有起点和终点。
线段是直线上的一部分,有明确的起点和终点。
射线是直线上一个起点和一个方向。
角角是由两条射线共享一个起点形成的形状,可以用度数、弧度或两者来度量。
常见的角有锐角、直角、钝角和平角。
三角形三角形是由三条线段连接而成的闭合图形,其中每条线段称为三角形的边。
三角形的分类可以根据边长和角度来区分,如等边三角形、等腰三角形、直角三角形等。
四边形四边形是由四条线段连接而成的闭合图形,其中相邻两边之间的夹角都是直角的四边形称为矩形,具有相等边和相等夹角的矩形称为正方形。
圆圆是平面上一组离中心距离相等的点的集合。
圆由中心和半径确定,半径是中心到圆上任一点的距离。
空间几何模型空间直线和射线空间直线是三维空间中的一条无限延伸的轨迹,没有起点和终点。
空间射线是一条起点确定、方向唯一的直线。
空间角空间角是由两条射线共享一个起点构成的形状,可以用度数、弧度或两者来度量。
空间几何体空间几何体是由点、线、面组成的立体物体。
常见的空间几何体包括球体、长方体、正方体等。
数学建模中的几何模型几何模型在数学建模中也起着重要的作用。
通过建立几何模型,可以更好地描述和解决实际问题。
几何配置问题几何配置问题是指在几何模型中确定各个点、线、面的位置和相互关系的问题。
通过建立合适的几何模型,可以对各种几何配置问题进行分析和求解。
几何优化问题几何优化问题是指在满足一定几何约束条件的前提下,通过优化方法确定最优的几何配置。
几何优化问题在工程设计、产品设计等领域有着广泛的应用。
七年级几何模型总结(一)
七年级几何模型总结(一)七年级几何模型总结前言在七年级几何学课程中,学生通过学习几何模型的概念和性质,能够更好地理解空间形状以及解决与几何相关的问题。
本文将对七年级几何模型的学习进行总结,并提供一些相关的学习建议和技巧。
正文1. 什么是几何模型•几何模型是一种用来表示和研究空间形状的工具。
•几何模型可以由点、线、面等基本元素组成,并具有特定的性质和特征。
2. 常见的几何模型•点:点是几何模型中最基本的元素,没有大小和形状。
•线段:线段由两个端点确定,具有长度和方向。
•角:角是由两条射线共享一个端点而形成的图形。
•三角形:三角形是由三条线段组成的多边形,具有三个内角和三个外角。
•四边形:四边形是由四条线段组成的多边形,包括矩形、正方形、菱形等特殊类型。
3. 几何模型的性质•直线的性质:直线的两个点确定一条直线,直线没有弯曲和拐角。
•角的性质:角可以用度数或弧度来表示,包括锐角、直角、钝角等不同类型。
•三角形的性质:三角形的内角和为180度,有等边三角形、等腰三角形等特殊类型。
•四边形的性质:四边形的内角和为360度,有矩形的特殊性质。
•几何模型的分类:常见的几何模型可以根据边数、角数、对称性等进行分类。
4. 学习几何模型的建议和技巧•理论结合实践:几何模型是实际的空间形状的抽象,学生可以通过绘制、构建几何模型来加深理解。
•探索发现:鼓励学生在实践中发现几何模型的性质和规律,培养他们的观察和推理能力。
•利用图形工具:学生可以使用尺规作图工具或计算机软件来帮助构建和研究几何模型。
•多维度思考:学生应该从不同的角度(平面、立体)思考几何模型,形成全面的认识。
结尾通过七年级几何模型的学习,学生能够拓展对空间形状的认识,提高观察和推理能力。
在学习过程中,理论与实践相结合,并运用探索和发现的方法,将有助于学生更好地掌握几何模型的概念和性质。
希望本文提供的学习建议和技巧对学生在几何学习中有所帮助。
学习几何模型的建议和技巧•多角度观察:学生可以在不同的角度观察几何模型,比如俯视、正视和侧视,以便更好地理解其空间形状和特征。
初中数学54个几何模型
初中数学54个几何模型初中数学中的几何模型是指在几何学中用来描述和表示几何概念的模型。
下面将介绍54个常见的几何模型。
1. 点:几何中最基本的概念,没有大小和形状。
2. 直线:由无数个点连成的路径,无限延伸,没有宽度。
3. 射线:由一个起点出发,无限延伸的路径。
4. 线段:两个点之间的路径,有特定的长度。
5. 面:由无数个点连成的平面,有长度和宽度,没有厚度。
6. 圆:由同一平面上距离圆心相等的点组成的闭合曲线。
7. 椭圆:平面上到两个焦点的距离之和恒定的点的轨迹。
8. 椭圆弧:椭圆上的一段曲线。
9. 双曲线:平面上到两个焦点的距离之差恒定的点的轨迹。
10. 双曲线弧:双曲线上的一段曲线。
11. 抛物线:平面上到一个焦点的距离等于到直线的距离的点的轨迹。
12. 抛物线弧:抛物线上的一段曲线。
13. 球:由空间中到一个固定点的距离恒定的点组成的集合。
14. 圆锥:由平面和母线(与平面交于一点的直线)构成的几何体。
15. 圆柱:由平面和平行于平面的两个母线构成的几何体。
16. 圆台:由平面和平行于平面的两个母线及它们之间的曲面构成的几何体。
17. 球台:由平面和球的一部分构成的几何体。
18. 球梯:由平面和球的一部分及它们之间的曲面构成的几何体。
19. 直角三角形:有一个内角为90度的三角形。
20. 等腰三角形:有两边相等的三角形。
21. 等边三角形:三边长度均相等的三角形。
22. 直角梯形:有一个内角为90度的梯形。
23. 等腰梯形:有两边平行且相等的梯形。
24. 矩形:四个内角均为90度的四边形。
25. 正方形:四边长度均相等且内角均为90度的四边形。
26. 平行四边形:有两组对边平行的四边形。
27. 菱形:有四个边相等的四边形。
28. 六边形:有六个边的多边形。
29. 正六边形:六边形的六个内角均为120度。
30. 五边形:有五个边的多边形。
31. 正五边形:五边形的五个内角均为108度。
32. 正多边形:所有边和内角均相等的多边形。
【收藏】初中数学经典几何模型大全
【收藏】初中数学经典几何模型大全
中点模型
【模型1】倍长
1、倍长中线;
2、倍长类中线;
3、中点遇平行延长相交
【模型2】遇多个中点,构造中位线
1、直接连接中点;
2、连对角线取中点再相连
【例】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF 的中点,连接GC、GE.
(1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长;(2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的数量和位置关系,写出你的猜想;并给予证明;(3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.
角平分线模型
【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形
【例】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为 .
手拉手模型
【例】如图,正方形ABCD的边长为6,点O是对角线AC、BD 的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为 .
邻边相等的对角互补模型
【例】如图,矩形ABCD中,AB=6,AD=5,G为CD中点,DE=DG,FG⊥BE于F,则DF 为 .
半角模型
一线三角模型
弦图模型
最短路径模型
【两点之间线段最短】1、将军饮马
2、费马点【垂线段最短】
【两边之差小于第三边】。