三角形内角和(公开课).

合集下载

【最新】人教版四年级数学下册《三角形的内角和》优质公开课课件.ppt

【最新】人教版四年级数学下册《三角形的内角和》优质公开课课件.ppt

角三角形的内角和。 (×)
求出三角形各个角的度数。
180°÷ 3 = 60° 答:这个三角形 三个内角的度数 都是60°。
(180°-96°)÷2 = 42°
答:这个三角形另外两个角的
度数都是42°。
90°- 40°= 50°
答:这个三角形另 外一个锐角的度数 是50°。
这节课 你有什么收获?
1、书本第88、89页的第 10、12、14题。
2、选做:书本第89页的第 16*题
▪ 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/162020/12/16Wednesday, December 16, 2020
▪ 10、人的志向通常和他们的能力成正比例。2020/12/162020/12/162020/12/1612/16/2020 12:26:53 PM ▪ 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/162020/12/162020/12/16Dec-2016-Dec-20 ▪ 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/162020/12/162020/12/16Wednesday, December 16, 2020 ▪ 13、志不立,天下无可成之事。2020/12/162020/12/162020/12/162020/12/1612/16/2020
。2020年12月16日星期三2020/12/162020/12/162020/12/16
▪ 15、会当凌绝顶,一览众山小。2020年12月2020/12/162020/12/162020/12/1612/16/2020
▪ 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/12/162020/12/16December 16, 2020

三角形内角和(全国一等奖)-课件

三角形内角和(全国一等奖)-课件

三角形的内角和
3 平角:1800
平角:1800
平角:1800
数学家帕斯卡
• 早在300多年前就有一个科学家,他在12岁时就验证了任何三角形 的内角和都是180°他就是法国数学家、物理学家帕斯卡,在今后学 习的知识中,也有很多是帕斯卡发现和验证的。
看图,求三角形中未知角的度数。
180o-75o-65o=40o 180o-(75o+65o)=40o
么最省事的办法是带( ③ )去。为什么?



根据所学的知识,你算出下列图形 的内角和吗?
盘点收获
180o-125o-25o=30o 180o-(125o+25o)=30o
直角三角形中两个锐角的和是多少度 ?
一个直角三角形中的一个锐角为40度,则
另一个角为( 50)度。
我想画一个有两个直 角的三角形,谁能帮
帮我呀?
一个三角形中至少有两个锐角 。
35 35
3 1
2.某同学把一块三角形的玻璃打碎成三片,现在 他要到玻璃店去配一块形状完全一样的玻璃,那:组长快速分配给每人一个三角 形,组员选择你喜欢的方法先独立进行研究 ,然后将研究的方法和结果在组内交流,组 长做好记录,完成记录表。
2.研究时要做到:一要认真,二要仔细,三 要速度。
3.完成较早的同学可以尝试用不同方法再次 验证,小组合作结束时每人至少用一种方法 完成一个三角形内角和的探究。

《三角形内角和》课件

《三角形内角和》课件

《三角形内角和》课件一、教学目标1、知识与技能目标学生理解并掌握三角形内角和定理,能够运用定理解决相关的几何计算和证明问题。

2、过程与方法目标通过测量、剪拼、推理等活动,培养学生的动手操作能力、逻辑推理能力和数学思维能力。

3、情感态度与价值观目标让学生在探究过程中体验成功的喜悦,激发学生学习数学的兴趣,增强学生的自信心和团队合作精神。

二、教学重难点1、教学重点三角形内角和定理的证明及应用。

2、教学难点三角形内角和定理的证明思路的形成。

三、教学方法讲授法、讨论法、实验法四、教学过程1、导入新课通过展示一个三角形的图片,提问学生:“大家知道三角形的三个内角之和是多少度吗?”引发学生的思考和讨论,从而引出本节课的主题——三角形内角和。

2、探究活动(1)测量法让学生分组,用量角器测量三角形三个内角的度数,并计算它们的和。

通过测量,学生可能会得到不同的结果,但大致都在 180°左右。

(2)剪拼法给每个学生发放一个三角形纸片,让学生将三角形的三个内角剪下来,然后拼在一起,观察拼成的角的度数。

学生发现三个内角拼在一起形成了一个平角,即 180°。

3、定理证明引导学生思考如何用数学方法证明三角形内角和定理。

可以通过作平行线的方法来证明。

如图,在△ABC 中,过点 A 作直线 EF∥BC。

因为 EF∥BC,所以∠B =∠EAB,∠C =∠FAC(两直线平行,内错角相等)。

因为∠EAB +∠BAC +∠FAC = 180°(平角的定义),所以∠B +∠BAC +∠C = 180°,即三角形内角和为 180°。

4、例题讲解(1)已知在△ABC 中,∠A = 50°,∠B = 60°,求∠C 的度数。

解:因为三角形内角和为 180°,所以∠C = 180°∠A ∠B = 180°50° 60°= 70°(2)在△ABC 中,∠A ∠B = 30°,∠C = 4∠B,求∠A、∠B、∠C 的度数。

三角形内角和ppt课件完整版

三角形内角和ppt课件完整版
度或边长。
余弦函数
cosA = b/c,表示邻边与斜边的 比值,同样用于直角三角形中。
正切函数
tanA = a/b,表示对边与邻边的比 值,常用于求解直角三角形的角度。
三角函数在解三角形中应用
已知两边及夹角求第三边
01
利用正弦定理或余弦定理求解。
已知三边求角度
02
利用余弦定理求解角度,再结合三角形内角和为180度求解其他
算错误。
公式选择
根据已知条件选择合适的公式 进行计算,避免使用错误的公
式导致结果不准确。
精度问题
在计算过程中要注意精度问题, 避免因舍入误差导致结果不准
确。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义 三角形三个内角的度数之和等于180度。
三角形内角和定理的证明 可以通过多种方法证明,如平行线性质、外角性质等。
角度。
已知两角及一边求其他边和角
03
利用正弦定理和三角形内角和求解。
边长比例与角度关系探讨
边长比例对角度的影响
在三角形中,边长比例的变化会影响角度 的大小,如等腰三角形底角相等。
VS
角度对边长比例的影响
角度的变化也会影响三角形的边长比例, 如直角三角形中,30度角所对的直角边等 于斜边的一半。
典型问题解决方法分享
建筑设计
建筑设计中经常涉及到三角形的面积计算,如屋顶、窗户等部分的 设计。
物理问题
在物理问题中,三角形的面积计算也经常出现,如求解力的大小和方 向等。
误区提示和易错点剖析
01
02
03
04
底和高的对应
在计算三角形面积时,一定要 注意底和高的对应关系,避免

《三角形的内角和》优秀一等奖说课稿

《三角形的内角和》优秀一等奖说课稿

《三角形的内角和》优秀一等奖说课稿1、《三角形的内角和》优秀一等奖说课稿一、教学目标课程标准这样描述:通过观察、操作了解三角形内角和是180。

分析教材内容,在上学期的学习中学生已经掌握了角的分类及度量的知识。

在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。

积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。

教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习其他图形内角和的基础,同时为初中进一步论证做好准备。

课前我对学情进行了分析:1、学生在学习本课前已经掌握了锐角、直角、钝角、平角和周角的度数,认识了三角形的基本特征及其分类,由于学生的数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题策略的多样化。

2、已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。

通过对课程标准的认识,以及内容分析和学情分析,我制定了这样的学习目标:1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°并会应用这一规律解决实际的问题。

2、通过研究直角三角形进而研究锐角三角形、钝角三角形,初步认识、理解由特殊到一般的逻辑思辨方法。

二、评价设计针对这一目标的完成,我设计了一下评价方式:1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。

2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。

3、操作反应评价:通过学生在研究三角形内角和过程中的测量、简拼、折等活动对学生进行评价评价题目1、通过3个练习题(1、做一做。

2、说一说3、拼一拼、想一想)检测学习目标1的掌握情况。

2、通过小组、同桌合作、汇报,教师引导学生理解本节课所蕴含的学习方法,检测学习目标2的掌握情况三、教具学具准备教具准备:课件、3个直角三角形,2个锐角三角形、2个钝角三角形、一张表格学具准备:三角板、量角器.四、教学过程这节课的教学我通过一下四个环节完成。

三角形内角和课件(公开课)

三角形内角和课件(公开课)

游戏:帮角找朋友 (每组卡片中,哪三个角可以组成三角形?)
600
900
450 300
540 460 520 800
拓展练习
小明把一块三角形的玻璃打碎成 三片,现在他要到玻璃店去配一块形 状完全一样的玻璃,那么最省事的办 法是带( )去。为什么?



考 考 你
知识的升华
小鬼,我比你 大!
瞎说,我们俩一 样大
华文学校
徐亮
三角形的内角和
2
1:什么是三角形的内角?
2:什么是三角形的内角和?

1
3
猜一猜:
三角形的三个内角和是多少度?
自主探究:
自学课本85页内容: 你学会了用什么样的方法验证了结论 呢?
合作探究:
小组内完成三角形内角和的验证,相互 交流自己的操作方法
拼一拼
3
1
2
3
平角:1800
三角形的内角和是180度。折一折:源自1中点中点
1
2
2
3
3
中点
中点
三角形的内角和是180°
1 2 ⌒ 1 3 ⌒
∠1+∠2+∠3=180°

2
3
我的判断不会错
(1)一个三角形可以有两个直角。 (×) (2)一个三角形中知道两个角的度 数,可以求出第三个角的度数。 ( √ )
计算我能行
三角形∠1=140°
140°
25° ⌒
∠3=25°求∠2 的度数。
180°-140°-25°=15° 180 °-(140°+ 25°)=15°
?
20 °
?代表的角是多少度呢?你知道吗?

三角形内角和说课ppt课件

三角形内角和说课ppt课件

感谢观看
THANKS
三角形内角和的基础知识
三角形的定义和分类
三角形是由不在同一直线上的三条线段首尾顺次 相接所组成的图形。根据边长特点,三角形可以 分为等边三角形、等腰三角形和普通三角形。
等腰三角形有两边长度相等,对应的两角也相等 ,另一个角为顶角。
等边三角形三边长度相等,三个内角相等,均为 60°。
普通三角形三边长度和三个内角均不相等。
电子工程
在电子工程中,三角形内角和定理可以用于计算电路中的 电阻、电容、电感等元件的参数,以及确定电路的性能和 稳定性。
05
三角形内角和定理的拓展和
深化理解
对称三角形内角和定理的拓展
总结词
揭示规律,拓展思维
详细描述
通过对称三角形的案例分析,揭示三角形内角和定理背后的规律,引导学生拓展 思维,探索不同证明方法的可能性。
三角形内角和说课 ppt课件
• 引言 • 三角形内角和的基础知识 • 三角形内角和的证明方法 • 三角形内角和的应用 • 三角形内角和定理的拓展和深化
理解 • 总结与回顾
目录
01
引言
主题和目的
主题
探究三角形的内角和
目的
通过多种方法证明三角形内角和为180度,并运用该结论解决实际问题
背景和重要性
03
这种证明方法较为抽象,但可以借助计算机软件进行计算 和验证。
04
三角形内角和的应用
在几何学中的应用
证明定理
三角形内角和定理是几何学中最 基本的定理之一,它可以应用于
证明其他定理和性质。
计算角度
通过三角形内角和定理,我们可以 快速计算出三角形的内角大小,以 及一个角度相对于其他角度的大小 。

《三角形内角和定理》第2课时示范公开课教学课件【北师大数学八年级上册】

《三角形内角和定理》第2课时示范公开课教学课件【北师大数学八年级上册】
△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.如图,∠1是△ABC的∠ABC的外角. 想一想:一个三角形的外角应具备哪些条件呢?
归纳
三角形的外角应具备的条件:
(1)角的顶点是三角形的顶点; (2)角的一边是三角形的一边; (3)另一边是三角形中一边的延长线.
要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.
证明:∵∠EAC=∠B+∠C (三角形的一个外角等于和它不相邻的两个内角的和), ∠B=∠C (已知), ∴∠C= ∠EAC(等式的性质). ∵AD平分 ∠EAC(已知). ∴∠DAC= ∠EAC(角平分线的定义). ∴∠DAC=∠C(等量代换). ∴AD∥BC(内错角相等,两直线平行).
2.如图,AB//CD,∠A=37°,∠C=63°,那么∠F等于 ( ) A.26° B.63°C.37° D.60°
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,∵ ∠ABD=28° ,∠BEC=91°,∴ ∠BFC=119°.
解:
F
A
C
D
E
B
三角形内角和定理
三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角.
△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角. 注意:每一个三角形都有6个外角.每一个顶点相对应的外角都有2个,且这2个角为对顶角.
教科书 第183页习题7.7 第2、3题
三角形内角和定理第2课时
准备好了吗?一起去探索吧!
三角形内角和定理
1.了解三角形外角的定义,掌握三角形外角的两个定理.2.能综合运用三角形内角和定理的推论即外角的两个定理进行几何证明与计算.3.引导学生从内和外、相等和不等的不同角度对三角形的角作全面的思考,体会几何中简单不等关系的证明.4.进一步培养学生的逻辑思维能力和推理能力,培养学生的几何意识.

《三角形内角和》ppt课件

《三角形内角和》ppt课件
45°+45°+90°=180°
30°+60°+90°=180°
我发现了,他们两个的内 角和都等于180°。
是不是所有的三角形内 角和都是180°呢?接下 来就让我带你们一起探 索吧!
这里这么多三角形,我们怎么知道 他们的内角和到底是不是180°呢?
钝角三角形
锐角三角形
直角三角形
我们可以测量啊!可以把 他们每个角都测量出来, 然后加起来。
那小朋友们动起你们的 手来吧!
小新,我测出来的 是179°。
小新,我 测出来的 是180°。
小新,我测出来的怎 么是181°啊?
小朋友们,你们知道为什么 他们测量出的结果不一样呢?
哈哈,答对了,就是因为我们 在测量的时候出现了测量误差。
小朋友们,你们还有没 有更好的办法呢?
小新,我们可以把三角形 的三个角分别撕下来,然 后把他们的顶点放到同一 个点上拼起来。
今天的小新课堂就到这里 了,大家知道了任意三角 形内角和都等于180°! 很棒哦!小朋友们,回家 找找你们喜欢的三角形, 用我们今天学的内容解决 生活中的问题吧!
谢谢观看
THANKS FOR WATCHING
三角形内角和
哈喽小朋友们,我是野 原新之助,你们可以叫 我小新哦!我今天在学 校学到了新的知识呢! 风间也说我今天很棒哦。 大家看我今天带的这两 兄弟你们熟悉吗?
它们好像在吵架呢, 让我们一起看看它 们在吵什么吧!
怎么可能,明 明是我!我们 来比比!
我个头大,我的 内角和一定比你 的内角和大。
1 3
2
132
同学们,你们得出
了什么样的结论了
呢?
21 3
当三个角拼在一起的时候 刚好形成了平角耶!

《三角形的内角和》课件

《三角形的内角和》课件

《三角形的内角和》课件一、教学目标1、让学生通过直观操作的方法,探索并发现三角形内角和等于180 度。

2、能应用三角形内角和的性质解决一些简单的实际问题。

3、在经历探索三角形内角和的过程中,培养学生的动手实践能力和逻辑推理能力,发展学生的空间观念。

二、教学重难点1、教学重点探索并证明三角形内角和等于 180 度。

2、教学难点理解三角形内角和的探究过程,并能运用其解决实际问题。

三、教学方法讲授法、直观演示法、探究法四、教学过程(一)导入新课同学们,我们在之前的学习中已经认识了三角形,知道了三角形有三条边和三个角。

那大家有没有想过三角形的这三个角之间有什么关系呢?今天我们就一起来探究三角形的内角和。

(二)新课讲授1、提出猜想首先,大家先来猜一猜三角形的内角和是多少度?有的同学可能会猜 180 度,那这只是我们的猜想,接下来我们要通过实验来验证这个猜想。

2、实验探究(1)准备不同类型的三角形,如锐角三角形、直角三角形和钝角三角形,每个同学都拿到一个三角形。

(2)用量角器分别测量三角形的三个内角的度数,并将测量结果记录下来。

(3)计算三个内角的度数之和。

3、交流汇报(1)请同学们汇报自己测量的三角形的类型以及三个内角的度数和。

(2)我们发现,虽然大家测量的结果可能会有一些误差,但都接近 180 度。

4、剪拼法验证(1)接下来,我们用另一种方法来验证。

把三角形的三个角剪下来,然后拼在一起,看看能拼成一个什么角。

(2)同学们动手操作,发现三个角拼在一起正好组成了一个平角,也就是 180 度。

5、推理证明(1)我们通过实验得到了三角形内角和大约是 180 度的结论,那如何从数学的角度进行严谨的证明呢?(2)我们可以过三角形的一个顶点作其对边的平行线,然后利用平行线的性质来证明。

(3)通过推理证明,我们得出三角形内角和等于 180 度,这是一个确定的结论。

(三)巩固练习1、给出一些三角形,让学生计算其内角和,巩固所学知识。

11.2.1三角形的内角和 公开课ppt课件

11.2.1三角形的内角和 公开课ppt课件
22
我不但三边之和比你长, 你的三边之和。是比我长,
而且三个内角之和也比 但三个内角之和并不比我
你大!

你同意谁的说法呢?为什么?
23
这节课你学到了什么?
P13 练习
24
(两直线平行,内错角相等)
∠B=∠2
(两直线平行,同位角相等)
∵∠1+∠2+∠ACB=180°
A
∴∠A+∠B+∠ACB=180° (等量代换) B
E
1 2
C
D
12
证法三 内错角+同旁内角
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
E
A
∴∠B+∠C+∠BAC=180°
(等量代换)
B
C
13
三角形内角和定理: 三角形的内角和等于1800. 即在△ABC中, ∠A +∠B +∠C=180 °
14
பைடு நூலகம்
15
例1、 如图:在△ABC中,∠BAC=40°, ∠B=75°,AD是△ABC的角平分线。 求∠ADB的度数?
在△ABD中,
A
∠ADB=180°-∠B-∠BAD,
19
例:
已知△ABC, ∠A +∠B= 90 °,求∠C的度数。
解:∵ ∠A+∠B+ ∠C=180 ° ∴ ∠C=180 °-( ∠A +∠B) =180 °- 90 ° = 90 °
20
例3
我的一个角是多少 度?
1800÷3=60°

《三角形内角和》课件

《三角形内角和》课件

特殊三角形的内角和
直角三角形的内角和
直角三角形具有特殊的角度关 系,让我们一起来解析它们的 内角和。
等腰三角形的内角和
等腰三角形也有其独特的内角 和特点,让我们一起来了解它 们。
等边三角形的内角和
等边三角形是三角形中最特殊 的,让我们一起来揭示它们的 内角和。
三角形内角和的相关练习
1
练习题解析
通过解析一些典型题目,我们将更好地理解三角形内角和的计算方法。
《三角形内角和》PPT课 件
欢迎来到《三角形内角和》PPT课件,让我们一起探索三角形内角和的奇妙 世界!通过本课件,你将了解三角形内角和的定义、性质、推论以及特殊三 角形的内角和。
什么是三角形内角和?
三角形内角和是指三角形内部三个角度之和。我们将探讨内角和的定义以及 计算公式,帮助你理解三角形的内部结构。
2
黄色网格纸练习
让我们亲自动手练习计算三角形内角和,并使用黄色网格纸来辅助计算。
总结
三角形内角和的重要性
掌握三角形内角和的计算方法对于数学学习和实际 问题解决都具有重要意义。自己,你可以进一步巩固对三角形内 角和的理解和掌握。
三角形内角和的性质
1
性质及证明
三角形内角和具有一些特定的性质,并且这些性质可以通过简单的证明得出。
2
应用举例
我们将通过一些实际问题的例子来展示三角形内角和的应用。
三角形内角和的推论
各角度之间的关系
三角形内角和之间存在一些有趣的推论,让我们 一起来探索它们。
应用实例分析
通过实际问题的分析,我们将看到三角形内角和 的推论如何应用。

《三角形的内角和》PPT课件 (公开课获奖)2022年苏科版 (10)

《三角形的内角和》PPT课件 (公开课获奖)2022年苏科版 (10)
2
合作探究:
1、四边形从一个顶点可以引__1__条对角线。这些对 角线把这个四边形分成__2___个三角形,所以四边形 的内角和为180×___2__
2、五边形从一个顶点可以引_2___条对角线。这些对 角线把这个五边形分成___3__个三角形,所以五边形 的内角和为180×__3__
3、六边形从一个顶点可以引__3__条对角线。这些对 角线把这个六边形分成__4___个三角形,所以六边形 的内角和为180×__4__
多边形的外角和
1、多边形内角和公式?
2、已知一个多边形各内角都是150度, 求这个多边形的边数。
复习
1、五边形从一个顶点可以引__2__条对角线。 五边形共有___5____条对角线。 2、六边形从一个顶点可以引__3__条对角线。 六边形共有___9____条对角线。 3、七边形从一个顶点可以引__4__条对角线。 七边形共有___1_4___条对角线。 4、n边形从一个顶点可以引_n_-_3_条对角线。 n边形共有__n_(n__3_) _条对角线。
(2)这个内角是多少度?
通过这节课的学习你 有哪些收获?
一元一次不等式组(1)
一个长方形足球场的宽是65m,如果 它的周长大于340m,面积不大于7150m2,求这 个足球场的的长的范围,并判断这个足球场是 否可以用于国际比赛。 (足球比赛规则规定:用于国际比赛的足球场 长度为100~110m,宽度为64~75m) 分析:设长方形足球场的长是x m,那么它的周 长和面积分别为2(x+65)m,65xm2. 根据题意,得 2(x+65)>340
小结
• 你有哪些收获?说出来,大家共同分 享
• 你还有什么疑惑?提出来,我们一起 讨论

三角形的内角和PPT说课稿公开课获奖课件省赛课一等奖课件

三角形的内角和PPT说课稿公开课获奖课件省赛课一等奖课件

A
B
C
D
∠ACD > ∠A (<、>);
∠ACD > ∠B (<、>).
结论:三角形旳一种外角不小于与它 不相邻旳任何一种内角。
看谁答得
迅速抢答
又快又准
1 _∠__4__+__∠__C_
A
2 _∠__3__+__∠__B_
34
2 __>__ 3
12
2 __>__ B
B
DC
把图中旳∠1、∠2、∠3按由大到小旳 顺序排列
三角形旳一边与另一边旳延长线 构成旳角叫做三角形旳外角.
合作与交流
画一种△ABC,你能画出它旳全
部外角吗?请动手试一试.同步,想
一想△ABC旳外角一共有几种?
归纳:
A 12
每一种三角形
共有6个外角. 6
3
B5
4C
(二)外角与内角有什么关系?
1、相邻:
A
B
C
D
发觉: ACD与ACB互为邻补角.
即: ∠ACD(外角)+∠ACB(相邻内角)=180°
14.2(2)三角形旳内角和
知识回忆
1、三角形三个内角旳和等于多少度? 三角形三个内角旳和等于180°
2、在△ABC中, (1)∠C=90°,∠A=30 °,则∠B=_6_0_°_; (2)∠A=50°,∠B=∠C,则∠B=__6_5_°_.
观察∠ 1
A
E
B
1
1 C
B
C
E
A
探究新知
(一)三角形旳外角
BE
D
A
C
例题 如图,求∠1旳度数。

三角形的内角和公开课一等奖课件PPT

三角形的内角和公开课一等奖课件PPT
1 3
2
下面图形中被小福娃遮住的角是多少度?
60
30
60
30
20 110
我也是等腰三角形,顶 角是96°。
我是等腰三角形,一个 底角是70度。
我的一个锐角是40°。
我三边相等。
(1)一个三角形的三个内角度
× 数分别是:80°、75°、24°
(2)大三角形比小三角形的内
× 角和大。
(3)两个小三角形拼成一个大
× 三角形,大三角形的内角和是30 ° 。21
3
4
6
5
(4)一个三角形中不可能有2个
√ 直角。
帕斯卡:法国的数学家、物
理学家,为人类创造了无 数的奇迹,早在300年前这
位法国著名的科学家就已经 发现了:
任何三角形的内角 和都是180°
当时才12岁
图形
名称 三角形 四边形 五边形 六边形
有几个 三角形
1
内角和 180°
撽挝擀擃掳擅擆擈擉 擌擎擏擐擑擓携擖擗 擘擙擛擜擝擞擟抬擢
擤擥举擨

《三角形的内角和》PPT课件

《三角形的内角和》PPT课件
三角形内角和性质
三角形内角和与角度关系
三角形内角和为180度
在任何三角形中,三个内角的和总是 等于180度。
角度互余关系
在一个三角形中,如果两个角的和小 于90度,则这两个角互为余角。
角度互补关系
在直角三角形中,两个锐角的角度和 为90度,它们互为补角。
三角形内角和与边长关系
边长与角度关系
在三角形中,边长越长, 对应的角度越大;边长越 短,对应的角度越小。
步骤四
将剪下来的三个角拼在 一起,观察是否能拼成
一个平角。
实验结果分析与讨论
结果分析
通过实验操作,我们发现三角形ABC的三个内角拼在一起后,能够形成一个平角,即三角形的内角和为 180度。
讨论
实验结果验证了三角形的内角和定理,即任意三角形的内角和都等于180度。这一结论在数学和几何学中 有着广泛的应用,对于解决与三角形相关的问题具有重要意义。同时,实验结果也说明了实验操作的准确 性和可靠性。
通过不断练习和挑战自我,可 以提高自己的几何思维能力和 解题能力。
THANKS
感谢观看
《三角形的内角 和》PPT课件
目录
• 课程引入 • 三角形内角和定理 • 三角形内角和性质 • 三角形内角和计算 • 实验操作与探究 • 拓展延伸与应用举例
01
课程引入
三角形的定义与分类
三角形的定义
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形。
三角形的分类
根据三角形的边长和角度,可以将 三角形分为等边三角形、等腰三角 形、直角三角形等。
三角形内角和概念
三角形内角和的定义
三角形三个内角的度数之和。
三角形内角和的性质
任意三角形的内角和都等于180度。

.公开课 三角形内角和

.公开课 三角形内角和
学而不思则罔,思而不学则殆。-《论语》
闯关练习三
如果一个角都不知道,或只知道一个角,你能 知道三角形各角的度数吗?求出下面三角形各角 的度数。
1、我三边相等。 2、我是等腰三角形,我的顶角是96°。 3、我有一个直角,还有一个锐角是40°。
学而不思则罔,思而不学则殆。-《论语》
闯关练习四 求出四边形、五边形的内角和。说一说你

1
1
2
2
3
3
把∠1向下折,折时注意平行折,使∠1的顶点 落在它的对边上,再折∠2、∠3,使∠2、∠3的顶 点都与∠1的顶点重合。发现∠1、∠2、∠3恰好组 成一个平角,即∠1+∠2+∠3=180°,由此得出 三角形的内角和是180°。
三角形的内角和是180°。
学而不思则罔,思而不学则殆。-《论语》
1
)2
3
∠1+∠2+∠3=?
学而不思则罔,思而不学则殆。-《论语》
学而不思则罔,思而不学则殆。-《论语》
90o+60o+30o=180o
三角形内角和=180°确定吗? 让我们动手来验证一下!
学而不思则罔,思而不学则殆。-《论语》
学而不思则罔,思而不学则殆。-《论语》
学而不思则罔,思而不学则殆。-《论语》
∠1


∠2
∠3
∠1 + ∠2 + ∠3 =180°
学而不思则罔,思而不学则殆。-《论语》
• 知识巩固: • (1)你对三角形的内角和是多少度还有疑
问吗?现在我们可以肯定的说:三角形的 内角和是( )度。 • (2)解决课前问题:为什么一个三角形里 不会出现2个直角?一个三角形中有没有2 个钝角? • (3)把如图两个直角三角形拼成一个大三 角形,大三角形的内角和是多少度?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.三角形∠1=140°∠3=25°求 ∠2的度数。
140° 25°
180°-140°-25°=15°
180 °-(140°+ 25°)=15°
2、判断: (1)一个三角形可以有两个直角。 (× ) (2)大三角形的内角和比小三角形 的内角和的度数大。 ( ×)
这节课你有什么收获?
(一)填空 1.任意一个三角形的内角和都是( )度。 2.如果一个三角形有两个内角的度数之和等于90 度,那么这个三角形就是( )三角形。 (二)解决问题。 1.一个直角三角形,一个锐角是50°,另一个锐 角是多少度? 2.一条红领巾,它的底角是40度,它的顶角是多 少度?
人教新课标四年级数学下册
三角形的内角和
南化中心小学 张利
1、通过动手量一量、拼一拼、折一折, 探究出三角形的内角和是多少度。 2、能运用三角形内角和的知识进行相关 的计算。
猜一猜:
三角形的三个内角和是多少度?
探究学习一:∠3
内角和
直角三角形
钝角三角形
发现规律:
课堂检测:
三角形内角和是180°
活动二:撕一撕、拼一拼
平角
活动三:折一折
1
中点
中点
1
2
2
3
3
中点
中点
结论:
三角形的内角和是180°
1 1 2 2 3 3
∠1+∠2+∠3=180°
探究学习二:
你能应用“三角形内角和是180°”解决实际问题吗?
1.在一个三角形中,∠2=35 ° ,∠2=110 ° ,求∠3的 度数。 2.一副三角板,一个是直角,另两个可能各是多少度?
相关文档
最新文档