操作系统时间片轮转算法与优先级调度算法
先来先服务,时间片调度,优先级调度算法实验报告

先来先服务,时间片调度,优先级调度算法实验报告实验报告1. 引言进程调度是操作系统中非常重要的一部分,它决定了进程在CPU上执行的顺序和时间长度。
在本次实验中,我们通过实现先来先服务调度算法、时间片调度算法和优先级调度算法,并对其性能进行比较,来深入了解各种调度算法的工作原理及优缺点。
2. 先来先服务调度算法先来先服务调度算法按照进程到达的先后顺序进行调度。
当一个进程到达时,如果CPU空闲,则将其分配给CPU进行执行;如果CPU 正在执行其他进程,则该进程将等待直到CPU空闲。
优点是简单易实现,适用于长作业。
缺点是可能出现饥饿现象,即低优先级的进程可能会一直等待高优先级进程的执行。
3. 时间片调度算法时间片调度算法将CPU的执行时间划分为固定长度的时间片,每个进程在一个时间片内执行,当时间片用完后,系统将切换到下一个进程执行。
该算法确保每个进程都有公平的执行时间,避免了饥饿现象。
然而,对于CPU利用率较高的情况下,可能会导致进程频繁地切换,增加了上下文切换的开销。
4. 优先级调度算法优先级调度算法根据进程的优先级来进行调度,优先级较高的进程将具有更高的执行优先级。
当多个进程同时到达CPU时,系统将选择优先级最高的进程先执行。
该算法可以分为静态优先级调度和动态优先级调度两种方式。
优点是可以根据进程的重要性灵活调整执行顺序。
缺点是可能导致优先级低的进程长时间等待,造成饥饿现象。
5. 实验结果与分析我们通过模拟多个进程的到达和执行过程,在不同的场景下比较了先来先服务调度算法、时间片调度算法和优先级调度算法的性能。
实验结果显示,在长作业的情况下,先来先服务调度算法表现较好;在要求公平性的场景下,时间片调度算法比较适合;而对于需要根据优先级来调度的场景,优先级调度算法可以更好地满足需求。
6. 结论不同的进程调度算法在不同的场景下有各自的优劣。
先来先服务调度算法简单易实现,适用于长作业;时间片调度算法保证了公平性,适用于要求公平的场景;而优先级调度算法则可以根据进程的重要性进行调度。
操作系统的调度算法优先级时间片和占式调度

操作系统的调度算法优先级时间片和占式调度操作系统的调度算法:优先级、时间片和抢占式调度操作系统是计算机系统中的一个核心组件,用于管理和控制计算机的硬件和软件资源,以提供良好的用户体验和系统性能。
在操作系统中,调度算法是实现任务分配和资源管理的关键。
本文将介绍三种常见的调度算法:优先级调度、时间片轮转调度和抢占式调度。
一、优先级调度算法优先级调度算法是根据任务的优先级安排任务的执行顺序。
每个任务都有一个优先级值,数值越高表示优先级越高。
当一个任务就绪并等待执行时,调度器会选择优先级最高的任务来执行。
优先级调度算法可以保证高优先级任务及时得到执行,但可能会导致低优先级任务出现饥饿现象。
实际上,优先级调度算法可以分为静态优先级和动态优先级两种类型。
静态优先级是在任务创建时分配的,不会改变。
动态优先级根据任务的运行情况和系统状态进行动态调整,以提高系统的公平性和性能。
二、时间片轮转调度算法时间片轮转调度算法是一种周期性调度算法,每个任务被分配一个固定的时间片(时间段),当任务的时间片用完后,调度器会将任务挂起,并将CPU 分配给下一个任务执行。
当所有任务都执行完一次后,调度器会重新分配时间片,继续按照顺序执行任务。
时间片轮转调度算法可以保证任务的平均执行时间,并且避免了长时间任务的霸占资源问题。
然而,如果任务的时间片设置得过小,则会增加任务切换的开销。
如果任务的时间片设置得过大,则可能出现对实时任务响应时间的影响。
三、抢占式调度算法抢占式调度算法是一种灵活的调度策略,允许更高优先级的任务打断正在执行的低优先级任务,以确保高优先级任务的及时响应。
当一个任务就绪并具备运行条件时,调度器会立即安排其执行,无论当前是否有其他任务在执行。
抢占式调度算法可以有效地提高系统的响应速度和实时性,但可能会导致任务切换的频繁发生,增加了系统开销。
为了平衡性能和实时性的需求,抢占式调度算法通常会和其他调度策略结合使用,例如优先级和时间片轮转。
资源分配的四种算法

资源分配的四种算法资源分配是计算机中一个非常重要的概念,它涉及到如何使用计算机资源来满足对系统的各种需求。
在实际应用中,常见的资源包括CPU时间、内存空间、磁盘I/O等,而如何高效地分配这些资源,则需要使用一些算法来进行优化。
本文将介绍资源分配中常用的四种算法,分别是FCFS算法、SJF算法、优先级调度算法和时间片轮转算法。
1. FCFS算法FCFS(First Come First Serve,先到先服务)算法是资源分配中最简单的一种算法,它的原则是按照作业的到达顺序进行分配,即先来先服务。
FCFS算法将所有作业根据它们的到达时间进行排序,然后按队列的顺序依次将资源分配给它们。
FCFS算法的优点是实现简单,无需过多的计算量和调度算法;但是,由于FCFS算法无法考虑每个作业的长度和重要性,因此在实际应用中可能出现一些缺陷,比如,作业的等待时间可能很久,导致处理时间长,效率低下。
2. SJF算法SJF(Shortest Job First,最短作业优先)算法是一种对作业的长度进行优先级判断的调度算法,其准则是排队的作业中,选择需要处理时间最短的作业先进行处理。
SJF算法通过紧凑排列作业处理的先后,来达到提高系统资源利用率、缩短作业周转时间、减轻繁忙度、提高用户满意度等效果。
SJF算法中可能出现的问题是,由于某些小作业可能会一直处在等待状态,导致这些小作业长时间得不到处理,最终可能会形成“饥饿现象”(即一些长作业得不到处理)。
3. 优先级调度算法优先级调度算法是根据每个作业的优先级来选择下一个要运行的作业的一种调度算法。
高优先级的作业具有更高的运行优先级,即比低优先级的作业更容易获取CPU时间片。
优先级调度算法可以为不同的作业分配不同的优先级,根据作业的特点来调整各个作业之间的优先级。
优先级调度算法的好处是能够优先完成重要的任务,使系统更加高效、安全、可靠。
但是如果优先级设置不当,可能会导致低优先级的大型作业无法完成,最终可能导致其他作业等待时间过长。
操作系统有哪些主要调度算法

操作系统有哪些主要调度算法操作系统调度算法一、磁盘调度1.先来先服务fcfs:是按请求访问者的先后次序启动磁盘驱动器,而不考虑它们要访问的物理位置2.最短一般说来时间优先sstf:使距当前磁道最近的命令访问者启动磁盘驱动器,即是使查找时间最短的那个作业先继续执行,而不考量命令访问者到来的先后次序,这样就消除了先来先服务调度算法中磁臂移动过小的问题3.扫描算法scan或电梯调度算法:总是从磁臂当前位置开始,沿磁臂的移动方向去选择离当前磁臂最近的那个柱面的访问者。
如果沿磁臂的方向无请求访问时,就改变磁臂的移动方向。
在这种调度方法下磁臂的移动类似于电梯的调度,所以它也称为电梯调度算法。
4.循环读取算法cscan:循环读取调度算法就是在读取算法的基础上改良的。
磁臂改成单项移动,由外向里。
当前边线已经开始沿磁臂的移动方向回去挑选距当前磁臂最近的哪个柱面的访问者。
如果沿磁臂的方向并无命令出访时,再返回最外,出访柱面号最轻的作业命令。
操作系统调度算法二、进程调度算法1.先进先出算法fifo:按照进程步入准备就绪队列的先后次序去挑选。
即为每当步入进程调度,总是把准备就绪队列的队首进程资金投入运转。
2.时间片轮转算法rr:分时系统的一种调度算法。
轮转的基本思想是,将cpu的处理时间划分成一个个的时间片,就绪队列中的进程轮流运行一个时间片。
当时间片结束时,就强迫进程让出cpu,该进程进入就绪队列,等待下一次调度,同时,进程调度又去选择就绪队列中的一个进程,分配给它一个时间片,以投入运行。
3.最低优先级算法hpf:进程调度每次将处理机分配给具备最低优先级的准备就绪进程。
最低优先级算法可以与相同的cpu方式融合构成可以抢占市场式最低优先级算法和不容抢占市场式最低优先级算法。
4.多级队列反馈法:几种调度算法的结合形式多级队列方式。
操作系统调度算法三、常用的批处理作业调度算法1.先来先服务调度算法fcfs:就是按照各个作业进入系统的自然次序来调度作业。
操作系统时间片轮转算法与优先级调度算法

操作系统时间片轮转算法与优先级调度算法操作系统作为计算机的核心,需要负责管理和分配系统资源的功能。
其中,调度算法是操作系统中非常重要的一个功能,它决定了如何分配CPU时间,因此直接影响系统的性能和响应速度。
本文将介绍两种操作系统中常用的调度算法:时间片轮转算法和优先级调度算法。
时间片轮转算法时间片轮转算法(Round Robin)是一种基本的调度算法,它是多道程序设计中常用的一种算法。
在内存中同时存放多个进程,并根据每个进程的优先级轮流分配 CPU 时间,以保证每个进程都能得到一定的CPU时间片,从而保证操作系统的公平性和系统的稳定性。
基本思想时间片轮转算法的基本思想是:将每个进程分配相同长度的CPU时间片,一旦时间片用完,立即将该进程挂起,并将 CPU 分配给下一个进程。
这样就可以保证每个进程都有相同的机会获得 CPU 时间,避免了某个进程长时间霸占CPU而导致其他进程无法运行的情况。
算法流程时间片轮转算法的具体实现过程如下:1.将所有待运行的进程加入到就绪队列中;2.从就绪队列中取出第一个进程,将其运行指定时间片长度的时间;3.如果该进程在运行时间片结束之前自己退出,那么直接将其从就绪队列中取出,释放资源;4.如果该进程在运行时间片结束之前没有自己退出,那么将其挂起放到队列的尾部,然后将 CPU 分配给下一个进程,重复2-4步骤,直到所有进程执行完毕。
算法优点时间片轮转算法的优点如下:1.公平:每个进程都能得到相同长度的时间片,避免了某个进程长时间霸占CPU的情况,从而保证了每个进程都会运行;2.适用:时间片轮转算法适用于多任务并发的环境下,可以有效地避免死锁和饥饿现象;3.高效:时间片轮转算法可以保证 CPU 的高效利用,能够最大限度地提高 CPU 的性能。
算法缺点时间片轮转算法的缺点如下:1.精度问题:时间片长度不能太长,否则会导致某些进程长时间等待CPU时间片;2.资源浪费:如果一个进程只需要很短的时间就可以完成任务,但由于时间片的限制而占用CPU的时间,这就是一种资源浪费。
操作系统常用调度算法

操作系统常⽤调度算法在操作系统中存在多种调度算法,其中有的调度算法适⽤于作业调度,有的调度算法适⽤于进程调度,有的调度算法两者都适⽤。
下⾯介绍⼏种常⽤的调度算法。
先来先服务(FCFS)调度算法FCFS调度算法是⼀种最简单的调度算法,该调度算法既可以⽤于作业调度也可以⽤于进程调度。
在作业调度中,算法每次从后备作业队列中选择最先进⼊该队列的⼀个或⼏个作业,将它们调⼊内存,分配必要的资源,创建进程并放⼊就绪队列。
在进程调度中,FCFS调度算法每次从就绪队列中选择最先进⼊该队列的进程,将处理机分配给它,使之投⼊运⾏,直到完成或因某种原因⽽阻塞时才释放处理机。
下⾯通过⼀个实例来说明FCFS调度算法的性能。
假设系统中有4个作业,它们的提交时间分别是8、8.4、8.8、9,运⾏时间依次是2、1、0.5、0.2,系统⾤⽤FCFS调度算法,这组作业的平均等待时间、平均周转时间和平均带权周转时间见表2-3。
表2-3 FCFS调度算法的性能作业号提交时间运⾏时间开始时间等待时间完成时间周转时间带权周转时间18280102128.4110 1.611 2.6 2.638.80.511 2.211.5 2.7 5.4490.211.5 2.511.7 2.713.5平均等待时间 t = (0+1.6+2.2+2.5)/4=1.575平均周转时间 T = (2+2.6+2.7+2.7)/4=2.5平均带权周转时间 W = (1+2.6+5.牡13.5)/4=5.625FCFS调度算法属于不可剥夺算法。
从表⾯上看,它对所有作业都是公平的,但若⼀个长作业先到达系统,就会使后⾯许多短作业等待很长时间,因此它不能作为分时系统和实时系统的主要调度策略。
但它常被结合在其他调度策略中使⽤。
例如,在使⽤优先级作为调度策略的系统中,往往对多个具有相同优先级的进程按FCFS原则处理。
FCFS调度算法的特点是算法简单,但效率低;对长作业⽐较有利,但对短作业不利(相对SJF和⾼响应⽐);有利于CPU繁忙型作业,⽽不利于I/O繁忙型作业。
优先调度、时间片轮转

优先调度 & 时间片轮转优先调度优先调度,是一种高级的进程调度算法,它赋予了进程及其资源的不同重要性。
在优先调度中,操作系统会优先运行最紧急(最高优先级)的进程。
举个例子,某个进程 A 需要进行网络请求,而进程 B 是一个计算密集型任务,此时操作系统会将进程 A 定义为更高优先级的任务,这样它就可以立即获得资源并得到及时处理。
优先调度的优点是可以确保资源的及时分配,缺点是可能会导致低优先级的进程饥饿。
如果某些进程的优先级比较低,它们可能永远无法获得资源,因为高优先级的进程会一直抢占资源。
时间片轮转时间片轮转是一种常用的进程调度算法。
它是一种基于时间片的算法,旨在确保所有进程都能获得公平的CPU时间。
时间片是操作系统给每个进程分配的时间量。
当进程运行时,它会对时间片进行使用。
当时间片用完后,操作系统会把当前进程暂停,并将其他进程加入运行队列。
这个过程会一直持续下去,每个进程都有机会被调度。
与优先调度算法不同,时间片轮转算法不考虑优先级。
任何一个就绪进程都有被调度的机会,这个过程是公平且均匀的。
优先调度和时间片轮转算法不是互斥的,并且通常会结合在一起使用。
优先调度可以用于及时响应某些场景,例如I/O请求,而时间片轮转可以确保CPU分配公平并避免进程饥饿情况的出现。
在选择进程调度算法时,我们需要考虑不同的因素。
优先调度算法可以确保及时响应某些场景,时间片轮转算法可以确保CPU分配公平并避免进程饥饿情况的出现。
因此,在实际应用中,我们可以根据情况选择最合适的算法。
优先级的时间片轮转调度算法和多级反馈队列轮转调度算法

优先级的时间片轮转调度算法和多级反馈队列轮转调
度算法
首先,我们来了解一下操作系统中常用的调度算法——优先级的时
间片轮转调度算法和多级反馈队列轮转调度算法。
优先级的时间片轮转调度算法是操作系统中最早的调度算法之一。
该
算法具有较高的灵活性,能够根据不同任务的不同优先级设置相应的
时间片,实现高优先级任务优先执行的目的。
同时,该算法还具有较
好的公平性,能够保证低优先级任务不会饥饿。
多级反馈队列轮转调度算法是一种先进的调度算法,它能够更好地适
应现代多任务处理的需求。
与优先级的时间片轮转调度算法不同,多
级反馈队列轮转调度算法可以为不同任务设置不同的时间片和优先级,同时还可以根据任务的执行情况自动调整任务的时间片和优先级。
除此之外,它还具有以下一些特点:
1. 支持动态任务数量的变化,并自动调整任务的优先级和时间片大小。
2. 支持任务的抢占,即高优先级任务可以随时抢占低优先级任务的执行,并立即得到处理器资源的分配。
3. 具有较强的适应性和灵活性,能够适应不同的任务负载和系统负荷。
4. 可以实现高效的任务调度和资源调配,优化系统的整体性能。
总的来说,无论是优先级的时间片轮转调度算法还是多级反馈队列轮转调度算法,都是操作系统中重要的调度算法,各具特点,可根据不同的应用场景选择合适的算法以优化系统性能。
进程调度模拟设计——时间片轮转、优先级法

学号:课程设计课程名字系统软件开发实训A题目进程调度模拟设计——时间片轮转、优先级法学院专业班级姓名指导教师2014 年01 月17 日课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 进程调度模拟设计——时间片轮转、优先级法初始条件:1.预备内容:阅读操作系统的处理机管理章节内容,对进程调度的功能以及进程调度算法有深入的理解。
2.实践准备:掌握一种计算机高级语言的使用。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.模拟进程调度,能够处理以下的情形:⑴能够选择不同的调度算法(要求中给出的调度算法);⑵能够输入进程的基本信息,如进程名、优先级、到达时间和运行时间等;⑶根据选择的调度算法显示进程调度队列;⑷根据选择的调度算法计算平均周转时间和平均带权周转时间。
2.设计报告内容应说明:⑴课程设计目的与功能;⑵需求分析,数据结构或模块说明(功能与框图);⑶源程序的主要部分;⑷测试用例,运行结果与运行情况分析;⑸自我评价与总结。
时间安排:设计安排3周:查阅、分析资料 1天系统软件的分析与建模 4天系统软件的设计 5天系统软件的实现 3天撰写文档 1天课程设计验收答辩 1天设计验收安排:设计周的第三周的指定时间到实验室进行上机验收。
设计报告书收取时间:课程设计验收答辩完结时。
(注意事项:严禁抄袭,一旦发现,抄与被抄的一律按0分记)指导教师签名: 2013 年 12 月 10日系主任(或责任教师)签名: 2013 年 12 月 10日进程调度模拟设计——时间片轮转、优先级法1设计目的1.1 阅读操作系统的处理机管理章节内容,对进程调度的功能以及进程调度算法有深入的理解,能够使用其中的方法来进行进程调度模拟设计。
1.2 练掌握并运用时间片轮转和优先级法,掌握一种计算机高级语言的使用。
2 设计要求2.1 能够选择不同的调度算法(要求中给出的调度算法);2.2 能够输入进程的基本信息,如进程名、优先级、到达时间和运行时间等;2.3 根据选择的调度算法显示进程调度队列;2.4 根据选择的调度算法计算平均周转时间和平均带权周转时间。
调度算法的实验报告

一、实验目的1. 理解操作系统调度算法的基本原理和概念。
2. 掌握几种常见调度算法的原理和实现方法。
3. 分析不同调度算法的性能特点,为实际应用提供参考。
二、实验内容本次实验主要涉及以下几种调度算法:先来先服务(FCFS)、最短作业优先(SJF)、优先级调度(Priority Scheduling)、最高响应比优先(HRRN)和时间片轮转(Round Robin)。
1. 先来先服务(FCFS)调度算法FCFS调度算法按照进程到达就绪队列的顺序进行调度,先到达的进程先执行。
该算法简单易实现,但可能导致长作业等待时间过长,从而降低系统吞吐量。
2. 最短作业优先(SJF)调度算法SJF调度算法优先选择执行时间最短的进程进行调度。
该算法可以最大程度地减少平均等待时间和平均周转时间,但可能导致长作业等待时间过长。
3. 优先级调度(Priority Scheduling)算法优先级调度算法为每个进程设置一个优先级,优先选择优先级高的进程进行调度。
该算法可以满足高优先级作业的需求,但可能导致低优先级作业长时间等待。
4. 最高响应比优先(HRRN)调度算法HRRN调度算法为每个进程设置一个响应比,优先选择响应比高的进程进行调度。
响应比是作业的等待时间与作业所需时间的比值。
该算法综合考虑了作业的等待时间和所需时间,是一种较为公平的调度算法。
5. 时间片轮转(Round Robin)调度算法时间片轮转调度算法将CPU时间划分为固定的时间片,按照进程到达就绪队列的顺序,每次只允许一个进程运行一个时间片。
如果进程在一个时间片内无法完成,则将其放入就绪队列的末尾,等待下一次调度。
该算法可以平衡各个进程的执行时间,但可能导致进程响应时间较长。
三、实验步骤1. 编写一个进程调度程序,实现上述五种调度算法。
2. 生成一个包含多个进程的作业队列,每个进程具有到达时间、所需运行时间和优先级等信息。
3. 分别采用五种调度算法对作业队列进行调度,并记录每个进程的执行情况。
几种操作系统调度算法

几种操作系统调度算法操作系统调度算法是操作系统中用于确定进程执行的顺序和优先级的一种方法。
不同的调度算法有不同的优缺点,适用于不同的场景和需求。
下面将介绍几种常见的操作系统调度算法:1.先来先服务(FCFS)调度算法:先来先服务调度算法是最简单的调度算法之一、按照进程到达的顺序进行调度,首先到达的进程先执行,在CPU空闲时执行下一个进程。
这种算法实现简单,并且公平。
但是,由于没有考虑进程的执行时间,可能会导致长作业时间的进程占用CPU资源较长时间,从而影响其他进程的响应时间。
2.短作业优先(SJF)调度算法:短作业优先调度算法是根据进程的执行时间进行排序,并按照执行时间最短的进程优先执行。
这种算法可以减少平均等待时间,提高系统的吞吐量。
然而,对于长作业时间的进程来说,等待时间会相对较长。
3.优先级调度算法:优先级调度算法是根据每个进程的优先级来决定执行顺序的。
优先级可以由用户设置或者是根据进程的重要性、紧迫程度等因素自动确定。
具有较高优先级的进程将具有更高的执行优先级。
这种算法可以根据不同情况进行灵活调度,但是如果不恰当地设置优先级,可能会导致低优先级的进程长时间等待。
4.时间片轮转(RR)调度算法:时间片轮转调度算法将一个固定的时间片分配给每个进程,当一个进程的时间片用完时,将该进程挂起,调度下一个进程运行。
这种算法可以确保每个进程获得一定的CPU时间,提高系统的公平性和响应速度。
但是,对于长时间运行的进程来说,可能会引起频繁的上下文切换,导致额外的开销。
5.多级反馈队列(MFQ)调度算法:多级反馈队列调度算法将进程队列划分为多个优先级队列,每个队列有不同的时间片大小和优先级。
新到达的进程被插入到最高优先级队列,如果进程在时间片内没有完成,则被移到下一个较低优先级队列。
这种算法可以根据进程的执行表现自动调整优先级和时间片,更好地适应动态变化的环境。
以上是几种常见的操作系统调度算法,每种算法都有其优缺点和适用场景。
先来先服务,时间片调度,优先级调度算法实验报告

先来先服务,时间片调度,优先级调度算法实验报告先来先服务、时间片调度、优先级调度算法实验报告1. 引言本次实验旨在研究和比较先来先服务(FCFS)、时间片调度(RR)和优先级调度(Priority Scheduling)三种常见的进程调度算法。
进程调度是操作系统中的重要概念之一,合理的进程调度算法可以提高系统效率,优化资源利用。
2. 先来先服务算法•先来先服务算法是一种简单的调度算法,按照进程到达的顺序进行调度。
•优点:简单易实现,适用于长作业。
•缺点:容易造成短作业等待时间过长,无法满足实时性要求。
3. 时间片调度算法•时间片调度算法将CPU时间划分为一段一段的时间片,每个进程在一个时间片内执行。
•若进程未完成,会被放入就绪队列的末尾,等待下一个时间片。
•优点:公平,适用于短作业,能满足实时性要求。
•缺点:时间片过长,会导致长作业等待时间过长。
4. 优先级调度算法•优先级调度算法根据进程的优先级来确定调度顺序,拥有最高优先级的进程先执行。
•静态优先级可在创建进程时确定,动态优先级可根据进程执行情况进行调整。
•优点:适用于实时任务和长作业,可根据需求调整优先级。
•缺点:可能导致低优先级任务等待时间过长,存在优先级反转问题。
5. 实验结果与分析通过对三种调度算法的实验测试,得出以下结论:•FCFS算法在长作业的情况下表现较好,但对于短作业不友好,容易造成长时间等待;•RR算法适用于短作业,能保证公平性,但时间片过长可能导致长作业等待时间过长;•优先级调度算法较为灵活,能满足实时性要求,但可能导致低优先级任务长时间等待。
综上所述,不同的调度算法适用于不同的场景,根据需求选择合适的算法可提高系统效率。
6. 总结本次实验对先来先服务、时间片调度和优先级调度算法进行了研究和比较。
通过对三种算法的分析,我们可以根据任务特点和需求选择合适的调度算法,以提高系统的效率和资源利用率。
同时,在实际应用中也需要考虑进程的实时性要求,避免长时间等待等问题的出现。
处理机调度算法流程

处理机调度算法流程一、引言处理机调度算法是操作系统中的关键部分,它决定了处理机如何分配给不同的进程以实现高效的任务执行。
本文将介绍处理机调度算法的流程,包括先来先服务调度算法、短作业优先调度算法、优先级调度算法和时间片轮转调度算法。
二、先来先服务调度算法先来先服务调度算法是最简单的调度算法之一。
当一个进程请求处理机时,先到达的进程将被先分配处理机,直到该进程执行完毕或主动释放处理机。
先来先服务调度算法的流程如下:1. 将所有进程按照到达时间的先后顺序排列。
2. 选择等待队列中的第一个进程,将处理机分配给它。
3. 当该进程执行完毕或主动释放处理机后,选择等待队列中的下一个进程,重复第2步。
4. 重复以上步骤,直到所有进程执行完毕。
三、短作业优先调度算法短作业优先调度算法是根据进程的执行时间来决定处理机分配的优先级,执行时间短的进程优先级高。
短作业优先调度算法的流程如下:1. 将所有进程按照执行时间的长短进行排序。
2. 选择执行时间最短的进程,将处理机分配给它。
3. 当该进程执行完毕或主动释放处理机后,选择执行时间次短的进程,重复第2步。
4. 重复以上步骤,直到所有进程执行完毕。
四、优先级调度算法优先级调度算法是根据进程的优先级来决定处理机分配的顺序,优先级高的进程优先级高。
优先级调度算法的流程如下:1. 将所有进程按照优先级的高低进行排序。
2. 选择优先级最高的进程,将处理机分配给它。
3. 当该进程执行完毕或主动释放处理机后,选择优先级次高的进程,重复第2步。
4. 重复以上步骤,直到所有进程执行完毕。
五、时间片轮转调度算法时间片轮转调度算法是一种公平的调度算法,它将处理机分配给每个进程一个固定的时间片,当时间片用完后,将处理机分配给下一个进程。
时间片轮转调度算法的流程如下:1. 将所有进程按照到达时间的先后顺序排列。
2. 选择等待队列中的第一个进程,将处理机分配给它,并设置一个固定的时间片。
3. 当时间片用完后,将处理机分配给等待队列中的下一个进程,重复第2步。
操作系统时间片轮转算法

操作系统时间片轮转算法时间片轮转算法(Round-Robin Scheduling Algorithm)是一种常见的调度算法,用于多道程序设计中进程的分时调度。
该算法将所有就绪状态的进程按照一定顺序排列成一个队列,每个进程被分配一个时间片(时间片长度可以设定),在该时间片结束后,进程被暂停,然后被放回队列的末尾,让其他进程获得CPU执行权限。
时间片轮转算法的主要目的是为了实现公平地分配CPU时间。
时间片轮转算法的实现逻辑如下:1.将就绪态的进程按照到达时间的先后顺序排列成一个就绪队列。
2.初始化一个计时器,设定时间片的长度。
3.从就绪队列中选择第一个进程,将其设为运行状态,并开始计时。
4.当计时器到达时间片长度时,将当前正在运行的进程置为就绪状态,放回就绪队列的末尾。
5.从就绪队列中选择下一个进程,将其设为运行状态,并开始计时。
6.重复步骤4和步骤5,直到所有进程都执行完成。
时间片轮转算法的优点是实现简单、公平性好,但也有一些缺点:1.时间片的设置需要合理,过小可能导致进程切换频繁,降低了系统的吞吐量;过大可能导致响应时间过长,影响用户的体验。
2.如果一些进程的执行时间超过一个时间片的长度,该进程将会不断重新被放回队列尾部,导致该进程无法快速执行完成。
3.在高负载情况下,由于进程的切换开销较大,时间片轮转算法可能导致性能下降。
为了解决时间片轮转算法的一些缺点1.动态调整时间片长度:根据系统当前的负载情况,动态调整时间片的长度。
当系统负载较轻时,可以适当增加时间片的长度,以提高系统吞吐量;当系统负载较重时,可以适当减小时间片的长度,以提高响应速度。
2.抢占式调度:在时间片轮转算法的基础上,引入优先级的概念,当高优先级进程抵达时,可以抢占当前正在执行的低优先级进程,从而提高高优先级进程的执行速度。
3.多级反馈队列调度:将就绪队列按照优先级划分成多个队列,每个队列拥有不同的时间片长度。
当一个进程在一些队列中执行的时间超过了该队列的时间片长度时,将其移到下一个优先级队列中继续执行。
优先级加时间片轮转进程调度算法_概述及解释说明

优先级加时间片轮转进程调度算法概述及解释说明1. 引言1.1 概述本文旨在介绍优先级加时间片轮转进程调度算法。
进程调度是操作系统中的重要组成部分,它决定了多个进程之间的执行顺序和时间配比。
优先级调度算法和时间片轮转调度算法都是常用的进程调度算法,在不同场景下各具优缺点。
而结合这两种算法进行设计与实现,则能充分发挥它们的优势,提高系统的性能和效率。
1.2 文章结构本文将按照以下结构进行介绍:首先概述文章内容,明确文章重点和目标;然后详细讲解优先级调度算法,包括其定义、原理和实现方式;接着介绍时间片轮转调度算法,包括其定义、原理以及运行机制;随后探讨选择何种调度策略的问题;最后以设计思路与实现示例为基础,对结合优先级与时间片轮转调度算法进行分析,并进行性能评估和对比研究。
1.3 目的本文旨在深入探讨优先级加时间片轮转进程调度算法,阐明其背后的原理与机制,并通过实例演示说明如何设计与实现该算法。
此外,本文还将对该调度算法的优缺点进行分析,并提出进一步研究的方向和展望。
通过本文的阐述,读者能够全面了解并掌握优先级加时间片轮转进程调度算法的实现与应用。
2. 优先级调度算法:2.1 定义与原理:优先级调度算法是一种基于进程优先级的调度方法。
每个进程被赋予一个优先级,优先级越高的进程被认为是更重要的任务,应该在其他进程之前得到处理器资源。
该算法的原理是根据进程的优先级来确定调度顺序。
当有多个就绪状态的进程等待执行时,调度程序会选择具有最高优先级的进程执行。
如果两个或多个进程具有相同的优先级,则采用其他策略(如轮转或抢占)来选择将要运行的进程。
2.2 实现方式:实现这种调度算法可以采用不同的方法。
一种常见的方式是为每个进程分配一个固定的静态优先级,其值通常在范围内确定(比如0到255),其中较大的数字表示较高的优先级。
另一种方式是动态地根据某些因素为进程分配优先级,如当前执行时间、等待时间、紧迫性等。
在操作系统中,可以使用一个队列来存储就绪状态下各个进程,并按照它们的优先级进行排序。
优先级 时间片轮转调度算法

优先级调度算法和时间片轮转调度算法是两种不同的操作系统进程或任务调度算法。
下面我将分别解释这两种算法:
1. 优先级调度算法:
优先级调度算法是一种非抢占式的调度算法,在这种算法中,每个进程被赋予一个优先级,调度器总是选择优先级最高的进程来执行。
如果多个进程具有相同的优先级,则可以按照FCFS (先进先出)的方式进行调度。
这种算法的优点是简单且易于实现,但可能导致某些进程长时间得不到执行,因此公平性较差。
2. 时间片轮转调度算法:
时间片轮转调度算法是一种抢占式的调度算法,在这种算法中,每个进程被分配一个时间片,当进程在执行过程中用完时间片后,调度器将剥夺该进程的CPU并分配给下一个等待的进程。
如果一个进程在时间片用完之前阻塞或完成,调度器将进行特殊处理。
这种算法的优点是公平性较好,每个进程都有机会获得执行,但实现起来相对复杂。
优先级调度算法和时间片轮转调度算法各有优缺点,适用于不
同的场景。
在实际应用中,操作系统通常会根据具体需求选择适合的调度算法。
计算机操作系统算法总结

计算机操作系统算法总结一、引言计算机操作系统是现代计算机系统中的核心软件之一,它负责管理计算机硬件资源,提供各种服务和功能,使用户能够方便地使用计算机。
而操作系统算法则是操作系统中的关键部分,它决定了操作系统如何进行任务调度、资源分配和进程管理等重要操作。
本文将对常用的操作系统算法进行总结和介绍,以帮助读者更好地理解和应用这些算法。
二、进程调度算法1. 先来先服务(FCFS)算法先来先服务算法是最简单的调度算法之一,按照进程到达的顺序进行调度。
它的优点是公平,但存在“饥饿”问题,即长作业会导致短作业无法及时执行。
2. 最短作业优先(SJF)算法最短作业优先算法是根据作业执行时间的长短来进行调度,执行时间越短的作业优先级越高。
它的优点是能够最大限度地减少平均等待时间,但需要预先知道作业的执行时间。
3. 优先级调度算法优先级调度算法根据进程的优先级来进行调度,优先级越高的进程优先执行。
它可以根据不同的需求设置不同的优先级,但可能出现优先级反转问题,即低优先级进程长时间等待高优先级进程的释放。
4. 时间片轮转(RR)算法时间片轮转算法将CPU时间分成固定长度的时间片,每个进程轮流使用一个时间片。
当时间片用完时,进程被暂停并放入就绪队列的末尾,等待下一次调度。
它能够平衡长短作业的执行时间,但可能导致上下文切换频繁。
三、内存管理算法1. 首次适应(FF)算法首次适应算法是按照内存块的地址顺序搜索可用的内存块,找到第一个满足要求的内存块分配给作业。
它的优点是简单且效率较高,但可能导致内存碎片问题。
2. 最佳适应(BF)算法最佳适应算法是在所有可用内存块中选择最小的一个满足要求的内存块,以尽量减少内存碎片。
它的优点是能够充分利用内存空间,但搜索过程较为复杂。
3. 最近未使用(LRU)算法最近未使用算法是根据页面的使用情况来进行页面置换,最近未使用的页面优先被替换出去。
它的优点是能够尽量减少页面置换的次数,但需要记录页面的使用情况。
计算机操作系统的调度算法

计算机操作系统的调度算法随着计算机技术的飞速发展,操作系统扮演着越来越重要的角色。
操作系统是计算机软件的一部分,负责管理计算机的各种资源,其中之一就是进程的调度算法。
调度算法是操作系统中负责决定进程执行顺序的重要组成部分。
它可以根据某些策略和规则,合理分配计算机的处理器资源,提高系统的性能和效率。
下面将为大家介绍一些常见的计算机操作系统调度算法。
1. 先来先服务(FCFS)调度算法先来先服务是最简单、最直观的调度算法之一。
按照进程到达的顺序依次分配处理器资源,无论进程的优先级和需要执行的时间。
这种算法的优点是简单易实现,但是无法适应不同种类进程的需求,容易导致长作业的执行时间过长而影响其他进程的运行。
2. 短作业优先(SJF)调度算法短作业优先调度算法是根据进程的服务时间来进行排序,并按照时间最短的顺序分配处理器资源。
短作业优先算法可以减少平均等待时间,但会导致长作业饥饿,即长时间等待的作业无法得到执行。
3. 优先级调度算法优先级调度算法根据进程的优先级来分配处理器资源。
每个进程都有一个优先级,优先级高的进程先得到执行。
这种算法可以根据不同作业的需求进行灵活调度,但是可能导致优先级过高的进程占用过多的资源,影响其他进程的执行。
4. 时间片轮转调度算法时间片轮转是一种常见的多任务调度算法。
它将处理器的时间分成若干个时间片,每个进程在一个时间片内得到执行,然后切换到下一个进程。
时间片轮转算法可以保证公平性,每个进程都有机会得到执行,但是对于长时间的作业,可能会导致上下文切换的频繁,降低系统的效率。
5. 多级反馈队列调度算法多级反馈队列调度算法将进程按照优先级划分到不同的队列中,每个队列有不同的时间片大小。
进程按照优先级先执行高优先级队列中的作业,而低优先级的进程则进入下一个队列等待执行。
这种算法结合了优先级调度和时间片轮转调度的特点,可以有效平衡系统的性能和公平性。
6. 最短剩余时间(SRT)调度算法最短剩余时间调度算法是短作业优先调度算法的一种改进。
时间片轮转算法和优先级调度算法C语言模拟实现

时间片轮转算法和优先级调度算法C语言模拟实现时间片轮转算法(Round Robin Scheduling)和优先级调度算法(Priority Scheduling)是操作系统中常用的两种进程调度算法。
下面将分别对这两种算法进行C语言模拟实现,并进行详细解释。
```c#include <stdio.h>#include <stdbool.h>#define MAX_PROC_NUM 10#define TIME_QUANTUM 2typedef struct Processint pid; // 进程ID} Process;void roundRobinScheduling(Process processes[], intnum_processes)for (int i = 0; i < num_processes; i++)} else}}}}int maiProcess processes[MAX_PROC_NUM];int num_processes;printf("Enter the number of processes: "); scanf("%d", &num_processes);for (int i = 0; i < num_processes; i++)printf("Process %d: ", i+1);processes[i].pid = i+1;}roundRobinScheduling(processes, num_processes); return 0;```优先级调度算法模拟实现:```c#include <stdio.h>#include <stdbool.h>#define MAX_PROC_NUM 10typedef struct Processint pid; // 进程IDint priority; // 优先级} Process;void priorityScheduling(Process processes[], int num_processes)int highest_priority = 0;int highest_priority_index;highest_priority = -1;for (int i = 0; i < num_processes; i++)highest_priority = processes[i].priority;highest_priority_index = i;}}if (highest_priority == -1)continue;}} else}}int maiProcess processes[MAX_PROC_NUM];int num_processes;printf("Enter the number of processes: ");scanf("%d", &num_processes);for (int i = 0; i < num_processes; i++)printf("Process %d:\n", i+1);printf("Burst Time: ");printf("Priority: ");scanf("%d", &processes[i].priority);processes[i].pid = i+1;}priorityScheduling(processes, num_processes);return 0;```以上是时间片轮转算法和优先级调度算法的C语言模拟实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include "stdio.h"#include "stdlib.h"#include "string.h"typedef struct node{char name[10]; /*进程标识符*/int prio; /*进程优先数*/int round; /*进程时间轮转时间片*/int cputime; /*进程占用CPU时间*/int needtime; /*进程到完成还要的时间*/int count; /*计数器*/char state; /*进程的状态*/struct node *next; /*链指针*/}PCB;PCB *finish,*ready,*tail,*run; /*队列指针*/int N; /*进程数*//*将就绪队列中的第一个进程投入运行*/firstin(){run=ready; /*就绪队列头指针赋值给运行头指针*/run->state='R'; /*进程状态变为运行态*/ready=ready->next; /*就绪对列头指针后移到下一进程*/ }/*标题输出函数*/void prt1(char a)if(toupper(a)=='P') /*优先数法*/printf(" name cputime needtime priority state\n");elseprintf(" name cputime needtime count round state\n"); }/*进程PCB输出*/void prt2(char a,PCB *q){if(toupper(a)=='P') /*优先数法的输出*/printf(" %-10s%-10d%-10d%-10d %c\n",q->name,q->cputime,q->needtime,q->prio,q->state);else/*轮转法的输出*/printf(" %-10s%-10d%-10d%-10d%-10d %-c\n",q->name,q->cputime,q->needtime,q->count,q->round,q->state);}/*输出函数*/void prt(char algo){PCB *p;prt1(algo); /*输出标题*/if(run!=NULL) /*如果运行指针不空*/prt2(algo,run); /*输出当前正在运行的PCB*/p=ready; /*输出就绪队列PCB*/while(p!=NULL){prt2(algo,p);p=p->next;p=finish; /*输出完成队列的PCB*/ while(p!=NULL){prt2(algo,p);p=p->next;}p=ready;printf("就绪队列:");while(p!=NULL){printf("%s\t",p->name);p=p->next;}printf("\n");p=finish;printf("完成队列:");while(p!=NULL){printf("%s\t",p->name);p=p->next;}printf("\n");getch(); /*压任意键继续*/}/*优先数的插入算法*/{PCB *p1,*s,*r;int b;s=q; /*待插入的PCB指针*/p1=ready; /*就绪队列头指针*/r=p1; /*r做p1的前驱指针*/b=1;while((p1!=NULL)&&b) /*根据优先数确定插入位置*/ if(p1->prio>=s->prio){r=p1;p1=p1->next;}elseb=0;if(r!=p1) /*如果条件成立说明插入在r与p1之间*/ {r->next=s;s->next=p1;}else{s->next=p1; /*否则插入在就绪队列的头*/ready=s;}}/*轮转法插入函数*/{tail->next=p2; /*将新的PCB插入在当前就绪队列的尾*/tail=p2;p2->next=NULL;}/*优先数创建初始PCB信息*/void create1(char alg){PCB *p;int i,time;char na[10];ready=NULL; /*就绪队列头指针*/finish=NULL; /*完成队列头指针*/run=NULL; /*运行队列指针*/printf("Enter name and time of process\n"); /*输入进程标识和所需时间创建PCB*/ for(i=1;i<=N;i++){p=malloc(sizeof(PCB));scanf("%s",na);scanf("%d",&time);strcpy(p->name,na);p->cputime=0;p->needtime=time;p->state='W';p->prio=50-time;if(ready!=NULL) /*就绪队列不空调用插入函数插入*/insert1(p);else{p->next=ready; /*创建就绪队列的第一个PCB*/ready=p;}}// clrscr();system("CLS");printf(" output of priority:\n");printf("************************************************\n"); prt(alg); /*输出进程PCB信息*/run=ready; /*将就绪队列的第一个进程投入运行*/ready=ready->next;run->state='R';}/*轮转法创建进程PCB*/void create2(char alg){PCB *p;int i,time;char na[10];ready=NULL;finish=NULL;run=NULL;printf("Enter name and time of round process\n");for(i=1;i<=N;i++){p=malloc(sizeof(PCB));scanf("%s",na);scanf("%d",&time);strcpy(p->name,na);p->cputime=0;p->needtime=time;p->count=0; /*计数器*/p->state='W';p->round=2; /*时间片*/if(ready!=NULL)insert2(p);else{p->next=ready;ready=p;tail=p;}}//clrscr();system("CLS");printf(" output of round\n");printf("************************************************\n"); prt(alg); /*输出进程PCB信息*/run=ready; /*将就绪队列的第一个进程投入运行*/ready=ready->next;run->state='R';}/*优先数调度算法*/priority(char alg){while(run!=NULL) /*当运行队列不空时,有进程正在运行*/{run->cputime=run->cputime+1;run->needtime=run->needtime-1;run->prio=run->prio-3; /*每运行一次优先数降低3个单位*/if(run->needtime==0) /*如所需时间为0将其插入完成队列*/{run->next=finish;finish=run;run->state='F'; /*置状态为完成态*/run=NULL; /*运行队列头指针为空*/if(ready!=NULL) /*如就绪队列不空*/firstin(); /*将就绪对列的第一个进程投入运行*/}else /*没有运行完同时优先数不是最大,则将其变为就绪态插入到就绪队列*/ if((ready!=NULL)&&(run->prio<ready->prio)){run->state='W';insert1(run);firstin(); /*将就绪队列的第一个进程投入运行*/}prt(alg); /*输出进程PCB信息*/}}/*时间片轮转法*/roundrun(char alg){while(run!=NULL){run->cputime=run->cputime+1;run->needtime=run->needtime-1;run->count=run->count+1;if(run->needtime==0)/*运行完将其变为完成态,插入完成队列*/ {run->next=finish;finish=run;run->state='F';run=NULL;if(ready!=NULL)firstin(); /*就绪对列不空,将第一个进程投入运行*/}elseif(run->count==run->round) /*如果时间片到*/{run->count=0; /*计数器置0*/if(ready!=NULL) /*如就绪队列不空*/{run->state='W'; /*将进程插入到就绪队列中等待轮转*/insert2(run);firstin(); /*将就绪对列的第一个进程投入运行*/}}prt(alg); /*输出进程信息*/}}/*主函数*/main(){char algo; /*算法标记*///clrscr();system("CLS");printf("type the algorithm:P/R(priority/roundrobin)\n"); scanf("%c",&algo); /*输入字符确定算法*/printf("Enter process number\n");scanf("%d",&N); /*输入进程数*/if(algo=='P'||algo=='p'){create1(algo); /*优先数法*/priority(algo);}elseif(algo=='R'||algo=='r'){create2(algo); /*轮转法*/roundrun(algo);}}。