高耗能行业中低温余热发电技术
低温余热发电循环技术
低温余热发电循环技术一、低温余热发电低温余热发电技术是通过回收低于300~400℃的中低温的废蒸汽、烟气所含的低品位的热量来发电,它将低品位的或废弃的热能转化为高级能源——电能。
二、低温余热发电循环技术1、朗肯循环朗肯循环一般指蒸汽郎肯循环,适用于烟气高于350℃以上的余热。
在朗肯循环中,水在锅炉(或余热锅炉)中被加热,产生高温和高压蒸汽。
该蒸汽流过汽轮机时急剧膨胀后冷却至低温、低压的尾气,该汽轮机驱动一台发电机发出电力。
从汽轮机排出的尾气被具有环境温度的空气,或被来自冷却水池或冷却塔中的冷却水冷却成水。
凝结水接着被泵入锅炉重复上述过程。
这种简单的朗肯循环框图如图一所示。
朗肯循环电厂的效率较差,即使是容量最大、采用朗肯循环的最新型的燃煤电厂,一般来说其循环效率都超不过35%(目前国内亚临界参数燃煤电厂的循环效率已达38%,超临界和超超临界参数的燃煤电厂的循环效率分别可达40和43%左右),也就是说燃料燃烧产生的总热量中仅有35%被转换成了热能。
这65%的能量损失是由于一系列的原因造成的。
其中约15%的能量损失是由于燃料中的水分、炉墙的热辐射、排烟损失和自耗电所造成的。
朗肯循环是目前槽式太阳能热电站中广泛采用的动力循环模式, 用太阳热加热集热器中的导热油,经过换热产生蒸汽, 驱动汽轮机带动发电机发电代表性的电站有美国的SEGS 系列电站, 西班牙的Andaso l 系列电站等。
2、有机朗肯循环有机朗肯循环采用高分子量有机工质(如正戊烷), 相变温度低, 可以从温度较低的热源吸热, 并转化为电能。
主要优点是运行温度较低, 可以将槽式集热温度由390°降到304°,降低集热损失; 采用有机工质, 电站可以建在缺水的沙漠地区。
有机朗肯循环系统的主要缺点是循环效率低, 气温较高时比蒸汽循环低15% ~ 25% ,同时成本较高。
3、卡琳娜循环卡琳娜循环系统适合中低温余热利用,是实现200℃以下热电转换最有效的途径。
2024年中低温余热发电市场环境分析
2024年中低温余热发电市场环境分析引言中低温余热发电是利用工业生产中产生的中低温余热能转化为电能的一种技术。
随着能源需求的不断增长和环境保护意识的提高,中低温余热发电市场正在逐渐崛起。
本文将对中低温余热发电市场的环境进行分析,包括市场规模、发展趋势、政策支持等方面,并提出相关的建议。
市场规模中低温余热发电市场具有巨大的潜力。
根据市场调研公司的数据显示,目前全球中低温余热发电市场规模已经超过10亿美元,并且预计在未来几年将以每年10%的增长速度增长。
其中,亚洲地区是中低温余热发电市场的主要发展区域,占据了全球市场的50%以上。
国内市场也在迅速发展,预计未来几年内将成为全球中低温余热发电市场的主要增长引擎。
发展趋势目前,中低温余热发电技术正在不断创新和完善。
传统的中低温余热发电技术主要包括有机朗肯循环和卡诺循环等,但面临着效率低、成本高等问题。
近年来,新型的中低温余热发电技术逐渐兴起,如热力蓄能系统、海水淡化和余热联供等技术。
新技术的应用使得中低温余热发电的效率提高,成本降低,进一步推动了市场的发展。
另外,与传统发电方式相比,中低温余热发电具有环保、清洁的特点,符合现代社会对能源可持续发展的要求。
政府的环保政策的制定和实施,将进一步促进中低温余热发电市场的发展。
政策支持为了推动中低温余热发电市场的发展,各国政府都出台了一系列的政策支持措施。
首先是财政方面的支持,包括对中低温余热发电项目的补贴、税收减免等。
其次是市场准入方面的支持,加快中低温余热发电项目的审批和建设进程。
同时,政府还加强了对中低温余热发电技术的研发支持,鼓励企业进行创新和技术改进。
建议在中低温余热发电市场发展的过程中,以下几个方面值得注意:1.加大科研力度:继续加大对中低温余热发电技术的研发投入,推动技术的创新和突破,提高发电效率,降低成本。
2.完善政策支持:政府可以通过制定更具针对性的政策和措施,进一步促进中低温余热发电市场的发展。
低温余热综合利用的节能技术改造措施
低温余热综合利用的节能技术改造措施低温余热是指工业生产过程中产生的温度低于环境温度的废热,利用好低温余热能够有效节约能源和降低二氧化碳排放。
下面介绍几种低温余热综合利用的节能技术改造措施。
1.余热回收技术余热回收技术是指通过烟气余热回收装置将工业生产过程中产生的废热重新回收利用。
该技术常见的有换热器和烟气余热回收器。
通过在工业生产过程中设置换热装置,将废热回收利用于供暖、供热水和蒸汽生产等方面,实现能量的高效利用。
2.余热蓄能技术余热蓄能技术是指将工业生产过程中产生的低温废热储存起来,在需要的时候进行释放利用。
常用的低温余热蓄能技术包括热蓄能罐、热蓄能砖块等。
通过将低温余热储存起来,在需要热能的时候释放出来,可以减少由于废热产生不稳定造成的能源浪费。
3.废热发电技术废热发电技术是指通过废热产生的蒸汽驱动发电机发电。
工业生产中产生的低温废热可以通过热交换技术升温至适宜发电的温度,然后驱动发电机发电。
废热发电技术可以将工业生产中产生的废热转化为电能,实现能源的高效利用。
4.余热供暖技术余热供暖技术是指将工业生产过程中产生的低温余热利用于供暖。
通过在工业生产系统中设置余热回收装置,将废热回收利用于供暖系统中,可以实现供暖能源的节约和环境污染的减少。
5.余热回收利用监控系统余热回收利用监控系统是指通过传感器、控制器等设备实时监测和控制低温余热的回收利用情况。
通过对余热回收利用情况进行监测和调控,可以实现余热的高效利用,提高能源利用效率。
综上所述,低温余热综合利用的节能技术改造措施包括余热回收技术、余热蓄能技术、废热发电技术、余热供暖技术和余热回收利用监控系统等。
利用这些技术改造措施可以实现低温余热能的高效利用,提高能源利用效率,减少能源浪费和环境污染。
2023年中低温余热发电行业市场分析现状
2023年中低温余热发电行业市场分析现状中低温余热发电是指利用工业生产过程中的中低温废热来发电,从而提高能源利用效率的一种技术。
近年来,随着人们对于能源的需求日益增加,中低温余热发电也逐渐被重视和应用。
本文将对中低温余热发电行业的市场分析现状进行详细介绍。
一、市场的发展概况中低温余热发电技术在我国起步较晚,但近年来得到了快速发展。
行业市场主要集中在工业领域,如钢铁、水泥、化工等行业,这些行业的工艺流程中产生的中低温余热资源较为丰富。
此外,餐饮业、住宅小区等领域也存在一定的中低温余热资源。
目前我国中低温余热发电装机容量超过1000万千瓦,年发电量超过500亿千瓦时。
二、市场的发展动力1. 节能减排政策的支持我国一直致力于节能减排工作,中低温余热发电作为一种高效利用能源的新技术,得到了政府的积极支持和鼓励。
相关政策的推进和实施,为中低温余热发电行业的发展提供了持续的动力。
2. 可再生能源发展需求中低温余热发电技术与传统能源的发电方式相比,具有更低的碳排放和环境污染。
在全球温室气体减排压力加大的背景下,中低温余热发电作为一种清洁能源形式将得到更广泛的应用,满足可再生能源发展的需求。
三、市场存在的问题1. 技术难题尚未解决中低温余热发电技术相对成熟,但仍存在一些关键技术难题有待解决,如热能转换效率低、设备运行稳定性不高等问题,这些问题限制了行业的发展。
2. 市场认知度不高目前,中低温余热发电技术在一些行业和地区的认知度相对较低,很多企业对于该技术的了解和应用仍不足。
这也导致了市场规模的扩大受到一定的限制。
四、市场发展趋势1. 技术进步和创新中低温余热发电技术在不断进步和创新,新的材料和设备正在不断应用于生产实践中,以提高能源转换效率和降低生产成本。
随着技术的进一步成熟,中低温余热发电行业将迎来更广阔的发展空间。
2. 市场规模的不断扩大随着中低温余热发电技术的应用推广和认知度的提高,中低温余热发电市场规模将逐渐扩大。
2024年中低温余热发电市场发展现状
2024年中低温余热发电市场发展现状简介中低温余热发电是一种利用工业过程产生的中低温余热能进行发电的技术。
这项技术可以有效地提高能源利用效率,减少环境污染,具有良好的可持续性和经济性。
本文将对中低温余热发电市场的发展现状进行探讨。
发展背景随着全球能源需求的增长和对环境污染的关注,提高能源利用效率和减少环境污染已成为各国政府和企业的重要目标。
中低温余热发电技术正是为了实现这一目标而应运而生的。
它可以利用工业生产中产生的中低温余热能,将其转化为电能,从而实现能源的再利用,减少温室气体的排放。
市场规模及发展趋势中低温余热发电市场在过去几年中取得了快速的发展。
根据市场研究机构的数据显示,2019年全球中低温余热发电市场规模达到xx亿美元,并预计在未来几年内将保持较高的增长率。
这一市场的发展得益于以下几个因素的推动:1.政策支持:各国政府纷纷制定了相关政策和法规,鼓励企业采用中低温余热发电技术。
政府的支持和补贴措施为中低温余热发电市场提供了重要的动力。
2.节能减排需求:随着环境意识的普及,企业对节能减排的需求更加迫切。
中低温余热发电技术正是为了满足这一需求而出现的,它可以有效地减少碳排放,降低企业的运营成本。
3.技术进步:随着科技的不断进步,中低温余热发电技术的效率和可靠性得到了显著提高。
新型的发电设备和材料的不断研发,使得中低温余热发电技术具备了更广阔的应用前景。
市场发展环境及挑战中低温余热发电市场虽然发展迅速,但仍面临一些挑战和限制因素:1.技术成熟度:中低温余热发电技术相对于传统的发电技术还比较新颖,其技术成熟度相对较低。
需要进一步加大研发投入,提高技术水平,降低设备成本,以增加市场的竞争力。
2.行业标准化:中低温余热发电行业缺乏统一的标准和规范,这给市场的发展带来了一定的不确定性。
需要加强行业间的合作与交流,加快标准化进程,促进市场的规范化发展。
3.市场竞争:中低温余热发电市场的竞争愈发激烈,各个厂商纷纷进军该领域。
提高纯低温余热发电量的措施
提高纯低温余热发电量的措施提高纯低温余热发电量的措施主要包括以下几个方面:
1.热力循环技术。
通过采用热力循环技术,将低温余热从低温热源中提取出来,进而将其转化为高温热源。
这样就能够提高低温余热的利用效率,从而增加了发电的能力。
2.使用高效换热设备。
高效的换热设备可以显著提高低温余热的传热系数,进而提高余热的利用率。
这样就能够将低温余热转化为可用能源,从而增加发电的能力。
3.利用纳米材料降低热损失。
通过使用纳米材料来降低热量的散失,从而提高低温余热的利用效率。
纳米材料的热传导率比常规材料高得多,可以有效地提高热能的转化效率。
4.使用废热回收系统。
废热回收系统可以将产生的热量再次利用,从而提高能源的利用效率。
废热回收系统一般都设置在冷却系统之前,以尽可能多地回收废热。
5.热电联产技术。
热电联产技术可以充分利用余热,实现能源的高效利用。
热电联产系统一般由发电机组、热交换器、锅炉、蒸汽轮机等组成。
这些设备可以将余热转化为热能和电能,从而提高能源的利用效率。
综上所述,提高纯低温余热发电量的措施主要包括提高低温余热的利用效率、使用高效换热设备、利用纳米材料降低热损失、使用废
热回收系统和热电联产技术等。
这些措施可以有效地提高能源的利用效率,实现低温余热的高效利用。
水泥厂中低温纯余热发电技术及其应用
水泥厂中低温纯余热发电技术及其应用水泥生产过程中,会产生大量的热能,其中包括高温热能和低温热能。
高温热能可以用于熟料烧成和余热发电等领域,而低温热能则一般会直接
排放到大气中,造成了能源的浪费和环境的污染。
针对水泥厂低温热能的利用问题,近年来出现了一种新的技术——低
温纯余热发电技术。
该技术利用温差生成电能,可以将水泥厂低温废热转
化为电能,从而实现能源的再利用。
该技术的原理是利用温差发电模块,将低温废热转化为电能。
一般来说,该技术需要在50℃以下的低温环境下才能工作。
通过将低温废热与
环境温度形成温差,可以驱动热电材料中的电子流动,产生电压和电流。
该技术在水泥厂中的应用,可以解决低温废热无法利用的问题,提高
能源利用效率。
同时,还可以减少水泥生产对环境的影响,促进可持续发展。
需要注意的是,低温纯余热发电技术在应用中要考虑到设备的成本和
维护成本,以及与水泥生产过程的配合问题。
只有在成本和效益相协调的
情况下,才能更好地推广和普及该技术。
火力发电厂烟气低温余热利用技术
火力发电厂烟气低温余热利用技术火力发电厂烟气低温余热利用技术1. 简介火力发电厂是一种利用燃煤、燃油或天然气等化石燃料燃烧产生高温烟气,通过锅炉转化为蒸汽,最终驱动汽轮发电机发电的设备。
在这个过程中,发电厂往往会产生大量的废热,其中包括烟气中的低温余热。
如何有效利用这些低温余热成为了一项重要的技术挑战和发展方向。
2. 烟气低温余热的特点和现状烟气低温余热一般指的是温度在150℃以下的废热,由于温度较低,传统的蒸汽循环发电技术无法高效利用。
在很长时间内,烟气低温余热往往被直接排放或仅仅用于供热等低效能领域,导致能源的浪费和环境的污染。
3. 烟气低温余热利用技术的发展随着能源需求的增长和环境保护的要求,烟气低温余热利用技术得到了广泛关注和研发。
目前,有以下几种常见的烟气低温余热利用技术:3.1 烟气余热锅炉烟气余热锅炉是将烟气中的低温余热通过锅炉进行回收,产生高温高压蒸汽用于发电或供热。
利用烟气余热锅炉可以将废热转化为有用热能的同时减少对燃料的需求,实现能源和环保的双重效益。
3.2 烟气余热汽轮发电烟气余热汽轮发电是利用烟气中的低温余热直接驱动汽轮机发电。
相比于烟气余热锅炉,这种技术更加高效,能够直接将低温余热转化为动力能源,提高能源利用效率。
3.3 烟气废热换热器烟气废热换热器是在烟气管道中设置换热器,通过与其他介质的热交换,将烟气中的余热传递给其他工艺流体,如空气、水等。
这种技术可以将烟气中的低温余热有效利用,并用于加热或提供热水、热风等需求。
4. 烟气低温余热利用技术的优势和应用烟气低温余热利用技术具有以下几个优点:4.1 节能减排:有效利用废热可以减少对化石燃料的需求,降低能源消耗,减少二氧化碳等温室气体的排放。
4.2 综合利用:烟气低温余热可用于发电、供热、工业生产等多个领域,实现能源的综合利用和优化配置。
4.3 环境友好:废热的充分利用有助于减少大气污染物的排放,改善环境质量。
烟气低温余热利用技术的应用非常广泛,包括钢铁、化工、建材、石油等行业,以及供热和发电领域。
纯低温余热发电技术
Page 23
b、窑尾预热器方面,最重要的改变是利用G级预 热器内筒设置过热器,利用450-600℃废气产生过 热蒸汽。在蒸汽参数达到预定目标时,G级预热 器进口废气温度仅降低20-25℃,这种变化是水泥 生产所允许的变化范围。
c、为了提高窑头熟料冷却机废气余热回收率,窑头 熟料冷却机冷却风采用循环风方式,即将窑头AQC 炉出口废气部分或全部返回冷却机。
Page 13
Page 14
双压技术是根据水泥窑废气余热的品位的 不同, 余热锅炉分别生产较高压力和较低压力 的两路蒸汽。较高压力的蒸汽作为主蒸汽进入 汽轮机主进汽口推动汽轮机转动作功发电。余 热锅炉生产出较高压力的蒸汽后, 烟气温度降 低, 余热品位下降,那么根据低温烟气的品位, 再生产较低压力的低压进汽, 进入汽轮机的低 压进汽口, 辅助主蒸汽一起推动汽轮机作功发 电。
4、发电机,国内采用空冷式发电机;国外 也是。
Page 22
第二代纯低温余热发电技术
采用的重要技术措施有: a、窑头熟料冷却机方面,改变抽取窑头熟料冷 却机废气方式:多阶段抽取废气,使能量实现梯 级利用。即在冷却机进料端设置一抽取400-600℃ 抽废气口,作为过热器热源,产生过热蒸汽;冷 却机中部设置抽取260-360℃废气的抽废气口,作 为窑头AQC锅炉热源.产生饱和蒸汽,并产生0.10.5MP的饱和低压低温蒸汽和85-200℃热水。
低温余热回收有机朗肯循环技术
低温余热回收有机朗肯循环技术摘要:低温余热广泛存在于高耗能行业中,有机朗肯循环(ORC)利用低温余热发电技术具有众多优势,国内外的许多学者展开了各方面的研究工作,使该技术在工业余热、地热等领域商业化成功。
在采用有机朗肯循环(ORC)发电技术时要充分考虑项目的经济效益,而不能一味地考虑余热的回收效率。
关键词:低温余热有机朗肯循环余热回收经济性分析能源是人类社会生存发展的重要物质基础,攸关国计民生和国家战略竞争力。
“节能减排”是我国可持续发展的一项长远发展战略,也是我国的重要基本国策,随着工业化、城镇化进程加快和消费结构持续升级,我国能源需求刚性增长,资源环境问题仍是制约我国经济社会发展的瓶颈之一,节能减排依然形势严峻、任务艰巨[1]。
加大节能减排设备的研发,即减少能源浪费和环境污染,将创造巨大的经济效益和社会效益。
工业低温余热广泛存在于电力、钢铁、有色金属、建材、石油、化工、煤炭等高耗能行业中,据工信部统计,目前,在七大高耗能行业中余热总资源量约3.5亿吨标煤,其中200℃以下的低品位余热资源约占总余热资源的54%左右,如果将此余热资源加以转换,将可实现约1840万KW的装机规模。
有机朗肯循环(ORC)发电原理有机朗肯循环(ORC)发电系统和传统的朗肯循环发电系统原理相同,区别在于有机朗肯循环采用低沸点的有机工质作为循环工质,最大限度的回收余热资源。
有机朗肯循环(ORC)发电系统主要设备包括:换热器(蒸发器和冷凝器),低沸点工质透平压缩机,膨胀机和发电机等(如图1所示)。
图1 有机朗肯循环(ORC)发电系统图有机朗肯循环(ORC)发电系统主要包括以下4个过程。
:(1)低温低压液体有机工质通过工质泵升压后进入蒸发器中(1-2过程),有机工质泵做功:式中:m——有机工质质量流量(Kg/s)h1——工质泵入口有机工质焓值(KJ/Kg)h2——工质泵出口有机工质焓值(KJ/Kg)——工质泵出口等熵工质焓值(KJ/Kg)——工质泵效率(2)高压低温有机工质进入蒸发器后,被高温流体加热,变成高温高压蒸汽(2-3-4过程),有机工质吸热量为:式中:——蒸发器入口工质焓值(KJ/Kg)——蒸发器出口工质焓值(KJ/Kg)(3)高温高压蒸汽进入膨胀机做功,膨胀机进而拖动发电机发电(4-5过程),膨胀做功量为:式中:——膨胀机入口工质焓值(KJ/Kg)——膨胀机出口工质焓值(KJ/Kg)——膨胀机等熵膨胀效率(4)膨胀后的低压低温蒸汽进入冷凝器,和循环冷却水进行换热,冷却成低温低压液体有机工质,完成整个循环(5-6-1过程)。
火力发电厂低温余热利用技术探讨
火力发电厂低温余热利用技术探讨火力发电厂是一种利用化石燃料或生物质燃料进行燃烧的发电设施,通过高温产生的蒸汽驱动涡轮发电机发电。
然而,在火力发电过程中,也会产生大量的低温余热,如果不能有效地利用这些余热资源,将会导致能源的浪费和环境的污染。
火力发电厂低温余热利用技术的研究和应用具有重要的意义。
一、火力发电厂低温余热利用技术的背景和意义(100字)火力发电厂的运行离不开燃烧产生的高温蒸汽,而蒸汽在产生动力的也会产生大量的低温余热。
这些低温余热如果不能有效地利用起来,将会造成能源的浪费,同时排放对环境造成污染。
开发和应用低温余热利用技术有助于提高能源利用效率,减少对环境的影响,保护生态环境,符合可持续发展的要求。
二、火力发电厂低温余热的概念和来源(200字)火力发电厂低温余热是指在发电过程中产生的温度较低的废热,主要来源包括以下几个方面:1. 排放烟气:燃烧过程中,烟气中含有大量的热量,通常在排烟后温度仍然较高。
2. 循环冷却水:在火力发电厂中,冷却水被用于冷却燃气和鼓风机,冷却过后的水温相对较低,可以用于余热回收。
3. 辅助系统:火力发电厂还有许多辅助设备,如汽轮机的辅助供汽系统、汽轮机凝汽器等,这些系统产生的废热也可以进行利用。
三、火力发电厂低温余热利用技术的分类(200字)火力发电厂低温余热利用技术可以按照废热的温度和利用方式进行分类:1. 低温余热利用:适用于废热温度较低的场景,如排烟余热利用、冷却水余热利用等。
利用方式主要包括热水供暖、空调制冷、工业用热等。
2. 中温余热利用:适用于废热温度较中等的场景,如锅炉烟气余热利用、汽轮机凝汽器余热利用等。
利用方式主要包括蒸汽发生、供热、供电等。
3. 高温余热利用:适用于废热温度较高的场景,如锅炉过热器余热利用、汽轮机再热器余热利用等。
利用方式主要包括供电、制冷等。
四、火力发电厂低温余热利用技术的应用案例(400字)1. 冷却水余热利用:火力发电厂中,循环冷却水在冷却燃气和鼓风机过程中,温度会下降到相对较低的水平。
低温余热利用技术
低温余热利用技术低温余热是指工业生产过程中产生的温度较低的废热。
传统上,这些废热往往被直接排放到大气中,造成能源的浪费和环境的污染。
然而,随着能源资源的日益紧缺和环境保护意识的增强,低温余热利用技术成为了一种重要的能源节约和环境保护手段。
低温余热利用技术的应用范围非常广泛,涵盖了工业、建筑、交通运输等多个领域。
下面将重点介绍几种常见的低温余热利用技术。
1. 热泵技术热泵技术是一种能将低温热能转化为高温热能的技术。
通过利用热泵循环原理,将低温余热中的热能提取出来,并通过压缩制冷剂的方式转化为高温热能。
这种技术可以广泛应用于供暖、制冷、热水供应等领域,可显著提高能源利用效率。
2. 有机朗肯循环技术有机朗肯循环技术是一种利用低温热能发电的技术。
该技术利用有机朗肯循环工质在低温下的膨胀特性,将低温余热转化为机械能,进而驱动发电机发电。
相较于传统的蒸汽朗肯循环,有机朗肯循环技术在低温条件下具有更高的热效率和更广泛的应用范围。
3. 低温余热供暖技术低温余热供暖技术是一种将低温余热直接利用于供暖的技术。
通过将低温余热与传统供暖系统相结合,可以显著提高供暖效果并降低能源消耗。
这种技术尤其适用于工业企业和大型建筑物,如钢铁厂、化工厂和商业中心等。
4. 低温余热利用于制冷技术低温余热利用于制冷技术是一种将低温余热用于制冷的技术。
通过将低温余热与吸收式制冷系统相结合,可以实现废热的回收利用,并达到节能减排的目的。
这种技术在冷库、制冷车辆等领域有着广泛的应用前景。
5. 低温余热利用于热水供应技术低温余热利用于热水供应技术是一种将低温余热用于供应热水的技术。
通过将低温余热与热水系统相结合,可以实现热水的供应,并降低能源的消耗。
这种技术在酒店、浴室、游泳馆等场所有着广泛的应用前景。
低温余热利用技术是一种重要的能源节约和环境保护手段。
通过热泵技术、有机朗肯循环技术、低温余热供暖技术、低温余热利用于制冷技术以及低温余热利用于热水供应技术等多种技术手段的应用,可以有效地利用低温余热,提高能源利用效率,减少环境污染,实现可持续发展。
火力发电厂烟气低温余热利用技术
火力发电厂烟气低温余热利用技术火力发电厂是一种重要的能源供应方式,但同时也会产生大量的烟气,其中含有大量的热能。
火力发电厂烟气低温余热利用技术的研究和应用,正是为了充分利用这种能源,减少能源浪费,提高能源利用率。
一般来说,火力发电厂的烟气温度在150℃左右,也有的可能会高达300℃以上。
在烟气经过锅炉后,经过一系列的处理和净化,可以使得其中的有害物质和尘埃等物质得到净化。
然而,烟气中的热能仍然被浪费,大量散失到大气中,同时也导致温室气体排放量增加。
利用工程技术手段来捕捉烟气中的热能,成为节能减排的重要途径之一。
火力发电厂烟气低温余热利用技术有很多种方法,常见的有烟气余热锅炉、烟气余热换热器以及燃烧器改造等。
其中,烟气余热锅炉是将烟气中的热能直接传递给水级蒸汽,产生热水或蒸汽,用于供暖或发电。
烟气余热换热器是通过换热器将烟气中的热能传递给发电厂中的介质,既可以为厂内其它工艺供能,也可以卖给其它企业。
而燃烧器改造则是通过对锅炉燃烧器的改进,将烧掉燃料的烟气余热回收出来,用于压缩空气、发电等。
火力发电厂烟气低温余热利用技术的应用,既可以减少对环境的影响,也可以为企业带来经济效益。
通过使用这些技术,不仅能够节能减排,降低运行成本,还能够提高企业的环保形象和市场竞争力。
此外,这些技术还可以促进绿色能源的发展,减少对传统能源的依赖,提高能源的利用效率。
在现代社会,环保已经成为了必须要考虑的问题,而节能减排的技术则是助推环保的重要因素之一。
火力发电厂烟气低温余热利用技术的研究和应用,是一项非常重要的任务,它不仅可以为我们的生活环境保护做出贡献,还能为企业的可持续发展做出积极的贡献。
我们应该积极鼓励和推广这些技术,实现节能减排和环境保护的双赢。
ORC低温余热发电技术专题汇报
国务院节能减排“十二五”规划,钢铁、水泥、玻璃、合成氨、烧碱、电石、 硫酸七个工业行业到“十二五”末,到2015年新增余热余压发电能力2000万 千瓦,“十二五”时期形成5700万吨标准煤的节能能力。
三、华航盛世ORC技术
四、ORC低温发电技术的应用
五、华航盛世服务承诺
服务内容
根据客户需求,华航盛世可提供: 工艺节能性分析 余热回收利用综合解决方案 ORC低温余热发电装置 系统设计、设备采购、工程实施等 项目总包
节能减排意义
利国利民 低碳生活 互利多赢 新能源、新思维、展现新价值
总余热28.02×105Kcal/h。经分析,可形成冷热电梯级利用的综合解 决方案。
化工热水余热综合利用解决方案
方案优点
余热梯级利用,能源利用率可达98%:高品位 热用于发电,中品位热用于制冷,低品位热用 于供暖/工艺预热; 系统控制较灵活,发电系统、制冷系统、供热 系统之间热负荷可调节;
节能分析(一般性)
一套250KW ORC系统的发电收益 名称 数值 单位
运行小时数
净发电量 电价 年发电收益 初投资 回报期 节约标准煤 减少CO2 排放量
8000
250 0.68 136 400 2.94 800 2000
小时
KW 元/KWH 万元 万元 年 吨/年 吨/年
一、国家相关政策及低温发电系统研发背景
各系统可根据资源情况以及用户情况灵活搭配。
可降低冷却能耗。
高耗能设备的余热发电
多数高耗能设备均伴随着大量余热的放散,有些 可用于ORC发电: 各种锅炉、炉窑(排烟) 燃气轮机(排气) 大型压缩机
科技成果——中低温废热高效利用发电、供暖技术
科技成果——中低温废热高效利用发电/供暖技术技术开发单位北京大学
成果简介
利用自然流体工质的特殊流动及传热特点,在特定的温度范围内可以有效地吸收废热,并有效地发电;离开发电机组后的这类自然性功能性流体的温度还较高,可以进一步为用户提供热水及实现供暖等。
该技术可以有效利用200℃以下的中低温废热,进行发电以及供暖等。
应用范围
可以利用工业、民生等处产生的各种中低温废热发电以及供暖等,满足不同用户的需求。
技术优势
一般来说,200℃以下的废热难于利用来发电。
本发电技术的热力学循环中利用CO2或者氨等天然性流体工质,非常环保,对环境不会造成污染。
同时可以有效地实现发电,发电效率在4-15%之间,除了发电之外,还可以向用户供暖以及热水等。
技术水平国际先进水平
项目所处阶段在研阶段
市场前景
工业/民生中存在许多废热,特别是存在大量的中低温废热,而这部分废热基本上没有得到有效合理的利用。
该技术代表着一种先进环保的废热发电/供暖技术,可以为企业,为地区,为城市创造良好
的社会经济效益,预测其市场的潜力巨大。
合作方式
联合开发、技术转让,技术转让费500万元。
火力发电厂低温循环水余热利用工程技术规程
火力发电厂低温循环水余热利用工程技术规程一、概述火力发电厂是目前世界上主要的电力发电方式之一,但是在发电过程中会产生大量的余热。
为了充分利用这些余热资源,提高发电效率,降低能源消耗,低温循环水余热利用工程技术规程应运而生。
本文针对低温循环水余热利用工程技术进行全面分析和规范,以期为相关技术人员提供参考。
二、低温循环水余热利用工程概述1. 余热资源概述火力发电厂在电力发电过程中,会有大量的低温余热产生,主要来自于冷凝水和冷却水。
这些低温余热若能有效利用,可减少燃料消耗,提高发电效率。
2. 余热利用方式低温循环水余热可通过多种方式进行利用,如供暖、制冷、热水供应等,其中最常见的方式是通过余热锅炉将余热转化为蒸汽,用于发电厂的自身供电。
三、低温循环水余热利用工程技术规程1. 技术规范低温循环水余热利用工程技术规程应包括余热资源测算、利用设备选型、系统设计参数等方面的规定,以保证余热利用工程的安全、高效运行。
2. 设备选型针对不同的余热利用需求,应选择适当的余热利用设备,如余热锅炉、换热器等。
在选型过程中应考虑设备的整体性能、能耗、维护便捷性等因素。
3. 设计参数在低温循环水余热利用工程设计中,应合理确定余热利用系统的参数,如蒸汽压力、温度、循环水流量等,以确保余热利用系统的稳定可靠运行。
四、低温循环水余热利用工程技术应用案例1. 案例一:某火力发电厂余热锅炉改造项目某火力发电厂通过余热锅炉将低温循环水余热转化为蒸汽,实现了自身供电,年节约燃料消耗达到10以上。
2. 案例二:某地区火力发电厂余热供暖项目某地区火力发电厂将低温循环水余热利用于供暖,为周边居民提供了稳定、高效的供热服务,得到了当地居民的一致好评。
五、结论低温循环水余热利用工程技术规程对于提高火力发电厂发电效率,降低能源消耗,具有重要的意义。
通过合理规划和利用余热资源,可以实现节能减排,为可持续发展做出贡献。
希望本文对相关技术人员能够有所启发,不断改进和完善低温循环水余热利用工程技术规程,推动能源利用及环保工作取得更大成就。
ORC低温余热发电技术专题汇报
ORC低温余热发电技术专题汇报ORC(Organic Rankine Cycle)低温余热发电技术是一种利用低温热源进行发电的技术,能够充分利用工业生产中的低温余热,提高能源利用效率。
本文将从原理、应用、优势和发展前景等方面对ORC低温余热发电技术进行专题汇报。
一、原理ORC低温余热发电技术基于Rankine循环原理,利用有机工质来代替水蒸汽作为工作流体。
通过将余热传输到有机工质中,有机工质在低温下蒸发产生高压蒸汽,然后驱动涡轮发电机产生电能。
相较于传统的蒸汽发电技术,ORC低温余热发电技术可以适应更低的温度条件,使得低温热源也能得到充分利用。
二、应用ORC低温余热发电技术适用于多种工业领域,如钢铁、化工、纺织、石化等。
这些行业中常常产生大量的低温余热,利用ORC技术能够将这些余热转化为有用的电能,实现能量的再利用。
同时,ORC技术还可以应用在农业领域,如养殖场、温室大棚等地方,充分发挥余热利用的潜力。
三、优势1.适应性强:ORC技术适用于各种不同的余热温度,包括100℃以下的低温余热。
这使得它具有广泛的应用前景。
2.环保节能:ORC技术可以将废热转化为电能,减少对外部能源的需求,降低碳排放。
同时,该技术不会产生异味和噪音,对环境友好。
3.综合利用:除了发电,ORC技术还能够产生蒸汽、热水等其他形式的热能,可以满足工业生产的多重需求。
4.经济效益高:通过利用低温余热产生电能,可以降低企业的能源成本,提高生产效率,带来可观的经济效益。
四、发展前景随着节能减排和可再生能源发展的重要性日益凸显,ORC低温余热发电技术具有广阔的发展前景。
首先,国家政策的支持将推动该技术的大规模应用。
其次,随着技术的不断进步和成本的降低,ORC技术将更具吸引力,并有望在更多的行业得到推广。
此外,不断创新的有机工质和设备将进一步提高ORC技术的发电效率和适应性,促进其在低温余热转化领域的应用。
总结:ORC低温余热发电技术是一项能够充分利用工业生产中的低温余热的技术,具有广泛的应用前景。
低温余热发电技术简介PPT课件
358 453 162
345 458 147
398 496 232
100
0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77
Flue Temp.℃ Avg. ℃
℃
数据 空气 78 21 1
铁矿石烧结熟料 3 100
150,000 368
低温余热的基本概念
Consideration
Sintering Machine
低温余热的基本概念
Consideration
EAF
900
842
800
696
708
700
622
626
630
600
500 400 300
200152
Time min
烟气热焓图
低温余热的基本概念
Consideration
EAF
3,000
2,500
2,000
Steam Load / KW
1,500
1,000
500
-500
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Consideration
Converter
Converter Information
Converter Number 1 2 3 3 Subtital
Capacity t/Cycle
120 120 120 120 480
低温余热发电(ORC)技术
低温余热发电(ORC)技术一、低温余热发电概述目前世界各国都非常重视能源的有效利用,一些发达国家能源利用率都在50%以上,美国的能源利用率已超过60%,而我国只有30%左右。
我国能源利用率低的一个重要原因就是低温余热能源没有得到充分利用。
低温热源泛指温度小于250℃但大于80℃的热源,包括工业过程废热、太阳能、海洋温差、地热等。
在工业领域中,一般低温余热指的是200℃以下的工业生产过程产生的余热气、冷凝水、热水; 150℃以下的气体以及锅炉、工业加热炉的排烟气等热量。
由于这部分余热其品位较低,回收系统初期投资大,回收期长,因此,在相当长的一段时间里低温余热资源都没有引起足够的重视。
低温余热发电是通过回收钢铁、水泥、石化等行业生产过程中排放的中低温废烟气、蒸汽、热水等所含的低品位热量来发电,是一项变废为宝的高效节能技术。
该技术利用余热而不直接消耗能源,不仅不对环境产生任何破坏和污染,反而有助于降低和减少余热直接排向空中所引起的对环境的污染。
由于低温余热发电大部分利用的是温度小于150℃的热源,此时传统的以水(蒸汽)为循环工质的发电系统由于产生的蒸汽压力低,导致发电效率较低,无法产生经济效益。
在低温余热发电中多采用有机工质(如R123、R245fa、R152a、氯乙烷、丙烷、正丁烷、异丁烷等)作为循环工质。
由于有机工质在较低的温度下就能气化产生较高的压力,推动涡轮机(透平机)做功,故有机工质循环发电系统可以在烟气温度200℃左右,水温在80℃左右实现有利用价值的发电。
二、 ORC发电原理及流程有机朗肯循环(Organic Rankine Cycle,简称ORC)是以低沸点有机物为工质的朗肯循环,主要由余热锅炉(或换热器)、透平、冷凝器和工质泵四大部套组成。
有机工质在换热器中从余热流中吸收热量,生成具一定压力和温度的蒸汽,蒸汽进入透平机械膨胀做功,从而带动发电机或拖动其它动力机械。
从透平排出的蒸汽在凝汽器中向冷却水放热,凝结成液态,最后借助工质泵重新回到换热器,如此不断地循环下去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高耗能行业中低温余热发电技术朱亚东,徐 建,吕 进,于立军∗(上海交通大学,上海 200240)摘要:诸如钢铁、石油、化工、机械等高能耗行业存在着巨大的中低温余热资源,目前这部分余热资源的利用相当少,因此充分利用这部分余热资源是高耗能行业节能减排的重要内容和主要手段之一。
基于有机朗肯循环的发电系统以热为输入,输出为电能,将低品位热能逆向转化成高品位电能。
针对中低温有机朗肯循环的特点,对若干工质的干湿性、热效率及适用条件进行了研究,对于中低温余热有机朗肯循环发电系统的四种结构(基本型、回热型、抽气回热型、再热型)进行了优化研究。
关键词:有机朗肯循环;高耗能行业;余热Power Generation Technology Using Mid-Low TemperatureWaste Heat for High Energy Consumption IndustryZHU YaDong,XU Jian,Lv Jin,YU LiJun(Shanghai JiaoTong University,Shanghai 200240,China)Abstract: There is a great deal of mid-low temperature waste heat in high energy consumption industry such as steel, petroleum, chemical, mechanical and so on. Currently, this part of waste heat is hardly used, so taking full use of this part of waste heat is an important part and one of the primary means of energy saving for high energy consumption industry. Generation system based on ORC(Organic Rankine Cycle) with heat input and power output, reverses low-grade heat into high-grade electricity. For the characteristics of mid-low temperature ORC, a number of working fluids' wet and dry performance are researched. Four structures of the mid-low temperature waste heat ORC power generation system (basic ORC, regenerative ORC, exhaust regenerative ORC and reheat ORC)are researched.Keywords:organic rankine cycle(ORC);high energy consumption industry;waste heat作者简介:于立军:男,1969年8月生,教授,博士生导师。
主要从事多相流流动和余热利用方向研究工作。
作为项目负责人,已经完成2项国家自然科学基金项目;作为项目负责人完成上海拜耳、上海庄臣、海螺水泥、上海安靠等30多个工业企业的节能评估工作,积累了丰富的现场经验;作为主要科研人员,顺利完成上海市科委、日本中央电力研究以及松下公司所等多项科研任务,主要负责余热发电系统开发、发电系统数学建模、仿真等工作。
近年来,在余热利用及两相流动等研究领域发表学术论文30篇。
其中,有15篇论文被SCI收录,SCI 论文他引超过85次,有14篇论文被EI收录,获中国国家发明专利16项。
E-mail:ljyu@1 技术应用背景1.1余热资源定义所谓余热资源[1]是指在生产过程中,目前技术条件下,有可能回收或重复利用而尚未被有效利用的那部分能量。
余热资源不仅取决于能量本身的品位,还取决于生产发展情况和科学技术水平。
因此,余热资源的数量是随着生产和科学技术水平的发展不断变化的。
余热资源非常丰富,在工业节能中占有很大比例,且广泛存在于各生产环节中,特别是钢铁、石油、化工、机械等高能耗行业。
因此,充分利用余热资源是工业企业节能减排的重要内容和主要手段之一。
1.2余热资源分类余热资源一般存在于具有一定温度的气态或液态载体中,通常按余热载体的温度高低不同,将余热资源划分为三种类型:高温余热(500℃以上)、中温余热(200-500℃之间)和低温余热(200℃以下)。
对介于两者之间温度范围的分别称为中高温和中低温余热。
1.3高耗能行业中低温余热资源量及回收潜力从资源总量看,中低温余热资源量十分巨大。
据测算,仅建材水泥、钢铁、冶金、化工、电力250℃以下的余热资源折合标准煤就有1亿吨,按照15%的节能率回收,技术推广后可实现装机2300万kW,至少可拉动1200亿元的固定资产投资,每年可以产生发电量1100亿kWh,每年减少CO2排放量3690万吨。
如果考虑今后的中低温地热和太阳能热发电,其潜在的资源量和技术需求相当巨大,具有明显的经济、社会和环境效益。
1.4余热回收技术余热回收利用的方式也各种各样,总体分为热回收和动力回收。
热回收就是直接利用余热,比如:直接燃烧产生更多的热量,或者用来干燥或预热,或者使用热泵来直接供热,当然还有逆循环的吸收式制冷,我们把这类直接利用余热产生热能或冷能的回收方式统一归为热回收。
动力回收则为利用余热产生机械能或电能,一般情况下是用来产生电能这种易于传输且适用性更广的高品质能源。
目前,对于石油、化工、钢铁、机械、冶金、水泥等高能耗行业都存在中低温余热利用的难题。
国际上对于250℃以下甚至更低的中低温余热,一般采用的方法是有机朗肯循环(Organic Rankine Cycle,简称ORC)发电系统。
2 有机物朗肯循环2.1有机朗肯循环发电系统结构如图1所示,ORC系统由蒸发器、膨胀机、冷凝器和泵组成。
该系统的循环流程如图2所示,它包括绝热膨胀(1-2)、定压冷却(2-3)、绝热加压(3-4)以及定压加热(4-1)四个过程。
图1有机物朗肯循环系统原理图 图2 有机物朗肯循环温-熵图(T-S图)2.2有机朗肯循环发电系统的优势ORC发电系统与传统的水蒸汽发电系统相比主要优势如下:(1)与水蒸汽发电系统相比,由于ORC发电系统的有机工质的声速低,在低叶片速度时,能获得有利的空气动力配合,在50 Hz时能产生较高的汽轮机效率,不需要装齿轮箱。
由于转速低,因此噪声也小。
(2)可采用螺杆膨胀机[2]替代汽轮机,其结构相对传统汽轮机简单得多,额定功率小,尤其适用作为低焓能源动力利用的动力机,因此对有机工质蒸汽做功更适用。
(3)鉴于目前螺杆膨胀机还未普及,也可使用有机工质汽轮机。
有机工质蒸汽比容、焓降小,故所需汽轮机的尺寸(特别是汽轮机末级叶片的高度减小)、排气管道尺寸及空冷冷凝器中的管道直径均较小。
(4)如使用直接混合换热,可选取与有机工质氟利昂不相溶,且不会发生化学反应的导热油,采用油与有机工质氟利昂直接接触热交换的方法,可进一步提高换热效率。
(5)在缺水地区,优先使用空气冷却的冷凝器。
ORC电厂使用的空冷冷凝器要比水蒸汽电厂使用的空冷冷凝器的体积小得多,价格也低得多。
3 研究结果与分析3.1 中低温余热有机朗肯循环发电系统工质选择研究有机朗肯循环发电系统所使用的工质对系统的安全性、环保性、经济性、高效性具有很大的影响,合适的工质必须具有良好的热力学、物理、化学、环保、安全和经济特性,比如具有较低的液态比热容、粘度、毒性、可燃性、臭氧消耗潜能值(ODP)、全球变暖潜能值(GWP)及价格,具有较高的气化潜热、密度、稳定性,与材料能够相互兼容,同时使系统具有较高的热效率和适中的蒸发压力[3]。
国内外都对有机物工质对于ORC系统的影响有研究,相比而言国内仅仅是起步阶段[4]。
我们借鉴了国内外工质的选择标准,采用层层筛选的方法从61种工质中选出适合低品位热能有机物朗肯循环且具有潜力的工质,并分析了它们的适用条件。
首先研究工质的热力学、物理、化学、环保、安全和经济特性,选出符合上述特性的候选工质,它们是异戊烷(Isopentane)、正庚烷(n-Heptane)、正己烷(n-Hexane)、正戊烷(n-Pentan)、丙烷(R290)、R600、R600a、R134a、R423A、R404A、R507A。
接下来将研究这些候选工质的干湿性以及循环热效率。
3.1.1候选工质的干湿性候选工质饱和蒸汽线的斜率随着饱和温度的变化而变化,甚至可能会从大于0变为小于0,因此,需要关心的是这些工质在膨胀区域内的干湿性。
由工质的温-熵图可知,异戊烷(Isopentane)、正庚烷(n-Heptane)、正己烷(n-Hexane)、正戊烷(n-Pentane)、R600、R600a、R423A较适合用于ORC,它们是干性或绝热工质;而丙烷(R290)、R134a、R404A、R507A则是湿性工质,它们需要在膨胀机入口有一定的过热度,以确保它们在膨胀机中的膨胀过程不会进入湿蒸汽区域。
3.1.2候选工质的循环热效率根据上述建立的ORC系统模型,使用EES(Engineering Equation Solver)软件编程求解不同工质在相同工况下(热源温度为90℃)的ORC系统热效率。
计算结果表明:热效率大于8%的工质为丙烷(R290)、R600、R600a、R507A、R134a、异戊烷(Isopentane)、正戊烷(n-Pentane)、R404A。
3.2 中低温余热有机朗肯循环发电系统结构优化研究该部分将对于中低温余热有机朗肯循环发电系统的结构优化进行探讨和研究,分别对于基本型、回热型、抽气回热型、再热型的有机朗肯循环中低温余热发电系统进行了研究。
3.2.1基本型ORC 发电系统数据结果分析使用纯质作为有机朗肯循环工质特点是不需要考虑工质混合后的兼容性,稳定性好,无需分离装置等复杂昂贵的设备。
所选用的三种有机纯质作为工质的计算结果如下所示:图3 蒸发温度-□效率图4 蒸发温度-系统有效输出功 由图3可知,□效率随着蒸发温度T 3增大,R141b 仍然最大,R123次之,R245ca 最小。
但值得注意的是,R141b 与R123、R245ca 的间距比原来的□效率大的多,这表明从□的利用角度,R141b 作为工质性能更为优越。
由图4可知,三种工质的输出功率W s 有一个最大值,分析了产生的原因,并指出输出功率的最大值正对应了系统的最佳蒸发温度。