人教版必修五“解三角形”精选难题及其答案
人教版必修五“解三角形”精选难题及其答案
人教版必修五“解三角形”精选难题及其答案一、选择题(本大题共12小题,共60.0分)1. 锐角△ABC 中,已知a =√3,A =π3,则b 2+c 2+3bc 的取值范围是( )A. (5,15]B. (7,15]C. (7,11]D. (11,15]2. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sinA =2sinBcosC ,则△ABC的形状为( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3. 在△ABC 中,∠A =60∘,b =1,S △ABC =√3,则a−2b+csinA−2sinB+sinC的值等于( )A. 2√393B.263√3C. 83√3D. 2√34. 在△ABC 中,有正弦定理:asinA =bsinB =csinC =定值,这个定值就是△ABC 的外接圆的直径.如图2所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( )A. λ先变小再变大B. 仅当M 为线段EF 的中点时,λ取得最大值C. λ先变大再变小D. λ是一个定值5. 已知三角形ABC 中,AB =AC ,AC 边上的中线长为3,当三角形ABC 的面积最大时,AB 的长为( ) A. 2√5 B. 3√6 C. 2√6 D. 3√5 6. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b =c ,且满足sinBsinA =1−cosB cosA.若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,平面四边形OACB 面积的最大值是( )A. 8+5√34B. 4+5√34C. 3D. 4+5√327. 在△ABC 中,a =1,b =x ,∠A =30∘,则使△ABC 有两解的x 的范围是( )A. (1,2√33) B. (1,+∞)C. (2√33,2) D. (1,2)8. △ABC 的外接圆的圆心为O ,半径为1,若AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,且|OA ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,则△ABC 的面积为( )A. √3B. √32C. 2√3D. 19. 在△ABC 中,若sinBsinC =cos 2A2,则△ABC 是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形10. 在△ABC 中,已知∠C =60∘.a ,b ,c 分别为∠A ,∠B ,∠C 的对边,则ab+c +bc+a 为( )A. 3−2√3B. 1C. 3−2√3或1D. 3+2√311. 设锐角△ABC 的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 a =1,B =2A ,则b 的取值范围为( ) A. (√2,√3) B. (1,√3) C. (√2,2) D. (0,2)12. 在△ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足2bcosB =acosC +ccosA ,若b =√3,则a +c 的最大值为( )A. 2√3B. 3C. 32D. 9二、填空题(本大题共7小题,共35.0分)13. 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c 且acosC +12c =b ,则角A 的大小为______ ;若a =1,则△ABC 的周长l 的取值范围为______ .14. 在△ABC 中,∠A ,∠B ,∠C 所对边的长分别为a ,b ,c.已知a +√2c =2b ,sinB =√2sinC ,则sin C2= ______ .15. 已知△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a −b =ccosB −ccosA ,则△ABC 的形状是______ . 16. 在△ABC 中,若a 2b 2=tanA tanB,则△ABC 的形状为______ .17. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a −b)sinB =asinA −csinC ,且a 2+b 2−6(a +b)+18=0,则AB⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ = ______ . 18. 如果满足∠ABC =60∘,AC =12,BC =k 的三角形恰有一个,那么k 的取值范围是______ .19. 已知△ABC 的三个内角A ,B ,C 的对边依次为a ,b ,c ,外接圆半径为1,且满足tanA tanB=2c−b b,则△ABC 面积的最大值为______ .三、解答题(本大题共11小题,共132.0分)20. 在锐角△ABC 中,a ,b ,c 是角A ,B ,C 的对边,且√3a =2csinA .(1)求角C 的大小;(2)若a =2,且△ABC 的面积为3√32,求c 的值.21. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知asinB =√3bcosA .(1)求角A 的大小;(2)若a =√7,b =2,求△ABC 的面积.22.已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足asinA−csinC=(a−b)sinB.(1)求角C的大小;(2)若边长c=√3,求△ABC的周长最大值.23.已知函数f(x)=√3sinxcosx−cos2x−1,x∈R.2(1)求函数f(x)的最小值和最小正周期;(2)已知△ABC内角A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线,求a,b的值.24.已知△ABC中,A<B<C,a=cosB,b=cosA,c=sinC(1)求△ABC的外接圆半径和角C的值;(2)求a+b+c的取值范围.25.△ABC中,角A,B,C的对边分别是a,b,c且满足(2a−c)cosB=bcosC,(1)求角B的大小;(2)若△ABC的面积为为3√3且b=√3,求a+c的值.426.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA−sinB)=(c−b)sinC(1)求角A的大小;(2)求△ABC的面积的最大值.27.已知函数f(x)=2cos2x+2√3sinxcosx(x∈R).(Ⅰ)当x∈[0,π]时,求函数f(x)的单调递增区间;]内恒有两个不相等的实数解,求实数t的取值(Ⅱ)若方程f(x)−t=1在x∈[0,π2范围.28.已知A、B、C是△ABC的三个内角,向量m⃗⃗⃗ =(cosA+1,√3),n⃗=(sinA,1),且m⃗⃗⃗ //n⃗;(1)求角A;=−3,求tanC.(2)若1+sin2Bcos 2B−sin 2B29.在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1−sin C2(1)求sinC的值(2)若a2+b2=4(a+b)−8,求边c的值.30.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足:(a+c)(sinA−sinC)=sinB(a−b)(I)求角C的大小;(II)若c=2,求a+b的取值范围.答案和解析【答案】 1. D 2. A 3. A 4. D 5. A 6. A7. D8. B 9. B 10. B 11. A 12. A13. 60∘;(2,3]14. √2415. 等腰三角形或直角三角形 16. 等腰三角形或直角三角形 17. −27218. 0<k ≤12或k =8√319. 3√3420. 解:(1)△ABC 是锐角,a ,b ,c 是角A ,B ,C 的对边,且√3a =2csinA . 由正弦定理得:√3sinA =2sinC ⋅sinA∵△ABC 是锐角, ∴sinC =√32, 故C =π3;(2)a =2,且△ABC 的面积为3√32, 根据△ABC 的面积S =12acsinB =12×2×b ×sin π3=3√32解得:b =3.由余弦定理得c 2=a 2+b 2−2abcosC =4+9−2×3=7 ∴c =√7.故得c 的值为√7. 21. (本题满分为14分)解:(1)∵asinB =√3bcosA ,由正弦定理得sinAsinB =√3sinBcosA.…(3分) 又sinB ≠0,从而tanA =√3.…(5分) 由于0<A <π, 所以A =π3.…(7分)(2)解法一:由余弦定理a 2=b 2+c 2−2bccosA ,而a =√7,b =2,A =π3,…(9分) 得7=4+c 2−2c =13,即c 2−2c −3=0. 因为c >0,所以c =3.…(11分) 故△ABC 的面积为S =12bcsinA =3√32.…(14分) 解法二:由正弦定理,得√7sin π3=2sinB , 从而sinB =√217,…(9分)又由a >b 知A >B ,所以cosB=2√77.故sinC=sin(A+B)=sin(B+π3)=sinBcosπ3+cosBsinπ3=3√2114.…(12分)所以△ABC的面积为12bcsinA=3√32.…(14分)22. 解:(1)由已知,根据正弦定理,asinA−csinC=(a−b)sinB 得,a2−c2=(a−b)b,即a2+b2−c2=ab.由余弦定理得cosC=a2+b2−c22ab =12.又C∈(0,π).所以C=π3.(2)∵C=π3,c=√3,A+B=2π3,∴asinA =bsinB=√3√32=2,可得:a=2sinA,b=2sinB=2sin(2π3−A),∴a+b+c=√3+2sinA+2sin(2π3−A)=√3+2sinA+2(√32cosA+12sinA)=2√3sin(A+π6)+√3∵由0<A<2π3可知,π6<A+π6<5π6,可得:12<sin(A+π6)≤1.∴a+b+c的取值范围(2√3,3√3].23. 解:(1)由于函数f(x)=√3sinxcosx−cos2x−12=√32sin2x−1+cos2x2−12=sin(2x−π6)−1,故函数的最小值为−2,最小正周期为2π2=π.(2)△ABC中,由于f(C)=sin(2C−π6)−1=0,可得2C−π6=π2,∴C=π3.再由向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线可得sinB−2sinA=0.再结合正弦定理可得b=2a,且B=2π3−A.故有sin(2π3−A)=2sinA,化简可得tanA=√33,∴A=π6,∴B=π2.再由asinA =bsinB=csinC可得asinπ6=bsinπ2=3sinπ3,解得a=√3,b=2√3.24. 解:(1)由正弦定理csinC =2R=1,∴R=12.再由a=cosB,b=cosA,可得cosBsinA =cosAsinB,故有sinAcosA=sinBcosB,即sin2A=sin2B.再由A <B <C ,可得2A +2B =π,∴C =π2.(2)由于a +b +c =cosB +cosA +sinC =sinA +cosA +1=√2sin(A +π4)+1.再由O <A <π4,可得π4<A +π4<π2,∴√22<sin(A +π4)<1,∴2<√2sin(A +π4)+1<√2+1,即a +b +c 的取值范围为(2,√2+1).25. 解:(1)又A +B +C =π,即C +B =π−A , ∴sin(C +B)=sin(π−A)=sinA ,将(2a −c)cosB =bcosC ,利用正弦定理化简得:(2sinA −sinC)cosB =sinBcosC , ∴2sinAcosB =sinCcosB +sinBcosC =sin(C +B)=sinA ,在△ABC 中,0<A <π,sinA >0,∴cosB =12,又0<B <π,则B =π3 (2)∵△ABC 的面积为3√34,sinB =sin π3=√32, ∴S =12acsinB =√34ac =3√34,∴ac =3,又b =√3,cosB =cos π3=12,∴由余弦定理b 2=a 2+c 2−2accosB 得:a 2+c 2−ac =(a +c)2−3ac =(a +c)2−9=3,∴(a +c)2=12,则a +c =2√326. 解:(1)△ABC 中,∵a =2,且(2+b)(sinA −sinB)=(c −b)sinC , ∴利用正弦定理可得(2+b)(a −b)=(c −b)c ,即b 2+c 2−bc =4,即b 2+c 2−4=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc=12,∴A =π3.(2)再由b 2+c 2−bc =4,利用基本不等式可得4≥2bc −bc =bc , ∴bc ≤4,当且仅当b =c =2时,取等号,此时,△ABC 为等边三角形,它的面积为12bcsinA =12×2×2×√32=√3,故△ABC 的面积的最大值为:√3.27. 解:(I)f(x)=2cos 2x +2√3sinxcosx =cos2x +√3sin2x +1 2sin(2x +π6)+1令−π2+2kπ≤2x +π6≤+2kπ(k ∈Z) 解得:kπ−π3≤x ≤kπ+π6(k ∈Z) 由于x ∈[0,π]f(x)的单调递增区间为:[0,π6]和[2π3,π]. (Ⅱ)依题意:由2sin(2x +π6)+1=t +1 解得:t =2sin(2x +π6)设函数y1=t与y2=2sin(2x+π6)由于在同一坐标系内两函数在x∈[0,π2]内恒有两个不相等的交点.因为:x∈[0,π2]所以:2x+π6∈[π6,7π6]根据函数的图象:当2x+π6∈[π6,π2]sin(2x+π6)∈[12,1],t∈[1,2]当2x+π6∈[π2,7π6]时,sin(2x+π6)∈[−12,1],t∈[−1,2]所以:1≤t<228. 解:(1)∵m⃗⃗⃗ //n⃗,∴√3sinA−cosA=1,2(sinA⋅√32−cosA⋅12)=1,sin(A−π6)=12,∵0<A<π,−π6<A−π6<5π6,∴A−π6=π6.∴A=π3.(2)由题知1+sin2Bcos 2B−sin 2B=−3,∴(cosB+sinB)2(cosB+sinB)(cosB−sinB)=−3,∴cosB+sinBcosB−sinB=−3,∴1+tanB1−tanB=−3,∴tanB=2.∴tanC=tan[π−(A+B)]=−tan(A+B)=−tanA+tanB1−tanAtanB =8+5√311.29. 解:(1)∵sinC+cosC=1−sin C2∴2sin C2cosC2+1−2sin2C2=1−sinC2∴2sin C2cosC2−2sin2C2=−sinC2∴2sin2C2−2sinC2cosC2=sinC2∴2sin C2(sin C2−cosC2)=sinC2∴sin C2−cos C2=12∴sin2C2−sinC+cos2C2=14∴sinC=3 4(2)由sin C2−cos C2=12>0得π4<C2<π2即π2<C<π∴cosC=−√7 4∵a2+b2=4(a+b)−8∴(a−2)2+(b−2)2=0∴a=2,b=2由余弦定理得c2=a2+b2−2abcosC=8+2√7∴c=1+√730. (本题满分为12分)解:(I)在△ABC中,∵(a+c)(sinA−sinC)=sinB(a−b),∴由正弦定理可得:(a+c)(a−c)=b(a−b),即a2+b2−c2=ab,…(3分)∴cosC=12,∴由C为三角形内角,C=π3.…(6分)(II)由(I)可知2R=c sinC=√32=4√33,…(7分)∴a+b=4√33(sinA+sinB)=4√33[sinA+sin(A+π3)]=4√33(32sinA+√32cosA)=4sin(A+π6).…(10分)∵0<A<2π3,∴π6<A+π6<5π6,∴12<sin(A+π6)≤1,∴2<4sin(A+π6)≤4∴a+b的取值范围为(2,4].…(12分)【解析】1. 解:由正弦定理可得,a sinA=b sinB=c sinC=√3√32=2,∴b=2sinB,c=2sinC,∵△ABC为锐角三角形,∴0∘<B<90∘,0∘<C<90∘且B+C=120∘,∴30∘<B<90∘∵bc=4sinBsin(120∘−B)=4sinB(√32cosB+12sinB)=2√3sinBcosB+2sin2B=√3sin2B+(1−cos2B)=2sin(2B−30∘)+1,∵30∘<B<90∘,∴30∘<2B−30∘<150∘,∴12<sin(2B−30∘)≤1,∴2<2sin(2B−30∘)+1≤4,即2<bc≤3,∵a =√3,A =π3,由余弦定理可得:3=b 2+c 2−bc ,可得:b 2+c 2=bc +3, ∴b 2+c 2+3bc =4bc +3∈(11,15]. 故选:D .由正弦定理可得,asinA=bsinB =csinC =√3√32=2,结合已知可先表示b ,c ,然后由△ABC 为锐角三角形及B +C =120∘可求B 的范围,再把所求的bc 用sinB ,cosB 表示,利用三角公式进行化简后,结合正弦函数的性质可求bc 的范围,由余弦定理可得b 2+c 2+3bc =4bc +3,从而可求范围.本题综合考查了正弦定理和面积公式及两角和与差的正弦、余弦公式及辅助角公式的综合应用,解题的关键是熟练掌握基本公式并能灵活应用,属于中档题. 2. 解:因为sinA =2sinBcosc , 所以sin(B +C)=2sinBcosC ,所以sinBcosC −sinCcosB =0,即sin(B −C)=0, 因为A ,B ,C 是三角形内角, 所以B =C .三角形为等腰三角形. 故选:A .通过三角形的内角和,以及两角和的正弦函数,化简方程,求出角的关系,即可判断三角形的形状.本题考查两角和的正弦函数的应用,三角形的判断,考查计算能力,属于基础题.3. 解:∵∠A =60∘,b =1,S △ABC =√3=12bcsinA =12×1×c ×√32, ∴c =4,∴a 2=b 2+c 2−2bccosA =1+14−2×1×4×12=13,∴a =√13,∴a−2b+csinA−2sinB+sinC =asinA =√13√32=2√393.故选:A .先利用面积公式求得c 的值,进而利用余弦定理可求a ,再利用正弦定理求解比值. 本题的考点是正弦定理,主要考查正弦定理的运用,关键是利用面积公式,求出边,再利用正弦定理求解.4. 解:设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2, 则由题意,πR 12πR 22=λ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,由正弦定理可得:R 1=12DE sin∠DME ,R 2=12DFsin∠DMF , 又DE =DF ,sin∠DME =sin∠DMF ,可得:R 1=R 2, 可得:λ=1. 故选:D .设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2,则由题意,πR 12πR 22=λ,由正弦定理可得:R 1=12DE sin∠DME ,R 2=12DFsin∠DMF ,结合DE =DF ,sin∠DME =sin∠DMF ,可得λ=1,即可得解.本题主要考查了正弦定理在解三角形中的应用,考查了分类讨论思想和转化思想的应用,属于基础题.5. 解:设AB=AC=2x,AD=x.设三角形的顶角θ,则由余弦定理得cosθ=(2x)2+x2−9 2×2x×x =5x2−94x2,∴sinθ=√1−cos2θ=√144−9(x2−5)24x2,根据公式三角形面积S=12absinθ=12×2x⋅2x⋅√144−9(x2−5)24x2=√144−9(x2−5)22,∴当x2=5时,三角形面积有最大值.此时x=√5.AB的长:2√5.故选:A.设AB=AC=2x,三角形的顶角θ,则由余弦定理求得cosθ的表达式,进而根据同角三角函数基本关系求得sinθ,最后根据三角形面积公式表示出三角形面积的表达式,根据一元二次函数的性质求得面积的最大值时的x即可.本题主要考查函数最值的应用,根据条件设出变量,根据三角形的面积公式以及三角函数的关系是解决本题的关键,利用二次函数的性质即可求出函数的最值,考查学生的运算能力.运算量较大.6. 解:△ABC中,∵b=c,sinBsinA =1−cosBcosA,∴sinBcosA+cosBsinA=sinA,即sin(A+B)=sin(π−C)=sinC=sinA,∴A=C,又b=c,∴△ABC为等边三角形.∴S OACB=S△AOB+S△ABC=12⋅OA⋅OB⋅sinθ+12⋅AB2⋅sinπ3=12×2×1×sinθ+√34(OA2+OB2−2OA⋅OB⋅cosθ)=sinθ−√3cosθ+5√34=2sin(θ−π3)+5√34.∵0<θ<π,∴−π3<θ−π3<2π3,故当θ−π3=π2时,sin(θ−π3)取得最大值为1,故S OACB=的最大值为2+5√34=8+5√34,故选:A.依题意,可求得△ABC为等边三角形,利用三角形的面积公式与余弦定理可求得S OACB=2sin(θ−π3)+5√34(0<θ<π),从而可求得平面四边形OACB面积的最大值.题考查三角函数中的恒等变换应用,考查余弦定理的应用,求得S OACB=2sin(θ−π3)+5√34是解题的关键,也是难点,考查等价转化思想与运算求解能力,属于中档题.7. 解:结合图形可知,三角形有两解的条件为b=x>a,bsinA<a,∴b=x>1,xsin30∘<1,则使△ABC有两解的x的范围是1<x<2,故选:D.根据题意画出图形,由题意得到三角形有两解的条件为b =x >a ,bsinA <a ,即可确定出x 的范围.此题考查了正弦定理,以及特殊角的三角函数值,画出正确的图形是解本题的关键.8. 解:由于AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,由向量加法的几何意义,O 为边BC 中点,∵△ABC 的外接圆的圆心为O ,半径为1,∴三角形应该是以BC 边为斜边的直角三角形,∠BAC =π2,斜边BC =2,又∵|OA ⃗⃗⃗⃗⃗ |=|AC⃗⃗⃗⃗⃗ |, ∴|AC|=1,|AB|=√BC 2−AC 2=√22−12=√3, ∴S △ABC =12×|AB|×|AC|=12×1×√3=√32. 故选:B .由AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,利用向量加法的几何意义得出△ABC 是以A 为直角的直角三角形,又|OA ⃗⃗⃗⃗⃗ |=|AC⃗⃗⃗⃗⃗ |,从而可求|AC|,|AB|的值,利用三角形面积公式即可得解. 本题主要考查了平面向量及应用,三角形面积的求法,属于基本知识的考查.9. 解:由题意sinBsinC =1+cosA 2,即sinBsinC =1−cosCcosB , 亦即cos(C −B)=1, ∵C ,B ∈(0,π), ∴C =B , 故选:B . 利用cos 2A2=1+cosA 2可得sinBsinC =1+cosA 2,再利用两角和差的余弦可求.本题主要考查两角和差的余弦公式的运用,考查三角函数与解三角形的结合.属于基础题.10. 解:cosC =a 2+b 2−c 22ab=12,∴ab =a 2+b 2−c 2,∴ab+c +bc+a =ac+a 2+b 2+bcab+(a+b)c+c 2=a 2+b 2+(a+b)ca 2+b 2+(a+b)c =1,故选B .先通过余弦定理求得ab 和a 2+b 2−c 2的关系式对原式进行通分,把ab 的表达式代入即可.本题主要考查了余弦定理的应用.解题的关键是找到a ,b 和c 的关系式. 11. 解:锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,B =2A , ∴0<2A <π2,且B +A =3A , ∴π2<3A <π. ∴π6<A <π3, ∴√22<cosA <√32, ∵a =1,B =2A ,∴由正弦定理可得:ba =b=sin2AsinA=2cosA,∴√2<2cosA<√3,则b的取值范围为(√2,√3).故选A由题意可得0<2A<π2,且π2<3A<π,解得A的范围,可得cosA的范围,由正弦定理求得ba=b=2cosA,根据cosA的范围确定出b范围即可.此题考查了正弦定理,余弦函数的性质,解题的关键是确定出A的范围.12. 解:2bcosB=ccosA+acosC,由正弦定理,得2sinBcosB=sinCcosA+sinAcosC,∴2sinBcosB=sinB,又sinB≠0,∴cosB=12,∴B=π3.∵由余弦定理可得:3=a2+c2−ac,∴可得:3≥2ac−ac=ac,∴即有:ac≤3,代入:3=(a+c)2−3ac可得:(a+c)2=3+3ac≤12,∴a+c的最大值为2√3.故选:A.利用正弦定理化边为角,可求导cosB,由此可得B,由余弦定理可得:3=a2+c2−ac,由基本不等式可得:ac≤3,代入:3=(a+c)2−3ac可得a+c的最大值.该题考查正弦定理、余弦定理及其应用,基本不等式的应用,考查学生运用知识解决问题的能力,属于中档题.13. 解:acosC+12c=b变形得:2acosC+c=2b,利用正弦定理得:2sinAcosC+sinC=2sinB=2sin(A+C)=2sinAcosC+2cosAsinC,∴sinC=2cosAsinC,即sinC(2cosA−1)=0,由sinC≠0,得到cosA=12,又A为三角形的内角,则A=60∘;∵a=1,sinA=√32,B+C=120∘,即C=120∘−B,∴asinA =bsinB=csinC=2√33,即b=2√33sinB,c=2√33sin(120∘−B),则△ABC的周长l=a+b+c=1+2√33sinB+2√33sin(120∘−B)=1+2√33(32sinB+√32cosB)=1+2(√32sinB+12cosB)=1+2sin(B+30∘),∵0<B<120∘,∴30∘<B+30∘<150∘,∴12<sin(B+30∘)≤1,即2<1+2sin(B+30∘)≤3,则l范围为(2,3].故答案为:60∘;(2,3]将已知的等式左右两边都乘以2变形后,利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式变形,根据sinC不为0,得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;由A的度数求出sinA的值,及B+C的度数,用B表示出C,由正弦定理表示出b与c,而三角形ABC的周长l=a+b+c,将表示出的b与c,及a的值代入,利用两角和与差的正弦函数公式化简,整理后再利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,由B的范围求出这个角的范围,利用正弦函数的图象与性质得出此时正弦函数的值域,即可得到l的范围.此题考查了正弦定理,两角和与差的正弦函数公式,诱导公式,正弦函数的定义域与值域,以及特殊角的三角函数值,利用了转化的思想,熟练掌握定理及公式是解本题的关键.14. 解:∵在△ABC中a+√2c=2b,sinB=√2sinC,∴由正弦定理可得a+√2c=2b,b=√2c,联立可解得a=b=√2c,∴由余弦定理可得cosC=a2+b2−c22ab=222 2×√2c×√2c =34,再由二倍角公式可得cosC=1−2sin2C2=34,解得sin C2=√24或sin C2=−√24,再由三角形内角的范围可得C2∈(0,π2)故sin C2=√24故答案为:√24由题意和正弦定理可得a=b=√2c,代入余弦定理可得cosC,由二倍角公式和三角形内角的范围可得.本题考查解三角形,涉及正余弦定理和二倍角公式,属中档题.15. 解:将cosA=b2+c2−a22bc ,cosB=a2+c2−b22ac代入已知等式得:a−b=c a2+c2−b22ac −c⋅b2+c2−a22bc,整理得:a2+b2−c2a =a2+b2−c2b,当a2+b2−c2=0,即a2+b2=c2时,△ABC为直角三角形;当a2+b2−c2≠0时,得到a=b,△ABC为等腰三角形,则△ABC为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.利用余弦定理表示出cosA与cosB,代入已知等式,整理后即可确定出三角形形状.此题考查了余弦定理,勾股定理,以及等腰三角形的性质,熟练掌握余弦定理是解本题的关键.16. 解:原式可化为sin 2Asin 2B =sinAcosB cosAsinB ⇒sinA sinB =cosBcosA⇒sin2A =sin2B ∴2A =2B 或2A =π−2B ⇒A =B 或A +B =π2.故答案为等腰三角形或直角三角形左边利用正弦定理,右边“切变弦”,对原式进行化简整理进而可得A 和B 的关系,得到答案.本题主要考查了正弦定理的应用.考查了学生利用正弦定理解决三角形问题的能力. 17. 解:由已知(a −b)sinB =asinA −csinC ,即asinA −csinC =(a −b)sinB ,根据正弦定理,得,a 2−c 2=(a −b)b ,即a 2+b 2−c 2=ab . 由余弦定理得cosC =a 2+b 2−c 22ab =12.又C ∈(0,π).所以C =π3.a 2+b 2−6(a +b)+18=0,可得(a −3)2+(b −3)2=0, 所以a =b =3,三角形是正三角形,AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =3×3×3×cos120∘=−272.故答案为:−272.通过正弦定理化简已知表达式,然后利用余弦定理求出C 的余弦值,得到C 的值.通过a 2+b 2−6(a +b)+18=0,求出a ,b 的值,推出三角形的形状,然后求解数量积的值.本题考查正弦定理与余弦定理的应用,三角函数的值的求法三角形形状的判断,向量数量积的应用,考查计算能力.18. 解:(1)当AC <BCsin∠ABC ,即12<ksin60∘,即k >8√3时,三角形无解; (2)当AC =BCsin∠ABC ,即12=ksin60∘,即k =8√3时,三角形有1解;(3)当BCsin∠ABC <AC <BC ,即ksin60∘<12<k ,即12<k <8√3,三角形有2个解;(4)当0<BC ≤AC ,即0<k ≤12时,三角形有1个解. 综上所述:当0<k ≤12或k =8√3时,三角形恰有一个解. 故答案为:0<k ≤12或k =8√3要对三角形解得各种情况进行讨论即:无解、有1个解、有2个解,从中得出恰有一个解时k 满足的条件.本题主要考查三角形解得个数问题,重在讨论.易错点在于可能漏掉k =8√3这种情况. 19. 解:由r =1,利用正弦定理可得:c =2rsinC =2sinC ,b =2rsinB =2sinB , ∵tanA =sinA cosA,tanB =sinBcosB , ∴tanAtanB =sinAcosBcosAsinB =4sinC−2sinB2sinB=2sinC−sinBsinB,∴sinAcosB =cosA(2sinC −sinB)=2sinCcosA −sinBcosA , 即sinAcosB +cosAsinB =sin(A +B)=sinC =2sinCcosA , ∵sinC ≠0,∴cosA =12,即A =π3, ∴cosA =b 2+c 2−a 22bc=12,∴bc =b 2+c 2−a 2=b 2+c 2−(2rsinA)2=b 2+c 2−3≥2bc −3,∴bc≤3(当且仅当b=c时,取等号),∴△ABC面积为S=12bcsinA≤12×3×√32=3√34,则△ABC面积的最大值为:3√34.故答案为:3√34.利用同角三角函数间的基本关系化简已知等式的左边,利用正弦定理化简已知的等式右边,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0,可得出cosA的值,然后利用余弦定理表示出cosA,根据cosA的值,得出bc=b2+c2−a2,再利用正弦定理表示出a,利用特殊角的三角函数值化简后,再利用基本不等式可得出bc 的最大值,进而由sinA的值及bc的最大值,利用三角形的面积公式即可求出三角形ABC 面积的最大值.此题考查了正弦、余弦定理,同角三角函数间的基本关系,两角和与差的正弦函数公式,诱导公式,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键,属于中档题.20. (1)利用正弦定理可求角C的大小(2)直接利用△ABC的面积S=12acsinB求解出b,再用余弦定理可得.本题考查了正弦定理,余弦定理的运用和计算能力.21. (1)由弦定理化简已知可得sinAsinB=√3sinBcosA,结合sinB≠0,可求tanA=√3,结合范围0<A<π,可求A的值.(2)解法一:由余弦定理整理可得:c2−2c−3=0.即可解得c的值,利用三角形面积公式即可计算得解.解法二:由正弦定理可求sinB的值,利用大边对大角可求B为锐角,利用同角三角函数基本关系式可求cosB,利用两角和的正弦函数公式可求sinC,进而利用三角形面积公式即可计算得解.本题主要考查了正弦定理,余弦定理,三角形面积公式,大边对大角,同角三角函数基本关系式,两角和的正弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.22. (1)通过正弦定理化简已知表达式,然后利用余弦定理求出C的余弦值,得到C的值.(2)由已知利用正弦定理可得a=2sinA,b=2sin(2π3−A),利用三角函数恒等变换的应用化简可求a+b+c=2√3sin(A+π6)+√3,根据A+π6的范围,利用正弦函数的图象和性质得到结果.本题考查正弦定理与余弦定理的应用,三角函数的值的求法,以及三角函数恒等变换的应用,考查计算能力和转化思想,属于中档题.23. (1)化简函数f(x)的解析式为sin(2x−π6)−1,可得函数的最小值为−2,最小正周期为2π2.(2)△ABC中,由f(C)=sin(2C−π6)−1=0,求得C=π3.再由向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线可得sinB−2sinA=0,再由B=2π3−A可得sin(2π3−A)=2sinA,化简求得A=π6,故B=π2.再由正弦定理求得a、b的值.本题主要考查两角和差的正弦公式、正弦定理、两个向量共线的性质,属于中档题.24. (1)由正弦定理求得外接圆半径R.再由a=cosB,b=cosA,可得cosBsinA =cosAsinB,化简得sin2A=sin2B.再由A<B<C,可得2A+2B=π,由此可得C的值.(2)由于a+b+c=cosB+cosA+sinC=√2sin(A+π4)+1.再由O<A<π4,利用正弦函数的定义域和值域求得sin(A+π4)+1<√2+1的范围,即可求得a+b+c的取值范围.本题主要考查正弦定理的应用,正弦函数的定义域和值域,属于中档题.25. (1)结合三角形的内角和定理及诱导公式可得sin(C+B)=sinA,再对已知(2a−c)cosB=bcosC,利用正弦定理化简可求B(2)结合三角形的面积公式S=12acsinB,可求ac,由已知b,B,再利用余弦定理b2= a2+c2−2accosB可求a+c本题主要考查了正弦定理、余弦定理在求解三角形中的应用,解决此类问题的关键是要是考生具备综合应用公式的能力26. (1)由条件利用正弦定理可得b2+c2−bc=4.再由余弦定理可得A=π3.(2)利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得面积的最大值.本题主要考查了正弦定理,余弦定理,三角形面积公式,基本不等式在解三角形中的应用,考查了转化思想,属于中档题.27. (Ⅰ)首先利用三角函数的恒等变换,变形成正弦型函数进一步利用函数的单调性求函数在固定区间内的增减区间.(Ⅱ)把求方程的解得问题转化成求函数的交点问题,进一步利用函数的性质求参数的取值范围.本题考查的知识要点:三角函数的恒等变换,正弦型函数的单调性,在同一坐标系内的利用两函数的交点问题求参数的取值范围问题.28. (1)利用向量共线定理可得:√3sinA−cosA=1,再利用和差公式、三角函数求值即可得出.(2)由题知1+sin2Bcos 2B−sin 2B =−3,利用倍角公式化为cosB+sinBcosB−sinB=−3,因此1+tanB1−tanB=−3,解得tanB.再利用tanC=tan[π−(A+B)]=−tan(A+B),展开代入即可得出.本题考查了向量共线定理、和差公式、三角函数求值、倍角公式,考查了推理能力与计算能力,属于中档题.29. (1)利用二倍角公式将已知等式化简;将得到的式子平方,利用三角函数的平方关系求出sinC.(2)利用求出的三角函数的值将角C的范围缩小,求出C的余弦;将已知等式配方求出边a,b;利用余弦定理求出c本题考查三角函数的二倍角公式、同角三角函数的平方关系、考查三角形中的余弦定理.30. (I)利用正弦正理化简已知等式可得:a2+b2−c2=ab,由余弦定理可得求得cosA=12,结合A的范围,即可求得A的值.(II)由正弦定理用sinA、sinB表示出a、b,由内角和定理求出A与B的关系式,代入a+b利用两角和与差的正弦公式化简,根据A的范围和正弦函数的性质得出a+b的取值范围.本题主要考查了正弦定理,余弦定理的综合应用,考查了两角和差的正弦函数公式,解题时注意分析角的范围,属于中档题.。
人教版高中数学必修5第一章解三角形测试题及答案
必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
高中数学必修5解三角形测试题及答案(K12教育文档)
高中数学必修5解三角形测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修5解三角形测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修5解三角形测试题及答案(word版可编辑修改)的全部内容。
高中数学必修5解三角形测试题及答案一、选择题:(每小题5分,共60分)1.在ABC中,45,75AB A C==︒=︒,则BC= ( A )A.3..2 D.32.下列关于正弦定理的叙述或变形中错误..的是( B )A.在ABC中,a:b:c=sinA:sinB:sinCB.ABC⇔中,a=b sin2A=sin2BC.ABC a b+c中,=sinA sinB+sinCD.ABC中,正弦值较大的角所对的边也较大3.ABC中,若sin cos,A BBa b=∠则的值为 ( B )A.30︒ B.45︒ C.60︒ D.90︒4.ABC在中,若c=a b=cosA cosB cosC,则ABC是( B )A.直角三角形 B.等边三角形 C.钝角三角形 D.等腰直角三角形5.下列命题正确的是( D )A.当a=4,b=5,A=30︒时,三角形有一解。
B.当a=5,b=4,A=60︒时,三角形有两解。
C.当a=,B=120︒时,三角形有一解。
D.当a=A=60︒时,三角形有一解。
6.ΔABC中,a=1,b=3,∠A=30°,则∠B等于 ( B )A.60°B.60°或120°C.30°或150°D.120°7.符合下列条件的三角形有且只有一个的是( D )A.a=1,b=2 ,c=3 B.a=1,b=2,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1, ∠B=45°8.若(a+b+c )(b+c -a )=3abc,且sinA=2sinBcosC , 那么ΔABC 是 ( B ) A .直角三角形 B .等边三角形 C .等腰三角形D .等腰直角三角形9.在ΔABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A=3π,a=3,b=1,则c= ( B )(A )1 (B)2 (C) 3-1 (D) 310.(2009重庆理)设ABC ∆的三个内角,,A B C ,向量(3,sin )A B=m ,(cos )B A =n ,若1cos()A B =++m n ,则C =( C )A .6π B .3π C .23π D .56π 11.已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是(D ) A.2C.8D.712.如图:D ,C ,B 三点在地面同一直线上,DC=a,从C ,D两点测得A 点仰角分别是β, α(α〈β),则A 点离地面的高度AB 等于( A )A .)sin(sin sin αββα-a B .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-a D .)cos(sin cos βαβα-a二、填空题:(每小题5分,共20分)13.已知2sin a A =,则sin sin sin a b cA B C++=++_______2_______ 14.在ΔABC 中,若S ΔABC =41 (a 2+b 2-c 2),那么角∠C=_4π_____.AD8π .16.已知2,4,a b a b ==与的夹角为3π,以,ab 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为____ 三、解答题:(17题10分,其余小题均为12分) 17.在ΔABC 中 ,已知045,332,2===B b c,解三角形ABC 。
高中数学必修5解三角形面积相关精选题目(附答案)
高中数学必修5解三角形面积相关精选题目(附答案)三角形的面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12bc sin A =12ac sin B .题型一:三角形面积的计算1.(2017·北京高考)在△ABC 中,∠A =60°,c =37a .(1)求sin C 的值;(2)若a =7,求△ABC 的面积.2.△ABC 中,若a ,b ,c 的对角分别为A ,B ,C ,且2A =B +C ,a =3,△ABC 的面积S △ABC =32,求边b 的长和B 的大小. 题型二:与三角形有关的综合问题(一):与三角形面积有关的综合问题3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3cos(B -C )-1=6cos B cos C . (1)求cos A ;(2)若a =3,△ABC 的面积为22,求b ,c . (二):三角形中的最值问题4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设S 为△ABC 的面积,满足S =34(a 2+b 2-c 2). (1)求角C 的大小;(2)求sin A +sin B 的最大值.巩固练习:1.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( ) A.12 B.32C.3D .232.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为( ) A .-78B.78C .-87D.873.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的大小为( )A .135°B .45°C .60°D .120°4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.5.如图,在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =________.6.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.7.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( ) A .5B .6C .7D .88.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( ) A.3 B .2 C .23 D .49.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝⎛⎦⎤0,403 10.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .11.如图,在△ABC 中,已知B =π3,AC =43,D 为BC 边上一点.(1)若AD =2,S △DAC =23,求DC 的长; (2)若AB =AD ,试求△ADC 的周长的最大值.参考答案:1.[解] (1)在△ABC 中,因为∠A =60°,c =37a ,所以由正弦定理得sin C =c sin A a =37×32=3314.(2)因为a =7,所以c =37×7=3.由余弦定理a 2=b 2+c 2-2bc cos A , 得72=b 2+32-2b ×3×12,解得b =8或b =-5(舍去). 所以△ABC 的面积S =12bc sin A =12×8×3×32=6 3. 2.解:∵A +B +C =180°,又2A =B +C ,∴A =60°. ∵S △ABC =12bc sin A =32,sin A =32,∴bc =2.①又由余弦定理得3=b 2+c 2-2bc cos A =b 2+c 2-2×2×12,即b 2+c 2=5.② 解①②可得b =1或2.由正弦定理知a sin A =b sin B ,∴sin B =b sin A a =b2.当b =1时,sin B =12,B =30°;当b =2时,sin B =1,B =90°.3.解:(1)由3cos(B -C )-1=6cos B cos C , 得3(cos B cos C -sin B sin C )=-1, 即cos(B +C )=-13,从而cos A =-cos(B +C )=13.(2)由于0<A <π,cos A =13,所以sin A =223.又S △ABC =22,即12bc sin A =22,解得bc =6.由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2=13,解方程组⎩⎪⎨⎪⎧ bc =6,b 2+c 2=13,得⎩⎪⎨⎪⎧ b =2,c =3或⎩⎪⎨⎪⎧b =3,c =2.4.解:(1)由题意可知 12ab sin C =34×2ab cos C . 所以tan C = 3. 因为0<C <π,所以C =π3.(2)由(1)知sin A +sin B =sin A +sin ⎝⎛⎭⎫π-A -π3 =sin A +sin ⎝⎛⎭⎫2π3-A =sin A +32cos A +12sin A =3sin ⎝⎛⎭⎫A +π6≤3⎝⎛⎭⎫0<A <2π3. 当A =π3时,即△ABC 为等边三角形时取等号,所以sin A +sin B 的最大值为 3. 巩固练习:1.解析:选B S △ABC =12AB ·AC ·sin A =32.2.解析:选B 设等腰三角形的底边长为a ,顶角为θ,则腰长为2a ,由余弦定理得,cos θ=4a 2+4a 2-a 28a 2=78.3.解析:选B ∵S =14(a 2+b 2-c 2)=12ab sin C ,由余弦定理得:sin C =cos C ,∴tan C =1.又0°<C <180°,∴C =45°.4.解析:∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.5.解析:在△ADC 中,cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=1114.又0°<C <180°,∴sin C =5314. 在△ABC 中,AC sin B =ABsin C,∴AB =sin C sin B ·AC =5314×2×7=562.6.解析:不妨设b =2,c =3,cos A =13,则a 2=b 2+c 2-2bc ·cos A =9,∴a =3. 又∵sin A =1-cos 2 A =223,∴外接圆半径为R =a 2sin A =32·223=928.7.解析:选C 如图,由题意得 ⎩⎪⎨⎪⎧a +b +c =20,12bc sin 60°=103,a 2=b 2+c 2-2bc cos 60°,则bc =40,a 2=b 2+c 2-bc =(b +c )2-3bc =(20-a )2-3×40, ∴a =7.8.解析:选B ∵S =12bc sin A ,∴3=12×2c sin 120°, ∴c =2,∴a =b 2+c 2-2bc cos A =4+4-2×2×2×⎝ ⎛⎭⎪⎫-12=23,设△ABC 外接圆的半径为R ,∴2R =a sin A =2332=4,∴R =2.9.解析:选D ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.10.解:(1)由题设及A +B +C =π得sin B =8sin 2B 2,即sin B =4(1-cos B ), 故17cos 2B -32cos B +15=0, 解得cos B =1517,cos B =1(舍去).(2)由cos B =1517,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得 b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B ) =36-2×172×⎝⎛⎭⎫1+1517 =4. 所以b =2.11.解:(1)∵S △DAC =23, ∴12·AD ·AC ·sin ∠DAC =23, ∴sin ∠DAC =12.∵∠DAC <∠BAC <π-π3=2π3,∴∠DAC =π6.在△ADC 中,由余弦定理得 DC 2=AD 2+AC 2-2AD ·AC cos π6,∴DC 2=4+48-2×2×43×32=28, ∴DC =27.(2)∵AB =AD ,B =π3,∴△ABD 为正三角形.在△ADC 中,根据正弦定理,可得 AD sin C =43sin2π3=DCsin ⎝⎛⎭⎫π3-C , ∴AD =8sin C ,DC =8sin ⎝⎛⎭⎫π3-C , ∴△ADC 的周长为AD +DC +AC =8sin C +8sin ⎝⎛⎭⎫π3-C +43 =8⎝⎛⎭⎫sin C +32cos C -12sin C +43 =8⎝⎛⎭⎫12sin C +32cos C +43=8sin ⎝⎛⎭⎫C +π3+43, ∵∠ADC =2π3,∴0<C <π3,∴π3<C +π3<2π3,∴当C +π3=π2,即C =π6时,△ADC 的周长取得最大值,且最大值为8+4 3.。
人教版必修5知识点第1章解三角形2(面积公式)有答案
人教版数学必修5知识点总结第一章解三角形—面积公式一、面积公式1.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=7,b=5,c=8,则△ABC的面积S等于()A. 10B. 10√3C. 20D. 20√32.已知△ABC的面积为√3,且∠C=30∘,BC=2√3,则AB等于()A. 1B. √3C. 2D. 2√33.在△ABC中,内角A,B,C的对边分别为a,b,c,a=3√2,b=2√3,cosC=13,则△ABC的面积为()A. 3√3B. 2√3C. 4√3D. √34.△ABC中,a.b.c分别为∠A.∠B.∠C的对边,如果a.b.c成等差数列,∠B=30∘,△ABC的面积为32,那么b等于()A. 1+√32B. 1+√3 C. 2+√32D. 2+√35.在△ABC中,角A,B,C所对的边分别为a,b,c,cos2A=sinA,bc=2,则△ABC的面积为()A. 12B. 14C. 1D. 26.设△ABC的内角A,B,C的对边分别为a,b,c.已知a=2√2,cosA=34,sinB=2sinC,则△ABC的面积是()A. √7B. √74C. 165D. 857.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=1,2b−√3c=2acosC,sinC=√32,则△ABC的面积为()A. √32B. √34C. √32或√34D. √3或√32二、面积公式与余弦定理8.△ABC中,角A,B,C所对边a,b,c,若a=3,C=120∘,△ABC的面积S=15√34,则c=()A. 5B. 6C. √39D. 79.在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a−b)2+6,C=π3,则△ABC的面积是()A. √3B. 9√32C. 3√32D. 3√310.在△ABC中,角A,B,C所对应的边分别为a,b,c,若角A,B,C依次成等差数列,且a=1,b=√3,则S△ABC=()A. √2B. √3C. √32D. 211.在△ABC中,已知BC=1,B=π3,△ABC的面积为√3,则AC的长为()A. 3B. √13C. √21D. √5712.在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3√3,则BC的长是______.13.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60∘,b=4,S△ABC=4√3,则a=______ .14.已知△ABC的面积为4√33,AC=3,B=60∘,则△ABC的周长为______ .15.在△ABC中,角A,B,C的对边分别为a,b,c,且其面积S=a2+b2−c24√3,则角C=______.16.△ABC的内角A,B,C的对边分别为a,b,c.已知sinA+√3cosA=0,a=2√7,b=2(Ⅰ)求c;(Ⅱ)设D为BC边上一点,且AD⊥AC,求△ABD的面积.17.△ABC的内角A、B、C所对的边分别是,a、b、c,△ABC的面积S=√32AB⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ .(Ⅰ)求A的大小;(Ⅱ)若b+c=5,a=√7,求△ABC的面积的大小.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos A2=2√55,AB⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =3.(1)求△ABC的面积;(2)若b+c=6,求a的值.三、正余弦定理,面积公式综合19.在△ABC中,A=60∘,b=1,S△ABC=√3,则csinC=()A. 8√381B. 2√393C. 26√33D. 2√720.在△ABC中,a=1,B=45∘,S△ABC=2,则△ABC的外接圆的直径为()A. 5√22B. 5C. 5√2D. 6√221.在△ABC中,A=30∘,AB=2,且△ABC的面积为√3,则△ABC外接圆的半径为()A. 2√33B. 4√33C. 2D. 422.a,b,c是非直角△ABC中角A、B、C的对边,且sin2A+sin2B−sin2C=absinAsinBsin2C,则△ABC的面积为()A. 12B. 1C. 2D. 423.在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知sinBsinCsinA =3√72,b=4a,a+c=5,则△ABC的面积为______.24.设△ABC三个内角A,B,C所对的边分别为a,b,c,若a2sinC=4sinA,(ca+cb)(sinA−sinB)=sinC(2√7−c2),则△ABC的面积为______ .25.在△ABC中,角A,B,C所对的边分别为a,b,c,asinB=√2sinC,cosC=13,△ABC的面积为4,则c=______.26.如图,在平面四边形ABCD中,△ACD的面积为√3,AB=2,BC=√3−1,∠ABC=120∘,∠BCD=135∘,则AD=______.27.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为a2.3sinA(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.28.已知a,b,c分别是△ABC内角A,B,C的对边,且满足(b−c)2=a2−bc.(1)求角A的大小;(2)若a=3,sinC=2sinB,求△ABC的面积.29.如图,在梯形ABCD中,已知AD//BC,AD=1,BD=2√10,∠CAD=π,tan∠ADC=−2,求:4(1)CD的长;(2)△BCD的面积.30. 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2b −c)cosA −acosC =0(1)求角A .(2)若边长a =√3,且△ABC 的面积是3√34,求边长b 及c .31. 如图,在△ABC 中,点P 在BC 边上,∠PAC =60∘,PC =2,AP +AC =4.(Ⅰ) 求∠ACP ;(Ⅱ) 若△APB 的面积是3√32,求sin∠BAP .32. 如图,在△ABC 中,B =π4,角A 的平分线AD 交BC 于点D ,设∠BAD =α,sinα=√55. (Ⅰ)求sinC ; (Ⅱ)若BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =28,求AC 的长.33.△ABC的内角A、B、C的对边分别为a、b、c,已知△ABC的面积为accosB,BC的中点为D.(Ⅰ)求cosB的值;(Ⅱ)若c=2,asinA=5csinC,求AD的长.34.在△ABC中,a,b,c分别为内角A,B,C的对边,2bsinB=(2a+c)sinA+(2c+a)sinC.(Ⅰ)求B的大小;(Ⅱ)若b=√3,A=π,求△ABC的面积.435.已知a、b、c分别为△ABC三个内角A、B、C的对边,c=√3asinC−ccosA.(1)求A;(2)若a=2,△ABC的面积为√3,求b、c.36.在△ABC中,角A、B、C所对的边分别为a、b、c,且a=2,cosB=3.5(1)若b=4,求sinA的值;(2)若△ABC的面积S△ABC=4,求b、c的值.37.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足b2+c2−a2=2bcsin(B+C).(1)求角A的大小;(2)若a=2,B=π,求△ABC的面积.3c.38.在△ABC中,角A,B,C所对的边分別为a,b,c,且asinAcosC+csinAcosA=13(1)若c=1,sinC=1,求△ABC的面积S;3(2)若D是AC的中点,且cosB=2√5,BD=√26,求△ABC的最短边的边长.539.在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足csinB=√3bcosC,a2−c2=2b2(Ⅰ)求C的大小;(Ⅱ)若△ABC的面积为21√3,求b的值.40.已知a,b,c分别为△ABC三个内角A,B,C的对边,且acosC+√3asinC=b+c.(1)求A;(2)若a=√7,△ABC的面积为3√3,求b与c的值.241.已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若acosC+ccosA=−2bcosA.(1)求角A的值;(2)若a=2√3,b+c=4,求△ABC的面积.42.设△ABC的角A,B,C所对边的长分别为a,b,c,且2bcosA=acosC+ccosA.(1)求角A的大小;(2)若a=2,b+c=4,求△ABC的面积.43.如图,在△ABC中,点D在BC边上,∠ADC=60∘,CD=2.(Ⅰ)若AD=BD=3,求△ABC的面积;(Ⅱ)若AD=2,BD=4,求sinB的值.44.设钝角△ABC的内角A,B,C的对边分别为a,b,c,满足2asinA=(2b−√3c)sinB+(2c−√3b)sinC.(Ⅰ)求角A的大小;(Ⅱ)若a=2,b=2√3,求△ABC的面积.45.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.(1)求角A的大小;(2)若a=√3,c=2,求△ABC的面积.46.如图,在△ABC中,点D在BC边上,∠ADC=60∘,AB=2√7,BD=4.(1)求▵ABD的面积.(2)若∠BAC=120∘,求AC的长.47.在▵ABC,角A,B,C所对的边分别为a,b,c,且bcosA−ccosB=(c−a)cosB.(1)求角B的值;(2)若▵ABC的面积为3√3,b=√13,求a+c的值.48.△ABC的内角A,B,C的对边分别为a,b,c,sin2A=2sin2B,c=2b.(1)求cosB;(2)若△ABC的面积为√7,求△ABC的周长.人教版数学必修5知识点总结(教师版)第一章 解三角形—面积公式一、 面积公式1. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =7,b =5,c =8,则△ABC 的面积S 等于( B ) A. 10 B. 10√3 C. 20 D. 20√3 2. 已知△ABC 的面积为√3,且∠C =30∘,BC =2√3,则AB 等于( C )A. 1B. √3C. 2D. 2√33. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =3√2,b =2√3,cosC =13,则△ABC 的面积为( C ) A. 3√3B. 2√3C. 4√3D. √34. △ABC 中,a.b.c 分别为∠A.∠B.∠C 的对边,如果a.b.c 成等差数列,∠B =30∘,△ABC 的面积为32,那么b 等于( B )A. 1+√32B. 1+√3C. 2+√32D. 2+√35. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos2A =sinA ,bc =2,则△ABC 的面积为( A )A. 12B. 14C. 1D. 26. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知a =2√2,cosA =34,sinB =2sinC ,则△ABC 的面积是( A )A. √7B. √74C. 165 D. 85【解析】∵a =2√2,cosA =34,sinB =2sinC ,可得:b =2c.sinA =√1−cos 2A =√74, ∴由a 2=b 2+c 2−2bccosA ,可得:8=4c 2+c 2−3c 2,解得c =2,b =4. ∴S △ABC =12bcsinA =12×2×4×√74=√7.故选A .7. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,2b −√3c =2acosC ,sinC =√32,则△ABC 的面积为( C )A. √32B. √34C. √32或√34D. √3或√32【解析】∵2b −√3c =2acosC ,∴由正弦定理可得2sinB −√3sinC =2sinAcosC ,∴2sin(A +C)−√3sinC =2sinAcosC ,∴2cosAsinC =√3sinC , ∴cosA =√32∴A =30∘,∵sinC =√32,∴C =60∘或120∘A =30∘,C =60∘,B =90∘,a =1,∴△ABC 的面积为12×1×2×√32=√32,A =30∘,C =120∘,B =30∘,a =1,∴△ABC 的面积为12×1×1×√32=√34,故选:C .二、面积公式与余弦定理8.△ABC中,角A,B,C所对边a,b,c,若a=3,C=120∘,△ABC的面积S=15√34,则c=( D )A. 5B. 6C. √39D. 79.在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a−b)2+6,C=π3,则△ABC的面积是( C )A. √3B. 9√32C. 3√32D. 3√310.在△ABC中,角A,B,C所对应的边分别为a,b,c,若角A,B,C依次成等差数列,且a=1,b=√3,则S△ABC=( C )A. √2B. √3C. √32D. 2【解析】∵A、B、C依次成等差数列,∴B=60∘∴由余弦定理得:b2=a2+c2−2accosB,得:c=2∴由三角形面积公式得:S△ABC=12acsinB=√32,故选C.11.在△ABC中,已知BC=1,B=π3,△ABC的面积为√3,则AC的长为( B )A. 3B. √13C. √21D. √57【解析】解:∵BC=1,B=π3,△ABC的面积为√3=12BC⋅AB⋅sinB=12×AB×1×√32,∴AB=4,∴AC=√AB2+BC2−2AB⋅BC⋅cosB=√16+1−2×4×1×12=√13.故选:B.12.在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3√3,则BC的长是______.【答案】√1313.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60∘,b=4,S△ABC=4√3,则a=______ .【答案】4【解析】解1:∵A=60∘,b=4,S△ABC=4√3=12bcsinA=12×4×c×√32,∴解得c=4,由b=c=4,且A=60∘有∆ABC是等边三角形,故a=4解2:a=√b2+c2−2bccosA=√42+42−2×4×4×12=4.故答案为:4.14.已知△ABC的面积为4√33,AC=3,B=60∘,则△ABC的周长为______ .【答案】8【解析】由三角形面积公式可知12acsin60∘=4√33,ac=163,由余弦定理可知:b2=a2+c2−2ac⋅cos60,即9=a2+c2−ac,可得:a2+c2=433,推出(a+c)2=25,则:a+c=5,所以周长:a+c+b=5+3=8.故答案为:8.15.在△ABC中,角A,B,C的对边分别为a,b,c,且其面积S=2224√3,则角C=______.【答案】616. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知sinA +√3cosA =0,a =2√7,b =2(Ⅰ)求c ;(Ⅱ)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【解析】(Ⅰ)∵sinA +√3cosA =0,∴tanA =−√3, ∵0<A <π,∴A =2π3,由余弦定理可得a 2=b 2+c 2−2bccosA ,即28=4+c 2−2×2c ×(−12),即c 2+2c −24=0, 解得c =−6(舍去)或c =4,故c =4. (Ⅱ)∵c 2=b 2+a 2−2abcosC ,∴16=28+4−2×2√7×2×cosC ,∴cosC =2√7,∴CD =ACcosC =22√7=√7∴CD =12BC ,∵S △ABC =12AB ⋅AC ⋅sin∠BAC =12×4×2×√32=2√3,∴S △ABD =12S △ABC =√3.17. △ABC 的内角A 、B 、C 所对的边分别是,a 、b 、c ,△ABC 的面积S =√32AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ . (Ⅰ)求A 的大小;(Ⅱ)若b +c =5,a =√7,求△ABC 的面积的大小.【解析】(Ⅰ)∵S =√32AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =√32bccosA , 又∵S =12bcsinA ,可得:tanA =√3,∴由A ∈(0,π),可得:A =π3 (Ⅱ)∵由余弦定理a 2=b 2+c 2−2bccosA ,可得:7=b 2+c 2−bc ,∴可得:(b +c)2−3bc =7,∴由b +c =5,可得:bc =6,∴△ABC 的面积S =12bcsinA =3√3218. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=2√55,AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =3. (1)求△ABC 的面积;(2)若b +c =6,求a 的值. 【解析】(1)因为cos A2=2√55,所以cosA =2cos 2A 2−1=35,sinA =45.又由AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =3得bccosA =3,所以bc =5因此S △ABC =12bcsinA =2. (2)由(1)知,bc =5,又b +c =6,由余弦定理,得a 2=b 2+c 2−2bccosA =(b +c)2−165bc =20,所以a =2√5.三、 正余弦定理,面积公式综合19. 在△ABC 中,A =60∘,b =1,S △ABC =√3,则csinC =( B )A. 8√381B. 2√393C. 26√33D. 2√7【解析】△ABC 中,A =60∘,b =1,S ∆ABC =√3,∴12bcsinA =12×1×c ×sin60∘=√3, 解得c =4;∴a 2=b 2+c 2−2bccosA =12+42−2×1×4×cos60∘=13,∴a =√13; ∴c sinC=a sinA=√13√32=2√393.故选B .20. 在△ABC 中,a =1,B =45∘,S △ABC =2,则△ABC 的外接圆的直径为( C )A. 5√22B. 5C. 5√2D. 6√221. 在△ABC 中,A =30∘,AB =2,且△ABC 的面积为√3,则△ABC 外接圆的半径为( C )A. 2√33B. 4√33C. 2D. 4【解析】在△ABC 中,由A =30∘,c =AB =2,得到S △ABC =12bcsinA =12b ×2×12=√3, 解得b =2√3,根据余弦定理得:a 2=12+4−2×2√3×2×√32=4,解得a =2,根据正弦定理得:asinA =2R(R 为外接圆半径),则R =22×12=2.故选C .22. a ,b ,c 是非直角△ABC 中角A 、B 、C 的对边,且sin 2A +sin 2B −sin 2C =absinAsinBsin2C ,则△ABC的面积为( A )A. 12B. 1C. 2D. 4【解析】∵sin 2A +sin 2B −sin 2C =absinAsinBsin2C ,∴由正弦定理可得:a 2+b 2−c 2=2a 2b 2sinCcosC ,∴2abcosC =12absinC ⋅4abcosC , ∵cosC ≠0,∴S △ABC =12absinC =2abcosC4abcosC =12.故选:A .23. 在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinBsinC sinA =3√72,b =4a ,a +c =5,则△ABC 的面积为______.【答案】3√74【解析】由正弦定理及sinBsinC sinA =3√72,得bsinC a =3√72, 又B =4α,∴sinC = 3√78,∵△ABC 为锐角三角形,∴cosC = 18,∴cosC ==a 2+b 2−c 22ab =a 2+(4a)2−(5−a)22a×4a,18解得A =1,B =4,c =4,∴S △ABC = 12absinC = 12×1×4×3√78= 3√74。
高一必修5解三角形练习题及答案 必修5_新课标人教版
第一章 解三角形一、选择题1.在ABC ∆中,a =,03,30;c C ==(4)则可求得角045A =的是( ) A .(1)、(2)、(4) B .(1)、(3)、(4) C .(2)、(3) D .(2)、(4) 2.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( ) A .10=b , 45=A , 70=C B .60=a ,48=c , 60=B C .14=a ,16=b , 45=A D . 7=a ,5=b , 80=A 3.在ABC ∆中,若, 45=C , 30=B ,则( )A ; BC D4.在△ABC ,则cos C 的值为( )A. D. 5.如果满足 60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( )A B .120≤<k C .12≥k D .120≤<k 或二、填空题6.在ABC ∆中,5=a ,60A =, 15=C ,则此三角形的最大边的长为 .7.在ABC ∆中,已知3=b ,,30=B ,则=a _ _.8.若钝角三角形三边长为1a +、2a +、3a +,则a 的取值范围是 .9.在△ABC 中,AB=3,AC=4,则边AC 上的高为10. 在中,(1)若,则的形状是 .ABC △A A B C 2sin )sin(sin =-+ABC △(2)若的形状是 .三、解答题11. 已知在ABC ∆中,cos A =,,,a b c 分别是角,,A B C 所对的边. (Ⅰ)求tan 2A ; (Ⅱ)若sin()23B π+=,c =求ABC ∆的面积. 解:12. 在△ABC 中,c b a ,,分别为角A 、B 、C 的对边,58222bcb c a -=-,a =3, △ABC 的面积为6, D 为△ABC 内任一点,点D 到三边距离之和为d 。
⑴求角A 的正弦值; ⑵求边b 、c ; ⑶求d 的取值范围 解:ABC △13.在ABC ∆中,,,A B C 的对边分别为,,,a b c 且cos ,cos ,cos a C b B c A 成等差数列. (I )求B 的值; (II )求22sin cos()A A C +-的范围。
必修五《解三角形,不等式》专题典例参考资料
解三角形(理)知识要点:一、正弦定理及其变形: sin a A= (R 为三角形外接圆半径) 变形1:=C B A sin :sin :sin 变形2:⎪⎪⎩⎪⎪⎨⎧======)(sin ;)(sin ;)(sin ;C c B b A a 二、余弦定理及其推论:=2a=2b=2c推论:=A cos =B cos =C cos三、三角形面积公式=∆ABC S l r S ABC ⋅=∆21(r 是内切圆的半径,l 是三角形的周长) 1sin cos 22=+A A π=++C B A重要习题1、在△ABC 中,b =22,B =45°,则A=60°a =______;2、在△ABC 中,已知bc c b a ++=222,则角A 为 ;3、在△ABC 中,已知bc b c a =--2222123且32π=A △ABC 是 三角形. 4、在△ABC 中,a =3,b =7,c =2,那么B 等于 ;最大角的余弦值为 ; △ABC 的面积为 ;5、在△ABC 中,4:3:2sin :sin :sin =C B A 且14=+c b 则△ABC 的面积为 。
6、在ABC ∆中,若其面积222S =C ∠=_______;7、已知△ABC 中,a =8,b =7,B =60°,求边c 及S △ABC ‘《不等式》(理)一、一元二次不等式的解法:1、解一元二次不等式的步骤:当0a ≠时求解不等式:20ax bx c ++>(或20axbx c ++<)(1)将原不等式化为一般式(a ).(2)判断 的符号.(3)求 (4)根据 写解集. 顺口溜:在二次项系数为正的前提下:大于 ,小于 。
2、分式不等式求解步骤: , , , ,如:⇒>a x g x f )()(⇒≤a x g x f )()( 3、一元二次不等式恒成立情况小结:20ax bx c ++>(0a ≠)恒成立⇔20ax bx c ++<(0a ≠)恒成立⇔4、[]n m x x f a ,)(∈<,恒成立⇔[]n m x x f a ,)(∈≥,恒成立⇔三.线性规划1、解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
必修5解三角形知识点和练习题(含答案)
高二数学期末复习专题——解三角形复习要点1.正弦定理:2sin sin sin ab cR AB C===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩. 3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形。
5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C+++===.一.正、余弦定理的直接应用:1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于 ( )A .60°B .60°或120°C .30°或150°D .120°2、在ΔABC 中,角,,A B C 对应的边分别是,,a b c ,若1sin ,2A =sinB =,求::a b c3、在ΔABC 中,若S ΔABC =41(a 2+b 2-c 2),那么角∠C=______. 4.若△ABC 的周长等于20,面积是103,A =60°,则BC 边的长是( ) A .5B .6C .7D .85.在△ABC 中,C -A =π2,sin B =13. (1)求sin A 的值;(2)设AC =6,求△ABC 的面积.6.在△ABC 中,若()()3a b c a b c ac ++-+=,且tan tan 3A C +=+AB 边上的高为,,A B C 的大小与边,,a b c 的长二.判断三角形的形状7、在锐角三角形ABC 中,有 ( ) A .cosA>sinB 且cosB>sinA B .cosA<sinB 且cosB<sinA C .cosA>sinB 且cosB<sinA D .cosA<sinB 且cosB>sinA8、若(a+b+c)(b+c -a)=3bc,且sinA=2sinBcosC, 那么ΔABC 是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形9、钝角ΔABC 的三边长分别为x,x+1,x+2,其最大角不超过120°则实数x 的取值围是:10.已知a 、b 、c 分别是ABC ∆的三个角A 、B 、C 所对的边 (1)若ABC ∆面积,60,2,23︒===∆A c S ABC 求a 、b 的值; (2)若B c a cos =,且A c b sin =,试判断ABC ∆的形状.三.测量问题11.在200 m 高的山顶上,测得山下塔顶和塔底的俯角分别为30°,60°,则塔高为( )A.4003 mB.40033 mC.20033 mD.2003 m12.测量一棵树的高度,在地面上选取给与树底共线的A 、B 两点,从A 、B 两点分别测得树尖的仰角为30°,45°,且AB=60米,则树的高度为多少米? 13.如图,四边形ABCD 中,∠B =∠C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3 B .5 3 C .6 3 D .7 314.一缉私艇发现在北偏东 45方向,距离12 mile 的海面上有一走私船正以10 mile/h 的速度沿东偏南 15方向逃窜.缉私艇的速度为14 mile/h, 若要在最短的时间追上该走私船,缉私艇应沿北偏东α+45的方向去追,求追及所需的时间和α角的正弦值.15.如图,某市郊外景区一条笔直的公路a 经过三个景点A 、B 、C .景区管委会又开发了风景优美的景点D .经测量景点D 位于景点A 的北偏东30°方向上8 kmABC北东处,位于景点B 的正北方向,还位于景点C 的北偏西75°方向上,已知AB =5 km. (1)景区管委会准备由景点D 向景点B 修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(2)求景点C 和景点D 之间的距离.四.正、余弦定理与三角函数,向量的综合应用16、设A 、B 、C 为三角形的三角,且方程(sinB -sinA)x 2+(sinA -sinC)x +(sinC -sinB)=0有等根,那么三边a,b,c 的关系是17.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
高中数学(人教版必修五)疑难规律 第一章 解三角形 Word版含答案
正弦定理的几种证明方法
正弦定理是解决斜三角形问题及其应用问题(测量)的重要定理,而证明它们的方法很多,展开的思维空间很大,研究它们的证明,有利于培养探索精神,思维的深度广度和灵活度.
正弦定理的内容:
==.
.向量法
证明:在△中做单位向量⊥,则
·=·(+),
=,
故=,
同理可证:=.
即正弦定理可证:==.
.高线法
证明:在△中做高线,则在△和△中,
=,
=,
即=,
=,
同理可证:=,
即正弦定理可证.
.外接圆法
证明:做△的外接圆,过点连接圆心与圆交于点,连接,设圆的半径为,
∴△为△,且=,且=,
∴=,即=.
同理:=,=,
∴==.
.面积法
∵△===,
∴正弦定理可证:==.
正弦定理的一个推论及应用
在初学正弦定理时,若问同学们这样一个问题:在△中,若>,则与的大小关系怎样?那么几乎所有的同学都会认为与的大小关系不确定.若再问:在△中,若>,则与的大小关系怎样?
仍然会有很多同学回答大小关系不确定.鉴于此,下面我们讲讲这个问题.
一、结论
例在△中,>⇔>.
分析题中条件简单,不易入手.但既在三角形中,何不尝试用联系边角的正弦定理?
证明因为>⇔>(其中为△外接圆的半径),
根据正弦定理变式=,=(其中,分别为,的对边),可得>⇔>,
再由平面几何定理“大角对大边,小角对小边”,
可得>⇔>.所以>⇔>.。
(典型题)高中数学必修五第二章《解三角形》测试题(含答案解析)
一、选择题1.在△ABC 中,若b =2,A =120°,三角形的面积S =AB .C .2D .42.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知3a =,(b ∈,且223cos cos a b B b A =+,则cos A 的取值范围为( ).A .133,244⎡⎤⎢⎥⎣⎦ B .133,244⎛⎫⎪⎝⎭ C .13,24⎡⎤⎢⎥⎣⎦D .13,24⎛⎫⎪⎝⎭6.在ABC 中,角A 、B 、C 对边分别为a 、b 、c ,若b =cos 20B B +-=,且sin 2sin C A =,则ABC 的周长是( )A .12+B .C .D .6+7.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”我国拥有世界上最深的海洋蓝洞,现要测量如图所示的蓝洞的口径A ,B 两点间的距离,在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A 、B 两点间的距离为( )A .80B .803C .160D .8058.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形9.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线792BD =,则△ABC 的周长为( ) A .15B .14C .16D .1210.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin 3cos 0b A a B -=,且三边a b c ,,成等比数列,则2a cb+的值为( ) A .24B .22C .1D .211.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m12.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m二、填空题13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,()226b a c =+-,23B π=,则ABC 的面积是______________. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 16.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若8cos 3ABC bc A S =△,则22cos sin 122sin cos B CA A A++-=-________. 17.已知ABC 中,2,2BC AB AC ==,则ABC 面积的最大值为_____ 18.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 19.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .20.对于ABC ,有如下命题:①若sin2A =sin2B ,则ABC 为等腰三角形; ②若sin A =cos B ,则ABC 为直角三角形; ③若sin 2A +sin 2B +cos 2C <1,则ABC 为钝角三角形; ④若满足C =6π,c =4,a =x 的三角形有两个,则实数x 的取值范围为(4,8). 其中正确说法的序号是_____.三、解答题21.在①tan 2tan B C =,②22312b a -=,③cos 2cos b C c B =三个条件中任选一个,补充在下面问题中的横线上,并解决该问题.问题:已知ABC ∆的内角,,A B C 及其对边,,a b c ,若2c =,且满足___________.求ABC ∆的面积的最大值(注:如果选择多个条件分别解答,按第一个解答计分)22.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积. 23.已知ABC 中,51tan 43A π⎫⎛-=⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值. 24.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.25.已知ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求角A ;(2)若3a =ABC 的面积为23b c +的值.26.在①()cos cos 3cos 0C A A B +-=,②()cos23cos 1B A C -+=,③cos sin 3b C B a +=这三个条件中任选一个,补充在下面问题中. 问题:在ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若1a c +=,___________,求角B 的值和b 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】12sin1202S c ==⨯︒ ,解得c =2.∴a 2=22+22−2×2×2×cos 120°=12,解得a =,∴24sin 2a R A === , 解得R =2.本题选择C 选项. 2.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R∴=所以ABC∆的外接圆面积为=3ππ.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.D解析:D【分析】根据角A的平分线交BC于E,满足0AE BC⋅=,得到ABC是等腰三角形,再由2221sin24+-==ABCa b cS ab C,结合余弦定理求解.【详解】因为0AE BC⋅=,所以AE BC⊥,又因为AE是角A的平分线,所以ABC是等腰三角形,又2221sin24+-==ABCa b cS ab C,所以2221sin cos22a b cab C Cab+-==,因为()0,Cπ∈,所以4Cπ,所以ABC是等腰直角三角形,故选:D【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.4.D解析:D【分析】根据cos cosa Ab B=,利用正弦定理将边转化为角得到sin cos sin cosA AB B=,然后再利用二倍角的正弦公式化简求解.【详解】因为cos cosa Ab B=,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.5.B解析:B 【分析】由正弦定理进行边角互化可得9c b=,由余弦定理可得22819cos 18b b A +-=,进而可求出cos A 的范围【详解】因为3a =,223cos cos a b B b A =+,所以22cos cos a ab B b A =+, 所以()22sin sin sin cos sin cos sin sin sin sin A A B B B A B A B B C =+=+=,即29a bc ==,所以9c b=,则22222819cos 218b bc a b A bc +-+-==.因为(b ∈,所以()212,18b ∈,81y x x=+在()12,18上递增, 所以22817545,42b b ⎛⎫+∈ ⎪⎝⎭,则133cos ,244A ⎛⎫∈ ⎪⎝⎭. 故选:B 【点睛】本题考查了正弦定理,考查了余弦定理.解答本题的关键是用b 表示cos A .6.D解析:D 【分析】由已知条件求出角B 的值,利用余弦定理求出a 、c 的值,由此可计算出ABC 的周长. 【详解】cos 2sin 26B B B π⎛⎫+=+= ⎪⎝⎭,sin 16B π⎛⎫∴+= ⎪⎝⎭,0B π<<,7666B πππ∴<+<,则62B ππ+=,3B π∴=,sin 2sin C A =,2c a ∴=,由余弦定理得2222cos b a c ac B =+-,即2312a =, 2a ∴=,24c a ==,因此,ABC 的周长是623a b c ++=+.故选:D. 【点睛】本题考查三角形周长的计算,涉及余弦定理的应用,考查计算能力,属于中等题.7.D解析:D 【分析】如图,BCD △中可得30CBD ∠=︒,再利用正弦定理得802BD =,在ABD △中,由余弦定理,即可得答案; 【详解】如图,BCD △中,80CD =,15BDC ∠=︒,12015135BCD ACB DCA ∠=∠+∠=︒+︒=︒,∴30CBD ∠=︒,由正弦定理得80sin135sin 30BD =︒︒,解得802BD =,ACD △中,80CD =,15DCA ∠=︒,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, ∴15CAD ∠=︒,∴==80AD CD , ABD △中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅⋅∠2280(802)280802cos135=+-⨯⨯⨯︒2805=⨯,∴805AB =,即A ,B 两点间的距离为805.故选:D. 【点睛】本题考查正余弦定理的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.8.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.11.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203sin120BC3tan 3020320ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.12.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案. 【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin AM AMCAC ACM∠===∠在Rt ABC ∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.二、填空题13.【分析】利用余弦定理求出的值再利用三角形的面积公式可求得的面积【详解】由余弦定理可得可得则解得因此的面积是故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边和角但不能直接使用正弦定理【分析】利用余弦定理求出ac 的值,再利用三角形的面积公式可求得ABC 的面积. 【详解】由余弦定理可得222222cos b a c ac B a c ac =+-=++,222a c b ac ∴+-=-,()2222626b a c a c ac =+-=++-,可得222260a c b ac +-+-=,则260ac ac --=,解得6ac =,因此,ABC的面积是11sin 62222ABC S ac B ==⨯⨯=△.故答案为:2. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 1222OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦解析:【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围.【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<,cos 64A A ππ∴<<∴∈sin 2sin cos 2cos sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.16.【分析】由三角形的面积公式结合等式可求得然后利用二倍角余弦公式结合弦化切可求得所求代数式的值【详解】因为所以则故故答案为:【点睛】本题考查利用三角形的面积公式二倍角余弦公式诱导公式以及弦化切求值考查解析:12-【分析】由三角形的面积公式结合等式8cos 3ABC bc A S =△,可求得3tan 4A =,然后利用二倍角余弦公式、结合弦化切可求得所求代数式的值. 【详解】因为881cos sin 332ABC bc A S bc A ==⨯△,所以4cos sin 3A A =,则3tan 4A =,故()()22cos sin 1cos sin sin cos sin cos 22sin cos 2sin cos 2sin cos 2sin cos B CA B C A A A A A A A A A A A A A π++-+++--===---- tan 112tan 12A A -==--. 故答案为:12-.【点睛】 本题考查利用三角形的面积公式、二倍角余弦公式、诱导公式以及弦化切求值,考查计算能力,属于中等题.17.【分析】设则根据面积公式得由余弦定理求得代入化简由三角形三边关系求得由二次函数的性质求得取得最大值【详解】解:设则根据面积公式得由余弦定理可得可得:由三角形三边关系有:且解得:故当时取得最大值故答案解析:43【分析】设AC x =,则2AB x =,根据面积公式得ABC S ∆=,由余弦定理求得cos C 代入化简ABC S ∆=223x <<,由二次函数的性质求得ABC S ∆取得最大值. 【详解】解:设AC x =,则2AB x =,根据面积公式得 1sin sin 12ABC S AC BC C x C x ∆=== 由余弦定理可得2224443cos 44x x x C x x+--==,可得:ABCS ∆==由三角形三边关系有:22x x +>,且22x x +>,解得:223x <<,故当x =时,ABC S ∆取得最大值43, 故答案为:43. 【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.18.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A CA B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解. 【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b aab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=, 由正弦定理可得,22sin sin sin sin C A A B -=, 即1cos21cos2cos2cos2sin sin 222C A A CA B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得 sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠; sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =, 则3B A C A ππ=--=-,因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.19.30【分析】结合图形利用正弦定理与直角三角形的边角关系即可求出塔高AB 的长【详解】在△BCD 中∠BCD =15°∠CBD =30°∴=∴=CB =30×=30;中∠ACB =45°∴塔高AB =BC =30m 故解析:30 【分析】结合图形,利用正弦定理与直角三角形的边角关系,即可求出塔高AB 的长. 【详解】在△BCD 中,∠BCD =15°,∠CBD =30°,CD =,∴sin CD CBD ∠=sin CB CDB ∠,∴sin 30︒=()sin 1801530CB ︒︒︒--, CB =30; Rt ABC △中,∠ACB =45°, ∴塔高AB =BC =30m . 故答案为:30. 【点睛】本题考查了正弦定理和直角三角形的边角关系应用问题,是基础题.20.③④【分析】举出反例可判断①②;由同角三角函数的平方关系正弦定理可得再由余弦定理可判断③;由正弦定理可得再由三角形有两个可得且即可判断④;即可得解【详解】对于①当时满足此时△ABC 不是等腰三角形故①解析:③④ 【分析】举出反例可判断①、②;由同角三角函数的平方关系、正弦定理可得222a b c +<,再由余弦定理可判断③;由正弦定理可得8sin x A =,再由三角形有两个可得566A ππ<<且2A π≠,即可判断④;即可得解.【详解】 对于①,当3A π=,6B π=时,满足sin 2sin 2A B =,此时△ABC 不是等腰三角形,故①错误; 对于②,当23A π=,6B π=时,满足sin cos A B =,此时△ABC 不是直角三角形,故②错误;对于③,∵222sin sin cos 1A B C ++<,∴22222sin sin cos sin cos A B C C C ++<+, ∴222sin sin sin A B C +<,∴根据正弦定理得222a b c +<,∵222cos 02a b c C ab+-=<,()0,C π∈,∴C 为钝角,∴△ABC 为钝角三角形,故③正确;对于④,∵,4,6C c a x π===,∴根据正弦定理得481sin sin 2a c A C ===,∴8sin x A =, 由题意566A ππ<<,且2A π≠,∴1sin 12A <<,∴48x ,即x 的取值范围为(4,8),故④正确.故答案为:③④. 【点睛】本题考查了三角函数及解三角形的综合应用,考查了运算求解能力,合理转化条件是解题关键,属于中档题.三、解答题21.条件选择见解析;最大值为3. 【分析】分别选择条件①②③,利用正弦定理和余弦定理,化简得到22312b a -=,再由余弦定理得28cos 2b A b -=,进而求得sin A ,利用面积公式求得ABCS ∆=,即可求解. 【详解】选择条件①:因为tan 2tan B C =,所以sin cos 2sin cos B C C B =, 根据正弦定理可得cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 又由2c =,可得22312b a -=,根据余弦定理得22228cos 22b c a b A bc b+--==,则sin A ===,所以1sin 22ABCSbc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 选择条件②:因为22312b a -=,由余弦定理得22228cos 22b c a b A hc h+--==,所以sin A ===,1sin 22ABC S bc A b b∆==⨯=,所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.选择条件③:因为cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 因为2c =,可得22312b a -=,又由余弦定理得:22228cos 22b c a b A bc b+--==,所以sin 2A b===,1sin 2ABCS bc A b ∆===, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.22.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 2224ABCSac B ==⨯=. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件. 23.(1)45;(2)2. 【分析】(1)首先利用两角差的正切公式求出tan A ,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan 2A =,即可求出sin A ,cos A ,再利用余弦定理及面积公式计算可得; 【详解】 解:(1)5tan tan 44A A ππ⎫⎫⎛⎛-=-⎪ ⎪⎝⎝⎭⎭1tan 11tan 3A A -==+,解得1tan 2A =,故2222cos sin cos2sin cos AA A A A+=+214tan 15A ==+. (2)由(1)可知,sin 1tan cos 2A A A ==①,且22sin cos 1A A +=②;联立①②,解得sin A =,cos A =.又1sin 42S bc A ==,4c =,可得b = 2222cos 4a b c bc A =+-=,则2a =.即2BC =.24.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③. 因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >.又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b C b C b C c B C C ====⎛⎫- ⎪⎝⎭. 方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=,由正弦定理得5sin 4sin 5sin cos C A B A -=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以5cos sin 4sin B A A =.因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-,所以2225a c +=.(ⅱ)由(ⅰ)(ⅱ)解得c =c =. 【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.25.(1)π3A =;(2)6. 【分析】(1)由正弦定理把条件cos cos 2cos b C c B a A +=转化为角的关系,再由两角和的正弦公式及诱导公式得A 的关系式,从而可得结论;(2)首先可根据解三角形面积公式得出8bc =,然后根据余弦定理计算出6b c +=.【详解】(1)因为cos cos 2cos b C c B a A +=由正弦定理得,sin cos sin cos 2sin cos B C C B A A +=所以()sin sin 2sin cos B C A A A +==因为0πA <<所以,sin 0A ≠ 所以1cos 2A =,所以π3A =(2)因为ABC 的面积为所以1sin 2bc A =因为π3A =,所以1πsin 23bc =, 所以8bc =.由余弦定理得,2222cos a b c bc A =+-,因为a =,π3A =, 所以()()2222π122cos 3243b c bc b c bc b c =+-=+-=+-, 所以6b c +=.【点睛】关键点点睛:解题时要注意边角关系的转化.求“角”时,常常把已知转化为角的关系,求“边”时,常常把条件转化为边的关系式,然后再进行转化变形.26.条件选择见解析;3B π=,b 最小值为12. 【分析】选①,利用三角形的内角和定理、诱导公式以及两角和的余弦公式化简得出tan B =结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选②,利用三角形的内角和定理、诱导公式以及二倍角的余弦公式求出cos B 的值,结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选③,利用正弦定理边角互化、三角形的内角和定理以及两角和的正弦公式化简可求得tan B =()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值.【详解】解:若选择①:在ABC 中,有A B C π++=,则由题可得:()()cos cos cos 0A B A A B π-++-=⎡⎤⎣⎦, ()cos cos cos cos 0A B A B A B -++=,sin sin cos cos cos cos cos 0A B A B A B A B -+-=,sin sin cos A B A B =,又sin 0A ≠,所以sin B B =,则tan B =又()0,B π∈,所以3B π=,因为1a c +=,所以1c a =-,()0,1a ∈.由余弦定理可得:2222cos b a c ac B =+-22a c ac =+-()()2211a a a a =+---2331a a =-+, ()0,1a ∈,又2211324b a ⎛⎫=-+ ⎪⎝⎭, 所以,当12a =时,()2min 14b =,即b 的最小值为12; 若选择②:在ABC 中,有A B C π++=, 则由题可得()222cos 13cos 2cos 3cos 11B B B B π---=+-=, 解得1cos 2B =或cos 2B =-(舍去), 又()0,πB ∈,所以3B π=.(剩下同①)若选择③:由正弦定理可将已知条件转化为sin cos sin sin 3B C C B A +=, ()()sin cos s s in cos in sin sin B C C B A B C B C π=+=-+=+⎡⎤⎣⎦,代入上式得sin sin cos 3C B C B =,又sin 0C ≠,所以sin B B =,tan B =又()0,B π∈,所以3B π=.(剩下同①) 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.。
必修5解三角形知识点和练习题(含答案)---(有答案)---5
高二数学期末复习专题—-解三角形复习要点1.正弦定理:2sin sin sin ab cR AB C===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩. 3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角。
2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角。
4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形.5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C+++===.一.正、余弦定理的直接应用:1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于 ( ) A .60°B .60°或120°C .30°或150°D .120°2、在ΔABC 中,角,,A B C 对应的边分别是,,a b c ,若1sin ,2A =sin 2B =,求::a b c3、在ΔABC 中,若S ΔABC =41(a 2+b 2-c 2),那么角∠C=______.4.若△ABC 的周长等于20,面积是103,A =60°,则BC 边的长是( ) A .5B .6C .7D .85.在△ABC 中,C -A =错误!,sin B =错误!。
高中必修五——解三角形(含答案)
解三角形一.解答题(共5小题)1.在△ABC中,a,b,c分别是角A,B,C所对的边,O为△ABC三边中垂线的交点.(1)若b﹣c=a,2sinB=3sinC,求cosA的值;(2)若b2﹣2b+c2=0,求•的取值范围.2.已知函数f(x)=sin2x+2cos2x.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)设a,b,c分别为△ABC三个内角A,B,C的对边,f(c)=3,c=1,ab=2,求a,b的值.(Ⅰ)若a=2,b=3,求△ABC的外接圆的面积;(Ⅱ)若c=2,sinC+sin(B﹣A)=2sin2A,求△ABC的面积.4.在△ABC中,设角A、B、C的对边分别为a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.(I)求角C的大小;(Ⅱ)若c=,求△ABC周长的取值范围.(Ⅰ)若△ABC的面积等于,求a和b;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求A;(Ⅲ)若ab=,求△ABC的周长.解三角形参考答案与试题解析一.解答题(共5小题)1.在△ABC中,a,b,c分别是角A,B,C所对的边,O为△ABC三边中垂线的交点.(1)若b﹣c=a,2sinB=3sinC,求cosA的值;(2)若b2﹣2b+c2=0,求•的取值范围.【分析】(1)利用正弦定理可求2b=3c,结合已知可得a=2c,b=,用余弦定理即可求值得解.(2)如图所示,延长AO交外接圆于D.由于AD是⊙O的直径,可得∠ACD=∠ABD=90°,于是cos,cos∠BAD=.可得=•(﹣)=2﹣2,.再利用c2=2b﹣b2,化为=(b﹣)2﹣.由于c2=2b﹣b2>0,解得0<b<2.令f(b)=(b﹣)2﹣.利用二次函数的单调性即可得出.【解答】解:(1)∵2sinB=3sinC,∴2b=3c.又∵b﹣c=a,∴a=2c,b=,∴cosA==﹣.(2)∵O为△ABC三边中垂线的交点,∴O为三角形外接圆的圆心.如图所示,延长AO交外接圆于D,连接BD、CD,∵AD是圆O的直径,∴∠ACD=∠ABD=90°,cos,cos∠BAD=.∵c2=2b﹣b2,∴=•(﹣AB)=•﹣•=2﹣2=b2﹣c2=b2﹣(2b﹣b2)=b2﹣b=(b﹣)2﹣.∵c2=2b﹣b2>0,∴0<b<2,设f(b)=(b﹣)2﹣,又f(0)=0,f(2)=2,∴的取值范围是:[﹣,2].【点评】本题考查了正弦定理,余弦定理,三角形的外接圆的性质、向量的运算法则、数量积运算、二次函数的单调性等基础知识与基本方法,属于难题.2.已知函数f(x)=sin2x+2cos2x.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)设a,b,c分别为△ABC三个内角A,B,C的对边,f(c)=3,c=1,ab=2,求a,b的值.【分析】(Ⅰ)利用三角函数间的关系将f(x)化简为f(x)=2sin(2x+)+1,由x∈[0,];可求得2x+∈[,],从而可求得函数f(x)的值域.(Ⅱ)由f(C)=3可求得C,利用余弦定理可求得a2+b2=7,通过解方程可求得a、b的值.【解答】解:(Ⅰ)f(x)=sin2x+2cos2x=sin2x+cos2x+1(2分)=2sin(2x+)+1(4分)∵x∈[0,],∴2x+∈[,],∴sin(2x+)∈[﹣,1],(6分)∴函数f(x)的值域为[0,3].(7分)(Ⅱ)∵f(C)=3,∴2sin(2C+)+1=3,即sin(2C+)=1.∵0<C<π,∴2C+∈[,],∴2C+=,∴C=.(10分)又c2=a2+b2﹣2abcosC,c=1,ab=2,cosC=,∴a2+b2=7.(12分)由,得或.(14分)【点评】本题考查三角函数间的关系,考查正弦函数的性质,考查余弦定理与解方程得能力,属于难题.3.在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知.(Ⅰ)若a=2,b=3,求△ABC的外接圆的面积;(Ⅱ)若c=2,sinC+sin(B﹣A)=2sin2A,求△ABC的面积.【分析】(Ⅰ)a=2,b=3,C=,由余弦定理可求得c,再利用正弦定理可求得△ABC的外接圆的半径,从而可求△ABC的外接圆的面积;(Ⅱ)利用三角函数间的关系将条件转化为:sinBcosA=2sinAcosA,对cosA分cosA=0与cosA≠0讨论,再分别借助正弦定理,通过解方程组与再由三角形的面积公式即可求得△ABC的面积.【解答】解:(Ⅰ)∵a=2,b=3,C=,∴由余弦定理得:c2=a2+b2﹣2abcosC=4+9﹣2×2×3×=7,∴c=,设其外接圆半径为R,则2R=,故R=,∴△ABC的外接圆的面积S=πR2=;(Ⅱ)∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sinBcosA=2sin2A=4sinAcosA,∴sinBcosA=2sinAcosA当cosA=0时,∠A=,∠B=,a=,b=,可得S=;当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a…①,∵c=2,∠C=60°,c2=a2+b2﹣2abcosC∴a2+b2﹣ab=4…②,联立①①解得a=,b=,∴△ABC的面积S=absinC=absin60°=.综上可知△ABC的面积为.【点评】本题考查余弦定理与正弦定理,考查转化与方程思想的综合运用,考查综合分析与运算能力,属于难题.4.在△ABC中,设角A、B、C的对边分别为a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.(I)求角C的大小;(Ⅱ)若c=,求△ABC周长的取值范围.【分析】(I)由三角函数的平方关系、余弦定理即可得出;(II)利用正弦定理、两角和差的正弦公式、三角函数的单调性即可得出.【解答】解:(I)∵cos2A=sin2B+cos2C+sinAsinB,∴1﹣sin2A=sin2B+1﹣sin2C+sinAsinB,∴sin2A+sin2B﹣sin2C=﹣sinAsinB,∴a2+b2﹣c2=﹣ab,∴=,又0<C<π,∴.(2)∵,∴a=2sinA,b=2sinB,则△ABC的周长L=a+b+c=2(sinA+sinB)+=2(sinA+)+=,∵,,∴,即,∴△ABC周长的取值范围是.【点评】熟练掌握三角函数的平方关系、正、余弦定理、两角和差的正弦公式、三角函数的单调性等是解题的关键.5.在△ABC中,内角A,B,C的对边分别是a,b,c,已知c=2,C=60°.(Ⅰ)若△ABC的面积等于,求a和b;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求A;(Ⅲ)若ab=,求△ABC的周长.【分析】(I)由余弦定理可得:c2=a2+b2﹣2abcosC,化为a2+b2﹣ab=4.由于△ABC 的面积等于,可得=,即ab=4,联立即可解得.(II)由sinC+sin(B﹣A)=2sin2A,可得sin(A+B)+sin(B﹣A)=2sin2A,化为cosA=0或cosB=2sinA.当cosA=0,A=90°,当cosB=2sinA,由正弦定理可得:b=2a,代入a2+b2﹣ab=4,解得a,再利用正弦定理可得sinA==,解得A,由a <c,A只能是锐角.(III)由a2+b2﹣ab=4.与ab=,解得a+b=3,即可得出.【解答】解:(I)由余弦定理可得:c2=a2+b2﹣2abcosC,∴4=a2+b2﹣2abcos60°,化为a2+b2﹣ab=4.∵△ABC的面积等于,∴=,化为ab=4,联立,解得a=b=2.(II)∵sinC+sin(B﹣A)=2sin2A,∴sin(A+B)+sin(B﹣A)=2sin2A,∴2sinBcosA=4sinAcosA,∴cosA=0或sinB=2sinA.当cosA=0,A=90°,当sinB=2sinA,由正弦定理可得:b=2a,代入a2+b2﹣ab=4,解得,则sinA==,解得A=30°,或A=150°,∵a<c,∴A<C,∴A=30°.综上可得:A=90°或A=30°.(III)由a2+b2﹣ab=4.可得:(a+b)2﹣3ab=4,由ab=,解得a+b=3,∴△ABC的周长=a+b+c=3+2=5.【点评】本题综合考查了正弦定理、余弦定理、三角形的面积计算公式、诱导公式、等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.。
2019-2020学年高中数学(人教版必修五)疑难规律 第一章 解三角形 Word版含答案
1 正弦定理的几种证明方法正弦定理是解决斜三角形问题及其应用问题(测量)的重要定理,而证明它们的方法很多,展开的思维空间很大,研究它们的证明,有利于培养探索精神,思维的深度广度和灵活度. 正弦定理的内容: a sinA =b sinB =c sinC . 1.向量法证明:在△ABC 中做单位向量i ⊥AC →,则i ·AB →=i ·(AC →+CB →),|i ||AB →|sin A =|i ||CB →|sin C , 故a sinA =c sinC, 同理可证:a sinA =b sinB. 即正弦定理可证:a sinA =b sinB =csinC .2.高线法证明:在△ABC 中做高线CD ,则在Rt △ADC 和Rt △BDC 中,CD =b sin A ,CD =a sin B ,即b sin A =a sin B , a sinA =b sinB , 同理可证:a sinA =c sinC, 即正弦定理可证. 3.外接圆法证明:做△ABC 的外接圆O ,过点C 连接圆心与圆交于点D ,连接AD ,设圆的半径为R , ∴△CAD 为Rt △,且b =2R sin D ,且D =B , ∴b =2R sin B ,即bsinB =2R .同理:a sinA =2R ,c sinC=2R , ∴a sinA =b sinB =c sinC. 4.面积法∵S △ABC =12bc sin A =12ab sin C =12ac sin B ,∴正弦定理可证:a sinA =b sinB =csinC .2 正弦定理的一个推论及应用在初学正弦定理时,若问同学们这样一个问题:在△ABC 中,若sin A >sin B ,则A 与B 的大小关系怎样?那么几乎所有的同学都会认为A 与B 的大小关系不确定.若再问:在△ABC 中,若A >B ,则sin A 与sin B 的大小关系怎样?仍然会有很多同学回答大小关系不确定.鉴于此,下面我们讲讲这个问题. 一、结论例1 在△ABC 中,sin A >sin B ⇔A >B .分析 题中条件简单,不易入手.但既在三角形中,何不尝试用联系边角的正弦定理? 证明 因为sin A >sin B ⇔2R sin A >2R sin B (其中R 为△ABC 外接圆的半径),根据正弦定理变式a =2R sin A ,b =2R sin B (其中a ,b 分别为A ,B 的对边),可得sin A >sin B ⇔a >b , 再由平面几何定理“大角对大边,小角对小边”, 可得a >b ⇔A >B .所以sin A >sin B ⇔A >B . 二、结论的应用例2 在△ABC 中,A =45°,a =4,b =22,求B .分析 在遇到这样的问题时,有的同学一看,这不正好用正弦定理吗,于是就直接由正弦定理得B =30°或B =150°.其实这是错误的!错在哪儿?我们只需由上述结论即可发现.解 由正弦定理得sin45°4=sinB 22,sin B =12,又sin B <sin A ,所以B <A ,所以B =30°.点评 同学们在解题时,一定要根据问题的具体情况,恰当地选用定理.同时,使用正弦定理求角时,要特别小心,不要出现漏解或增解的情况.例3 在△ABC 中,已知B =30°,b =3,c =33,求A .分析 同学们在求解这个问题的时候,在用正弦定理求角C 时不要丢解. 解 由正弦定理及已知条件,得 sin C =csinB b =32,因为sin C >sin B , 所以C >B ,所以C 有两解. (1)当C =60°时,有A =90°; (2)当C =120°时,有A =30°.点评 除此之外,本题也可以利用余弦定理来求解.3 三角形定“形”记根据边角关系判断三角形的形状是一类热点问题.解答此类问题,一般需先运用正弦、余弦定理转化已知的边角关系,再进一步判断三角形的形状,这种转化一般有两个通道,即化角为边或化边为角.下面例析这两个通道的应用.1.通过角之间的关系定“形”例1 在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .正三角形分析 通过三角形恒等变换和正弦、余弦定理,把条件式转化,直至能确定两角(边)的关系为止,即可判断三角形的形状.解析 方法一 利用正弦定理和余弦定理 2sin A cos B =sin C 可化为2a ·a2+c2-b22ac =c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0,即a 2=b 2,故a =b . 所以△ABC 是等腰三角形.故选B. 方法二 因为在△ABC 中,A +B +C =π, 即C =π-(A +B ),所以sin C =sin(A +B ). 由2sin A cos B =sin C ,得2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =0,即sin(A -B )=0. 又因为-π<A -B <π, 所以A -B =0,即A =B .所以△ABC 是等腰三角形,故选B. 答案 B点评 根据角的三角函数之间的关系判断三角形的形状,一般需通过三角恒等变换,求出角(边)之间的关系. 2.通过边之间的关系定“形”例2 在△ABC 中,若sinA +sinC sinB =b +c a ,则△ABC 是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形分析 先运用正弦定理化角为边,根据边之间的关系即可判断三角形的形状. 解析 在△ABC 中,由正弦定理,可得sinA +sinC sinB =a +c b =b +ca ,整理得a (a +c )=b (b +c ),即a 2-b 2+ac -bc =0,(a -b )(a +b +c )=0. 因为a +b +c ≠0,所以a -b =0,即a =b , 所以△ABC 是等腰三角形.故选C. 答案 C点评 本题也可化边为角,但书写复杂,式子之间的关系也不易发现.4 细说三角形中解的个数解三角形时,处理“已知两边及其一边的对角,求第三边和其他两角”问题需判断解的个数,这是一个比较棘手的问题.下面对这一问题进行深入探讨.1.出现问题的根源我们作图来直观地观察一下.不妨设已知△ABC 的两边a ,b 和角A ,作图步骤如下:①先做出已知角A ,把未知边c 画为水平的,角A 的另一条边为已知边b ;②以边b 的不是A 点的另外一个端点为圆心,边a 为半径作圆C ;③观察圆C 与边c 交点的个数,便可得此三角形解的个数. 显然,当A 为锐角时,有如图所示的四种情况:当A 为钝角或直角时,有如图所示的两种情况:根据上面的分析可知,由于a ,b 长度关系的不同,导致了问题有不同个数的解.若A 为锐角,只有当a 不小于b sin A 时才有解,随着a 的增大得到的解的个数也是不相同的.当A 为钝角时,只有当a 大于b 时才有解.2.解决问题的策略 (1)正弦定理法已知△ABC 的两边a ,b 和角A ,求B . 根据正弦定理a sinA =b sinB ,可得sin B =bsinAa.若sin B >1,三角形无解;若sin B =1,三角形有且只有一解;若0<sin B <1,B 有两解,再根据a ,b 的大小关系确定A ,B 的大小关系(利用大边对大角),从而确定B 的两个解的取舍. (2)余弦定理法已知△ABC 的两边a ,b 和角A ,求c . 利用余弦定理可得a 2=b 2+c 2-2bc cos A , 整理得c 2-2bc cos A -a 2+b 2=0.适合问题的上述一元二次方程的解c 便为此三角形的解. (3)公式法当已知△ABC 的两边a ,b 和角A 时,通过前面的分析可总结三角形解的个数的判断公式如下表:3.实例分析例 在△ABC 中,已知A =45°,a =2,b =2(其中角A ,B ,C 的对边分别为a ,b ,c ),试判断符合上述条件的△ABC 有多少个?分析 此题为“已知两边和其中一边的对角”解三角形的问题,可以利用上述办法来判断△ABC 解的情况. 解 方法一 由正弦定理a sinA =bsinB ,可得sin B =22sin45°=12<1. 又因为a >b ,所以A >B ,故B =30°, 符合条件的△ABC 只有一个. 方法二 由余弦定理得22=c 2+(2)2-2×2×c cos45°,即c 2-2c -2=0,解得c =1± 3.而1-3<0, 故仅有一解,符合条件的△ABC 只有一个.方法三 A 为锐角,a >b ,故符合条件的△ABC 只有一个.5 挖掘三角形中的隐含条件解三角形是高中数学的重要内容,也是高考的一个热点.由于我们对三角公式比较熟悉,做题时比较容易入手.但是公式较多且性质灵活,解题时稍有不慎,常会出现增解、错解现象,其根本原因是对题设中的隐含条件挖掘不够.下面结合例子谈谈解三角形时,题目中隐含条件的挖掘. 隐含条件1.两边之和大于第三边例1 已知钝角三角形的三边a =k ,b =k +2,c =k +4,求k 的取值范围. ∵c >b >a 且△ABC 为钝角三角形, ∴C 为钝角. 由余弦定理得cos C =a2+b2-c22ab =k2+(k +2)2-(k +4)22k(k +2)=k2-4k -122k(k +2)<0.∴k 2-4k -12<0,解得-2<k <6.又∵k 为三角形的边长, ∴k >0.综上所述,0<k <6.忽略了隐含条件:k ,k +2,k +4构成一个三角形,需满足k +(k +2)>k +4.即k >2而不是k >0. ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a2+b2-c22ab =k2-4k -122k(k +2)<0.∴k 2-4k -12<0,解得-2<k <6.由两边之和大于第三边得k +(k +2)>k +4,∴k >2, 综上所述,k 的取值范围为2<k <6.温馨点评 虽然是任意两边之和大于第三边,但实际应用时通常不用都写上,只需最小两边之和大于最大边就行了.隐含条件2.三角形的内角范围例2 已知△ABC 中,B =30°,AB =23,AC =2,则△ABC 的面积是________. 由正弦定理,得sin C =ABsinB AC =32.∴C =60°,∴A =90°.则S △ABC =12AB ·AC ·sin A =12×23×2×1=2 3.上述解法中在用正弦定理求C 时丢了一解.实际上由sin C =32可得C =60°或C =120°,它们都满足条件.由正弦定理,得sin C =ABsinB AC =32.∴C =60°或C =120°. 当C =60°时,A =90°, ∴S △ABC =12AB ·AC ·sin A =2 3.当C =120°时,A =30°, ∴S △ABC =12AB ·AC ·sin A = 3.故△ABC 的面积是23或 3.温馨点评 利用正弦定理理解“已知两边及其中一边对角,求另一角”问题时,由于三角形内角的正弦值都为正的,而这个内角可能为锐角,也可能为钝角,容易把握不准确出错. 例3 在△ABC 中,tanA tanB =a2b2,试判断三角形的形状.tanA tanB =a2b2⇔sinAcosB cosAsinB =sin2Asin2B⇔cosB cosA =sinA sinB ⇔sin A cos A =sin B cos B ⇔sin2A =sin2B , ∴A =B .∴△ABC 是等腰三角形.上述错解忽视了满足sin2A =sin2B 的另一个角之间的关系:2A +2B =180°.tanA tanB =a2b2⇔sinAcosB cosAsinB =sin2Asin2B⇔cosB cosA =sinA sinB ⇔sin A cos A =sin B cos B ⇔sin2A =sin2B ⇔2A =2B 或2A +2B =180°. ∴A =B 或A +B =90°.∴△ABC 是等腰三角形或直角三角形.温馨点评 在△ABC 中,sin A =sin B ⇔A =B 是成立的,但sin2A =sin2B ⇔2A =2B 或2A +2B =180°. 例4 在△ABC 中,B =3A ,求ba 的取值范围.由正弦定理得b a =sinB sinA =sin3AsinA=sin(A +2A)sinA =sinAcos2A +cosAsin2AsinA=cos2A +2cos 2A =4cos 2A -1. ∵0≤cos 2A ≤1, ∴-1≤4cos 2A -1≤3, ∵b a >0,∴0<ba≤3. 忽略了三角形内角和为180°,及角A 、B 的取值范围,从而导致ba 取值范围求错.由正弦定理得b a =sinB sinA =sin3AsinA=sin(A +2A)sinA =sinAcos2A +cosAsin2AsinA=cos2A +2cos 2A =4cos 2A -1.∵A +B +C =180°,B =3A .∴A +B =4A <180°, ∴0°<A <45°.∴22<cos A <1, ∴1<4cos 2A -1<3,∴1<b a<3.温馨点评 解三角形问题,角的取值范围至关重要.一些问题,角的取值范围隐含在题目的条件中,若不仔细审题,深入挖掘,往往疏漏而导致解题失败.6 正弦、余弦定理三应用有些题目,表面上看不能利用正弦、余弦定理解决,但若能构造适当的三角形,就能利用两定理,题目显得非常容易,本文剖析几例. 1.平面几何中的长度问题例1 如图,在梯形ABCD 中,CD =2,AC =19,∠BAD =60°,求梯形的高.分析 如图,过点D 作DE ⊥AB 于点E ,则DE 为所求的高.由∠BAD =60°,知∠ADC =120°,又边CD 与AC 的长已知,故△ACD 为已知两边和其中一边的对角,可解三角形.解Rt △ADE ,需先求AD 的长,这只需在△ACD 中应用余弦定理.解 由∠BAD =60°,得∠ADC =120°, 在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD ·cos∠ADC ,即19=AD 2+4-2AD ×2×⎝ ⎛⎭⎪⎫-12,解得AD =3或AD =-5(舍去). 在△ADE 中,DE =AD ·sin60°=332.点评 依据余弦定理建立方程是余弦定理的一个妙用,也是函数与方程思想在解三角形中的体现. 2.求范围例2 如图,等腰△ABC 中,底边BC =1,∠ABC 的平分线BD 交AC 于点D ,求BD 的取值范围(注:0<x <1时,f (x )=x -1x为增函数).分析 把BD 的长表示为∠ABC 的函数,转化为求函数的值域. 解 设∠ABC =α.因为∠ABC =∠C ,所以∠A =180°-2α,∠BDC =∠A +∠ABD =180°-2α+α2=180°-3α2,因为BC =1,在△BCD 中,由正弦定理得BD =sin αsin 3α2=2sin α2cos α2sin αcos α2+cos αsin α2=2cosα24cos2α2-1=24cos α2-1cosα2,因为0°<α2<45°,所以22<cos α2<1,而当cos α2增大时,BD 减小,且当cos α2=22时,BD =2;当cos α2=1时,BD =23,故BD 的取值范围是⎝ ⎛⎭⎪⎫23,2. 点评 本题考查:(1)三角知识、正弦定理以及利用函数的单调性求值域的方法;(2)数形结合、等价转化等思想.3.判断三角形的形状例3 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=k ,(k ∈R ). (1)判断△ABC 的形状; (2)若c =2,求k 的值.解 (1)∵AB →·AC →=cb cos A ,BA →·BC →=ca cos B . 又AB →·AC →=BA →·BC →, ∴bc cos A =ac cos B , ∴b cos A =a cos B .方法一 ∴sin B cos A =sin A cos B , 即sin A cos B -cos A sin B =0, ∴sin(A -B )=0,∵-π<A -B <π,∴A =B . ∴△ABC 为等腰三角形.方法二 利用余弦定理将角化为边, ∵b cos A =a cos B ,∴b ·b2+c2-a22bc =a ·a2+c2-b22ac ,∴b 2+c 2-a 2=a 2+c 2-b 2, ∴a 2=b 2,∴a =b . ∴△ABC 为等腰三角形. (2)由(1)知:a =b .∴AB →·AC →=bc cos A =bc ·b2+c2-a22bc =c22=k , ∵c =2,∴k =1.。
高中数学必修五解三角形测试题及答案
(数学 5 必修)第一章:解三角形[ 基础训练 A 组]一、选择题1.在△ ABC中,若C90 0 , a 6, B30 0,则c b 等于().1 B .1C.23D. 23A2.若A为△ ABC的内角,则以下函数中必定取正当的是()A.sin A B. cos A C. tan A D.1tan A3.在△ ABC中,角A, B均为锐角,且cos A sin B, 则△ABC的形状是()A.直角三角形B.锐角三角形 C .钝角三角形 D .等腰三角形4.等腰三角形一腰上的高是 3 ,这条高与底边的夹角为600,则底边长为()A.2 B.3C. 3D.2 3 25.在△ABC中,若b2a sin B ,则 A 等于()A.300或600B. 450或600 C .1200或600 D .300或15006.边长为5,7,8的三角形的最大角与最小角的和是()A .900B. 1200 C .1350 D .1500二、填空题1.在Rt△ ABC中,C900,则sin Asin B的最大值是_______________。
2.在△ ABC中,若a2 b 2bc c2 ,则 A_________。
3.在△ ABC中,若b2,B 300,C1350 , 则 a_________ 。
4.在△ ABC中,若sin A∶sin B∶sin C 7∶8∶13,则 C_____________ 。
5.在△ ABC中,AB62, C300,则AC BC 的最大值是________。
三、解答题1.在△ ABC中,若a cos A b cos B c cosC, 则△ABC的形状是什么?2.在△ ABC 中,求证:ab c( cos Bcos A )b aba3.在锐角△ ABC 中,求证:sin A sin B sin C cosA cosB cosC 。
4.在△ ABC 中,设 a c 2b, A C, 求 sin B 的值。
必修5解三角形知识点和练习题(含答案)
必修5解三角形知识点和练习题(含答案)(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修5解三角形知识点和练习题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为必修5解三角形知识点和练习题(含答案)(word版可编辑修改)的全部内容。
的海面上有一走私船正以
20.
21.。
必修五解三角形整理+例题+练习+答案
第一章 解三角形一、知识点总结 1.正弦定理:()2,sin sin sin a b cC R R A B ===为三角形外接圆的半径变形:例(1)(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( )A .4 3B .2 3 C. 3 D.322.余弦定理:例(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值_(3)2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.3.面积公式例(4)△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 4.射影定理(了解):a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA5.三角形中的常用结论:2sin ,2sin ,2sin sin =,sin ,sin 222::sin :sin :sin ++=2sin sin sin sin +sin +sin sin sin sin A B C a b a R A b R B c R C a b cA B C R R R a b c A B Ca b c a b cR A B A B C C C A B c >===⎫⎪⎬==>⇔>>⇔>>⎪⎭====边角互化(大角对大边:)①②③④2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos 2cos 2cos 2⎧+-=⎪⎪+-⎪⇒=⎨⎪⎪+-=⎪⎩b c a A bc a c b B ac b a c C ab 111222∆===ABC a b c S ah bh ch 111sin sin sin =2224ABC abc S ab C bc A ac B R ∆===或(1),(+>-<a b c a b c 即两边之和大于第三边,两边之差小于第三边)二、常见题型 1、解三角形利用正弦定理:①已知两角和任意一边(AAS 、ASA ),求其他的两边及一角(只有一解) ②已知两边和其中一边的对角(SSA ),求其他边角(无解,一解,两解) 利用余弦定理:①已知三边(SSS )求三角(只有一解)②已知两边及夹角(SAS ),求第三边和其他两角(只有一解)③已知两边和其中一边的对角(SSA ),求其他边角(无解,一解,两解) 已知“SSA ”利用正弦定理与余弦定理求解的区别:(2)sin sin cos cos ∆>⇔>⇔>⇔<ABC A B a b A B A B在中,(3)222sin()sin ,cos()cos tan()tan ,sin cos ,cos sin ,2222A B CA B C A B C A B C A B C A B C A B A B C C πππ+++=⇒⇒=-+=+=-+=-+=-++==三角形中的诱导公式:,A.32或 3B.32或34C.3或34D. 32、判断三角形形状或求值方法一:确定最大角(只要知道三边的关系,就可以利用余弦定理的推论求出角) 方法二:边化角(统一化成角)方法三:角化边(统一化成边)❖常见的形式:例(6)ABC ∆中,若C B A B A 22222sin sin cos cos sin =-,判断ABC ∆的形状例 (7) 在△ABC 中,若cos A cos B =b a =43,试判断三角形的形状.3、构成三角形三边的问题2222222sin ,2sin ,2sin ,2cos sin sin sin 2sin sin cos a R A b R B c R C a b c bc A A B C B C A====+-⇒=+-⋅①常用公式:222222222sin ,sin ,sin ,222cos ,cos ,cos ,222a b cA B C R R R b c a a c b a b c A B C bc ac ab ===+-+-+-===①常用公式:sin =sin ()(sin sin +22)sin 2=sin 2()()2A B A B k k A B A B A B αβαβπαπβππ⇒=⎫⎪=⇔==-+⎬⇒=+=⎪⎭②常见结论:等腰三角形原理:或等腰三角形或直角三角形2222222222222229090a b c A a b c A a b c b a c c a b>+⇒>=+⇒=⎧<+⎪<+⇒⎨⎪<+⎩②常见结论:(钝角三角形)(直角三角形)锐角三角形cos cos ()()cos cos cos cos ()sin 2sin cos ())()3,sin 2sin cos ()a Ab B a bc A B C b a C A B C a b c b c a bc A B C =====+++-==①等腰三角形或直角三角形②等边三角形③直角三角形④等腰三角形⑤(且等边三角形21,,1()2.a a a a +-【例8】设为钝角三角形的三边,求实数考虑最大角为钝角和两边之和大于取值范围第三边的4、周长面积问题(记得同时利用两个公式:余弦定理和完全平方公式)5、正、余弦定理的综合应用【例11】在ABC ∆中,角,,A B C 所对应的边分别为,,a b c,a =tan tan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c特别提醒:(1)求解三角形中的问题时,一定要注意A B C π++=这个特殊性:,sin()sin ,sincos 22A B CA B C A B C π++=-+==;(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版必修五“解三角形”精选难题及其答案一、选择题(本大题共12小题,共60.0分)1. 锐角△ABC 中,已知a =√3,A =π3,则b 2+c 2+3bc 的取值范围是( )A. (5,15]B. (7,15]C. (7,11]D. (11,15]2. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sinA =2sinBcosC ,则△ABC的形状为( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3. 在△ABC 中,∠A =60∘,b =1,S △ABC =√3,则a−2b+csinA−2sinB+sinC的值等于( )A. 2√393B.263√3C. 83√3D. 2√34. 在△ABC 中,有正弦定理:asinA =bsinB =csinC =定值,这个定值就是△ABC 的外接圆的直径.如图2所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( )A. λ先变小再变大B. 仅当M 为线段EF 的中点时,λ取得最大值C. λ先变大再变小D. λ是一个定值5. 已知三角形ABC 中,AB =AC ,AC 边上的中线长为3,当三角形ABC 的面积最大时,AB 的长为( ) A. 2√5 B. 3√6 C. 2√6 D. 3√5 6. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b =c ,且满足sinBsinA =1−cosB cosA.若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,平面四边形OACB 面积的最大值是( )A. 8+5√34B. 4+5√34C. 3D. 4+5√327. 在△ABC 中,a =1,b =x ,∠A =30∘,则使△ABC 有两解的x 的范围是( )A. (1,2√33) B. (1,+∞)C. (2√33,2) D. (1,2)8. △ABC 的外接圆的圆心为O ,半径为1,若AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,且|OA ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,则△ABC 的面积为( )A. √3B. √32C. 2√3D. 19. 在△ABC 中,若sinBsinC =cos 2A2,则△ABC 是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形10. 在△ABC 中,已知∠C =60∘.a ,b ,c 分别为∠A ,∠B ,∠C 的对边,则ab+c +bc+a 为( )A. 3−2√3B. 1C. 3−2√3或1D. 3+2√311. 设锐角△ABC 的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 a =1,B =2A ,则b 的取值范围为( ) A. (√2,√3) B. (1,√3) C. (√2,2) D. (0,2)12. 在△ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足2bcosB =acosC +ccosA ,若b =√3,则a +c 的最大值为( )A. 2√3B. 3C. 32D. 9二、填空题(本大题共7小题,共35.0分)13. 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c 且acosC +12c =b ,则角A 的大小为______ ;若a =1,则△ABC 的周长l 的取值范围为______ .14. 在△ABC 中,∠A ,∠B ,∠C 所对边的长分别为a ,b ,c.已知a +√2c =2b ,sinB =√2sinC ,则sin C2= ______ .15. 已知△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a −b =ccosB −ccosA ,则△ABC 的形状是______ . 16. 在△ABC 中,若a 2b 2=tanA tanB,则△ABC 的形状为______ .17. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a −b)sinB =asinA −csinC ,且a 2+b 2−6(a +b)+18=0,则AB⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ = ______ . 18. 如果满足∠ABC =60∘,AC =12,BC =k 的三角形恰有一个,那么k 的取值范围是______ .19. 已知△ABC 的三个内角A ,B ,C 的对边依次为a ,b ,c ,外接圆半径为1,且满足tanA tanB=2c−b b,则△ABC 面积的最大值为______ .三、解答题(本大题共11小题,共132.0分)20. 在锐角△ABC 中,a ,b ,c 是角A ,B ,C 的对边,且√3a =2csinA .(1)求角C 的大小;(2)若a =2,且△ABC 的面积为3√32,求c 的值.21. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知asinB =√3bcosA .(1)求角A 的大小;(2)若a =√7,b =2,求△ABC 的面积.22.已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足asinA−csinC=(a−b)sinB.(1)求角C的大小;(2)若边长c=√3,求△ABC的周长最大值.23.已知函数f(x)=√3sinxcosx−cos2x−1,x∈R.2(1)求函数f(x)的最小值和最小正周期;(2)已知△ABC内角A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线,求a,b的值.24.已知△ABC中,A<B<C,a=cosB,b=cosA,c=sinC(1)求△ABC的外接圆半径和角C的值;(2)求a+b+c的取值范围.25.△ABC中,角A,B,C的对边分别是a,b,c且满足(2a−c)cosB=bcosC,(1)求角B的大小;(2)若△ABC的面积为为3√3且b=√3,求a+c的值.426.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA−sinB)=(c−b)sinC(1)求角A的大小;(2)求△ABC的面积的最大值.27.已知函数f(x)=2cos2x+2√3sinxcosx(x∈R).(Ⅰ)当x∈[0,π]时,求函数f(x)的单调递增区间;]内恒有两个不相等的实数解,求实数t的取值(Ⅱ)若方程f(x)−t=1在x∈[0,π2范围.28.已知A、B、C是△ABC的三个内角,向量m⃗⃗⃗ =(cosA+1,√3),n⃗=(sinA,1),且m⃗⃗⃗ //n⃗;(1)求角A;=−3,求tanC.(2)若1+sin2Bcos 2B−sin 2B29.在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1−sin C2(1)求sinC的值(2)若a2+b2=4(a+b)−8,求边c的值.30.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足:(a+c)(sinA−sinC)=sinB(a−b)(I)求角C的大小;(II)若c=2,求a+b的取值范围.答案和解析【答案】 1. D 2. A 3. A 4. D 5. A 6. A7. D8. B 9. B 10. B 11. A 12. A13. 60∘;(2,3]14. √2415. 等腰三角形或直角三角形 16. 等腰三角形或直角三角形 17. −27218. 0<k ≤12或k =8√319. 3√3420. 解:(1)△ABC 是锐角,a ,b ,c 是角A ,B ,C 的对边,且√3a =2csinA . 由正弦定理得:√3sinA =2sinC ⋅sinA∵△ABC 是锐角, ∴sinC =√32, 故C =π3;(2)a =2,且△ABC 的面积为3√32, 根据△ABC 的面积S =12acsinB =12×2×b ×sin π3=3√32解得:b =3.由余弦定理得c 2=a 2+b 2−2abcosC =4+9−2×3=7 ∴c =√7.故得c 的值为√7. 21. (本题满分为14分)解:(1)∵asinB =√3bcosA ,由正弦定理得sinAsinB =√3sinBcosA.…(3分) 又sinB ≠0,从而tanA =√3.…(5分) 由于0<A <π, 所以A =π3.…(7分)(2)解法一:由余弦定理a 2=b 2+c 2−2bccosA ,而a =√7,b =2,A =π3,…(9分) 得7=4+c 2−2c =13,即c 2−2c −3=0. 因为c >0,所以c =3.…(11分) 故△ABC 的面积为S =12bcsinA =3√32.…(14分) 解法二:由正弦定理,得√7sin π3=2sinB , 从而sinB =√217,…(9分)又由a >b 知A >B ,所以cosB=2√77.故sinC=sin(A+B)=sin(B+π3)=sinBcosπ3+cosBsinπ3=3√2114.…(12分)所以△ABC的面积为12bcsinA=3√32.…(14分)22. 解:(1)由已知,根据正弦定理,asinA−csinC=(a−b)sinB 得,a2−c2=(a−b)b,即a2+b2−c2=ab.由余弦定理得cosC=a2+b2−c22ab =12.又C∈(0,π).所以C=π3.(2)∵C=π3,c=√3,A+B=2π3,∴asinA =bsinB=√3√32=2,可得:a=2sinA,b=2sinB=2sin(2π3−A),∴a+b+c=√3+2sinA+2sin(2π3−A)=√3+2sinA+2(√32cosA+12sinA)=2√3sin(A+π6)+√3∵由0<A<2π3可知,π6<A+π6<5π6,可得:12<sin(A+π6)≤1.∴a+b+c的取值范围(2√3,3√3].23. 解:(1)由于函数f(x)=√3sinxcosx−cos2x−12=√32sin2x−1+cos2x2−12=sin(2x−π6)−1,故函数的最小值为−2,最小正周期为2π2=π.(2)△ABC中,由于f(C)=sin(2C−π6)−1=0,可得2C−π6=π2,∴C=π3.再由向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线可得sinB−2sinA=0.再结合正弦定理可得b=2a,且B=2π3−A.故有sin(2π3−A)=2sinA,化简可得tanA=√33,∴A=π6,∴B=π2.再由asinA =bsinB=csinC可得asinπ6=bsinπ2=3sinπ3,解得a=√3,b=2√3.24. 解:(1)由正弦定理csinC =2R=1,∴R=12.再由a=cosB,b=cosA,可得cosBsinA =cosAsinB,故有sinAcosA=sinBcosB,即sin2A=sin2B.再由A <B <C ,可得2A +2B =π,∴C =π2.(2)由于a +b +c =cosB +cosA +sinC =sinA +cosA +1=√2sin(A +π4)+1.再由O <A <π4,可得π4<A +π4<π2,∴√22<sin(A +π4)<1,∴2<√2sin(A +π4)+1<√2+1,即a +b +c 的取值范围为(2,√2+1).25. 解:(1)又A +B +C =π,即C +B =π−A , ∴sin(C +B)=sin(π−A)=sinA ,将(2a −c)cosB =bcosC ,利用正弦定理化简得:(2sinA −sinC)cosB =sinBcosC , ∴2sinAcosB =sinCcosB +sinBcosC =sin(C +B)=sinA ,在△ABC 中,0<A <π,sinA >0,∴cosB =12,又0<B <π,则B =π3 (2)∵△ABC 的面积为3√34,sinB =sin π3=√32, ∴S =12acsinB =√34ac =3√34,∴ac =3,又b =√3,cosB =cos π3=12,∴由余弦定理b 2=a 2+c 2−2accosB 得:a 2+c 2−ac =(a +c)2−3ac =(a +c)2−9=3,∴(a +c)2=12,则a +c =2√326. 解:(1)△ABC 中,∵a =2,且(2+b)(sinA −sinB)=(c −b)sinC , ∴利用正弦定理可得(2+b)(a −b)=(c −b)c ,即b 2+c 2−bc =4,即b 2+c 2−4=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc=12,∴A =π3.(2)再由b 2+c 2−bc =4,利用基本不等式可得4≥2bc −bc =bc , ∴bc ≤4,当且仅当b =c =2时,取等号,此时,△ABC 为等边三角形,它的面积为12bcsinA =12×2×2×√32=√3,故△ABC 的面积的最大值为:√3.27. 解:(I)f(x)=2cos 2x +2√3sinxcosx =cos2x +√3sin2x +1 2sin(2x +π6)+1令−π2+2kπ≤2x +π6≤+2kπ(k ∈Z) 解得:kπ−π3≤x ≤kπ+π6(k ∈Z) 由于x ∈[0,π]f(x)的单调递增区间为:[0,π6]和[2π3,π]. (Ⅱ)依题意:由2sin(2x +π6)+1=t +1 解得:t =2sin(2x +π6)设函数y1=t与y2=2sin(2x+π6)由于在同一坐标系内两函数在x∈[0,π2]内恒有两个不相等的交点.因为:x∈[0,π2]所以:2x+π6∈[π6,7π6]根据函数的图象:当2x+π6∈[π6,π2]sin(2x+π6)∈[12,1],t∈[1,2]当2x+π6∈[π2,7π6]时,sin(2x+π6)∈[−12,1],t∈[−1,2]所以:1≤t<228. 解:(1)∵m⃗⃗⃗ //n⃗,∴√3sinA−cosA=1,2(sinA⋅√32−cosA⋅12)=1,sin(A−π6)=12,∵0<A<π,−π6<A−π6<5π6,∴A−π6=π6.∴A=π3.(2)由题知1+sin2Bcos 2B−sin 2B=−3,∴(cosB+sinB)2(cosB+sinB)(cosB−sinB)=−3,∴cosB+sinBcosB−sinB=−3,∴1+tanB1−tanB=−3,∴tanB=2.∴tanC=tan[π−(A+B)]=−tan(A+B)=−tanA+tanB1−tanAtanB =8+5√311.29. 解:(1)∵sinC+cosC=1−sin C2∴2sin C2cosC2+1−2sin2C2=1−sinC2∴2sin C2cosC2−2sin2C2=−sinC2∴2sin2C2−2sinC2cosC2=sinC2∴2sin C2(sin C2−cosC2)=sinC2∴sin C2−cos C2=12∴sin2C2−sinC+cos2C2=14∴sinC=3 4(2)由sin C2−cos C2=12>0得π4<C2<π2即π2<C<π∴cosC=−√7 4∵a2+b2=4(a+b)−8∴(a−2)2+(b−2)2=0∴a=2,b=2由余弦定理得c2=a2+b2−2abcosC=8+2√7∴c=1+√730. (本题满分为12分)解:(I)在△ABC中,∵(a+c)(sinA−sinC)=sinB(a−b),∴由正弦定理可得:(a+c)(a−c)=b(a−b),即a2+b2−c2=ab,…(3分)∴cosC=12,∴由C为三角形内角,C=π3.…(6分)(II)由(I)可知2R=c sinC=√32=4√33,…(7分)∴a+b=4√33(sinA+sinB)=4√33[sinA+sin(A+π3)]=4√33(32sinA+√32cosA)=4sin(A+π6).…(10分)∵0<A<2π3,∴π6<A+π6<5π6,∴12<sin(A+π6)≤1,∴2<4sin(A+π6)≤4∴a+b的取值范围为(2,4].…(12分)【解析】1. 解:由正弦定理可得,a sinA=b sinB=c sinC=√3√32=2,∴b=2sinB,c=2sinC,∵△ABC为锐角三角形,∴0∘<B<90∘,0∘<C<90∘且B+C=120∘,∴30∘<B<90∘∵bc=4sinBsin(120∘−B)=4sinB(√32cosB+12sinB)=2√3sinBcosB+2sin2B=√3sin2B+(1−cos2B)=2sin(2B−30∘)+1,∵30∘<B<90∘,∴30∘<2B−30∘<150∘,∴12<sin(2B−30∘)≤1,∴2<2sin(2B−30∘)+1≤4,即2<bc≤3,∵a =√3,A =π3,由余弦定理可得:3=b 2+c 2−bc ,可得:b 2+c 2=bc +3, ∴b 2+c 2+3bc =4bc +3∈(11,15]. 故选:D .由正弦定理可得,asinA=bsinB =csinC =√3√32=2,结合已知可先表示b ,c ,然后由△ABC 为锐角三角形及B +C =120∘可求B 的范围,再把所求的bc 用sinB ,cosB 表示,利用三角公式进行化简后,结合正弦函数的性质可求bc 的范围,由余弦定理可得b 2+c 2+3bc =4bc +3,从而可求范围.本题综合考查了正弦定理和面积公式及两角和与差的正弦、余弦公式及辅助角公式的综合应用,解题的关键是熟练掌握基本公式并能灵活应用,属于中档题. 2. 解:因为sinA =2sinBcosc , 所以sin(B +C)=2sinBcosC ,所以sinBcosC −sinCcosB =0,即sin(B −C)=0, 因为A ,B ,C 是三角形内角, 所以B =C .三角形为等腰三角形. 故选:A .通过三角形的内角和,以及两角和的正弦函数,化简方程,求出角的关系,即可判断三角形的形状.本题考查两角和的正弦函数的应用,三角形的判断,考查计算能力,属于基础题.3. 解:∵∠A =60∘,b =1,S △ABC =√3=12bcsinA =12×1×c ×√32, ∴c =4,∴a 2=b 2+c 2−2bccosA =1+14−2×1×4×12=13,∴a =√13,∴a−2b+csinA−2sinB+sinC =asinA =√13√32=2√393.故选:A .先利用面积公式求得c 的值,进而利用余弦定理可求a ,再利用正弦定理求解比值. 本题的考点是正弦定理,主要考查正弦定理的运用,关键是利用面积公式,求出边,再利用正弦定理求解.4. 解:设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2, 则由题意,πR 12πR 22=λ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,由正弦定理可得:R 1=12DE sin∠DME ,R 2=12DFsin∠DMF , 又DE =DF ,sin∠DME =sin∠DMF ,可得:R 1=R 2, 可得:λ=1. 故选:D .设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2,则由题意,πR 12πR 22=λ,由正弦定理可得:R 1=12DE sin∠DME ,R 2=12DFsin∠DMF ,结合DE =DF ,sin∠DME =sin∠DMF ,可得λ=1,即可得解.本题主要考查了正弦定理在解三角形中的应用,考查了分类讨论思想和转化思想的应用,属于基础题.5. 解:设AB=AC=2x,AD=x.设三角形的顶角θ,则由余弦定理得cosθ=(2x)2+x2−9 2×2x×x =5x2−94x2,∴sinθ=√1−cos2θ=√144−9(x2−5)24x2,根据公式三角形面积S=12absinθ=12×2x⋅2x⋅√144−9(x2−5)24x2=√144−9(x2−5)22,∴当x2=5时,三角形面积有最大值.此时x=√5.AB的长:2√5.故选:A.设AB=AC=2x,三角形的顶角θ,则由余弦定理求得cosθ的表达式,进而根据同角三角函数基本关系求得sinθ,最后根据三角形面积公式表示出三角形面积的表达式,根据一元二次函数的性质求得面积的最大值时的x即可.本题主要考查函数最值的应用,根据条件设出变量,根据三角形的面积公式以及三角函数的关系是解决本题的关键,利用二次函数的性质即可求出函数的最值,考查学生的运算能力.运算量较大.6. 解:△ABC中,∵b=c,sinBsinA =1−cosBcosA,∴sinBcosA+cosBsinA=sinA,即sin(A+B)=sin(π−C)=sinC=sinA,∴A=C,又b=c,∴△ABC为等边三角形.∴S OACB=S△AOB+S△ABC=12⋅OA⋅OB⋅sinθ+12⋅AB2⋅sinπ3=12×2×1×sinθ+√34(OA2+OB2−2OA⋅OB⋅cosθ)=sinθ−√3cosθ+5√34=2sin(θ−π3)+5√34.∵0<θ<π,∴−π3<θ−π3<2π3,故当θ−π3=π2时,sin(θ−π3)取得最大值为1,故S OACB=的最大值为2+5√34=8+5√34,故选:A.依题意,可求得△ABC为等边三角形,利用三角形的面积公式与余弦定理可求得S OACB=2sin(θ−π3)+5√34(0<θ<π),从而可求得平面四边形OACB面积的最大值.题考查三角函数中的恒等变换应用,考查余弦定理的应用,求得S OACB=2sin(θ−π3)+5√34是解题的关键,也是难点,考查等价转化思想与运算求解能力,属于中档题.7. 解:结合图形可知,三角形有两解的条件为b=x>a,bsinA<a,∴b=x>1,xsin30∘<1,则使△ABC有两解的x的范围是1<x<2,故选:D.根据题意画出图形,由题意得到三角形有两解的条件为b =x >a ,bsinA <a ,即可确定出x 的范围.此题考查了正弦定理,以及特殊角的三角函数值,画出正确的图形是解本题的关键.8. 解:由于AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,由向量加法的几何意义,O 为边BC 中点,∵△ABC 的外接圆的圆心为O ,半径为1,∴三角形应该是以BC 边为斜边的直角三角形,∠BAC =π2,斜边BC =2,又∵|OA ⃗⃗⃗⃗⃗ |=|AC⃗⃗⃗⃗⃗ |, ∴|AC|=1,|AB|=√BC 2−AC 2=√22−12=√3, ∴S △ABC =12×|AB|×|AC|=12×1×√3=√32. 故选:B .由AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,利用向量加法的几何意义得出△ABC 是以A 为直角的直角三角形,又|OA ⃗⃗⃗⃗⃗ |=|AC⃗⃗⃗⃗⃗ |,从而可求|AC|,|AB|的值,利用三角形面积公式即可得解. 本题主要考查了平面向量及应用,三角形面积的求法,属于基本知识的考查.9. 解:由题意sinBsinC =1+cosA 2,即sinBsinC =1−cosCcosB , 亦即cos(C −B)=1, ∵C ,B ∈(0,π), ∴C =B , 故选:B . 利用cos 2A2=1+cosA 2可得sinBsinC =1+cosA 2,再利用两角和差的余弦可求.本题主要考查两角和差的余弦公式的运用,考查三角函数与解三角形的结合.属于基础题.10. 解:cosC =a 2+b 2−c 22ab=12,∴ab =a 2+b 2−c 2,∴ab+c +bc+a =ac+a 2+b 2+bcab+(a+b)c+c 2=a 2+b 2+(a+b)ca 2+b 2+(a+b)c =1,故选B .先通过余弦定理求得ab 和a 2+b 2−c 2的关系式对原式进行通分,把ab 的表达式代入即可.本题主要考查了余弦定理的应用.解题的关键是找到a ,b 和c 的关系式. 11. 解:锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,B =2A , ∴0<2A <π2,且B +A =3A , ∴π2<3A <π. ∴π6<A <π3, ∴√22<cosA <√32, ∵a =1,B =2A ,∴由正弦定理可得:ba =b=sin2AsinA=2cosA,∴√2<2cosA<√3,则b的取值范围为(√2,√3).故选A由题意可得0<2A<π2,且π2<3A<π,解得A的范围,可得cosA的范围,由正弦定理求得ba=b=2cosA,根据cosA的范围确定出b范围即可.此题考查了正弦定理,余弦函数的性质,解题的关键是确定出A的范围.12. 解:2bcosB=ccosA+acosC,由正弦定理,得2sinBcosB=sinCcosA+sinAcosC,∴2sinBcosB=sinB,又sinB≠0,∴cosB=12,∴B=π3.∵由余弦定理可得:3=a2+c2−ac,∴可得:3≥2ac−ac=ac,∴即有:ac≤3,代入:3=(a+c)2−3ac可得:(a+c)2=3+3ac≤12,∴a+c的最大值为2√3.故选:A.利用正弦定理化边为角,可求导cosB,由此可得B,由余弦定理可得:3=a2+c2−ac,由基本不等式可得:ac≤3,代入:3=(a+c)2−3ac可得a+c的最大值.该题考查正弦定理、余弦定理及其应用,基本不等式的应用,考查学生运用知识解决问题的能力,属于中档题.13. 解:acosC+12c=b变形得:2acosC+c=2b,利用正弦定理得:2sinAcosC+sinC=2sinB=2sin(A+C)=2sinAcosC+2cosAsinC,∴sinC=2cosAsinC,即sinC(2cosA−1)=0,由sinC≠0,得到cosA=12,又A为三角形的内角,则A=60∘;∵a=1,sinA=√32,B+C=120∘,即C=120∘−B,∴asinA =bsinB=csinC=2√33,即b=2√33sinB,c=2√33sin(120∘−B),则△ABC的周长l=a+b+c=1+2√33sinB+2√33sin(120∘−B)=1+2√33(32sinB+√32cosB)=1+2(√32sinB+12cosB)=1+2sin(B+30∘),∵0<B<120∘,∴30∘<B+30∘<150∘,∴12<sin(B+30∘)≤1,即2<1+2sin(B+30∘)≤3,则l范围为(2,3].故答案为:60∘;(2,3]将已知的等式左右两边都乘以2变形后,利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式变形,根据sinC不为0,得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;由A的度数求出sinA的值,及B+C的度数,用B表示出C,由正弦定理表示出b与c,而三角形ABC的周长l=a+b+c,将表示出的b与c,及a的值代入,利用两角和与差的正弦函数公式化简,整理后再利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,由B的范围求出这个角的范围,利用正弦函数的图象与性质得出此时正弦函数的值域,即可得到l的范围.此题考查了正弦定理,两角和与差的正弦函数公式,诱导公式,正弦函数的定义域与值域,以及特殊角的三角函数值,利用了转化的思想,熟练掌握定理及公式是解本题的关键.14. 解:∵在△ABC中a+√2c=2b,sinB=√2sinC,∴由正弦定理可得a+√2c=2b,b=√2c,联立可解得a=b=√2c,∴由余弦定理可得cosC=a2+b2−c22ab=222 2×√2c×√2c =34,再由二倍角公式可得cosC=1−2sin2C2=34,解得sin C2=√24或sin C2=−√24,再由三角形内角的范围可得C2∈(0,π2)故sin C2=√24故答案为:√24由题意和正弦定理可得a=b=√2c,代入余弦定理可得cosC,由二倍角公式和三角形内角的范围可得.本题考查解三角形,涉及正余弦定理和二倍角公式,属中档题.15. 解:将cosA=b2+c2−a22bc ,cosB=a2+c2−b22ac代入已知等式得:a−b=c a2+c2−b22ac −c⋅b2+c2−a22bc,整理得:a2+b2−c2a =a2+b2−c2b,当a2+b2−c2=0,即a2+b2=c2时,△ABC为直角三角形;当a2+b2−c2≠0时,得到a=b,△ABC为等腰三角形,则△ABC为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.利用余弦定理表示出cosA与cosB,代入已知等式,整理后即可确定出三角形形状.此题考查了余弦定理,勾股定理,以及等腰三角形的性质,熟练掌握余弦定理是解本题的关键.16. 解:原式可化为sin 2Asin 2B =sinAcosB cosAsinB ⇒sinA sinB =cosBcosA⇒sin2A =sin2B ∴2A =2B 或2A =π−2B ⇒A =B 或A +B =π2.故答案为等腰三角形或直角三角形左边利用正弦定理,右边“切变弦”,对原式进行化简整理进而可得A 和B 的关系,得到答案.本题主要考查了正弦定理的应用.考查了学生利用正弦定理解决三角形问题的能力. 17. 解:由已知(a −b)sinB =asinA −csinC ,即asinA −csinC =(a −b)sinB ,根据正弦定理,得,a 2−c 2=(a −b)b ,即a 2+b 2−c 2=ab . 由余弦定理得cosC =a 2+b 2−c 22ab =12.又C ∈(0,π).所以C =π3.a 2+b 2−6(a +b)+18=0,可得(a −3)2+(b −3)2=0, 所以a =b =3,三角形是正三角形,AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =3×3×3×cos120∘=−272.故答案为:−272.通过正弦定理化简已知表达式,然后利用余弦定理求出C 的余弦值,得到C 的值.通过a 2+b 2−6(a +b)+18=0,求出a ,b 的值,推出三角形的形状,然后求解数量积的值.本题考查正弦定理与余弦定理的应用,三角函数的值的求法三角形形状的判断,向量数量积的应用,考查计算能力.18. 解:(1)当AC <BCsin∠ABC ,即12<ksin60∘,即k >8√3时,三角形无解; (2)当AC =BCsin∠ABC ,即12=ksin60∘,即k =8√3时,三角形有1解;(3)当BCsin∠ABC <AC <BC ,即ksin60∘<12<k ,即12<k <8√3,三角形有2个解;(4)当0<BC ≤AC ,即0<k ≤12时,三角形有1个解. 综上所述:当0<k ≤12或k =8√3时,三角形恰有一个解. 故答案为:0<k ≤12或k =8√3要对三角形解得各种情况进行讨论即:无解、有1个解、有2个解,从中得出恰有一个解时k 满足的条件.本题主要考查三角形解得个数问题,重在讨论.易错点在于可能漏掉k =8√3这种情况. 19. 解:由r =1,利用正弦定理可得:c =2rsinC =2sinC ,b =2rsinB =2sinB , ∵tanA =sinA cosA,tanB =sinBcosB , ∴tanAtanB =sinAcosBcosAsinB =4sinC−2sinB2sinB=2sinC−sinBsinB,∴sinAcosB =cosA(2sinC −sinB)=2sinCcosA −sinBcosA , 即sinAcosB +cosAsinB =sin(A +B)=sinC =2sinCcosA , ∵sinC ≠0,∴cosA =12,即A =π3, ∴cosA =b 2+c 2−a 22bc=12,∴bc =b 2+c 2−a 2=b 2+c 2−(2rsinA)2=b 2+c 2−3≥2bc −3,∴bc≤3(当且仅当b=c时,取等号),∴△ABC面积为S=12bcsinA≤12×3×√32=3√34,则△ABC面积的最大值为:3√34.故答案为:3√34.利用同角三角函数间的基本关系化简已知等式的左边,利用正弦定理化简已知的等式右边,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0,可得出cosA的值,然后利用余弦定理表示出cosA,根据cosA的值,得出bc=b2+c2−a2,再利用正弦定理表示出a,利用特殊角的三角函数值化简后,再利用基本不等式可得出bc 的最大值,进而由sinA的值及bc的最大值,利用三角形的面积公式即可求出三角形ABC 面积的最大值.此题考查了正弦、余弦定理,同角三角函数间的基本关系,两角和与差的正弦函数公式,诱导公式,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键,属于中档题.20. (1)利用正弦定理可求角C的大小(2)直接利用△ABC的面积S=12acsinB求解出b,再用余弦定理可得.本题考查了正弦定理,余弦定理的运用和计算能力.21. (1)由弦定理化简已知可得sinAsinB=√3sinBcosA,结合sinB≠0,可求tanA=√3,结合范围0<A<π,可求A的值.(2)解法一:由余弦定理整理可得:c2−2c−3=0.即可解得c的值,利用三角形面积公式即可计算得解.解法二:由正弦定理可求sinB的值,利用大边对大角可求B为锐角,利用同角三角函数基本关系式可求cosB,利用两角和的正弦函数公式可求sinC,进而利用三角形面积公式即可计算得解.本题主要考查了正弦定理,余弦定理,三角形面积公式,大边对大角,同角三角函数基本关系式,两角和的正弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.22. (1)通过正弦定理化简已知表达式,然后利用余弦定理求出C的余弦值,得到C的值.(2)由已知利用正弦定理可得a=2sinA,b=2sin(2π3−A),利用三角函数恒等变换的应用化简可求a+b+c=2√3sin(A+π6)+√3,根据A+π6的范围,利用正弦函数的图象和性质得到结果.本题考查正弦定理与余弦定理的应用,三角函数的值的求法,以及三角函数恒等变换的应用,考查计算能力和转化思想,属于中档题.23. (1)化简函数f(x)的解析式为sin(2x−π6)−1,可得函数的最小值为−2,最小正周期为2π2.(2)△ABC中,由f(C)=sin(2C−π6)−1=0,求得C=π3.再由向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线可得sinB−2sinA=0,再由B=2π3−A可得sin(2π3−A)=2sinA,化简求得A=π6,故B=π2.再由正弦定理求得a、b的值.本题主要考查两角和差的正弦公式、正弦定理、两个向量共线的性质,属于中档题.24. (1)由正弦定理求得外接圆半径R.再由a=cosB,b=cosA,可得cosBsinA =cosAsinB,化简得sin2A=sin2B.再由A<B<C,可得2A+2B=π,由此可得C的值.(2)由于a+b+c=cosB+cosA+sinC=√2sin(A+π4)+1.再由O<A<π4,利用正弦函数的定义域和值域求得sin(A+π4)+1<√2+1的范围,即可求得a+b+c的取值范围.本题主要考查正弦定理的应用,正弦函数的定义域和值域,属于中档题.25. (1)结合三角形的内角和定理及诱导公式可得sin(C+B)=sinA,再对已知(2a−c)cosB=bcosC,利用正弦定理化简可求B(2)结合三角形的面积公式S=12acsinB,可求ac,由已知b,B,再利用余弦定理b2= a2+c2−2accosB可求a+c本题主要考查了正弦定理、余弦定理在求解三角形中的应用,解决此类问题的关键是要是考生具备综合应用公式的能力26. (1)由条件利用正弦定理可得b2+c2−bc=4.再由余弦定理可得A=π3.(2)利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得面积的最大值.本题主要考查了正弦定理,余弦定理,三角形面积公式,基本不等式在解三角形中的应用,考查了转化思想,属于中档题.27. (Ⅰ)首先利用三角函数的恒等变换,变形成正弦型函数进一步利用函数的单调性求函数在固定区间内的增减区间.(Ⅱ)把求方程的解得问题转化成求函数的交点问题,进一步利用函数的性质求参数的取值范围.本题考查的知识要点:三角函数的恒等变换,正弦型函数的单调性,在同一坐标系内的利用两函数的交点问题求参数的取值范围问题.28. (1)利用向量共线定理可得:√3sinA−cosA=1,再利用和差公式、三角函数求值即可得出.(2)由题知1+sin2Bcos 2B−sin 2B =−3,利用倍角公式化为cosB+sinBcosB−sinB=−3,因此1+tanB1−tanB=−3,解得tanB.再利用tanC=tan[π−(A+B)]=−tan(A+B),展开代入即可得出.本题考查了向量共线定理、和差公式、三角函数求值、倍角公式,考查了推理能力与计算能力,属于中档题.29. (1)利用二倍角公式将已知等式化简;将得到的式子平方,利用三角函数的平方关系求出sinC.(2)利用求出的三角函数的值将角C的范围缩小,求出C的余弦;将已知等式配方求出边a,b;利用余弦定理求出c本题考查三角函数的二倍角公式、同角三角函数的平方关系、考查三角形中的余弦定理.30. (I)利用正弦正理化简已知等式可得:a2+b2−c2=ab,由余弦定理可得求得cosA=12,结合A的范围,即可求得A的值.(II)由正弦定理用sinA、sinB表示出a、b,由内角和定理求出A与B的关系式,代入a+b利用两角和与差的正弦公式化简,根据A的范围和正弦函数的性质得出a+b的取值范围.本题主要考查了正弦定理,余弦定理的综合应用,考查了两角和差的正弦函数公式,解题时注意分析角的范围,属于中档题.。