电涡流传感器的设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言
电涡流传感器具有灵敏度高、分辨力高、线性度高、重复性好、结构简单、抗干扰能力强、线性测量范围宽、安装方便、非接触测量、耐高温、能在油、汽、水等恶劣环境下长期连续工作的特点以及能够实现信息的远距离传输、记录、显示和控制的优势,被广泛应用于工业生产和科学研究等领域的位移、振动、偏心、胀差、厚度、转速等物理量的在线检测和安全保护,为精密诊断系统提供了全息动态特性。因而对于电涡流传感器的研究有着深远的理论和实践意义。
目前,对电涡流传感器的研究,主要集中在电磁学模型机理的研究、线圈几何形状的优化设计、测量精度的提高、非线性的线性化和应用范围的拓展等方面。本文提出了一种新型的电涡流传感器设计方案,具有速度快、功耗低、稳定性好等诸多优点,并已广泛应用于电力、石化、冶金、钢铁、航空航天等领域,取得了非常好的效果,得到了用户的一致好评。
1 电涡流传感器的基本工作原理[1-2]
电涡流传感器的基本工作原理是基于电涡流效应。根据法拉第电磁感应定律可知:金属导体置于变化的磁场中时,导体表面就会有感应电流产生。电流的流线在金属导体内自行闭合,这种由电磁感应原理产生的旋涡状感应电流称为电涡流,这种现象称为电涡流效应,电涡流传感器就是利用电涡流效应来检测导电物体的各种物理参数的。如图1所示。
理论和实践均证明:电涡流的大小与导体的磁导率ξ、电导率σ、线圈与导体之间的距离D 、激励电流强度I 、激励电流角频率ω、线圈尺寸因子等参数有关。探头线圈的阻抗Z 是上述参数的函数,即Z =F (,ξ, σ, D , I,ω) 。
很显然,如果只改变其中的某一参数,其他参数恒定,阻抗就成为该参数的单值函数。假设被测金属导体材质均匀,且具有线性和各向同性的性能特点,我们可以控制,ξ, σ, I ,ω这几个参数在一定范围内不变,则阻抗就成为距离的单值
函数,再通过前置器电子线路的处理,将探头线圈阻抗的变化,即探头线圈与金属导体之间的距离的变化转化为电压或电流的变化。输出信号的大小随探头到被测体表面之间的距离而变化,电涡流传感器正是基于这样的原理实现对位移、振动、胀差、偏心等的测量。
图1 电涡流传感器的工作原理
2 电涡流传感器电路设计
2.1 测量电路的选择[3-5]
电涡流传感器的测量电路可分为调频式和调幅式两种,调幅式测量电路又可细分为恒定频率的调幅式和频率变化的调幅式两种。
调幅式测量电路是指以输出高频信号的幅度来反映电涡流传感器探头与被测金属导体之间的关系。其特点是:输出可以被调理为直流电压,而对直流电压进行数据采集的速度快、时间短、可以降低功耗。
调频式测量电路是指将探头线圈的电感量与微调电容构成振荡器,以振荡器的频率作为输出量的一种转换电路。其优点是:电路结构简单,抗干扰能力强,性能较稳定,分辨率和精度高,易与计算机连接,频率输出便于数据采集和处理,成本较低。
在本设计中我们采用调幅式电路。2.2 滤波、稳压、同相比例放大电路的设计
该部分电路的作用是消除直流电源中的交流成分以及电源电压的波动所造成的影响。如图2所示。
2.3 振荡电路的设计[6]
电感三点式振荡电路:由于反馈支路是电感,振荡器的输出波形中含有较多的高次谐波,且振荡频率不高,对本设计不适用,故不予采用。
电容三点式振荡电路:由于输出端和反馈支路均为电容,对高次谐波电抗小,反馈电压中高次谐波分量很少,振荡频率稳定度高,因而输出波形好,更接近正弦
波。振荡频率可以较高。符合本设计的要求,故采用。如图3所示。
图3 电容三点式振荡电路
在本设计中,为了保证振荡电路输出信号的稳定和可靠,我们采取了如下措施:
针对电源电压的变化,在电源端添加了稳压环节;针对负载变化,在振荡电路与负载之间插入了缓冲电路以屏蔽负载的影响;针对环境温度变化,采用了温度系数较小的元件,例如云母电容等;针对外界磁场会引起磁性材料磁导率的变化,影响传感器线圈的涡流效应,将振荡器密封在传感器壳体内,起到屏蔽作用,可减少回路与外界发生的电磁耦合。
2.4 检波、滤波电路的设计
检波、滤波电路将电容三点式振荡器的输出信号,经过检波、滤波,将其转换为直流信号。通过对电路的优化设计,对元器件一致性的筛选以及电阻、电容参数的合理选配,使得该电路既能保证独立线性指标的要求,又能满足对动态响应时间指标的要求,同时还要尽可能降低直流信号输出的交流噪声。检波、滤波电路如图4所示。
2.5 对数运算电路的设计[7]
电涡流传感器的设计
伍艮常 株洲职业技术学院,湖南株洲 412001
DOI :10.3969/j.issn.1001-8972.2011.12.076
图2 滤波、稳压、同相比例放大电路
采用对数运算电路对传感器的非线性段进行线性化补偿,在保证测量精度要求的前提下,最大限度地扩大传感器的测量范围。本对数运算放大电路采用的运算放大器、电阻和二极管,都是非常基本的电子元器件,相对于其他复杂的芯片,具有很好的时间稳定性和温度稳定性,因此该电路在高温环境长时间使用可以保持优良的矫正性能,可靠性好。
对数运算电路的工作原理主要是基于二极管的非线性伏安特性,伏安特性曲线在输入(横轴方向)逐渐增大时,输出(纵轴方向)的变化率不断增大,这种曲线类似指数运算。指数运算与对数运算互为逆运算,使得该电路的输出和输入之间满足对数的函数关系。对数运算放大电路如图5所示。
图5 对数运算放大电路
2.6 放大、迁移、滤波电路的设计该部分电路的作用是对检波、滤波、线性化处理后的直流信号进行信号的迁移、放大、再滤波处理,确保传感器处于最佳线性工作区间,确保输出形式符合技术指标要求,确保信号的交流噪声控制在最低程度,确保传感器输出信号稳定、可靠。由于电涡流传感器的供电电源仅为24V ,电压过低,以及由位移量转化而成的电信号变化缓慢且非周期性和比较微弱的特点,致使传感器的电容三点式振荡器的输出信号以及经过检波、滤波、线性化处理后的直流信号幅度也很低,为保证传感器的信号输出符合技术指标要求,需在信号的迁移、放大、滤波环节加以放大处理。放大、迁移、滤波电路如图6所示。
3 线圈的设计
线圈是电涡流传感器的一个非常重要的元件,其尺寸和形状直接关系到传感器的灵敏度和测量范围;其材料和线径的选择也很关键;本设计为了缩短设计时间和提高精确度,借助了计算机进行辅助设计,求得了一组比较合理的参数。限于篇幅,不展开讨论。
4 关键技术
4.1电容三点式振荡电路的设计
这是一个同时具有深度负反馈和自举反馈的电容三点式振荡电路,图中的L 就是传感器线圈的电感,其特点是该电路容易起振,灵敏度高,稳定性好,时漂小,输出幅值大。
采用电容三点式振荡电路,可提高整个系统的可靠性及控制精度。为了保证此项关键技术的实现,采用了以下方法和措施:
1)为了减小电源引起的频率漂移,在原电源前添加一稳压环节,使电路工作在稳压状态,从而改善了对其频率的影响。2)晶体管发射结电阻R b e 和发射结电容Cbe 对频率稳定度的影响很大,其中后者影响更大,在振荡电路中引入C2、C3便是为了减小发射结电阻R b e 和发射结电容Cbe 对频率稳定度的影响。3)为了减小电路的负载效应,增大品质因数Q 以及使谐波的失真系数减小,设计了一个射极跟随器。4)为了提高频率稳定度,便要提高电感L 和电容C 的稳定性(主要是温度稳定性),电感L 的稳定性主要取决于材料和工艺,电容C 的稳定性主要取决于材料,一般选用瓷介或云母电容,这种电容损耗小,电容量稳定性高,并具有多种低温度系数,适用于谐振回路和需要补偿温度效应的电路中。
4.2 对数运算电路的设计
对数运算电路是指输出和输入之间满足对数函数关系的电路,本设计中对数运算电路主要用于对传感器的非线性段进行线性化补偿,在保证测量精度要求的前提下,最大限度地扩大电涡流传感器的量程。在设计中始终坚持简单、明了、够用的原则,本对数运算放大电路设计采用的是运算放大器、电阻和二极管,它们都是非常基本的电子元器件,相对于其他复杂的芯片,具有很好的时间稳定性和温度稳定性,因此该电路可以在高温环境下长时间工作,可靠性好。因此也从根本上保证了电涡流传感器的工作可靠性。
5 结束语
本文对电涡流传感器的工作原理和电路设计进行了比较详细的介绍,依照本设计生产的电涡流传感器具有体积小、重量轻、抗振动、抗冲击、耐高低温等优点,在油田、矿山、电厂、钢厂等领域得到了广泛的应用,赢得了用户一致好评。理论和实践均证明本设计科学、合理,具有一定的推广应用价值。