电涡流传感器的设计

合集下载

电涡流传感器结构

电涡流传感器结构

电涡流传感器结构电涡流传感器是一种常用的非接触式传感器,它利用电涡流效应来测量物体的位置、速度和形状等参数。

本文将从电涡流传感器的结构、工作原理和应用领域等方面进行详细介绍。

一、电涡流传感器的结构电涡流传感器的主要部件包括传感器头、激励线圈、接收线圈和信号处理电路等。

1. 传感器头:传感器头是电涡流传感器的核心部件,它通常由铜或铝制成。

传感器头的外形多为圆柱形,底部设置了一个槽口,用于安装激励和接收线圈。

2. 激励线圈:激励线圈通过通电产生交变磁场,激励物体产生电涡流。

激励线圈通常由多层绕组构成,以增强磁场的强度和稳定性。

3. 接收线圈:接收线圈用于检测物体产生的电涡流,并将其转化为电信号。

接收线圈通常与激励线圈相互独立,但它们之间的距离很近,以提高传感器的灵敏度和响应速度。

4. 信号处理电路:信号处理电路对接收到的电信号进行放大、滤波和解调等处理,以获得准确的测量结果。

信号处理电路通常由模拟电路和数字电路组成,可以根据不同的应用需求进行设计。

二、电涡流传感器的工作原理电涡流传感器的工作原理基于电磁感应和电涡流效应。

当激励线圈通电时,会在传感器头附近产生一个交变磁场。

当传感器头靠近导电物体时,物体内部会感应出一个感应电流,即电涡流。

这个电涡流的方向和大小与物体的导电性、形状和相对速度等因素有关。

接收线圈检测到电涡流的变化,并将其转化为电信号。

信号处理电路对接收到的电信号进行处理,得到物体的位置、速度和形状等参数。

三、电涡流传感器的应用领域电涡流传感器广泛应用于工业自动化、航空航天、汽车制造、医疗设备等领域。

1. 位移测量:电涡流传感器可用于测量物体的位移,如测量机械零件的偏心量、轴向位移等。

2. 速度测量:电涡流传感器可以测量物体的速度,如测量转子的转速、涡轮的叶片速度等。

3. 形状测量:电涡流传感器可以测量物体的形状,如测量管道的弯曲程度、板材的变形等。

4. 材料检测:电涡流传感器可以用于检测材料的导电性和缺陷,如检测金属管道的腐蚀程度、焊接接头的质量等。

第五章--电涡流式传感器

第五章--电涡流式传感器
5、电涡流传感器的应用 (1)位移测量 某些旋转机械,如高速旋转的汽轮机对轴向位移的 要求很高。当汽轮机运行时,叶片在高压蒸气推动 下高速旋转,它的主轴承受巨大的轴向推力。若主 轴的位移超过规定值时,叶片有可能与其他部件碰 撞而断裂。利用电涡流原理可以测量汽轮机主轴的 轴向位移、电动机轴向窜动等。电涡流轴向位移监 测保护装置电涡流探头的安装如图4—44所示。
(2)调幅式电路 调幅式是以输出高频信号的幅度来反映电涡流探头 与被测导体之间的关系。图3-42是高频调幅式电路。
Ui R
U0
晶振
Ii L x
高频放大
幅值检波
U0
低频放大
U0
C0
图3-42 高频调幅式测量转换电路
石英晶体振荡器通过耦合电阻R,向由探头线 圈和一个微调电容C0组成的并联谐振回路提 供一个稳幅的高频激励信号,相当于一个恒 流源。测量时,先调节C0,使LC0的谐振频率 等于石英晶体振荡器的频率f0,此时谐振回路 的Q值和阻抗Z也最大,恒定电流Ii在LC0并联 谐振回路上的压降U0也最大。
TTL电平
L0 L LC x0 x 振 C0 荡 L

f 0 f
高 频 放 大 器
U 0 U
限 幅 器 鉴 频 器
功 率 放 大 器
计算机计数 定时器 显示器 记录仪
图3-43调频式测量转换电路原理图
TTL电平
L0 L LC x0 x 振 C0 荡 L

f 0 f
由于存在集肤效应,电涡流方法只能检测导 体表面的各种物理参量。改变频率f,可控制 检测深度。激励源频率一般为100kHz~1MHz. 为了使电涡流深入金属导体深处,或对距离 较远的金属体进行检测,可采用十几千赫甚 至几百赫兹的低频激励频率。

电涡流传感器前置放大器的设计

电涡流传感器前置放大器的设计

Board, PCB ) 插孔铜镀层测厚仪电涡流传感器的 前置放大器进行进一步实验验证。 1 电涡流传感器原理 ① 电涡流检测是基于电磁感应原理的一种无损 [7 , 8 ] , 检测方 法 它 适 用 于 各 种 导 电 试 件 的 检 测。 电涡流传感器传感检测方法有阻抗方式和发射 - 接收方式两种。发射 - 接收方式的接收线圈由两 个反向 绕 制 的 匹 配 线 圈 串 联 组 成 ( 又 称 差 分 线 圈) , 对接收线圈温漂和外部共模干扰有抑制作 用, 因此, 发射 - 接收方式传感器性能优于阻抗方 式。PCB 板插孔铜镀层测厚仪电涡流传感器选用 发射 - 接收方式, 电涡流传感器发射 - 接收方式 的原理如图 1 所示。
图2 2 2. 1
电涡流传感器的接收信号 图3 2. 2. 1 前置放大器设计方案
前置放大器设计 设计要求 根据图 2 所示的电涡流传感器接收信号的特
放大器的噪声分析
征, 要从噪声中提取信号, 涡流检测用的前置放大 器应具有以下基本特点: a. 灵敏度必须足以给出适用于处理和显示 的信号电平; b. 信噪比必须足够大, 以使感兴趣的最小信 号能与噪声清楚地区别开来; c. 放大器电路的选择性必须能突出有用信 号, 并滤除干扰噪声信号; d. 放大电路有相当高的稳定性, 无需经常调 整电路参数; e. 响应速度足够快, 以便在扫描检查时, 能 显示全部有用信号; f. 设计需满足各种环境条件, 如温度、 振动
图1
发射 - 接收方式工作原理示意图

0815 ( 修改稿) 收稿日期: 2016-
第 11 期
周国扬等. 电涡流传感器前置放大器的设计
1177
当给发射线圈施加一个交变电流为 i1 的激 励信号时, 根据电磁感应定律, 在发射线圈周围会 产生一个交变磁场 B1 , 这个场称为一次场。 如果 B1 会在导体试件 把发射线圈靠近被测导体试件, 内感应出一个涡流信号 i2 ; 同样 i2 也会在周围产 这个场称为二次场。 根据楞 生一个交变磁场 B2 , B2 会阻碍一次场 B1 的变化并使 B1 减 次定律, 弱, 两个磁场在空间形成一个叠加磁场 , 被测试件 愈厚, 衰 减 量 愈 大。 B2 在 接 收 线 圈 产 生 感 应 电 压, 由于接收线圈垂直安装, 靠近被测试件感应最 强, 引起两个线圈感应电压不平衡, 从而得到一个 电涡流接收信号。 接收线圈得到毫伏级微弱信 号, 图 2 为实际电涡流传感器的接收信号 , 可以看 出, 信号淹没在噪声中难以分辨, 无法进行后续信 号处理。

电涡流传感器的仿真与设计

电涡流传感器的仿真与设计

电涡流传感器的仿真与设计电涡流传感器是一种基于电磁感应原理的传感器,具有非接触、高精度、高灵敏度等优点,因此在工业、科研、医疗等领域得到广泛应用。

本文将介绍电涡流传感器的仿真与设计,包括其原理、应用和未来发展。

电涡流传感器的工作原理是利用电磁感应原理,当一个导体置于变化的磁场中时,导体内部会产生感应电流,这种电流被称为电涡流。

电涡流的大小和方向取决于磁场的变化,因此,通过测量磁场的变化,可以推导出被测物体的位置、速度、尺寸等参数。

在进行电涡流传感器的设计和应用之前,通常需要进行仿真和验证。

本文将介绍如何使用仿真工具进行电涡流传感器的设计和验证。

需要搭建一个包含激励源、传感器和数据采集器的电路。

激励源用于产生磁场,传感器用于感测磁场的变化,数据采集器用于采集传感器的输出信号。

激励电源的配置应根据传感器的工作频率、功率和电压等参数进行选择。

通常,激励电源的频率与传感器的谐振频率一致,以获得最佳的测量效果。

将传感器与数据采集器连接,使得传感器能够感测到磁场的变化并将输出信号传输给数据采集器。

数据采集器应选择具有较高灵敏度和分辨率的型号,以保证测量结果的准确性。

运行仿真程序并分析仿真结果,以验证设计的可行性和有效性。

可以通过调整激励电源的参数、传感器的位置和方向等来优化仿真结果,并分析各种情况下传感器的响应特性和测量误差。

在完成仿真后,可以开始进行电涡流传感器的硬件和软件设计。

电路设计应考虑传感器的供电、信号的放大和滤波、抗干扰措施等因素。

可以根据仿真结果来选择合适的元件和电路拓扑结构,以满足传感器在不同情况下的性能要求。

根据应用场景的不同,选择合适的传感器类型和材料。

例如,对于高温环境,应选择能够在高温下正常工作的传感器;对于需要测量非金属材料的场景,可以选择使用高频激励源来减小对非金属材料的感测误差。

根据电路设计和传感器选择的结果,编写数据采集器的程序。

程序中应包括信号的读取、处理、存储和传输等功能,以便将传感器的输出信号转换为有用的测量结果。

基于电涡流传感器的金属识别系统设计

基于电涡流传感器的金属识别系统设计

基于电涡流传感器的金属识别系统设计电涡流传感器在金属识别领域有着较广泛的应用,它不仅可以对大型旋转机械的轴的径向振动、轴向位移、轴转速等参数进行在线测量,还可以对零件的尺寸进行检验。

本文主要应用电涡流传感器能够实现对金属进行探测的特点,来通过单片机控制完成设计一个金属识别系统。

通过本系统作为一个实验模型对电涡流传感器的工作原理和测量方法进行研究。

标签:电涡流传感器;电桥法;金属识别1 传感器工作原理电涡流传感器属于电感式传感器的一种,它是利用线圈与传感器之间的交互模式来引导电流系数变化的数据模型,它的实现方式是通过转换电感量的传感系统进行的。

高频反射式电涡流传感器主要是由线圈在框架上的缠绕构成,这种线圈的形状呈现扁平状态,它可以固定在仪器的顶端,也可以将其粘连在整个框架的周围,紧贴仪器的槽内安置。

说到此类型的传感器的结构安装,相信大家都能够理解。

它是由系统内部的电圈组成,电圈在外形框架上缠绕,将整体结构稳定住。

它的缠绕方式也分为许多种,可以是在仪器的顶部进行互换,也可以在框架的周围进行购置。

电涡流传感器的特殊性就在于它是通过线圈与金属导体产生反应来进行操作的,而它们之间也可以称作是一种耦合性吸引。

耦合程度的不同则说明电涡流传感器的变化规律也是不同的。

电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。

涡流的大小与金属体的电阻率ρ、磁导率μ、金属板的厚度d、线圈与金属导体的距离x、线圈的励磁电流频率f等参数有关。

电涡流传感器的运动规则相对简单,它主要是通过电涡流信息感应来完成的,将电涡流内部的电量剔除,非电量留下,与线圈的阻抗规律形成变化趋势,进行通过二者不同程度的反映进行测量。

所以,我们可以由此得出,测量仪器的内部结构与许多方面都相关,其中包括设备的性能、仪器的感应效率、设备的规格等等。

通常情况下来说,传感器的灵敏度取决于被测物体的基本属性,被测物体的基本属性比较好,传感器的灵敏程度也就相對较高。

基于COMSOL Multiphysics电涡流传感器的仿真和设计.概要

基于COMSOL Multiphysics电涡流传感器的仿真和设计.概要

被测导体中电涡流的大小和金属导体的磁导率 、 电阻率 、金属导体的厚度 、通过探头线圈的电流 强度is。频率 f 、以及其与金属导体之间的距离 H有关, 进而线圈的阻抗可以表示为:

t
u
Z F (u, , t, is , f , H )
当上面参数中的一个参数 H发生变化,其它参数不变时,探 头线圈阻抗Z就成为 H的单值函数,当被测体与传感器之间 的相对位置发生改变时,电涡流传感器的电参数也随之发 生变化,把位移量的变化转为电信号的变化,这是电涡流 传感器进行位移测量的基本原理。
汇报人:方超 时间: 2013年5月23日
基于COMSOL Multiphysics电涡流 传感器的仿真和设计
电涡流传感器(Eddy Current Sensor)是电感式位移 传感器的一种,它的最大的特点是能够对位移、厚度、 材料探伤等进行非接触连续的测量,频率响应特好, 弥补了其它电感传感器的不足。 探头是电涡流传感器重要的组成部分,其性能的 好坏直接影响到电涡流传感器的检测质量。涡流检测 探头的结构是由线圈绕组以及骨架和外壳组成,为了 增强线圈的聚磁能力和提高电涡流传感器的灵敏度, 有些还用到磁芯。
设计了一种放置反射式点涡流传感器探头,绕在线圈骨 架上的是一个环形的扁平空心线圈,线圈和线圈骨架一 起置于环形的电涡流探头壳体内。
四种不同参数线圈的探头做实验分析(mm) rb=12 ra=8 h=2 N=89
rb=10 ra=8 h=2 N=45
rb=12 ra=8 h=1 N=45
rb=10 ra=9 h=2 N=67
在电涡流传感器的硬件实现之前,可以通过数值方法 来模拟电涡流传感器,以节省硬件设计的时间和成本。 通常电涡流传感器的电磁机理非常复杂,用精确数学解 析表达式去计算存在着很大的困难,为此本文利用 COMSOL Multiphysic对电涡流传感器探头的电磁场和影 响其性能的结构参数因数进行了仿真和分析,为电涡流 传感器的设计和制作提供了一定的借鉴和帮助。

基于电涡流原理的转速传感器的设计

基于电涡流原理的转速传感器的设计
关键词 : 电涡流传 感 器 ; 速测 量 ; 试距 离 转 测
2 . 1线圈框架 的选择 转速是指作 圆周运动的物体在单 位时间 内所转 过的圈数 , 多旋 是许 为保证传感器有 比较好 的温 度稳定 眭, 圈框架 应采用 损耗 小 、 线 电性 转机器 的一 个重要运行参数 , 转速测量一直是科学 实验和工业领域 的一 能好 、 胀系数 小的材料 , 高频 陶瓷 、 热膨 常用 聚酰亚胺 、 环氧玻璃纤 维 、 氮 个重要问题 。 化硼和 聚四氟 乙烯 等。 电涡流传感器 动态响应特 陛好 、 敏度高 、 稳定可靠 , 在具有 灵 工作 能 在满足 以上特性 的基础上 , 了高导磁率 的软磁性材料 作为线 圈 选择 粉尘 、 油污等恶劣环境下_ , 属无损检测的重要工具 。利用电涡流 框架 , T作 是金 它的作用是 :) 1由较低 的外部磁 场强度就可 以获得很 大的磁化强度 传感器对金属的探测理论 已经 比较成熟 , 了解决 一般 电涡 流传感器进 及高密度磁通量 ;) 为 2能够有效地 吸收电磁干扰信 号 , 以达至抗电磁干扰 的 U 行转速测量时被测表面积小 、 测试距离受限 的问题 , 本传感器 的设 计主要 目的 ;) 3磁导率特 别高 , 以大大缩小磁 芯的体 积 , 而使探头 体积也 大 可 从 考虑线圈参数对灵敏度 、 线性度和线性范 围的影响规律 。 该结构采用加入 大缩小 , 并且提高 了工作频率 。线 圈框架 的材料 可以选择铁氧体 , 而铁氧 磁芯的方式 , 可以感受较弱的磁场变化 , 磁导率变化增大而扩 大测量范 体可分为两组 : 使 镍锌和锰锌 。镍锌材料有低 的起始磁 导率 , 在低频不会产 同。 生高阻抗 。主要使用在无用 噪声 中大于 1MH 或 2MH 的 占主要成分 0 z 0 z 1 工作原理 的情况 。 但是 , 锰锌材料在低频下 能提供很 高的磁 导率 , 适合 于 1k z 很 0H 1 测量方 法 . 1 5MH 范围 的电磁 干扰 抑制 。基于 以上原 因 , 圈框架 的材 料主要考 0 z 线 转速的测量方法很 多 , 根据脉 冲计数来实 现转速测 量的方法 主要有 虑使用高磁导率锰锌铁 氧体 。 定时汁数法( 测频 法 ) 、 定数计时 法( 测周期法 ) 和同步计数计时法 。 该系统 2 . 取电路 的设 计 2拾 采用 同步计数 计时法进行转速测量 , 即在一定时间间隔 内 , 根据被 钡信号 4 针对信号很微弱及容易受到其他信号干扰的特点, 在对信号进行测 的脉冲数求转速 。 试时 , 要注意采集 、 大 、 噪 3 放 去 个环节 的处理 , 图 3 见 。采集信号时 , 要做 脉冲信 号与转速有以下关系 : 到不失真 、 平稳且 尽可能少地 引入干 扰量 ; 在对信 号进行放大 处理时 , 能 v :0 _ = { 6 , n 否有效地放大 差模信号 、 幅抑制共模 信号是关键 ; 大 在去噪处 理阶段 , 利 式 中 ,— v 被测体 转速 (mn; - 出信 号脉冲频率 ;一 r i)- j / f ̄ q n被测体旋 转一 用 低通滤波电路 , 主要去除高频干扰 。 厂 一 一 一 一 一 一 一 ’ r 一 一 一 一 一 一 1 周 的输 出脉冲数。 该 传感器是频率输 出型传感器 , 以直接通 过示波器 或频率计读 出 可 频率值, 然后根据上式来求出转速值。 l _ 2传感器工作原理

电涡流传感器的仿真与设计

电涡流传感器的仿真与设计

电涡流传感器的仿真与设计一、本文概述随着科技的飞速发展,传感器技术作为现代工业、自动化控制以及科研实验等领域中不可或缺的一环,其重要性日益凸显。

电涡流传感器作为一种非接触式测量工具,因其高精度、快速响应和广泛的应用范围,受到了广泛关注。

本文旨在深入探讨电涡流传感器的仿真与设计,以期为其在实际应用中的优化和改进提供理论支持和实践指导。

本文首先将对电涡流传感器的基本原理进行阐述,包括电涡流效应的产生机制以及传感器的工作原理。

在此基础上,我们将对电涡流传感器的仿真技术进行深入分析,探讨如何利用仿真软件对传感器性能进行预测和优化。

接着,本文将重点讨论电涡流传感器的设计要点,包括线圈结构、信号处理电路、屏蔽措施等方面,以期提高传感器的测量精度和稳定性。

本文还将关注电涡流传感器在不同应用场景下的性能表现,如高温、高湿、强电磁干扰等恶劣环境下的适应性。

通过实际案例分析,我们将对传感器的性能进行客观评估,并提出针对性的改进措施。

本文将展望电涡流传感器未来的发展趋势,探讨新技术、新材料在传感器设计中的应用前景。

通过本文的研究,我们期望能够为电涡流传感器的仿真与设计提供一套系统的理论框架和实践方法,推动传感器技术的不断发展和创新。

二、电涡流传感器的基本原理电涡流传感器,作为一种非接触式的测量工具,其基本原理基于法拉第电磁感应定律和电涡流效应。

当交变电流通过传感器线圈时,会在其周围产生交变磁场。

当这个磁场靠近导电材料(如金属)表面时,会在材料内部感应出电涡流。

电涡流的大小和相位与磁场强度、材料电导率、磁导率以及传感器与材料之间的距离有关。

电涡流传感器通过测量这个交变磁场与电涡流之间的相互作用,从而实现对材料性质或位置的测量。

具体来说,当传感器与被测物体之间的距离发生变化时,电涡流的大小和相位也会相应变化,进而引起传感器线圈的电感、阻抗或电压的变化。

通过测量这些电气参数的变化,可以实现对被测物体位置、材料电导率等物理量的测量。

电涡流传感器电路设计

电涡流传感器电路设计

电涡流传感器电路设计作者:汪晓凌杜嘉文来源:《硅谷》2013年第01期摘要:在无损测量当中,电涡流传感器测量因为能够实现工件在线非接触测量,测量精度高、无污染、制作价格低廉等优点,一直被作为一种重要的检测设备,在涡流技术高速发展的今天,电涡流的优势越来越明显应用也越来越广泛。

电涡流传感器是电涡流测量淬火层厚度的核心部分,传感器的测量精度直接影响整个测厚设备的精度,传统的电涡流传感器包括测量探头、整流滤波电路的设计、放大器的设计等,电涡流传感器的精确测量也离不开位移测厚标定器,这里主要研究电涡流测厚核心电路的设计。

关键词:无损测量;电涡流;测厚;电路0 引言电涡流无损检测具有很悠久的历史,从Michael Faradays总结出电磁感应定律,即变化的磁场能产生电场以来,电磁感应相关技术取得了巨大的发展。

后来Foster提出的通过分析系统的阻抗变化来分析涡流检测仪的干扰因素,为涡流检测提供了很好的理论依据,大大推动了电涡流无损检测技术的发展。

通过对阻抗分析法的有效运用,电涡流测量技术已经渗透到我们工业测量的方方面面,包括了航空航天、核工业、机械、冶金、石油、化工、机械、汽车等部门,电涡流无损技术的快速发展,相关研究和运用也越来越广泛,其中传感器的电路设计和测量精度的控制都是研究的焦点。

1 涡流检测原理图涡流检测是无损检测的一个分支,是运用电磁感应原理,将一半径为r的线圈通过正弦波电流后,线圈周围就会产生一交变磁场H1;若在距线圈x处有一电导率为a,磁导率为u厚度为d的金属板,线圈周围的交变磁场会在金属表面产生感应电流,也称作涡流。

金属表面也产生一个与原磁场方向相反的相同的相同频率的磁场H2,反射到探头线圈,导致载流线圈的阻抗和电感的变化,改变了线圈的电流大小及相位,原理图如图1所示。

图1 电涡流测厚原理图2 测厚探头的设计图2 电涡流测量电路整体设计图电涡流测量电路的整体测量电路设计图如图2所示,涡流探头测量物体厚度后引起阻抗的变化,通过电桥电路转化成电流信号输出,也由于信号很微弱,需要经过放大器进行功率放大输出,经过整波电路,把交流信号转化为直流信号,然后把那些高频的还有低频的号过滤掉,得到干扰较小的电流信号,经过放大器尽心比例放大后接入ARM7的A/D转换接口,把模拟信号转化为数字信号,对信号进行控制然后接入数字示波器,观察波形输出,把结果通过PC 机显示出来[1]。

电涡流位移传感器设计

电涡流位移传感器设计

HEFEI UNIVERSITY OF TECHNOLOGY《传感器原理及应用》课程考核论文题目电涡流位移传感器设计班级机设八班学号姓名成绩机械与汽车工程学院机械电子工程系二零一二年五月电涡流位移传感器摘要:随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。

特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。

传感器技术的应用在许多个发达国家中,已经得到普遍重视。

在工程中所要测量的参数大多数为非电量,促使人们用电测的方法来研究非电量,及研究用电测的方法测量非电量的仪器仪表,研究如何能正确和快速的非电量技术。

电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。

关键词:电涡流式传感器传感器技术电量非电量Abstract:With modern measurement, control box of automation technology development, the sensor technology is more and more attention by people. Especially in recent years, due to the development of science and technology and ecological balance the need, sensor in various fields are also increasingly significant role. The sensor technology application in many developed countries, has been paid attention to. In the project in measured parameters for the most power, the power to urge people to approach to the power, and the research method of the electricity measurement of electric instruments, to study how to correct and fast the power technology. The eddy current sensor has become the electrical measurement technology is very important means of detection, widely used in engineering survey and scientific experiments.Key words:Eddy current sensor, sensor technology ,non-power electrical measurement techniques,一:总体设计方案电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。

双线圈结构电涡流位移传感器的设计

双线圈结构电涡流位移传感器的设计
6 - / 电阻率ρ = 0 铁磁性材料 4 . 1 m, 3 2×1 0 Ω 5# 钢 ( ) , 相对磁导率 μ 厚度为 2c 面积为 ( 4 9 6 4 m, 0 0× r =1 2 )mm 激励线圈3和检测线圈2绕制在骨架4 . 0 0 4 上, 线圈 3 的引出线 接 信 号 源 , 线圈2为检测输出信 [ ]
根据法拉第电磁感应定律 , 当传感器线圈通以正
收稿日期 : 0 1 3 2 1 2 1 5. - -

) ; ) 基金项目 : 广西教育厅重点项目 ( 教育部科技重点项目 ( 1 1 1 3 7 0 1 2 0 2 Z D 0 3 3 . 2 , 作者简介 : 蒋勇 ( 广 西 重 工 集 团 有 限 责 任 公 司 助 理 工 程 师, 研 究 方 向: 机 械 设 计 及 制 造; 蓝奇 男, 广 西 桂 林 人, 1 9 7 9 -) ( , 女, 广西上林人 , 广西民族大学讲师 , 研究方向 : 无损检测 、 摩擦密封材料 . 1 9 7 8 -)
图 8 放大电路图
F i . 8Am l i f i c a t i o n C i r c u i t g p
号, 其引出线接到差动 放 大 器 的 输 入 端 , 将信号进行 放大 . 通过计算机 M l a b软件计算得出传感器线圈 a t 的最优结构参数 : 激励线圈和检测线圈内径 、 外径 、 厚 度 分别为2 3 5mm、 0 . 7mm 和3 5mm、 4 2mm、 8mm、 线圈均为线径为 0 2 . 1mm. . 7mm 的漆包铜线 .
关键词 :电涡流 ; 双线圈 ; 测量电路 位移传感器 ; 中图分类号 : 2 文献标识码 :A T P 2 1 ( ) 文章编号 : 4 6 2 2 0 1 4 0 1-0 1 0 1-0 4 1 6 7 3-8

调频式电涡流传感器振荡器的设计

调频式电涡流传感器振荡器的设计
中, 研 制和选 用性能优 良的传感器 是重要环 节之一。 对于调频
因此, 振荡器的平 衡条件为:
式电涡流位移测量 系统来说, 提高系统测量灵敏 度和精度 的关 键是 由振 荡器 的频率 稳定性来决定的。 石英 晶体振荡器频率稳
定度虽可达  ̄ l J l O ~1 0, 但 由于晶体 的外特 性等效为一个高品
量, 2 0 0 0 , ( 5 ) : 2 3 .
[ 参考文献]
1 ] 傅志 斌 , 徐 玉 静. 电 涡流传 感 器 的新 概 念 . 仪器 仪 表标 准 化 与计 输出, 满足起振 条件。 另外 , R 、 R , 同时兼有隔离谐振回路 以提 [
高频率稳定性的作用 。 但R , 、 R , 不可选 的过大 , 以保证G 有很强
精度低 、 振荡器稳定性 差等缺 点, 从而开 荡幅度 能够 得到逐 步放 大, 使振荡信号有一定的强度输 出, 不 在 的非线性误 差大、 拓 了调频式电涡流传感 器的发展和应用。 至于淹没在同样电平的噪声之中。
图1 中的R , 、 R , 就是为了在起振时将反向器7 4 L S o 0 在输入小 信 号的情况下偏置在线性 放大区工作, 以保证一定强度的振幅
式( 1 - 2 ) 中, A 为平均 电压放 大倍 数 , 即负载谐 振阻抗 上基 波输 出电压 , 与基极输入 电压U 之 比。 式( 卜3 ) 中,妒为平均 电
而我们在这里选 择的是最 高可 以达  ̄ ] J l O “的稳定频率的L C Z . 点 压放大倍数 的相位移, 为为反馈系数的相位移。 式( 卜2 )的振 式T T L 集 成振 荡器 , 并且它 同时还 具有普通振 荡器的各种优越 幅平衡条件说明振幅在平衡状态 时, 其环路增益必定等于1 , 也 性。 电路组成 如图1 。 它 由非 门、 L C 选频 网络和 电容反馈 电路组 就是说反馈信号的振幅必须与原输 入信号的振幅相等 , 才能始

新型电涡流传感器测量电路设计分析

新型电涡流传感器测量电路设计分析

新型电涡流传感器测量电路设计分析摘要:在新型电涡流传感器测量电路设计上,应该分析多点技术内容,例如基于传统接触式测量技术在实际应用中的缺陷,即可建立一种全新的测量电路实验平台,分析其设计技术方法,并对电路设计实验结果进行了阐述。

关键词:新型电涡流传感器;测量电路设计;实验平台;设计方法;实验结果工程检验施工中需要对多种物理量检测数据进行分析,最终归结转化获得机械位移量,如此对监控提高检测仪器性能是很有帮助的。

例如针对新型电涡流传感器的测量电路设计分析需要提高测量灵敏度与准确度,优化测量电路设计动态范围,要结合传感器测量电路的稳定运行性能与运行恶劣环境进行分析。

1.新型电涡流传感器的工作原理分析新型电涡流传感器的基本构成包括了延伸电缆、探头线圈、信号处理模块以及被测体四大部分。

在设备运行过程中,需要分析交变磁场变化,对其有效运行范围进行分析,了解被测体靠近过程中磁场能量的损失变化。

此时被测体中会产生电涡流产生交变磁场,其中磁场反作用可确保线圈电流大小与相位变化,分析线圈阻抗变化情况,并对新型电涡流传感器的涡流场反作用问题进行分析,如图1[1]。

图1新型电涡流传感器的基本构成结构示意图如图1,在线圈阻抗变化过程中,需要分析被测体电导率、线圈几何参数、线圈被测体之间的相互控制距离进行分析,深入了解被测体的电阻率、磁导率以及厚度变化情况。

如此可建立高频放射式测距涡流传感器,并对低频透射测厚涡流传感器内容进行分析,提出相关技术解决方案。

简言之,它所建立的是围绕被测体、输入电流、线圈、磁场能量耦合、电涡流所共同构建的新型电涡流传感器系统技术体系[2]。

1.新型电涡流传感器测量电路的设计流程与设计方法1.设计流程1建立布线图在新型电涡流传感器测量电路设计流程中,需要首先采用印制板并设计电源线与地线,它可为电路正常工作提供不竭电源动力,同时配置导线内容,建立影响电路板电磁兼容的导线部分。

在设计过程中,需要对地线组合所形成的电容部分进行分析,建立地线电路基准,确保多个电路都能提供0V参考电压,分析朱电磁干扰情况,结合底线对PCB到点面积分布均匀性进行分析,建立新型电涡流传感器测量电路机制,避免出现串扰问题。

新型电涡流传感器测量电路设计

新型电涡流传感器测量电路设计

新型电涡流传感器测量电路设计电涡流传感器是一种能够将金属中的涡流效应转换为电信号的传感器,广泛应用于工业领域的位移、速度和金属表面缺陷等测量。

而新型电涡流传感器测量电路设计则是针对传感器测量信号处理的核心部分,其设计的好坏直接关系到传感器测量精度和稳定性。

这篇文章将从深度和广度的角度,全面评估新型电涡流传感器测量电路设计的关键要素,并探讨其在工业应用中的重要性。

1. 传感器原理及特点在进行新型电涡流传感器测量电路设计之前,首先需要了解传感器的工作原理和特点。

电涡流传感器利用涡流效应来检测金属表面的缺陷或测量金属零件的尺寸、形状等参数。

其工作原理是当金属表面被感应线圈的交变磁场影响时,会在金属内部产生涡流,并产生一个感应电动势,感应线圈测量出这个电动势,从而实现对金属的测量。

而新型电涡流传感器相比传统传感器具有更高的灵敏度、更快的响应速度和更广的测量范围。

2. 传感器测量电路设计要求在进行新型电涡流传感器测量电路设计时,需要考虑的关键要素包括信号放大、滤波、AD转换、数字信号处理等。

对于传感器的微弱信号,需要进行有效的放大处理,以提高信噪比和测量灵敏度;由于传感器信号可能存在噪声等干扰,需要设计合适的滤波电路来滤除杂散干扰,保证信号质量;另外,为了实现对信号的数字化处理和后续数据处理,还需要进行AD转换和数字信号处理的设计;对于工业现场的使用,还需要考虑电涡流传感器测量电路的稳定性和抗干扰能力。

3. 设计方案及优化在新型电涡流传感器测量电路设计中,可以采用多种电路设计方案来实现对传感器信号的高精度采集和处理。

常见的方案包括差动放大电路、滤波电路、高速AD转换电路等。

对于特定应用场景,可以根据实际需求选取合适的电路方案,并通过仿真、实验等手段对电路进行优化。

在差动放大电路中,可以采用低噪声、低偏置电流的运算放大器来实现微弱信号的放大,提高测量精度;在滤波电路中,可以采用低通滤波器来滤除高频噪声,保证信号的准确性。

传感器6(2)电涡流式

传感器6(2)电涡流式
目前这种传感器已广泛用来测量位移振动厚度转速温度硬度等参数以及用于无损探伤电涡流式传感器的组成框图速度硬度探伤等应力浓度流量位移振动厚度非电量传感器线圈测量电路确定关系阻抗电感品质因数涡流
6.3电涡流式传感器
电涡流式传感器是利用电涡流效应进行工作的。由于结 构简单、灵敏度高、频响范围宽、不受油污等介质的影 响,并能进行非接触测量,适用范围广。目前,这种传 感器已广泛用来测量位移、振动、厚度、转速、温度、 硬度等参数,以及用于无损探伤领域。 电涡流式传感器的组成框图
2M 2 L L1 L2 2 R2 (L2 ) 2 L Q R
等效电感为: 等效Q值为:
电涡流式传感器
由于涡流的影响,线圈阻抗的实数部分增大,虚数部分减 小,因此线圈的品质因数Q下降。阻抗变为Z,常称其 变化部分为“反射阻抗”。
式中 Q0 L1 / R1 ——无涡流影响时线圈的Q值; 2 Z 2 R2 2 L2 ——短路环的阻抗。 2 Q值的下降是由于涡流损耗所引起,并与金属材料的导电性和 距离直接有关。当金属导体是磁性材料时,影响Q值的还有 磁滞损耗与磁性材料对等效电感的作用。在这种情况下,线 圈与磁性材料所构成磁路的等效磁导率的变化将影响L。

Z1 L1 // C1, Z 2 L2 // C2
电涡流式传感器
2.谐振式测量电路 谐振电路是将传感线圈的电感L与固定电容 C组成一个并联 谐振电路。
谐振电路有二种类型:调幅式与调频式。 输出电压的频率f始终恒定, 称为定频调幅式。 由振荡器产生的频率为f的电压加到 L、C回路和串联电阻R的电路两端, 当被测体靠近并联谐振电路时,电 涡流的能量损失发生变化,从而使 L、C回路的等效阻抗发生变化,因此引起输出电压 变化。

电涡流传感器的位移特性实验报告

电涡流传感器的位移特性实验报告

实验十九电涡流传感器的位移特性实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。

二、实验仪器电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表三、实验原理通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

四、实验内容与步骤1.按图 2- 1 安装电涡流传感器。

图 2- 1 传感器安装示意图2.在测微头端部装上铁质金属圆盘,作为电涡流传感器的被测体。

调节测微头,使铁质金属圆盘的平面贴到电涡流传感器的探测端,固定测微头。

图 2-2 电涡流传感器接线示意图3.传感器连接按图 2-2,实验模块输出端 Uo 与直流电压表输入端 U i 相接。

直流电压表量程切换开关选择电压 20V 档,模块电源用 2 号导线从实验台上接入+15V 电源。

4.合上实验台上电源开关,记下数显表读数,然后每隔 0.1mm 读一个数,直到输出几乎不变为止。

将结果列入表 2- 1。

表 2-1 铁质被测体X (mm) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 U O (V)0.020.210.370.530.670.830.991.141.301.46X (mm)1.11.2 1.31.4 1.5 1.61.7 1.8 1.92.0 U O (V)1.621.801.972.152.322.492.682.863.053.23X (mm)2.12.22.32.4 2.5 2.62.72.82.93.0 U O (V)3.433.623.823.843.843.843.843.843.843.845.根据上表数据,画出 V-X 曲线,根据曲线找出线性区域及进行正、负位移测量时的 最佳工作点(即曲线线性段的中点) ,试计算测量范围为 1mm 与 3mm 时的灵敏度和线性度4.5 4 3.5 32.5系列12 1.5 1 0.5 00 0.5 1 1.5 2 2.5 3y = 1.6852x - 0.1647R 2 = 0.99761.5 2 4.5 4 3.5 32.5 2 1.5 1 0.5 0 -0.5 00.5 2.51(1)由上图可得系统灵敏度: S= ΔV/ΔW=1.6825V/mm(2)由上图可得非线性误差:当 x=1mm 时:Y=1.6825×1-0.1647=1.5178VΔm =Y- 1.46=0.0578VyFS=2.32Vδf = Δm /yFS × 100%=2.49%当 x=3mm 时:Y=1.6825×3-0.1647=4.4828VΔm =Y-3.84=1.0428VyFS=3.84Vδf = Δm /yFS × 100%=27.15%五、思考题1、电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何设计传感器?答:量程与线性度、灵敏度、初始值均有关系。

基于LabVIEW的电涡流位移传感器测量系统设计与研究

基于LabVIEW的电涡流位移传感器测量系统设计与研究

使! k !
2 i 2 i
对 k 和 b 一阶偏导数等于 0, 即 = 2! ( yi - kx i - b) ( - x i ) = 0 ( 4) ( 5)
! 2 i = 2! ( yi - kx i - b) ( - 1 ) = 0 b 从而求出 k 和 b 的表达式为 k= b= n ! xiyi - ! xi ! yi 2 2 n ! xi - ( ! xi ) ! xi ! yi - ! xi ! x iyi
收稿日期: 2008- 09- 16 作者简介: 王欣威 ( 1977 ), 女, 讲师。主要研究方向为 传感器 与测 控技术、 虚拟仪 器、测试 信号 与信息 处理 技术。电 话: 13079256735, E- m a i: l wangx inw ei1977 @ 163 co m。
第 9期
王欣威 等 : 基于 L abV IEW 的电涡流位移传感器测量系统设计与研究
161
标定对于测量系统来说是很关键的一步, 传感器 经静态标定后, 可以获得静标曲线, 求得灵敏度、线 性度等静态特性指标, 并确定线性工作范围, 进而得 到利用电涡 流 传感 器进 行测 量 时的 最佳 工作 点 的范 围 。 标 定时首 先, 移动 测 微头 与传 感 器线 圈 端部 接 触 , 并记 录计算 机 采 集 到 的 电 压 值, 转 动 测 微 头, 每 隔 0 2mm 记录此 时 的电 压 值, 得到 了 一对 数 据, 如 此下去 , 直到把 整个 测量 范围 的标 定 数据 全部 得 到 。再反 方向转动 测微头 , 每隔 0 2mm 记录 此时的 电 压值, 又得到 了一 对数 值, 如此 下去 , 直 到把 整 个 测量范 围反方向 的标 定 数据 全部 得到 。采 用最 小 二 乘和 端 点 连 线 法 两 种 直 线 拟 合 的 方 法 进 行 线 性 化 , 并求 出灵敏度 和 线性 度。如 图 4 所示 为 标定 系 统 的前面 板。

电涡流传感器电路设计

电涡流传感器电路设计

d 的 金 属 板 , 线 圈 周 围 的 交 变 磁 场 会 在 金 属 表 面 产 生 感 应 电 流 , 也 称 作 涡 流 。 金 属 表 面 也 产 生 一 个 与 原 磁 场 方 向相 反 的 相 同 的 相 同频 率 的 磁 场 H 2 , 反 射 到 探 头 线 圈 , 导 致 载 流 线 圈 的 阻 抗 和 电感 的变 化 , 改 所 示。
0引 育
电涡 流 无 损 检 测 具 有 很 悠 久 的 历 史 , 从M i c h a e 1 F a r a d a y s
那 些高频的还有低 频的号过滤掉 ,得到干扰较小 的电流信号 , 经 过 放 大 器 尽 心 比例 放 大 后 接 入 A R M 7 的A / D 转 换 接 口 , 把 模 拟
信 号 转 化 为 数 字 信 号 , 对 信 号 进 行 控 制 然 后 接 入 数 字 示波 器 , 观 察 波 形 输 出 ,把 结 果 通 过P C 机 显 示 出来 [ 1 ] 。 传 统 的 电 涡 流 传 感 器 的 测 量 电 路 主 要 是 通 过 电桥 法 组 成 的 , 电桥 法 是 将 传 感 器 线 圈 的 阻抗 变 化 转 化 为 电压 或 电流 的 变 化 , 图3 是 电桥 电路 的原 理 图 , 线 圈A N D 线 圈B 为传 感 器 线 圈 , 线 圈A 为 阻抗 可 调 线 圈 , 线 圈B 为 测 量 线 圈 ,传 感 器 原 线 圈 的 阻抗 值 等 于 线 圈A 设 定 的 阻抗 值 , 当线 圈B 接 近 被 测 钢 件 时 , 线 圈B 的 阻 抗 值 发 生 变 化 ,使 电桥 两 边 失 去 平 衡 , 电 桥 的 不 平 衡 会 使 电 阻 两 边 产 生 不 均 衡 信 号 通 过 放 大 器 放 大 后 进 行检 波 输 出就 可 以 得 到 和 被 测 量 成 正 比 的输 出信 号 ,通 过 一 定 的 方 法 进 行 线 性 拟 合 就 可 以得 到 输 出 信 号 和 钢 件 淬 火 层 厚 度 之 间 的 关 系 ,其 中线 圈A 和线圈B 都 可 以 通 过 漆 包 线 和 绝 缘 套 管绕 制 而 成 , 线 圈 的 阻 抗 大 小 由线 圈 的 匝 数 决 定 , 同 时 线 圈 的 匝 数 和 绝 缘 套 管 的 内径 和 外 径 大 小一 起 决 定 了探 头 能 后测 量 的 范 围大 小 。 经 过 实 验 分 析 可 知 ,线 圈 厚度 越 厚 ,涡 流 损 耗 越 小 ,传 感 器 的 的 测 量 精 度 也越 差 : 线 圈 外径 越 大 ,涡 流 损 耗 越 小 ,传 感 器 的测 量 精 度 也 越 差,相反若 只是改变传感器线 圈的 内径对传感器 的测量精度 影 响 不 大 。 电 涡流 效 应 主 要 集 中在 待 测 物 体 表 面 ,所 以表 面 的 平滑 程度对测量 的精度也有很大影 响。 ( 新 型 电涡 流 测量 电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言
电涡流传感器具有灵敏度高、分辨力高、线性度高、重复性好、结构简单、抗干扰能力强、线性测量范围宽、安装方便、非接触测量、耐高温、能在油、汽、水等恶劣环境下长期连续工作的特点以及能够实现信息的远距离传输、记录、显示和控制的优势,被广泛应用于工业生产和科学研究等领域的位移、振动、偏心、胀差、厚度、转速等物理量的在线检测和安全保护,为精密诊断系统提供了全息动态特性。

因而对于电涡流传感器的研究有着深远的理论和实践意义。

目前,对电涡流传感器的研究,主要集中在电磁学模型机理的研究、线圈几何形状的优化设计、测量精度的提高、非线性的线性化和应用范围的拓展等方面。

本文提出了一种新型的电涡流传感器设计方案,具有速度快、功耗低、稳定性好等诸多优点,并已广泛应用于电力、石化、冶金、钢铁、航空航天等领域,取得了非常好的效果,得到了用户的一致好评。

1 电涡流传感器的基本工作原理[1-2]
电涡流传感器的基本工作原理是基于电涡流效应。

根据法拉第电磁感应定律可知:金属导体置于变化的磁场中时,导体表面就会有感应电流产生。

电流的流线在金属导体内自行闭合,这种由电磁感应原理产生的旋涡状感应电流称为电涡流,这种现象称为电涡流效应,电涡流传感器就是利用电涡流效应来检测导电物体的各种物理参数的。

如图1所示。

理论和实践均证明:电涡流的大小与导体的磁导率ξ、电导率σ、线圈与导体之间的距离D 、激励电流强度I 、激励电流角频率ω、线圈尺寸因子等参数有关。

探头线圈的阻抗Z 是上述参数的函数,即Z =F (,ξ, σ, D , I,ω) 。

很显然,如果只改变其中的某一参数,其他参数恒定,阻抗就成为该参数的单值函数。

假设被测金属导体材质均匀,且具有线性和各向同性的性能特点,我们可以控制,ξ, σ, I ,ω这几个参数在一定范围内不变,则阻抗就成为距离的单值
函数,再通过前置器电子线路的处理,将探头线圈阻抗的变化,即探头线圈与金属导体之间的距离的变化转化为电压或电流的变化。

输出信号的大小随探头到被测体表面之间的距离而变化,电涡流传感器正是基于这样的原理实现对位移、振动、胀差、偏心等的测量。

图1 电涡流传感器的工作原理
2 电涡流传感器电路设计
2.1 测量电路的选择[3-5]
电涡流传感器的测量电路可分为调频式和调幅式两种,调幅式测量电路又可细分为恒定频率的调幅式和频率变化的调幅式两种。

调幅式测量电路是指以输出高频信号的幅度来反映电涡流传感器探头与被测金属导体之间的关系。

其特点是:输出可以被调理为直流电压,而对直流电压进行数据采集的速度快、时间短、可以降低功耗。

调频式测量电路是指将探头线圈的电感量与微调电容构成振荡器,以振荡器的频率作为输出量的一种转换电路。

其优点是:电路结构简单,抗干扰能力强,性能较稳定,分辨率和精度高,易与计算机连接,频率输出便于数据采集和处理,成本较低。

在本设计中我们采用调幅式电路。

2.2 滤波、稳压、同相比例放大电路的设计
该部分电路的作用是消除直流电源中的交流成分以及电源电压的波动所造成的影响。

如图2所示。

2.3 振荡电路的设计[6]
电感三点式振荡电路:由于反馈支路是电感,振荡器的输出波形中含有较多的高次谐波,且振荡频率不高,对本设计不适用,故不予采用。

电容三点式振荡电路:由于输出端和反馈支路均为电容,对高次谐波电抗小,反馈电压中高次谐波分量很少,振荡频率稳定度高,因而输出波形好,更接近正弦
波。

振荡频率可以较高。

符合本设计的要求,故采用。

如图3所示。

图3 电容三点式振荡电路
在本设计中,为了保证振荡电路输出信号的稳定和可靠,我们采取了如下措施:
针对电源电压的变化,在电源端添加了稳压环节;针对负载变化,在振荡电路与负载之间插入了缓冲电路以屏蔽负载的影响;针对环境温度变化,采用了温度系数较小的元件,例如云母电容等;针对外界磁场会引起磁性材料磁导率的变化,影响传感器线圈的涡流效应,将振荡器密封在传感器壳体内,起到屏蔽作用,可减少回路与外界发生的电磁耦合。

2.4 检波、滤波电路的设计
检波、滤波电路将电容三点式振荡器的输出信号,经过检波、滤波,将其转换为直流信号。

通过对电路的优化设计,对元器件一致性的筛选以及电阻、电容参数的合理选配,使得该电路既能保证独立线性指标的要求,又能满足对动态响应时间指标的要求,同时还要尽可能降低直流信号输出的交流噪声。

检波、滤波电路如图4所示。

2.5 对数运算电路的设计[7]
电涡流传感器的设计
伍艮常 株洲职业技术学院,湖南株洲 412001
DOI :10.3969/j.issn.1001-8972.2011.12.076
图2 滤波、稳压、同相比例放大电路
采用对数运算电路对传感器的非线性段进行线性化补偿,在保证测量精度要求的前提下,最大限度地扩大传感器的测量范围。

本对数运算放大电路采用的运算放大器、电阻和二极管,都是非常基本的电子元器件,相对于其他复杂的芯片,具有很好的时间稳定性和温度稳定性,因此该电路在高温环境长时间使用可以保持优良的矫正性能,可靠性好。

对数运算电路的工作原理主要是基于二极管的非线性伏安特性,伏安特性曲线在输入(横轴方向)逐渐增大时,输出(纵轴方向)的变化率不断增大,这种曲线类似指数运算。

指数运算与对数运算互为逆运算,使得该电路的输出和输入之间满足对数的函数关系。

对数运算放大电路如图5所示。

图5 对数运算放大电路
2.6 放大、迁移、滤波电路的设计该部分电路的作用是对检波、滤波、线性化处理后的直流信号进行信号的迁移、放大、再滤波处理,确保传感器处于最佳线性工作区间,确保输出形式符合技术指标要求,确保信号的交流噪声控制在最低程度,确保传感器输出信号稳定、可靠。

由于电涡流传感器的供电电源仅为24V ,电压过低,以及由位移量转化而成的电信号变化缓慢且非周期性和比较微弱的特点,致使传感器的电容三点式振荡器的输出信号以及经过检波、滤波、线性化处理后的直流信号幅度也很低,为保证传感器的信号输出符合技术指标要求,需在信号的迁移、放大、滤波环节加以放大处理。

放大、迁移、滤波电路如图6所示。

3 线圈的设计
线圈是电涡流传感器的一个非常重要的元件,其尺寸和形状直接关系到传感器的灵敏度和测量范围;其材料和线径的选择也很关键;本设计为了缩短设计时间和提高精确度,借助了计算机进行辅助设计,求得了一组比较合理的参数。

限于篇幅,不展开讨论。

4 关键技术
4.1电容三点式振荡电路的设计
这是一个同时具有深度负反馈和自举反馈的电容三点式振荡电路,图中的L 就是传感器线圈的电感,其特点是该电路容易起振,灵敏度高,稳定性好,时漂小,输出幅值大。

采用电容三点式振荡电路,可提高整个系统的可靠性及控制精度。

为了保证此项关键技术的实现,采用了以下方法和措施:
1)为了减小电源引起的频率漂移,在原电源前添加一稳压环节,使电路工作在稳压状态,从而改善了对其频率的影响。

2)晶体管发射结电阻R b e 和发射结电容Cbe 对频率稳定度的影响很大,其中后者影响更大,在振荡电路中引入C2、C3便是为了减小发射结电阻R b e 和发射结电容Cbe 对频率稳定度的影响。

3)为了减小电路的负载效应,增大品质因数Q 以及使谐波的失真系数减小,设计了一个射极跟随器。

4)为了提高频率稳定度,便要提高电感L 和电容C 的稳定性(主要是温度稳定性),电感L 的稳定性主要取决于材料和工艺,电容C 的稳定性主要取决于材料,一般选用瓷介或云母电容,这种电容损耗小,电容量稳定性高,并具有多种低温度系数,适用于谐振回路和需要补偿温度效应的电路中。

4.2 对数运算电路的设计
对数运算电路是指输出和输入之间满足对数函数关系的电路,本设计中对数运算电路主要用于对传感器的非线性段进行线性化补偿,在保证测量精度要求的前提下,最大限度地扩大电涡流传感器的量程。

在设计中始终坚持简单、明了、够用的原则,本对数运算放大电路设计采用的是运算放大器、电阻和二极管,它们都是非常基本的电子元器件,相对于其他复杂的芯片,具有很好的时间稳定性和温度稳定性,因此该电路可以在高温环境下长时间工作,可靠性好。

因此也从根本上保证了电涡流传感器的工作可靠性。

5 结束语
本文对电涡流传感器的工作原理和电路设计进行了比较详细的介绍,依照本设计生产的电涡流传感器具有体积小、重量轻、抗振动、抗冲击、耐高低温等优点,在油田、矿山、电厂、钢厂等领域得到了广泛的应用,赢得了用户一致好评。

理论和实践均证明本设计科学、合理,具有一定的推广应用价值。

相关文档
最新文档