2.2探索直线平行的条件(1)_教案

合集下载

《探索直线平行的条件》教案

《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案一、教学目标:1. 知识与技能:(1)理解直线平行的定义及性质;(2)掌握直线平行的判定方法;(3)能够运用直线平行的知识解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳直线平行的条件;(2)培养学生的逻辑思维能力和空间想象力;(3)学会运用几何画板等工具辅助探究直线平行问题。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣;(2)培养学生勇于探究、合作交流的良好学习习惯;(3)培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点:1. 教学重点:(1)直线平行的定义及性质;(2)直线平行的判定方法。

2. 教学难点:(1)直线平行条件的推理与证明;(2)运用直线平行知识解决实际问题。

三、教学准备:1. 教学工具:黑板、粉笔、几何画板等;2. 教学素材:直线平行的图片、实例等;3. 学生活动:预习相关知识,准备进行探究。

四、教学过程:1. 导入新课:(1)利用图片、实例引导学生初步了解直线平行的概念;(2)提问:什么是直线平行?它们有什么特点?2. 自主探究:(1)让学生利用几何画板工具,尝试画出两条平行直线;(2)引导学生观察、分析、归纳直线平行的条件。

3. 合作交流:(1)分组讨论,让学生分享自己的探究成果;(2)总结直线平行的判定方法。

4. 讲解与演示:(1)教师对直线平行的判定方法进行讲解;(2)利用几何画板进行演示,加深学生对直线平行条件的理解。

5. 练习与拓展:(1)布置课堂练习题,巩固所学知识;(2)提供实际问题,引导学生运用直线平行知识解决。

五、课后反思:1. 教师对本节课的教学效果进行自我评价;2. 学生对学习收获进行总结,提出疑问;3. 针对教学过程中的不足,提出改进措施。

六、教学评价:1. 知识与技能:学生能准确表述直线平行的定义和性质,掌握直线平行的判定方法,并能运用这些知识解决具体问题。

2. 过程与方法:学生在探究过程中能运用观察、分析、归纳等方法,培养逻辑思维能力和空间想象力,并能使用几何画板等工具辅助探究。

北师大版数学七年级下册2.2《探索直线平行的条件》教案1

北师大版数学七年级下册2.2《探索直线平行的条件》教案1

北师大版数学七年级下册2.2《探索直线平行的条件》教案1一. 教材分析《探索直线平行的条件》是北师大版数学七年级下册第2章第2节的内容。

本节课主要让学生通过探索活动,掌握直线平行的条件,理解平行线的性质,并能运用这些性质解决一些简单问题。

本节课的内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的基本概念,对图形的基本性质有所了解。

但是,对于直线平行的条件和平行线的性质,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。

三. 教学目标1.理解直线平行的条件,掌握平行线的性质。

2.能够运用直线平行的条件和平行线的性质解决一些简单问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.教学重点:直线平行的条件,平行线的性质。

2.教学难点:直线平行的条件的推导,平行线的性质的理解和运用。

五. 教学方法采用问题驱动的教学方法,引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。

在教学过程中,注重学生的主体地位,鼓励学生积极参与,培养学生的动手能力和思维能力。

六. 教学准备1.准备一些直线和平行线的模型,用于直观展示直线平行的条件和平行线的性质。

2.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用直尺和三角板,展示一些直线和平行线,引导学生观察和思考:什么是直线?什么是平行线?直线和平行线有哪些性质?2.呈现(10分钟)呈现一些直线平行的例子,引导学生观察和思考:这些直线为什么是平行的?直线平行有哪些条件?3.操练(10分钟)让学生分组合作,利用直尺和三角板,尝试画出一些平行线,并总结直线平行的条件。

4.巩固(10分钟)让学生独立完成一些关于直线平行的练习题,巩固所学知识。

5.拓展(10分钟)引导学生思考:平行线除了具有直线平行的条件外,还有哪些性质?让学生通过探索活动,发现和总结平行线的性质。

《探索直线平行的条件》第2课时示范公开课教案【北师大数学七年级下册】

《探索直线平行的条件》第2课时示范公开课教案【北师大数学七年级下册】

《探索直线平行的条件》教学设计第2课时一、教学目标1.了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补,两直线平行”两种判定方法.2.灵活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.3.经历观察、操作、想象、推理、交流等活动,进一步发展空间想象、推理能力和有条理的表达能力.4.在积极参与探索、交流的数学活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性.二、教学重难点重点:了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补两直线平行”两种判定方法.难点:活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计2.平行于同一条直线的两条直线平行.教师活动:引导学生思考,不能用同位角的数量关系直接判断两直线是否平行时,我们该怎么办?【情境引入】小明有一块小画板,他想知道它的上、下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示)小明利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行,你知道他是怎么做的吗?预设:可以测量∠1与∠2,也可以测量∠1与∠3....教师活动:进一步提出思考,这样做的理由呢?【合作探究】如何利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行?教师活动:演示测量过程,说明∠1=∠3,由此小明判断上下两个边缘是平行的.∠1+∠2=180°,由此他也能判断上下两个边缘是平行的.提出思考问题:你知道小明的判断依据吗?【探究】内错角与同旁内角的定义如图,具有∠1与∠2这样的位置关系的角称为内错角.具有∠1与∠3这样的位置关系的角称为同旁内角.请找出图中其他的内错角与同旁内角.预设:∠3与∠4是内错角;∠2与∠4是同旁内角.问题:你能说出内错角与同旁内角的特征吗?教师活动:引导学生观察内错角的位置特征,思考并说出内错角的特征.预设:内错角指在两条被截直线的内部,在截线的两侧,位置是交错的两个角.内错角是Z形状教师活动:引导学生观察同旁内角的位置特征,思考并说出同旁内角的特征.预设:同旁内角指在两条被截直线的内部,在截线的同旁的两个角.同旁内角是U形状【归纳】“三线八角”小结①位于两条被截直线同一方、且在截线同一侧的两个角,叫做同位角;如∠1与∠2.同位角是 F 形状②位于两条被截直线的内部,且在截线的两侧的两个角,叫做内错角;如∠7与∠2.内错角是Z形状③位于两条被截直线内部,且在截线的同侧的两个角,叫做同旁内角.如∠5与∠2.同旁内角是U形状.【议一议】(1)内错角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1 = ∠2 . 求证:a∥b证明:∵∠1 = ∠2 (已知)∠1 = ∠3 (对顶角相等)∴∠3 = ∠2 (等量代换)∴直线a∥b (同位角相等,两直线平行) 得出结论:内错角相等,两直线平行(2)同旁内角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1+∠2=180°,求证:a∥b∠1,∠2互补(已知)∠1,∠3互补(邻补角定义)∴∠3 =∠2 (同角的补角相等)∴直线a∥b (内错角相等,两直线平行) 教师活动:提示证明方法不唯一,证明过程中的∠3换成∠4就可以利用同位角相等,两直线平行来证明.得出结论:同旁内角互补,两直线平行【归纳】平行线的判定方法:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称为:内错角相等,两直线平行.同旁内角互补,两直线平行.【做一做】如图,三个相同的三角尺拼接成一个图形,请找出图中的一组平行线,并说明你的理由.教师活动:以举例的方式提示学生如何寻找.一位同学说:BC与AE是平行的,因为∠BCA与∠EAC是内错角,而且又相等.提问你能看懂她的意思吗?再找到另一组平行线,说说你的理由.预设:BA与CE是平行的,因为∠ACE 与∠BAC是内错角,而且又相等.AC与ED是平行的,因为∠ACE与∠CED 是内错角,而且又相等.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例已知:如图,∠1+∠2=180°,请用不同的方法说明:AB∥CD.分析:两条直线平行,可以利用同位角相等、内错角相等或同旁内角互补来证明.观察可知∠1的对顶角∠EHB与∠2是同旁内角,结合已知可证;∠2的补角∠CGH 与∠1是同位角,利用同角的补角相等可得同位角相等,从而证出两直线平行;同理可证∠1的补角∠AHG与∠2这对内错角相等,也可以证出结论.解题过程:2.下列条件能判断l1∥l2的是( )A. ∠2=∠3B. ∠1=∠3C. ∠4+∠5=180°D. ∠2=∠43.观察图中所标记的五个角,完成题目:(1)∠1 与是同位角;(2)∠5 与是同旁内角;(3)∠2 与是内错角.4.图中各角分别满足下列条件时,你能判断是哪两条直线平行吗?①∠1=∠4②∠2 =∠4③∠1+∠3 =180°答案:1.B ;2.B3.∠4;∠3;∠14.①a∥b;②l∥m;③l∥n.思维导图的形式呈现本节课的主要内容:。

【学情分析方案】A1《探索直线平行的条件(1)》学情分析方案

【学情分析方案】A1《探索直线平行的条件(1)》学情分析方案

基本信息县(市、区)学校姓名学科数学能力维度 学情分析□教学设计□学法指导□学业评价所属环境 多媒体教学环境□混合学习环境□智慧学习环境微能力点A1 技术支持的学情分析教学环境智慧学习环境教学主题 2.1探索直线平行的条件(1)教学对象七年级(2)班全体学生教学目标1.掌握同位角的概念,并会识别同位角。

理解“同位角相等,两直线平行”定理,并能解决一些简单的实际问题。

2.会用三角尺过已知直线外一点画这条直线的平行线,并能解释其合理性。

3.通过观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养合理的推理能力和有条理的表达能力。

教学重点理解”同位角”的概念,学会判定“同位角相等,两直线平行”。

学习难点能用“同位角相等,两直线平行”定理解决一些简单的实际问题。

分析工具PPT课件分析方法通过观察、操作、想象、推理、交流等活动,发现并总结“同位角相等,两直线平行”的定理,并通过适量的练习巩固.学情分析实践方案1.对学生的学习经验、知识储备、学习能力、学习风格以及学习条件的分析。

我们面对的对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况是十分有必要的。

学生在第二章的第一节已经认识了平行线,本节主要认识同位角及利用同位角判断两直线平行,并且学习平行线的两个性质。

该年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。

所以本节课要关注学生的动手操作能力、合作交流能力及语言表达能力。

2.利用信息技术扩大学情分析范围、丰富学情分析形式、提升学情分析效率。

A2.1《探索直线平行的条件(1)》学情分析方案FCBD1234567815∠1和∠5是同位角;图形特征:形如字母“F ”形。

图中的同位角还有∠2和∠6;∠3和∠7;∠4和∠8。

利用PPT 着色来展示“三线八角”中的“同位角”,解决从图形变换到数学问题,再解决从数学问题变化到图形的问题,引导学生从不同角度发现“F ”形“同位角”的特点。

《探索直线平行的条件》教案

《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案第一章:引言1.1 教学目标:让学生了解直线平行的概念及实际应用。

激发学生对探索直线平行条件的兴趣。

1.2 教学内容:直线平行的定义及实例。

直线平行的实际应用场景。

1.3 教学方法:通过图片、实例等方式引入直线平行的概念。

引导学生思考直线平行的实际应用场景。

1.4 教学步骤:1. 引入直线平行的概念,引导学生理解直线平行的定义。

2. 展示直线平行的实例,让学生通过观察和分析来理解和记忆直线平行的特征。

3. 引导学生思考直线平行的实际应用场景,如交通运输、建筑设计等,激发学生对直线平行的兴趣。

第二章:直线平行的判定2.1 教学目标:让学生掌握直线平行的判定方法。

培养学生运用判定方法解决实际问题的能力。

2.2 教学内容:直线平行的判定方法。

判定方法的证明和解释。

2.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的判定方法。

通过证明和解释来说明判定方法的合理性。

2.4 教学步骤:1. 引导学生回顾直线平行的定义,复习相关知识。

2. 引入直线平行的判定方法,让学生通过观察和分析几何图形来理解和记忆判定方法。

3. 通过证明和解释来说明判定方法的合理性,帮助学生深入理解判定方法。

第三章:直线平行的性质3.1 教学目标:让学生掌握直线平行的性质。

培养学生运用性质解决实际问题的能力。

3.2 教学内容:直线平行的性质。

性质的证明和解释。

3.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的性质。

通过证明和解释来说明性质的合理性。

3.4 教学步骤:1. 引导学生回顾直线平行的判定方法,复习相关知识。

2. 引入直线平行的性质,让学生通过观察和分析几何图形来理解和记忆性质。

3. 通过证明和解释来说明性质的合理性,帮助学生深入理解性质。

第四章:直线平行的应用4.1 教学目标:让学生学会运用直线平行的条件解决实际问题。

培养学生的实际问题解决能力。

4.2 教学内容:直线平行的条件在实际问题中的应用。

2、2探索直线平行的条件

2、2探索直线平行的条件

预习提纲:
问题1:在同一平面内两条直线的位置关系有几种?分别是什么?
问题2:如图,两条直线相交所构成的四个角中分别有何关系?
问题3:什么叫两条直线平行?
问题4:如课本彩图,装修工人正在向墙上钉木条。

如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角是多少度时,才能使木条a 与木条b 平行?
问题:实际问题中在判断两根木条平行时,借助了墙壁作为参照,你能将上述问题抽象为数学问题吗?试着画出图形,并结合图形说明。

问题5:1、图中的直线b 与直线c 不垂直,直线a 应满足什么条件才能与直线b 平行呢?请你利用教具亲自动手操作。

做一做:利用纸条和图钉自己制作学具,如图,三根纸条相交成∠1,∠2, 固定纸条b,c,转动纸条a, 在操作的过程中让学生观察∠2的变化以及它
与∠1的关系,你发现纸条a 与纸条b 的位置关系发生了什么变化?纸条a 何时与纸条b 平行?改变图中∠1的大小再试一试,与同学交流你的发现。

2.由∠1与∠2的位置关系引出对“三线八角”的认识和同位角的概念。

问题1:图中还有其他的同位角吗?
问题2:这些角相等也可以得出两直线平行吗?
3.综上探索,引导学生归纳出两直线平行的条件 A B D
C O。

2.2.2探索直线平行的条件(教案)

2.2.2探索直线平行的条件(教案)
学生小组讨论部分,我尝试作为一个引导者,鼓励学生们提出自己的观点。在这个过程中,我发现学生们其实有很多独特的见解。这让我反思,平时可能过于注重知识的传授,而忽略了学生们的主动性和创造性。今后,我要更加注重培养学生的独立思考能力和团队合作精神。
此外,我还注意到,在总结回顾环节,有些同学仍然存在疑问。这说明我在课堂上的讲解可能还不够透彻,或者是课堂互动不够充分。因此,我需要在课后及时了解学生的掌握情况,针对性地进行辅导,确保每位同学都能跟上教学进度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探索了直线平行的条件,我发现学生们对于这个概念的理解程度不尽相同。有的同学能够迅速抓住同位角、内错角、同旁内角这些关键点,但也有一些同学对这些概念感到困惑。我意识到,在接下来的教学中,我需要采取更加多样的教学方法,以帮助不同水平的学生更好地理解平行线的性质。
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
课堂上,我通过引入日常生活中的例子来激发学生的兴趣,这是一个不错的开始。然而,我发现在理论介绍部分,我的语言可能过于专业化,导致一些同学难以跟上。在今后的教学中,我需要用更贴近学生生活的语言来解释抽象的几何概念,使它们更加直观易懂。

北师大版七年级下册数学教学设计:2.2.2《探索直线平行的条件》

北师大版七年级下册数学教学设计:2.2.2《探索直线平行的条件》

北师大版七年级下册数学教学设计:2.2.2《探索直线平行的条件》一. 教材分析《探索直线平行的条件》这一节内容是北师大版七年级下册数学的重点章节,主要让学生掌握探索直线平行的条件,理解平行线的性质,并能够运用这些性质解决实际问题。

本节课的内容与学生的生活实际密切相关,有利于激发学生的学习兴趣,提高学生的数学素养。

二. 学情分析学生在进入七年级下册之前,已经学习了直线、射线、线段等基本概念,对几何图形有了一定的认识。

但是,对于探索直线平行的条件,学生可能还比较陌生,需要通过实例和操作活动来加深理解。

此外,学生可能对平行线的性质和判定定理还不够了解,需要在教学中逐步引导和培养。

三. 教学目标1.知识与技能:让学生掌握探索直线平行的条件,理解平行线的性质,并能够运用这些性质解决实际问题。

2.过程与方法:通过观察、操作、交流等活动,培养学生几何思维能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和创新精神。

四. 教学重难点1.重点:探索直线平行的条件,理解平行线的性质。

2.难点:如何引导学生发现并证明直线平行的条件,以及如何应用平行线的性质解决实际问题。

五. 教学方法1.情境教学法:通过生活实例和实际问题,激发学生的学习兴趣,引导学生主动参与课堂。

2.操作教学法:通过动手操作和实践活动,让学生在实践中感知和理解直线平行的条件。

3.合作学习法:学生进行小组讨论和合作交流,培养学生的团队合作意识。

4.启发式教学法:教师引导学生思考问题,激发学生的思维,培养学生解决问题的能力。

六. 教学准备1.准备相关的教学素材,如PPT、图片、实物等。

2.准备教学工具,如直尺、三角板、量角器等。

3.设计好课堂练习题和家庭作业。

七. 教学过程1.导入(5分钟)利用生活实例或实际问题,引导学生思考直线平行的条件。

例如,展示两辆火车并行行驶的图片,让学生观察并描述这两辆火车的行驶轨迹。

公开课:探索直线平行的条件

公开课:探索直线平行的条件

2.2探索直线平行的条件(1)学习目标:1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力。

2、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题学习重点:会认各种图形下的同位角、内错角,并掌握直线平行的判定方法:“同位角相等,两直线平行”;“内错角相等,两直线平行”。

学习难点:判断两直线平行的说理过程教学方法:合作探究、实践法活动准备:预先做好三根活动木条课前复习:①在同一平面内,两条直线的位置关系是②在同一平面内,两条直线的是平行线.③找出图中的同位角、内错角、同旁内角同位角:内错角:同旁内角:教学过程:一、问题情景一:1、实践:动手操作移动活动木条,完成学案中的相关内容。

2、合作交流①你发现了∠1和∠2在位置上有什么共同特征?具备这种特征的角的名称是什么?②改变图中∠1的大小,按照上面的方式再做一做,∠1与∠2的大小满足什么关系时,木条a与木条b平行?小组内交流。

3、教师:在模型中,旋转木条a到不同位置,∠2的大小随之发生变化。

当∠2由小变到大时,直线a便从原来的在下边与直线b相交,变到上边与直线b相交,在这个过程中,存在一个与直线b不相交,即与b平行的位置。

此时∠2=∠1。

即得到:两直线平行的条件——同位角相等,两直线平行.4、学以致用例题1:如图,∠1 =∠2=55°,∠3等于多少度?直线AB、CD平行吗?说明你的理由。

5、合作探究:用平移三角尺方法过已知直线外一点这条直线的平行线,其中的道理是什么?二、问题情景二:小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AC(如图所示).他只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?1、从实际情景中抽象出数学模型观察模型,讨论:①图中存在的∠1,∠2这样位置关系的角叫什么角?②结合教具,当∠1,∠2之间角满足什么关系时,两直线平行?2、投影展示说理过程3、学生归纳结论:内错角相等,两直线平行。

《探索直线平行的条件》优秀教案

《探索直线平行的条件》优秀教案

《探索直线平行的条件》优秀教案一、教学目标:1. 让学生理解直线平行的概念,掌握直线平行的条件。

2. 培养学生运用几何知识解决实际问题的能力。

3. 培养学生合作交流、积极思考的学习习惯。

二、教学内容:1. 直线平行的概念。

2. 直线平行的条件。

三、教学重点与难点:1. 教学重点:直线平行的条件。

2. 教学难点:如何运用直线平行的条件解决实际问题。

四、教学方法:1. 采用问题驱动法,引导学生主动探究直线平行的条件。

2. 利用几何画板软件,直观展示直线平行的过程。

3. 开展小组讨论,培养学生合作交流的能力。

五、教学过程:1. 导入新课:引导学生回顾直线、射线的基本概念,为新课学习做好铺垫。

2. 探究直线平行的条件:(1)让学生观察几何画板上的直线,引导学生发现直线平行的特征。

(2)引导学生总结直线平行的条件,并用字母表示。

3. 验证直线平行的条件:(1)让学生运用几何画板软件,自行验证直线平行的条件。

(2)开展小组讨论,让学生互相交流验证结果。

4. 运用直线平行的条件解决实际问题:(1)出示实际问题,让学生独立解决。

(2)引导学生总结解决实际问题的方法。

5. 课堂小结:回顾本节课所学内容,强调直线平行的条件及其运用。

6. 布置作业:让学生运用直线平行的条件,解决一些相关的几何问题。

六、教学反思:在课后,教师应认真反思本节课的教学效果,包括学生的参与度、理解程度以及教学方法的适用性。

针对学生的反馈,调整教学策略,以便更好地促进学生的学习。

七、评价建议:1. 学生能够准确地描述直线平行的条件。

2. 学生能够运用直线平行的条件解决实际问题。

3. 学生能够通过几何画板软件,直观地展示直线平行的过程。

八、教学拓展:1. 引导学生探索直线、射线、线段的性质及其之间的关系。

2. 介绍平行线的其他性质,如平行线之间的距离相等。

九、教学资源:1. 几何画板软件。

2. 直线、射线、线段的模型。

3. 实际问题案例。

十、教学计划:1. 下一节课将介绍直线、射线、线段的性质及其之间的关系。

2.2探索直线平行的条件1

2.2探索直线平行的条件1

同 位 角 的 定 义
两直线AB、CD被第三直 C 线EF所截, 构成了八个 角.
A 7 4 3 E G1 5 2 D B
8 F 6
H
我们把具有∠1与∠2这样位置关 系的角称为同位角.
位置相同的一对角叫做同位角.
同位角的定义
C 7 4 A 3
G H
6
2
E 1
5
8
两直线被第三直线所截 构成的八个角中,位于第三 B 直线的同一侧,另两直线的 同一方的角,称为同位角. D
一、放 二、靠 三、推 四、画

同位角相等,两直线平行
小小演练场
2、如图,∠1 = ∠2 = 55°, ∠3等于多少度? 直线AB、CD平行吗? 说明你的理由。
A E 1 3 B 2 F C
∵ ∠1 = ∠2 = 55°
∠3 = ∠2( ,对顶角相) 等 ∴ ∠3 =∠1= 55° ∴ AB∥CD.
找出下面点阵中互相平行的线段,并说明理由 随堂练习1(点阵中相邻的四个点构成正方形). E G
A M
B L
D N I H
C
F
随堂练习2 找出下图互相平行的直线
130º 50º
m
n
50º
a
b
活动要求: 1.独立完成问题1; 2.小组合作完成问题2,并 总结出两个结论.
你能过已知直线外一点画它的平行线吗?请 说出其中的道理.
3
B
D 第3题图
B
C
C
B
A
第4题图Βιβλιοθήκη 第5题图问题1:本节课你有哪些收获? 问题 2 :通过今天的学习,你想进一 步探究的问题是什么?
谢谢指导!
说明:同位角都有一条边是在 同一条直线上,这条直线就是 第三条直线.

2-2 探索直线平行的条件(第1课时) 课件 2023--2024学年北师大版七年级数

2-2 探索直线平行的条件(第1课时) 课件  2023--2024学年北师大版七年级数
同位角在被截直线的同一侧,在截线的同一方
课堂练习 (识别同位角)
1.图中,与∠1成同位角的个数是( ) A.2个 B.3个 C.4个 D.5个 2.下列图中∠1和∠2是同位角的是( )
A.(1)、(2)、(3) B.(2)、(3)、(4) C.(3)、(4)、(5) D.(1)、(2)、(5)
新知探究
例题讲解
例1.如图,已知直线a,b被直线c所截,那么∠1的同位 角是( ) A.∠2 B.∠3 C.∠4 D.∠5
新知探究
你能借助三角尺画平行线吗? 小明按如下方法画出了两 条平行线, 请说明其中的道理.
新知探究
平行于同一条直线的两条直线平行
如何过已知直线外一点画它的平行线?你能画出来几条? 请说出其中的道理。 同位角相等,两直线平行.
③直线a和b不平行
归纳总结
判定方法:两条直线被第三条直线所截,如果同位角相等,那么这 两条直线平行.
简单说成:同位角相等,两直线平行.
应用格式:
A
因为∠1=∠2(已知),
1
所以l1∥l2
(同位角相等,两直线平行).
l2
2
l1
B
新知探究
平行线的表示法 我们通常用“//” 表示平行.
A
B
C
D
a∥b
AB∥CD 读作:“AB平行于CD” a b 读作:“a平行于b”
解:∵ ∠1=58°,∠2=58°, ∴ a∥b(同位角相等,两直线平行). ∵ ∠3=122°, ∴ ∠4=58°(邻补角的定义), ∴ ∠2=∠4, ∴ b∥c(同位角相等,两直线平行), ∴ a∥c(平行于同一直线的两直线平行).
课堂小结
1.平行线的判定方法: (1)两条直线被另一条直线截得的同位角相等; (2)两条直线同平行于第三条直线; (3)在同一平面内,两条直线同垂直于第三条直线.

七年级数学下册第二章相交线与平行线2.2.1探索直线平行的条件教案

七年级数学下册第二章相交线与平行线2.2.1探索直线平行的条件教案

研究直线平行的条件课题研究直线平行的条件经历研究直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题。

会用教课三角尺过已知直线外一点画这条直线的平行线。

目标弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互要点补,两直线平行” 。

会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。

难点教课多媒体器具教课说明二次备课环节复习多项式乘以多项式的运算新课导入第一环节:立足基础,温故知新活动内容:课 1.经过以下问题率领学生在复习“三线八角”基本图形和同程位角的基础上,进一步学习内错角和同旁内角。

问题 1:如图,直线 a,b 被直线 c 所截,数一数图中有几个角(不讲含平角)?c授a b问题 2:写出图中的全部同位角,并用自己的语言说明什么样的角是同位角?指引学生从角与截线与被截线的地点关系的角度来描绘同位角。

问题 3:它们具备什么关系能够判断直线a∥ b?你的依照是什么?问题 4:图中∠ 3 与∠ 5,∠ 4 与∠ 6 这样地点关系的角有什么特色?nm∠ 3 与∠ 6,∠ 4 与∠ 5 这样位置关系的角呢?谈谈你的原因。

2a 由此指引学生归纳得出内错角与同旁内角的观点。

132.稳固练习 1:课本随堂练习 1:5b 察看右图并填空:( 1)∠ 1 与是同位角;4(2)∠5 与是同旁内角;(3)∠2 与是内错角。

练习 2:如图,直线AB,CD被EF所截,组成了八个角,你能找出哪些角是同位角、内错角、同旁内角吗?EA2 134B85C76DF第二环节:创建情境,提出问题活动内容:1.给出实质问题:小明有一块小画板,他想知道它的上下面缘能否平行,于是他在两个边沿之间画了一条线段AB(如下图)。

小明只有一个量角器,他经过丈量某些角的大小就能知道这个画板的上下面缘能否平行,你知道他是如何做的吗?2.画板上下面缘能否平行能利用同位角来判断吗?假如不可以,能否能够利用其余角来判断?请你先自主研究,再与伙伴沟通。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2探索直线平行的条件(1)_教案
2.2探索直线平行的条件(1)
教学目标:
1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力;
2、会认由三线八角所成的同位角;
3、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.
教学重点:
会认各种图形下的同位角,并掌握直线平行的条件是同位角相等,两直线平行
教学难点:
判断两直线平行的说理过程
教学过程:
(一)课前复习:
(1)在同一平面内,两条直线的位置关系是_____________;
(2)在同一平面内,___________两条直线的是平行线.
(二)创设情景:
如书中彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?
(三)新课:
1.学生动手操作移动活动木条,完成书中的做一做内容.
2.改变图中1的大小,按照上面的方式再做一做,1与2的大小满足什么关系时,木条a与木条b平行?小组内交流.
3.由1与2的位置引出同位角的概念,如图
1与2、5与6、7与8、3与4等都是同位角
练习:如图,哪些是同位角?
4、例:找出下图中互相平行的直线,并说明理由.
5、完成第55页随堂练习1、2题
(四)小结:本节课学习了两直线平行的条件是同位角相等.
要特别注意数形结合.
(五)作业:第55页习题1、2题
教后记:学生基本会找同位角,也能找出平行的直线,但说理方面欠条理性
精心整理,仅供学习参考。

相关文档
最新文档