导数及其应用周练练习题(有详细答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学《导数及其应用》

一、选择题

1.0()0f x '=是可导函数()f x 在点0x 处取极值的:

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分又不必要条件 2、设曲线2

1y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为

A. B. C. D.

3.在曲线y =x 2

上切线的倾斜角为π4

的点是( )

A .(0,0)

B .(2,4) C.⎝ ⎛⎭⎪⎫14,116 D.⎝ ⎛⎭

⎪⎫12,14 4.若曲线y =x 2

+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )

A .a =1,b =1

B .a =-1,b =1

C .a =1,b =-1

D .a =-1,b =-1 5.函数f (x )=x 3

+ax 2

+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )

A .2

B .3

C .4

D .5

6. 已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2

-2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值

范围是( )

A .m <2或m >4

B .-4

C .2

D .以上皆不正确 7. 直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为

A .1-

B .e

C .ln 2

D .1

8. 若函数)1,1(12)(3

+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或

C .22<<-k

D .不存在这样的实数k

9. 10.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点

A .1个

B .2个

C .3个

D .4个

10.已知二次函数2

()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则

(1)

'(0)

f f 的最小值为 O

x x

x x

y

y

y

y

O

O O

A .3

B .

52 C .2 D .32

二、填空题(本大题共4个小题,每小题5分,共20分) 11.函数sin x

y x

=

的导数为_________________ 12、已知函数2

2

3

)(a bx ax x x f +++=在x=1处有极值为10,则f (2)等于____________. 13.函数2cos y x x =+在区间[0,

]2

π

上的最大值是

14.已知函数3

()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 15. 已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,

0)

()(2

>-'x

x f x f x )(0>x ,则不等式

0)(2>x f x 的解集是

三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)

16. 设函数f (x )=sin x -cos x +x +1,0

17. 已知函数3

()3f x x x =-.

(Ⅰ)求)2(f '的值;(Ⅱ)求函数()f x 的单调区间.

18. 设函数R x x x x f ∈+-=,56)(3.

(1)求)(x f 的单调区间和极值;

(2)若关于x 的方程a x f =)(有3个不同实根,求实数a 的取值范围. (3)已知当)1()(,),1(-≥+∞∈x k x f x 时恒成立,求实数k 的取值范围.

19. 已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈< (1)求m 与n 的关系式; (2)求()f x 的单调区间;

(3)当[1,1]x ∈-,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围。

20. 已知函数2

()ln .f x x ax bx =--

(I )当1a =-时,若函数()f x 在其定义域内是增函数,求b 的取值范围;

(II )若()f x 的图象与x 轴交于1212(,0),(,0)()A x B x x x <两点,且AB 的中点为0(,0)C x ,求证:

0'()0.f x <

21. 已知函数2

(),()2ln (x f x g x a x e e

==为自然对数的底数) (1)求()()()F x f x g x =-的单调区间,若()F x 有最值,请求出最值;

(2)是否存在正常数a ,使()()f x g x 与的图象有且只有一个公共点,且在该公共点处有共同的切线?

若存在,求出a 的值,以及公共点坐标和公切线方程;若不存在,请说明理由。

高二数学《导数及其应用》参考答案

相关文档
最新文档