双变量相关与回归
spss中相关与回归分析
定义变量:血红蛋白,贫血体征→Variables
20:41
16
建立数据文件:血红蛋 白的等级相关分析.sav.
定义变量 输入数据
开始分析
ቤተ መጻሕፍቲ ባይዱ
analyze →Correlate →Bivariate
定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
20:41
34
主要结果
b Model Summary
Model 1
R .930a
R Sq uare .865
Adjusted R Sq uare .848
Std. Error of the Estimate 1.8528
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
表 4 慢性支气管炎患者各年龄组疗效观察结果 疗效 年龄(岁) 11~ 20~ 30~ 40~ 50~ 合计 治愈 35 32 17 15 10 109 显效 1 8 13 10 11 43 好转 1 9 12 8 23 53 无效 3 2 2 2 5 14 合计 40 51 44 35 49 219
17
20:41
主要结果
Correlations 血 红 蛋 白 含 量 ( g/dl) 1.000 . 10 -.741* .014 10 贫 血 体 征 -.741* .014 10 1.000 . 10
Spearman's rho
血 红 蛋 白 含 量 ( g/dl)
中国医科大学研究生医学统计学 第七讲 双变量回归与相关2
2. 相关系数的计算
r rXY
2
( X X )(Y Y ) ( X X ) (Y Y )
i i
2
l XY l XX .lYY
( X )( Y ) n
其中
l XY
( X X )(Y Y ) XY
2 ( X X ) 2 X
五、相关分析应用中应注意的问题 1.相关分析要求两个变量是服从双变量正 态分布的资料。 2.进行相关分析前应先绘制散点图,散点 图呈现出直线趋势时,再作分析。
3. 满足应用条件的同一份双变量资料 ,回归系数与相关系数的正负号一 致,假设检验等价。 4. 相关分析时,小样本资料经 t-test 只能推断两变量间有无直线关系, 而不能推断其相关的密切程度。要 推断其相关的密切程度样本含量必 须足够大。
l XX
( X ) 2 n
(n 1)S x
2
lYY (Y Y ) Y
2 2
( Y ) n
2
(n 1) S
2 y
3.相关系数的性质 相关系数r没有测量单位,其数值为 -1≤r≤+1。 r值为正,表示正相关; r值为负,表示负相关; r值为0,则称零相关即无直线关系。 当r值的绝对值为1时,称完全相关。
y 33.73 0.516x
X 68
Y 69
E (Y 72) Y X 72 71
E (Y 64) Y X 64 67
二、线性回归基本概念 当一个变量X 改变时,另一个变量Y 也 相应地改变,此时称X为自变量 (independent variable), Y 为应变量 (dependent variable)。 自变量X:可随机变动亦可人为取值。 因(应)变量Y:被视为依赖于X 而变化的 反应变量。在X 的数值确定时按某种规律 随机变动。
9 第九章 回归与相关
估计。
一)、加权最小二乘估计 假定各观测值的权重为Wi,求解回归方 程就要使得以下加权后的残差平方和最小
ss残W Wi Yi aw bw X
2
bw
aW
WX WY WXY W l l WX WX W WY b WX Y b W
二、直线回归方程的求法 直线方程为: a为Y轴上的截距;b为斜率,表示X 每改变一个单位,Y的变化的值,称为回 归系数; 表示在X值处Y的总体均数 估计值。为求a和b两系数,根据数学上 的最小二乘法原理,可导出a和b的算式 如下:
例9-1 某地方病研究所调查了8名正常 儿童的尿肌酐含量(mmol/24h)如表91。估计尿肌酐含量(Y)对其年龄(X) 的关系。
表14,rs界值表,P<0.01,故可认为当地居 民死因的构成和各种死因导致的潜在工作损 失年数WYPLL的构成呈正相关。 二、相同秩次较多时rs的校正 当X及Y中,相同秩次个数多时,宜用下式校 正
第四节
加权直线回归
在一些情况下,根据专业知识考虑 并结合实际数据,某些观察值对于估计 回归方程显得更“重要”,而有些不 “重要”,此时可以采用加权最小二乘
lYY的分析 如图9-4,p点的纵坐标被回归直线与均数 截成三个线段:
图9-4
平方和划分示意图
第一段 第二段
第三段
上述三段代数和为:
移项:
p点是散点图中任取一点,将所有的点子都
按上法处理,并将等式两端平方后再求和,
则有:
它们各自的自由度分别为: 可计算统计量F:
SS回 SS 残
2
F
回 残
表9-3某省1995年到1999年居民死因构成与WYPLL构成
4- 09双变量回归与相关-直线相关
直线相关一、直线相关的概念直线相关(linear correlation)又称简单相关(simple correlation),用于双变量正态分布(bivariate normal distribution)资料。
其性质可由图9-6散点图直观的说明。
研究两个变量X,Y数量上的相关关系。
目的1. 意义:相关系数(correlation coefficient)又称Pearson积差相关系数,用来说明具有直线关系的两变量间相关的密切程度与相关方向。
以符号r表示样本相关系数,符号 表示其总体相关系数。
相关系数没有单位,其值为-1≤r≤1。
r值为正表示正相关,r值为负表示负相关,r的绝对值等于1为完全相关,r=0为零相关。
图9-6直线相关示意图2. 计算:样本相关系数的计算公式为22()()()()XY XX YY X X Y Y l r l l X X Y Y --==--∑∑∑(9-18)例9-5 对例9-1数据(见表9-1),计算8名儿童的尿肌酐含量与其年龄的相关系数。
由例9-1算得,42XX l =, 1.046YY l =, 5.845XY l =按公式(9-18)5.8450.881842 1.046r ==(一)相关系数的假设检验20, 212r r r t n S rn ν-===---(9-19)例9-6 对例9-5所得r 值,检验尿肌酐含量与年龄是否有直线相关关系?检验步骤0H : 0ρ=,1H : 0ρ≠,α=0.05本例n =8,r =0.8818,按公式(9-19)20.88184.57910.881882t ==--按ν=6,查t 界值表,得0.0020.005P <<。
按0.05α=水准拒绝0H ,接受1H ,可以认为尿肌酐含量与年龄之间有正的直线相关关系。
若直接查r 界值表(附表13),结论相同。
(二)总体相关系数的可信区间由于相关系数的抽样分布在ρ不等于零时呈偏态分布(大样本情况下亦如此),所以ρ的可信区间需要先将其进行某种变量变换,使之服从正态分布,然后再估计其可信区间。
第6讲相关分析与回归分析
第6讲 相关分析与回归分析
一、引 言
在很多研究领域中,往往需要研 究事物间的关系。如收入与受教育程 度,子女身高与父母身高,商品销售 额与广告费用支出,农作物产量与施 肥量,上述两者间有关系吗?如果有 关系,又是怎么样的关系呢?如何来 度量这种关系的强弱?
解决上述问题的统计方法是相关
2019/11/18
4
分析和回归分析。 相关分析和回归分析的共同点是
都可推断两个变量间的统计相关性。 但两者的区别是明显的,主要表现在: 1. 变量地位
在相关分析中,两个变量地位是 对等的;但在回归分析中,一个变量 是因变量,其余的变量均为自变量。
2019/11/18
5
2. 变量类型 相关分析中的两个变量均为随机
Galton称这种现象为“回归”。 为了纪念Galton,后人将研究两变量 间统计关系的方法称为回归分析。
2019/11/18
39
回归分析包括的内容甚广。本讲 仅介绍下列基本内容:
线性回归多一元元线线性性回回归归
回归分析 回归诊断 回假归设效合果理的性检的验判断
回归变量的选择
2019/11/18
32
验。 同理,若将应聘者分数做为指标,
5个考官打分可视为5次重复试验(这 需要假设考官的打分客观,基本无偏 差),则第3问也可使用方差分析。
考虑到题目和问题的特点,本题 用距离分析更为合理。因为方差分析 比较的是均值,而两组很不一致的分
2019/11/18
33
数的均值却可能相差不大。 分别对5个变量(列)做相似性分
由于相关系数是用样本计算得到 的,带有一定的随机性,所以用样本 相关性估计总体相关性的可信度需要 检验。
第九章双变量线性回归与相关
1 ( X X )2 SYˆ SY .X n ( X X )2
当X
X时,SYˆ
SY X n
Syˆ 是 Yˆ 的标准误。
例 计算当X0=150时, yˆ 95%可信区间。 yˆ 的95%可信区间为:
(46.52, 51.75)Kg
其含义是:当身高为150cm时,15岁男童的体重
的总体均数为49.135kg(点值估计),95%可信区 间为:(46.52, 51.75)Kg (区间估计)。
男性:身高(cm)-105=标准体重(kg) 女性:身高(cm)-100=标准体重(kg)
北方人理想体重=(身高cm-150)×0.6+50(kg) 南方人理想体重=(身高cm-150)×0.6+48(kg)
回归与相关是研究变量之间相互关系的统计分 析方法,它是一类双变量或多变量统计分析方法 (本章主要介绍双变量分析方法),在实际之中有 着广泛的应用。
如年龄与体重、年龄与血压、身高与体重、体 重与肺活量、体重与体表面积、毒物剂量与动物死 亡率、污染物浓度与污染源距离等都要运用回归与 相关方法对资料进行统计分析。
变量之间的关系: (1)直线关系(线性 关系); (2)曲线关系(非线 性关系)。 在回归与相关分析中, 直线回归与相关是最简单 的一种,是本章主要内容。
变量间的关系 函数关系: 确定的关系。 例如园周长与半径:y=2πr 。
回归关系:不确定的关系(随机的关系)。 例如血压和年龄的关系,称为直线 回归 (linear regression)。
北方人理想体重=(身高cm-150)×0.6+50(kg)
变量间的回归关系 由于生物间存在变异,故两相关变量之间的关 系具有某种不确定性,如同性别、同年龄的人,其 肺活量与体重有关,肺活量随体重的增加而增加, 但体重相同的人其肺活量并不一定相等。因此,散 点呈直线趋势,但并不是所有的散点均在同一条直 线上,肺活量与体重的关系与严格对应的函数关系 不同,它们之间是一种回归关系,称直线回归。这 种关系是用直线回归方程来定量描述。
双变量相关性分析方法
双变量相关性分析方法
双变量相关性分析方法是一种通过检验两个变量之间的相关性,来研究它们之间是否存在某种关联关系的统计方法。
它可以帮助我们了解两个变量之间的关系密切程度,从而对变量进行评估和预测。
双变量相关性分析的常用方法有:
1. 相关系数:相关系数是衡量变量之间关系强弱的指标,它是一个介于-1到+1之间的数字,当相关系数等于0时表明两个变量之间没有任何相关性,当相关系数大于0时表明两个变量之间存在正相关,当相关系数小于0时表明两个变量之间存在负相关。
2. 回归分析:回归分析是一种用来预测一个变量随另一变量变化情况的方法,它可以用来研究变量之间的关系及影响程度。
3. 卡方检验:卡方检验是一种用来检验两个变量之间关系的方法,它可以用来比较不同变量之间的关联情况,从而得出两个变量之间的相关度。
4. t检验:t检验是一种用来检验某一组数据是否服从正态分布的方法,它可以用来比较两组数据之间的差异情况,从而得出它们之间的相关性。
双变量回归与相关分析
Analyze→Correlate→ Partial…
实例-偏相关分析
某地29名13岁男童身高(cm)、体重(kg)和肺活量(ml)的数据如下 表,试对三变量作相关分析
一般讲,体重大的人肺活量也大,是否身高也与肺活量直接相关呢?由 于体重与身高也存在关联,这三个变量彼此影响,问题相对复杂。
实例-偏相关分析
若分别作身高、体重和肺活量两两相关,结果如下
身高、体重正相关(r=0.719**),体重、肺活量正相关(r=0.613**), 身高、肺活量(r=0.588**)正相关。
方法
Graphs→Interactives→ Scatterplot
实例
用已知浓度X的免疫球蛋白A(IgA, μg/ml)作火箭免 疫电泳,由于抗体抗原反应受扩散浓度梯度影响,形 成的反应带呈火箭状。测得火箭高度Y(mm)如下表 所示,试分析抗体浓度与火箭高度的相互关系。
X(μg/ml) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Y(mm) 7.6 12.3 15.7 18.2 18.7 21.4 22.6 23.8
双变量回归和相关分析
相关和回归分析
相关分析和回归分析的任务
研究对象:统计关系 相关分析旨在反映变量相互之间线性关系的 强弱程度,无方向性,不考虑因果关系。 回归分析侧重于考察一个或几个变量(自变 量)的变化对另一个变量(应变量)的影响 程度,并通过一定的数学表达式来描述这种 关系。具方向性,通常包含因果关系。
相关和回归分析
散点图分析(scatterplot) 相关分析(correlation analysis) 一元线性回归分析(univariate linear
regression)
第十章双变量回归与相关
(9-3) (9-4)
式中 lXY 为 X 与 Y 的离均差积和:
l
XY
(X
X
)(Y
Y
)
XY
(
X
)( n
Y
)
(9 5)
除了图中所示两变量呈直线关系外,一 般还假定每个 X 对应Y 的总体为正态分布, 各个正态分布的总体方差相等且各次观测 相互独立。这样,公式(9-1)中的 Yˆ 实际上 是 X 所对应 Y 的总体均数 Y|X 的一个样本估 计值,称为回归方程的预测值(predicted value), 而 a 、 b 分别为 和 的样本估计。
(Y Y ) 2 (Yˆ Y ) 2 (Y Yˆ ) 2
数理统计可证明:
å (Yˆ - Y )(Y - Yˆ ) = 0
上式用符号表示为
SS总 SS回 SS残
(9-6)
式中
SS总 即 (Y Y)2 , 为 Y 的 离 均 差 平 方
和,表示未考虑 X 与Y 的回归关系时Y 的 总变异。
离 Y Yˆ 。
➢ 求解a、b实际上就是“合理 地”找到一条能最好地代表
数据点分布趋势的直线。
最小二乘法(least sum of squares)原则:即保证各实 测点至直线的纵向距离的 平方和最小。
(X,Y)
b lXY lXX
( X X )(Y Y ) (X X )2
a Y bX
5.列出回归方程(回归直线绘制见图 9-1)
Yˆ 1.6617 0.1392X
此直线必然通过点( , )X且与Y 纵坐标轴相交于 截距 a 。如果散点图没有过坐标系原点,可在 自变量实测范围内远端取易于读数的 X 值代入 回归方程得到一个点的坐标,连接此点与点 ( , )也可X绘Y出回归直线。
相关分析和回归分析要注意的要点,自己整理的,很全面
回归分析与相关分析的联系:研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析。
从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析。
从资料所具备的条件来说,作相关分析时要求两变量都是随机变量(如:人的身长与体重、血硒与发硒);作回归分析时要求因变量是随机变量,自变量可以是随机的,也可以是一般变量(即可以事先指定变量的取值,如:用药的剂量)。
在统计学教科书中习惯把相关与回归分开论述,其实在应用时,当两变量都是随机变量时,常需同时给出这两种方法分析的结果;另外,若用计算器实现统计分析,可用对相关系数的检验取代对回归系数的检验,这样到了化繁为简的目的。
回归分析和相关分析都是研究变量间关系的统计学课题,它们的差别主要是:1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制。
1.为什么要对相关系数进行显著性检验?在对实际现象进行分析时,往往是利用样本数据计算相关系数()作为总体相关系数()的估计值,但由于样本相关系数具有一定的随机性,它能否说明总体的相关程度往往同样本容量有一定关系。
当样本容量很小时,计算出的不一定能反映总体的真实相关关系,而且,当总体不相关时,利用样本数据计算出的也不一定等于零,有时还可能较大,这就会产生虚假相关现象。
为判断样本相关系数对总体相关程度的代表性,需要对相关系数进行显著性检验。
两变量间相关与回归分析
12
(4)相关关系不完全等同于因果关系。 (5)实际工作中计算出的相关系数仅是样本
相关系数 (6)不要把相关系数的假设检验结果误认为
两事物或现象间相关的密切程度。
13
(7)要注意资料的同质性。
图11-4 样本来自不同总体时对相关性的影响
14
data li11_1; input x y@@; cards; 11.0 0.5283 11.8 0.5299 12.0 0.5358 12.3 0.5292 13.1 0.5602 13.7 0.6014 14.4 0.5830 14.9 0.6102 15.2 0.6075 16.0 0.6411 ; proc corr; var x y; run; proc plot;plot y*x='*';run;
剩余标准差SY.X=0.032522, 若NO2的最大容许浓度为0.15mg/m3, 则汽车流量应 如何控制?(设α=0.05)
27
本例, n=9,查t界值表, 得单侧t0.05,(9-2)=1.895, 按(公式10-8),单侧95%的
上限为: Yˆ L=Yˆ + t S ,则 α,(n-2) Y.X
25
本例,X=13.5, 得Yˆ =0.25212 + 0.02385×13.5=0.574095
按公式(12-18), 有:
SY
0.012615
1 1 13.5 13.442
10 24.9040
0.0039921
代入公式(12-17), 取α=0.05, 查t界值表(附表2), t0.05,(10-2)=2.306 得95%预测区间为: (0.574095-2.306×0.0039921,0.574095+2.306×0.0039921) =(0.564889,0.583301)
双变量回归与相关
Yˆ 2=
Y
Y
2
X X Y Y X X 2
2
公式可写成:
(Y Yˆ )2= (Y Y ) 2- (Yˆ Y )2
SS剩
SS总
- SS回
SS总=lYY
SS回=
l
2 XY
l XX
blXY
b2lXX
SY . X
(Y Yˆ )2 n2
SS剩 = n2
MS剩
F检验(见教材P153)
联系
1.方向一致: r 与 b 的正负号一致。 2.假设检验等价: tr=tb
3.
r b l XX lYY
4 .用回归 解释相关
决定系数(coefficient of determination)
r2
l
2 XY
l
2 XY
l XX
SS回 SS总-SS剩
l XX lYY
lYY
SS总
SS总
5 .相关分析是回归分析的基础和前提;回归分析 是相关分析的深入和继续。只有当变量之间存在着 高度相关时,进行回归分析寻求其相关的具体形式 才有意义。
无法用 X 解释的部分。SS 剩越小,回归效果越好。 n 2
SS 回= (Yˆ Y )2 ,为回归平方和(regression sum of squares),
由于 X 与Y 的直线关系而使Y 变异减小的部分,即总变异中,
可以用 X 解释的部分。SS 回越大,回归效果越好。 1
再看公式
Y
原则:最小二乘法(least sum of squares),即可保证各实 测点至直线的纵向距离的平方和最小
最小二乘法原则(least square method):使各散点到直线的纵向
第12章双变量关联性分析
21332.38 366926.6
r
16
0.8343
8548.30
3662 16
53813.56
926.62 16
2024/8/3
28
二、相关系数的假设检验
r≠0原因:① 由于抽样误差引起,ρ=0 ② 存在相关关系, ρ≠0
查表法,按v=n-2查r界值表,做出推断结论
t检验
tr
1 r2 n2
2024/8/3
31
【检验步骤】 1. 建立检验假设,确定检验水准
H0 : 0 H1 : 0 0.05
2024/8/3
32
2.计算检验统计量 tr 值
r0
0.8343
tr
1 r2
5.6623 1 0.83432
n2
16 2
2024/8/3
33
3.确定P值,做出统计推断
• 在大量的医学问题研究中常常还要分析两个随机 变量之间的关系,如体重与肺活量、年龄与血压 之间是否存在线性联系,此联系是正向还是负向 以及联系的程度如何?
2024/8/3
4
• 如果两个连续型变量 X和 Y 都随机变动且不分主次 ,可通过线性相关(linear correlation)分析来估计 它们之间可能存在的线性联系的方向与程度。
• 前面讨论的线性相关用于描述两个随机变 量X与Y之间线性联系的程度,结论所反映 的是它们相互之间的关系,两变量并无主 次之分
2024/8/3
39
• 随着所探索问题的深入,研究者通常更感兴趣于 其中的一个变量如何定量地影响另一变量的取值 :例如医学研究中常需要从某项指标估算另一项 指标,如果这指标分别是测量变量X和Y,我们希 望由X推算Y的值。
医学统计学:双变量回归与相关
样本
Y
Y
总体
YX
(Y的条件均数)
根据 t 分布原理:
1 (XX)2
Yt/2,n2sYt/2,n2sY.X Y
n
(XX)2
X=12时,求Y X 的95%可信区间
s X =9.5,lXX=42, Y . X =0.1970
当X=12
时,
Y
=1.6617+0.1392 12=3.3321
SYˆ
相关分析的任务:
两变量间有无相关关系?
两变量间如有相关关系,相关的方向? 相关的程度?
相关分析时,两数值变量之间出现如下情况:当一个 变量增大,另一个也随之增大(或减少),我 们称这种现象为共变,也就是有相关关系。
若两个变量同时增加或减少,变化趋势是同 向的,则两变量之间的关系为正相关 (positive correlation);若一个变量增加时, 另一个变量减少,变化趋势是反向的,则称 为负相关(negative correlation)。 ——相关的方向
相关系数的计算
r XXYY lXY XX2YY2 lXXlYY
相关系数
相关的方向:
r>0:正相关 r<0:负相关 r=0:零相关 相关的密切程度:
样本含量n足够大时,r绝对值越接近1。相关越 密切。
0
1
0.4
0.7
低度相关 中度相关 高度相关
三、相关系数的统计推断
(一)相关系数的假设检验
(二)总体回归系数 的可信区间
总体 YX X
样本
Yˆ abX
总体
β
根据 t 分布原理估计可信区间:
bt/2,n2sb 样本
b
总体回归系数 的可信区间
第六讲 双变量回归与相关
X 与 Y 的直线关系解释的那部分变异。 b 离 0 越远,X 对 Y 的影响越大,SS回 就越大,说明 回归效果越好。
32
SS 残
ˆ)2 ,为残差平方和。它反应除 即(Y Y
Y 了 X 对Y 的线性影响之外的一切因素对
42
(二)总体回归系数 的可信区间估计
利用上述对回归系数的t检验,可以得到
β的1-α双侧可信区间为
b t / 2, sb
(9-13)
43
例9-3 根据例9-1中所得b=0.1392,估计其总体 回归系数的双侧95%可信区间。
44
6 , 例 9-2 已算得 Sb =0.0304 ,按自由度 查t 界值表,得到t0.05 / 2,6 2.447 ,按公式(9-13) 计算 的 95%可信区间:
SY X SS残 n2
(9-10) (9-11) (9-12)
37
例9-2 检验例9-1数据得到的直线回归方程是否
成立?
38
(1)方差分析
H0 : 0
,即尿肌酐含量与年龄之间无直线关系
H1 : 0 ,即尿肌酐含量与年龄之间有直线关系
0.05
2 SS回 l XY l XX 5.845 2 / 42 0.8134
0.1392 t 4.579 0.0304 6 ,查 t 界值表,得 0.002 P 0.005 。按 0.05 水准,拒绝 H 0 ,接受 H1 ,结论同上。
41
注意:
本例 F
20.97 4.579 t
,即直 检
t 检验与 F 线回归中对回归系数的
第九章双变量相关与回归分析
X Y X X Y Y XY
n
二、直线回归中的统计推断
回归方程的假设检验:有方差分析和t检验方法。 总体回归系数β的可信区间 利用回归方程进行估计和预测
例题
SPSS操作分析步骤如下
1、建立数据文件
•建立两个变量: X变量:年龄,数值型 Y变量:尿肌酸含量,数值型
2、统计分析
(1)散点图的制作
graph scatter simple
通过散点图可看出两个变量间不具有直线趋势而是有曲线趋势, 可通过曲线拟合方法来刻画两变量间数量上的依存关系。
(2)曲线拟合的菜单操作
analyze
regression
Curve estimation主对话框
(
适用于两变量间关系为非直线形式,可以通过曲线拟 合方法来刻画两变量间数量上的依存关系。 毒理学动物试验中动物死亡率与给药剂量的关系、细 菌繁殖与培养时间的关系等情况。
例题
SPSS操作分析步骤如下
1、建立数据文件
•建立两个变量: X变量:住院天数,数值型 Y变量:预后指数,数值型
第六章 双变量相关与回归分析
例如:为了研究微量元素锰在胆固醇合成中的作用, 探讨大鼠肝脏中胆固醇含量和锰含量之间是否存在直 线关系?这种关系为随着锰含量的增加,胆固醇的含 量是增加还是减少呢?——直线相关问题
第一节 直线相关
直线相关:又称简单相关,是研究两个变量间线性关 系的一种常用统计方法。 直线相关分析的是两变量之间是否存在直线相关关系, 以及相关的方向和程度。直线相关系数又称Pearson相 关系数,使描述两变量线性相关关系程度和方向的统 计量。 作直线相关分析要求资料服从双变量正态分布。对于 不符合双变量正态分布的资料,不能直接计算Pearson 相关系数,可用非参数统计方法,即计算Kendall相关 系数或Spearman相关系数。
线性回归分析——双变量模型
线性回归分析双变量模型回归分析的含义回归分析是研究一个叫做因变量的变量对另一个或多个叫做解释变量的变量的统计依赖关系。
其用意在于,通过解释变量的已知值或给定值去估计或预测因变量的总体均值。
双变量回归分析:只考虑一个解释变量。
(一元回归分析,简单回归分析)复回归分析:考虑两个以上解释变量。
(多元回归分析)统计关系与确定性关系统计(依赖)关系:非确定性的关系。
在统计依赖关系中,主要处理的是随机变量,也就是有着概率分布的变量。
特别地,因变量的内在随机性是注定存在的。
例如:农作物收成对气温、降雨、阳光以及施肥的依赖关系便是统计性质的。
这些解释变量固然重要,但是并不能使我们准确地预测农作物的收成。
确定性关系:函数关系。
例如物理学中的各种定律。
)/(221r m m k F回归与因果关系❑回归分析研究因变量对于解释变量的统计依赖关系,但并不一定意味着因果关系。
一个统计关系式,不管多强和多么具有启发性,都永远不能确立因果联系。
❑因果关系的确立必须来自于统计关系以外,最终来自于这种或那种理论(先验的或是理论上的)。
回归分析与相关分析(一)❑相关分析:用相关系数测度变量之间的线性关联程度。
例如:测度统计学成绩和高等数学成绩的的相关系数。
假设测得0.90,说明两者存在较强的线性相关。
❑回归分析:感兴趣的是,如何从给定的解释变量去预测因变量的平均取值。
例如:给定一个学生的高数成绩为80分,他的统计学成绩平均来说应该是多少分。
回归分析与相关分析(二)❑在相关分析中,对称地对待任何两个变量,没有因变量和解释变量的区分。
而且,两个变量都被当作随机变量来处理。
❑在回归分析中,因变量和解释变量的处理方法是不对称的。
因变量被当作是统计的,随机的。
而解释变量被当作是(在重复抽样中)取固定的数值,是非随机的。
(把解释变量假定为非随机,主要是为了研究的便利,在高级计量经济学中,一般不需要这个假定。
)双变量回归模型(一元线性回归模型)双变量回归模型(最简单的回归模型)模型特点因变量(Y)仅依赖于唯一的一个解释变量(X)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tb
b0 Sb
残 n2
Sb
SY .X lXX
MS SY.X
SS残差 n2
残差
注意:在简单线性回归模型中,由于只有一个自变量,
回归模型的方差分析等价于对回归系数的检验,且
计
t= 。F
另外,对回归系数的假设检验还有一种方法,即对相
学
关系数作假设检验,在第二节讲到!
一、简单线性回归
拟合优度检验与决定系数
医
线性(linear)
独立性(independence)
学
正态性(normality)
统
等方差(equal variance) 简单线性回归分析应用(预测与控制)
计
利用回归方程进行预测预报 X Y 注意:均数的可信区间与个体值容许区间的意义
学
不同。
利用回归方程进行统计控制 Y
X
不论预测或控制,都不能超出给出数据的范围!
R2表示。
R2 SS回归lX2Y lXX
SS总
lYY
因SS回归≤SS总,所以取值在0到1之间。它的大小反
学
映了自变量对回归的贡献,说明在的总变异中用、
回归关系所能解释的比重。决定系数越趋近于1,
回归方程的拟合效果越好,因此,常把它作为评价
回归方程效果,反映拟合优度的指标。
一、简单线性回归
回归分析的前提条件(LINE)
医
实际应用中采用简单线性回归模型来定量描述应 变量与自变量之间的数量关系。
总体线性回归方程记作
学
Y|X X
β为总体回归系数(regression coefficient),即直
统
线的斜率,其统计学意义是X每增加(或减少)一
个单位,Y平均改变β个单位(即Y的均数改变β个
计
单位)。表示Y随X改变的平均变化量,β>0,表明 Y随X的增加而增加;β<0,表明Y随X的增加而减
学
少;β=0,表明Y与X无线性回归关系。 α为回归直线在轴上的截距(intercept),其统计
学意义为X取值为0时,方程所估计值Y的平均水平。
截距的解释一定要符合专业实际 。
一、简单线性回归
医
设a和b是α和β的估计值,则可拟合得到样本 线性回归方程
学
Yˆ abX Yˆ表示x取某定值时相应总体均数Y的点估计
二、简单线性相关
医
简单线性回归分析可以告诉我们应变量Y随自变量X变
化而变化的情况,研究的是变量之间的依存关系;
学
但并未告诉我们二者间关系的密切程度。若要了解 两随机变量间线性关系的程度与方向,就需进行简
统
值,b称为样本回归系数,也是有单位,有 符号的。
计
其回归方程满足三个基本性质:① (YYˆ)2
为最小;② (YYˆ)0;③回归直线必然通过
学
中心点 X,。Y其中(Y Yˆ )称为残差
(residual)。
一、简单线性回归
回归方程的估计:最小二乘法(保证回归方
医
程满足三个基本性质)
保证各实测点至直线的纵向距离( Y Yˆ )
6、如何由身高预测该地15岁男童的体重?
一、简单线性回归
医
散点图 在做回归或者相关分析以前,对数据必
学
须要做散点图!
• 为了确定相关变量之间的关系,首先
统
应该收集一些数据,这些数据应该是
计
成对的。例如,每人的身高和体重。 然后在直角坐标系上描述这些点,这
学
一组点集称为散点图。
医 学 统 计 学
一、简单线性回归
医
回归系数大小和两个变量的单位及大小有关,回
归系数越大,说明Y随X的变化越快,但并不表明
学
影响越大。为描述这种影响的大小以及回归方程拟 合效果的好坏,引入决定系数(coefficient of
统
determination)的概念。决定系数是简单线性回归 与多重线性回归分析中一个重要的统计量,通常用
计
增长,按专业知识,描述两个变量的数量变化关
统
系,宜将体重作为应变量(dependent variable), 身高作为自变量(independent variable)。
计
依存关系
学
简单线性回归(simple linear regression) 一个X 多重线性回归(multiple linear regression) 多个X
一、简单线性回归
医
采用线性回归分析可以解决以下几方面的问题: 1、探讨体重是否随身高的增长而增加?
学
2、体重与身高的关系呈直线还是曲线关系?
3、如何采用回归方程定量地描述两者间的关
统
系?
4、该地15岁男童身高每增加1厘米,体重平均
计
增加多少公斤?
5、所建回归方程是否成立?即两变量间线性
学
依存关系是否存在?
计
后果,乙肝病毒和乙肝之间是因果关系;但是,有 的现象之间因果不清,只是伴随关系,例如丈夫的
学
身高和妻子的身高之间,就不能说有因果关系。
相关与回归就是用于研究和解释两个变量之间相
互关系的。
一、简单线性回归
医
回归分析是研究一个变量(Y)和另外一个或一些 变量(X)间线性依存关系的统计分析方法。
学
如在青少年生长发育研究中体重随着身高的增长而)2 最小 。
统 计
b (XX)Y (Y)lXY
(XX)2
lXX
lX Y (X X )Y ( Y ) X ( Y X n ) (Y ) aYbX
考查回归直线是否正确的方法:
学
1、回归直线必然通过中心点 2,将回归直 线左端延长与Y轴相交,交点纵坐标为截距
由图9-1可见,体重随身高的增加而递增,并呈直线增长趋势。但身高相同者未 必有相同的体重,说明体重除了受身高的影响之外,还可能受到一些未知的, 诸如营养、生活方式、遗传等因素的影响。因此,回归分析所描述的两个变量 间的关系,不全是一一对应的函数关系(确定性关系),而是一种非确定性关 系。
一、简单线性回归
3,要注意,直线只能在实测范围内应用,
不能随意延长!
一、简单线性回归
回归分析的统计推断
医
Y变异的分解
学 统
P(X,Y) Y
Y Y
Y Yˆ
Yˆ Y
计
Y
X
学
( Y Y ) 2 ( Y ˆ Y ) 2 ( Y Y ˆ ) 2
S总 SS回 S 归 S残 S 差
一、简单线性回归
医 学 统
总体回归系数的假设检验——t检验
双变量相关与回归
医学上,许多现象之间也都有相互联系,例如:
身高与体重、体温与脉搏、产前检查与婴儿体重、
乙肝病毒与乙肝等。在这些有关系的现象中,它们
医
之间联系的程度和性质也各不相同。
学
这里,体温和脉搏的关系就比产前检查与婴儿体 重之间的关系密切得多,而体重和身高的关系则介
统
与二者之间。
另外,可以说乙肝病毒感染是前因,得了乙肝是