工程热力学第三章理想气体的性质

合集下载

工程热力学03章:理想气体的性质

工程热力学03章:理想气体的性质

c q 或 c q
dT
dt
1mol物质的热容称为摩尔热容『Cm, J/(mol·K)』。
标态下1m3 物质的热容为体积热容『C ’, J/(m3N·K)』。
上述三种比热容之间的关系为:
Cm Mc 0.0224141C (3-9)
热力设备中,工质往往是在接近压力不变或体积不变的 条件下吸热或放热的,因此定压过程和定容过程的比热容最
<4> 平均比热容直线关系式
c
|t2
t1
b 2
t2
t1
(3-17)
§3-4 理想气体的热力学能、焓和熵
一、热力学能和焓 du cV dt cV dT
dh cpdt cpdT
二、状态参数熵
(见1-6节)
ds qrev
T
三、理想气体的熵变计算
ds
cpdT vdp T
cp
dT T
Rg
dp p
v T
C1
pc
p T
C2
vc
pv C3Tc
pv T
C
Rg
(3-1)
注:式(3-1)可反证之
显然,上式中的Rg只与气体种类有关,而与气体所
处状态无关,故称之为某种气体的气体常数。
二、摩尔质量和摩尔体积
摩尔(mol)是表示物质的量的基本单位。
摩尔质量( ) :1mol物质的质量,单位是g/mol或
s12
c T2
T1 p
dT T
Rg
ln
p2 p1
(3-18) (3-19) (3-20)
(3-21) (3-22)
基准状态的确定:
规定p0=101325Pa、T0=0K时,熵s00K 0。则任

工程热力学 第三章 理想气体的性质

工程热力学 第三章 理想气体的性质
11
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3

工程热力学理想气体性质

工程热力学理想气体性质

h dh , T p dT
理想气体的比热容
du cV dT
dh
c

p

dT
理想气体的cV 和cp仅仅是温度的函数
定压热容与定容热容的关系
迈耶公式
c p cV Rg
,C p,m CV ,m R
比热容比:比值cp/cV称为比热容比,或质量热 容比,用γ表示
Cm xiCm,i
C iCi
Cm M eqc 0.0224141 C

t2 cdt
t1
t2 t1
q
t2 cdt
00C
t1 00C
cdt

c
t2 00C
t2

c
t1 00C
t1
c
t2 t1

c
t t2
0oC 2
t2

c
t1 0oC
t1
t1
附表5列有几种常用气体的平均比定压热容,平均 比定容热容可由平均比定压热容按迈耶公式确定
平均比热容直线关系式
气体
混合气体的比定压热容和比定容热容之间也满足 迈耶公式
混合气体的折合摩尔质量和折合气体常数
混合气体的成分是指各组成的含量占总量的百分
数,有质量分数、摩尔分数和体积分数三种表示
方法
wi

mi m
,xi

ni n
,i

Vi V
假拟单一气体分子数和总质量恰与混合气体相同,
其摩尔质量和气体常数就是混合气体的折合摩尔
第三章 理想气体的性质
3-1 理想气体的概念
理想气体
理想气体是一种实际上不存在的假想气体,其分子 是弹性的、不具体积的质点,分子间相互没有作用 力

理想气体的性质

理想气体的性质

理想气体的性质
理想气体是指在一定条件下具有理想行为的气体。

它是理想化的气
体模型,假设气体中分子之间没有相互作用和体积,并且分子之间的
碰撞是弹性碰撞。

以下是理想气体的主要性质:
1. 理想气体的分子是无限小的,没有体积,分子之间没有相互作用力。

这意味着气体的体积可以无限压缩,并且气体分子之间不存在任
何引力或斥力。

2. 理想气体的分子运动是完全混乱的,分子在空间中自由运动,并
且沿各个方向上的速度分布是相等的。

这被称为分子速度均分定理。

3. 理想气体的压强与温度成正比,压力与体积成反比。

这意味着如
果气体的温度升高,压强也会增加,反之亦然;如果气体的体积减小,压力也会增加,反之亦然。

这被称为理想气体状态方程或理想气体定律。

4. 理想气体的温度与体积成正比,温度与压强成正比。

这意味着如
果气体的体积增加,温度也会增加,反之亦然;如果气体的压强减小,温度也会减小,反之亦然。

这被称为理想气体的热力学性质。

需要注意的是,现实气体往往存在分子间相互作用和体积,因此它
们不完全符合理想气体模型。

然而,理想气体模型在许多实际应用中
仍然是一个非常有用的近似模型。

工程热力学第三章气体和蒸汽的性质ppt课件

工程热力学第三章气体和蒸汽的性质ppt课件

标准状态下的体积流量:
qV 0 Vm0qn 22.4103 288876 6474.98m3 / h
☆注意:不同状态下的体积不同。
3-2 理想气体的比热容
1、比热容的定义 ■比热容 c(质量热容)(specific heat)
1kg物质温度升高1K所需的热量, c q / dT J / (kg K)
(T 1000
)2
C3
(T 1000
)3
见附表4(温度单位为K)。
qp
T2 T1
cpdT
qV
T2 T1
cV
dT
说明:此种方法结果比较精确。
(2)平均比热容表
c
t2 t1
q t2 t1
q
t2 cdt
t1
t2 cdt
0℃
t1 cdt
0℃
c
t2 0℃
t2
c
t t1
0℃ 1
平均比热容 c t0℃的起始温度为0℃,见附表5(温
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
理想气体是实际上并不存在的假想气体。 假设: (1)分子是弹性的、不占体积的质点(与空间相比) (2)分子间没有作用力。(分子间的距离很大) ■作为理想气体的条件
气体 p 0 ,v ,即要沸点较低、远离液态。
■比定压热容c p 和比定容热容 cV 比定压热容(specific heat at constant pressure):定压
过程的比热容。
比定容热容(specific heat at constant volume):定容过
程的比热容。
●可逆过程

工程热力学思考题答案,第三章

工程热力学思考题答案,第三章

工程热力学思考题答案,第三章TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-第三章理想气体的性质1.怎样正确看待“理想气体”这个概念在进行实际计算是如何决定是否可采用理想气体的一些公式答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。

理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。

判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。

若为理想气体则可使用理想气体的公式。

2.气体的摩尔体积是否因气体的种类而异是否因所处状态不同而异任何气体在任意状态下摩尔体积是否都是 0.022414m 3 /mol答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。

只有在标准状态下摩尔体积为 0.022414m 3 /mol 3.摩尔气体常数 R 值是否随气体的种类不同或状态不同而异?答:摩尔气体常数不因气体的种类及状态的不同而变化。

4.如果某种工质的状态方程式为pv =R g T,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗?答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。

5.对于一种确定的理想气体,()p v C C -是否等于定值?p v C C 是否为定值?在不同温度下()p v C C -、pv C C 是否总是同一定值?答:对于确定的理想气体在同一温度下()p v C C -为定值,pv C C 为定值。

在不同温度下()p v C C -为定值,pv C C 不是定值。

6.麦耶公式p v g C C R -=是否适用于理想气体混合物是否适用于实际气体答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。

7.气体有两个独立的参数,u(或 h)可以表示为 p 和 v 的函数,即(,)u u f p v =。

工程热力学第三章理想气体的性质

工程热力学第三章理想气体的性质

Model of ideal-gas (理想气体模型 )
1. No interactive force among Molecules
分子之间没有作用力
2. The Volumes of the Molecules can be neglected. 分子本身不占容积
No real gases exist in practice 现实中没有理想气体
四种形式的克拉贝龙方程:
1 km ol : pVm RmT
状态 n k m o l : p V n R T m 方程 (E.O.S) 1 k g : p v R T
Notes:
摩尔容积Vm Rm 与R
统一单位
m kg : pV m RT
计算时注意事项实例 ATTENTIONS:
V=1m3的容器有N2,温度为20 ℃ ,压力表读数 1000mmHg,pb=1atm,求N2质量。
分子运动论
C v,m
dU m i Rm dT 2
i 运动自由度 U m RmT 2 dH m d (U m R m T ) i 2 C p,m Rm dT dT 2
当温度变化不大时,可认为比热容为常数,与温度无 关,此时γ也是常数。 When the change in temperature is not so large, the influence of temperature on specific heat is negligible.
2. Three kinds of Specific heats based on different
quantity units
基于不同物量单位的三种比热
(1) Specific heat based on mass(质量比热容)

工程热力学-第三章理想气体的性质

工程热力学-第三章理想气体的性质
T0 273.15K )
Vm常用来表示数量
计算时注意事项
1、绝对压力
2、温度单位 K 3、统一单位(最好均用国际单位) 4、R的单位随各参数选择的单位变化
例题 试按理想气体状态方程求空气在表 列温度、压力条件下的比体积v,并与实 测值比较。已知:空气气体常数
Rg=287.06J/(kg·K)
解:
但是, 当实际气体 p 很小, V 很大, T 不太低时, 即处于远离液态的稀薄状态时, 可视为理想气体。
哪些气体可当作理想气体?
但是, 当实际气体 p 很小, V 很大, T 不太低时, 即处于远离液态的稀薄状态时,
可视为理想气体。
T>常温,p<7MPa
理想气体
的双原子分子
O2, N2, Air, CO, H2
)p
适用于任何气体。
3、 h、u 、s的计算要用cv 和 cp 。
理想气体内能和焓的特性
• 1)由于理想气体的分子之间没有相互作用力,无
内位能,只有内动能,故理想气体的内能是温 度的单值函数。U=U(T)。
• 2)由H=U+PV=U+mRT可知,理想气体的焓也 是温度的单值函数。H=H(T)。
误差(%)
0.02 0.26 0.58 23.18 2.99
相对误差= v v测 0.84992 0.84925 0.02%
本例说明: v测
0.84925
低温高压时,应用理想气体假设有较大误差。
13
例题:压缩空气的质量流量与体积流量
• 某台压缩机输出的压缩空气,其表压 力为pe=0.22MPa,温度t=156℃,这时 压缩空气为每小时流出3200m3。设当 地大气压pb=765mmHg,求压缩空气的 质量流量qm(kg/h),以及标准状态体积 流量qv0(m3/h)。

工程热力学理想气体的热力性质及基本热力过程

工程热力学理想气体的热力性质及基本热力过程

气体 CV,m Cp,m 种类 [J/(kmol· K)] [J/(kmol· K)] 单原子 3×R/2 5×R/2 双原子 5×R/2 7×R/2 多原子 7×/2 9×R/2
Cm c M
Cm c' 22 .4
22
对1kg(或标态下1m3)气体从T1变到T2所需热量为:
q cdT c dT cT2 T1
17
比较cp与cv的大小:
结论:cp>cv
18
理想气体定压比热容与定容比热容的关系 迈耶公式: c p

cV Rg (适用于理想气体)
cp / c k , . V 称为比热比或绝热指数
当比热容为定值时,К为一常数,与组成气体的 原子数有关。如:
单原子气体 К=1.66;
双原子气体 К=1.4;
R 8314 J /( kmol K )
各种物量单位之间的换算关系:
1kmol气体的量 Mkg气体的量 标态下22.4m 气体的量
3
7
气体常数Rg与通用气体常数R的关系:
m pV nRT RT M pV mRg T
R 8314 Rg 或 R MRg M M
w
0 4
2 3 v
q 0 4 3 s
w pdv
1
2
q Tds
1
14
2
3-2 理想气体的比热容
一、比热容的定义及单位
1.比热容定义
热容量:物体温度升高1K(或1℃)所需的热量 称为该物体的热容量,单位为J /K.
比热容:单位物量的物质温度升高1K(或1℃) 所需的热量称为比热容,单位由物量单位决定。

工程热力学基础——第3章理想气体的热力性质及基本热力过程

工程热力学基础——第3章理想气体的热力性质及基本热力过程

对于理想气体,凡分子中原子数目相同的气体,其千摩尔
比热容 cm 相同且为定值。这样定值质量比热容C和定值容积
比热容 c 也可求。即根据:Cm M c 22.4 c 求
理想气体的千摩尔定值质量比热容件见表3-1
Q 对于mkg质量气体,所需热量为: mc (T2 T1)
Q 对于标准状态下V0气体,所需热量为: V0c(T2 T1)
q ct t 0
利用附表,用平均比热容也可方便地计算 t1 ℃度到 t2℃间的热量:
对于mkg质量气体,所需热量为:
Q
m(c
t2 0
t2
c
t1 0
t1 )
对于标准状态下V0 m3气体,所需热量为:
Q
V0 (c
t2 0
t2
c t1 0
t1 )
例3-3、3-4
习题 3-7、某燃煤锅炉送风量Vo=15000m3/h,空气预 热器把空气从20℃加热到300℃,用平均比热容求每 小时需加入的热量。
位为J/(m3·K);
Cm M c 22.4 c
二、影响比热容的因素
1、过程特性对比热容的影响:
经验表明,同一种气体在不同条件下,如在保存容积不变或 压力不变的条件下加热,同样温度升高1K所需的热量是不同的。
定容比热容(cv):在定容情况下,单位物量的气体,温度升
高 1K所吸收的热量。有定容质量、容积、千摩尔比热容之分。
二、理想气体 状态方程
大量实验证明,理想气体的三个基本状态参数间存在着一定的 函数关系:
1kg: pv RgT
mkg: m pv m RgT 即: pV m RgT
1mol: M Pv M RgT 即: pVM RT
对一定量气体,当状态参数发生变化时: p1V1 P2V2

工程热力学第3章习题答案

工程热力学第3章习题答案

1
第 3 章 理想气体的性质
解:根据理想气体状态方程,初态时 p1V = mRgT1 ;终态时 p2V = mRgT2
( ) 可得 p1 = T1 , ( ) p2 T2
0.1×106 − 60×103 0.1×106 − 90×103
=
273.15 +100 T2
,得 T2
=
93.29K
需要将气体冷却到−179.86℃
解:根据 ∆u = cV ∆T = 700kJ/kg ,得 cV = 1129.0J/ (kg ⋅ K)
Rg
=
R M
=
8.3145 29 ×10−3
= 286.7J/ (kg ⋅ K) ,得 cp
= 1415.7J/ (kg ⋅ K)
∆h = cp∆T = 877.7kJ/kg
∫ ∆s =
c T2
T1 V
可得
p1V1 p0V0
=
T1 T0

0.1×106 ×V1
1.01325×105 × 20000 ×10
=
273.15 +150 273.15
,得
V1
= 87.204m3/s
3600

π 4
D2
×c
= V1 ,可得烟囱出口处的内径
D
=
3.725m
3-4 一封闭的刚性容器内贮有某种理想气体,开始时容器的真空度为 60kPa,温度 t1=100 ℃,问需将气体冷却到什么温度,才可能使其真空度变为 90kPa。已知当地大气压保持为 pb=0.1MPa。
,可得 cp
= 5.215kJ/ (kg ⋅ K)
(3)根据 cp − cV = Rg ,可得 cp = 2.092kJ/ (kg ⋅ K )

工程热力学思考题答案,第三章

工程热力学思考题答案,第三章

第三章 理想气体的性质1.怎样正确看待“理想气体”这个概念在进行实际计算是如何决定是否可采用理想气体的一些公式答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。

理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。

判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。

若为理想气体则可使用理想气体的公式。

2.气体的摩尔体积是否因气体的种类而异是否因所处状态不同而异任何气体在任意状态下摩尔体积是否都是 0.022414m 3 /mol答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。

只有在标准状态下摩尔体积为 0.022414m 3 /mol3.摩尔气体常数 R 值是否随气体的种类不同或状态不同而异 答:摩尔气体常数不因气体的种类及状态的不同而变化。

4.如果某种工质的状态方程式为pv =R g T ,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。

5.对于一种确定的理想气体,()p v C C 是否等于定值pv C C 是否为定值在不同温度下()p v C C -、pv C C 是否总是同一定值答:对于确定的理想气体在同一温度下()p v C C -为定值,pv C C 为定值。

在不同温度下()p v C C -为定值,pv C C 不是定值。

6.麦耶公式p v g C C R -=是否适用于理想气体混合物是否适用于实际气体答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。

7.气体有两个独立的参数,u(或 h)可以表示为 p 和 v 的函数,即(,)u u f p v =。

但又曾得出结论,理想气体的热力学能、焓、熵只取决于温度,这两点是否矛盾为什么答:不矛盾。

工程热力学与传热学(中文) 第3章 理想气体的性质与热力过程

工程热力学与传热学(中文) 第3章 理想气体的性质与热力过程

对定容过程: 对定容过程:
du + pdv ∂u cV = ( )V = ( )V = ( )V dT dT ∂T
说明
δq
cv意义: 意义: 在体积不变时,比热力学能对温度的偏导数, 在体积不变时,比热力学能对温度的偏导数, 其数值等于在体积不变时, 其数值等于在体积不变时,物质温度变化1K 时比热力学能的变化量。 时比热力学能的变化量。
分析:同温度下,任意气体的 分析:同温度下,任意气体的cp > cv ?
气体定容加热时,不对外膨胀作功, 气体定容加热时,不对外膨胀作功,所加入的热量全 部用于增加气体本身的热力学能,使温度升高。 部用于增加气体本身的热力学能,使温度升高。而定压过 程中,所加入的热量,一部分用于气体温度升高, 程中,所加入的热量,一部分用于气体温度升高,另一部 分要克服外力对外膨胀作功,因此, 分要克服外力对外膨胀作功,因此,相同质量的气体在定 压过程中温度升高1K要比定容过程中需要更多的热量 要比定容过程中需要更多的热量。 压过程中温度升高 要比定容过程中需要更多的热量。
t1
cdt
3-2-3 利用理想气体的比热容计算热量
对理想气体: 对理想气体: u = f (T ), h = f (T ), cV = f (T ), c p = f (T ) 1. 真实比热容(The real specific heat capacity) ) 当温度变化趋于零的极限时的比热容。 当温度变化趋于零的极限时的比热容。 它表示某瞬间温度的比热容。 它表示某瞬间温度的比热容。
C,c,Cm,CV之间的关系: , , 之间的关系:
CV =
Cm 22 .4
kJ /( m 3 ⋅ K )
C = mc = nC m = V0CV

工程热力学 第3章 理想气体的热力性质

工程热力学 第3章  理想气体的热力性质

分子运动论
运动自由度
Um

i 2
RmT
C v,m

dU m dT

i 2 Rm
C p,m

dH m dT

d (U m RmT ) dT

i2 2 Rm
单原子 双原子 多原子
Cv,m[kJ/kmol.K]
3 2
Rm
Cp,m [kJ/kmol.K]
5 2
Rm
k
ห้องสมุดไป่ตู้1.67
5 2 Rm
7 2
Rm
1.4
u是状态量,设 u f (T , v)
u
u
du (T )v dT ( v )T dv

q

( u T
)v
dT

[
p

( u v
)T
]dv
定容

q

(
u T
)v
dT
cv

(
q
dT
)v

( u T
)v
物理意义: v 时1kg工质升高1K内能的增加量
2020/1/10
2020/1/10
20/97
比热容是过程量还是状态量?
T
(1)
1K
(2)
c q
dT
c1
c2
s
定容比热容 用的最多的某特定过程的比热容
定压比热容
2020/1/10
21/97
1. 定容比热容( cv ) 和定压比热容(cP ) 定容比热容cv
任意准静态过程 q du pdv dh vdp
第3章 理想气体的热力性质

工程热力学课后答案

工程热力学课后答案

| u1
=
cV
207°C
t 0°C 1
=
0.7255kJ/(kg ⋅ K) × 207 o C = 150.2kJ/kg
| u2
=
cV
827°C
t 0°C 2
=
0.7867kJ/(kg ⋅ K) ×827 o C
=
650.6kJ/kg
∆u = u2 − u1 = 650.6kJ/kg −150.2kJ/kg = 500.4kJ/kg
第三章 理想气体的性质
第三章 理想气体的性质
3-1 已知氮气的摩尔质量 M=28.1×10-3kg/mol,求(1) N2 的气体常数 Rg;(2)标准状态下 N2 的 比体积 v 0 和密度 ρ0 ;(3)标准状态 1 米 3 N2 的质量 m 0 ;(4)p=0.1MPa,t=500℃时 N 2 的比体 积 v 和密度 ρ ;(5)上述状态下的摩尔体积 V m 。
所以 Q = ∆U +W = W = 98J
3-7 空气初态时T1 = 480K,p1 = 0.2MPa ,经某一状态变化过程被加热到T2 = 1100K ,这时 p2 = 0.5MPa 。求 1kg 空气的 u1、u2、∆u、h1、h2、∆h 。(1)按平均质量热容表;(2)按空气
17
第三章 理想气体的性质
827°C 0°C
= 1.0737kJ/(kg ⋅ K)
| | 207°C
207°C
cV 0°C = cp 0°C − Rg = 1.0125kJ/(kg ⋅ K) − 0.287kJ/(kg ⋅ K) = 0.7255kJ/(kg ⋅ K)
| | 827°C
827°C
cV 0°C = Cp 0°C − Rg = 1.0737kJ/(kg ⋅ K) − 0.287kJ/(kg ⋅ K) = 0.7867kJ/(kg ⋅ K)

湖南大学 工程热力学 第三章理想气体的性质

湖南大学 工程热力学 第三章理想气体的性质

∂u ∂h 适用于任何气体 cv = ( )v cp = ( )p 适用于任何气体 ∂T ∂T
3. h、u 、s的计算要用 v 和 cp 、 的计算要用c 的计算要用
三、利用比热容计算热量
1. 真实比热容
c = a0 +aT +a2T +aT +L 1 3 2 3 c = b0 +bt +b2t +bt +L 1 3
(t2-t1)
热工计算中:通常规定 或 ℃时的焓、热力学能值为0 热工计算中:通常规定0K或0℃时的焓、热力学能值为
u =c
T V 0K
T
h =c
T p 0K
T
对于理想气体可逆过程, 对于理想气体可逆过程,热力学第一定律的具体形式
δ q=cV dT + pdv
q = cV
t2
t1
(t2 -t1 ) + ∫ pdv
− cV ,m = R
R g
Rg的物理意义:是1kg某 的物理意义: 种理想气体定压升高1k 对外作的功 的功。 对外作的功。
γ=
cp cV
cV =
γ −1
cp =
kR g
γ −1
Cv与cp的说明
1. cv 与 cp 过程已定 可当作状态量 过程已定, 可当作状态量 2. 前面的推导没有用到理想气体性质 所以 前面的推导没有用到理想气体性质,所以 没有用到理想气体性质
物理意义:定压时 工质升高1K焓的增加量 物理意义:定压时1kg工质升高 焓的增加量 工质升高
δq
Cp与cv关系
dh du h = u + Rg T → = + Rg dT dT c p = cV + Rg 物理意义 Mc p = McV + MRg

工程热力学第三章气体和蒸气的性质

工程热力学第三章气体和蒸气的性质


capacity per unit of mass)
•质量定容热容(比定容热容)
•及
•(constant volume specific heat
• capacity per unit of mass)
•二、理想气体比定压热容,比定容热容和迈耶公式
•1.比热容一般表达式
•代入式(A)得
•2. cV
h’=191.76, h”=2583.7
s’=0. 649 0, s”=8.1481
t
v
h
s
v
h
s
v
h
s
℃ m3/kg kJ/kg kJ/(kg· m3/kg kJ/kg kJ/(kg· m3/kg kJ/kg kJ/(kg·
K)
K)
K)
0 0.0010002 -0.05 -0.0002 0.0010002 -0.05 -0.0002 0.0010002 -0.04 -0.0002 10 130.598 2519.0 8.9938 0.0010003 42.01 0.1510 0.0010003 42.01 0.1510
•本例说明:低温高压时,应用理想气体假设有较大误差。
•例A411133
•讨论理想气体状态方程式
•3–2 理想气体的比热容
•一、比热容(specific heat)定义和分类 •c与过程有关
•定义: •分类:
•c是温度的函数
•按物 量
•质量热容(比热容)c J/(kg·K)
•(specific heat capacity per unit of mass)
• 干饱和蒸汽(dry-saturated vapor; dry vapor )

工程热力学第三章(理想气体的性质)09(理工)(沈维道第四版)

工程热力学第三章(理想气体的性质)09(理工)(沈维道第四版)

◆●四 ◆●四、理想气体状态方程式
又称克拉贝龙方程 又称克拉贝龙方程 克拉贝龙 状 m kg : pV = mR T g 态 方 1 kg : pv = RgT 程 n kmol : pV = nR T
m
绝压
m pV = Rm T M
注意: 注意: 统一单位 p:kPa; V: p:kPa; V:m3 m:kg ; T:K : : v:m3/kg;n:kmol : ; : M —气体分子量 气体分子量
1. 分子是完全弹性的 2. 分子之间没有作用力 3. 分子本身不占容积
§3-1 理想气体及其状态方程
三、实际存在气体的处理
现实中没有理想气体, 现实中没有理想气体, 但当实际气体 没有理想气体 p 很小, T不太低时, 即处于远离液态的稀薄 很小 不太低时 即处于远离液态的 不太低 远离液态 状态时, 状态时 可视为理想气体。 V 很大 很大,
ct =
t2
c 0 t2 − c 0 t1
t1
t2
t
理想气体的热力学能 热力学能、 §3-3 理想气体的热力学能、焓和熵
一、理想气体的u 理想气体的
1843年焦耳实验,对于理想气体 年焦耳实验,对于理想气体 实验 A B 真空 绝热自由膨胀
p
v
T 不变
δ q = du +δ w
可以证明
du = 0
可借助计算机求解
3、理想气体的平均比热 、理想气体的
c=
δq
dt
t2
q = ∫ cdt (cp ,cv) t
1
t2
c
t2 t1
c=f (t)
ct
t2
1
t1 ~t2之间的平均值

工程热力学第三章理想气体的性质讲解

工程热力学第三章理想气体的性质讲解

2. Three kinds of Specific heats based on different quantity units
基于不同物量单位的三种比热
(1) Specific heat based on mass(质量比热容)
1kg物体温度1K升高1K所吸收的热量,记作c, 单位为 J/kg•K
理想气体内能的计算
q = du + pdv
对理想气体的定容过程
q = du + pdv 又
du cvdT
理想气体 u f (T )
du cvdT
理想气体,任何过程
Enthalpy of Ideal-gas 理想气体的焓
q = du + pdv +vdp-vdp
=dh-vdp
对理想气体的定压过程
RmT
8.31431000 293.15
m PV 100120 140.3kg RT 0.287 298/15
§3.2 Specific Heats and Heat Capacity (比热和热容)
1. Definition of Specific heat 比热容(比热)的定义
Chapter 3. Properties and Processes of Ideal Gas
第3章 理想气体的性质和过程
3.1 Equation of State for Ideal Gas 理想气体的状态方程
3.2 Specific Heat of Ideal Gas 理想气体的比热
3.3 Internal energy, enthalpy and entropy of Ideal Gas
What kind of gas can be treated as Ideal Gas? 哪些气体可当作理想气体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.15
3)
m
pVM
(1000 1) 1.013 105 1.0 28
760
2658kg
RmT
8.3143 293.15
4)
m
pVM
(1000 1) 1.013 105 1.0 28
760
2.658kg
RmT
8.31431000 293.15
m PV 100120 140.3kg RT 0.287 298/15
计算时注意事项实例 ATTENTIONS:
V=1m3的容器有N2,温度为20 ℃ ,压力表读数 1000mmHg,pb=1atm,求N2质量。
1)
m
pVM RmT
1000 1.0 28 168.4kg 8.3143 20
2)
m
pVM
1000 1.013105 1.0 28
760
1531.5kg
实际气体的特点 Characteristics of real gases includes:
Real gas consists of a large quantity of molecular (由大量分子组成)
Molecules take random movement continuously (分子做无规则运动)
理想气体的热力学能、焓和熵 3.4 Typical processes of Ideal gas
理想气体的典型热力过程 3.5 Properties of Ideal Gas Mixture
混合理想气体的性质
Two types of Working Mediums commonly used 工程中常用的两大类工质
§3.2 Specific Heats and Heat Capacity (比热和热容)
1. Definition of Specific heat 比热容(比热)的定义
Q C T
c q
dT
The energy required to raise the temperature of a unit quantity of a substance by one degree is defined as specific heat.
Four forms of Clapeyron Equation 四种形式的克拉贝龙方程:
1 kmol : pVm RmT 状态 n k m o l : p V n R mT
方程
(E.O.S) 1 k g : p v R T m kg : pV m RT
Notes:
摩尔容积Vm Rm 与R 统一单位
Model of ideal-gas (理想气体模型 ) 1. No interactive force among Molecules 分子之间没有作用力
2. The Volumes of the Molecules can be neglected. 分子本身不占容积
No real gases exist in practice 现实中没有理想气体
Avogadro’s hypothesis(阿伏假德罗定律):
在同温同压下,各种气体的摩尔体积都相等。
在标准状况下 ( p0 1.01325 105 Pa T0 273.15K )
V
0 m
22.414
m
3
kmol
Definition of Ideal Gas(理想气体的定义):
凡遵循克拉贝龙(Clapeyron)方程的气体
(3) For 1mol working gas
molar mass(摩尔质量): the mass of 1mol substance (1mol 物质的质量),M
molar volume(摩尔体积): the volume of 1mol substance (1mol物质占有的体积),Vm。
1. Ideal gas(理想气体)
如汽车、发动机和航空发动机中以空气为主的燃气、空调中的湿空气等 其状态参数可用式子描述. Its states can be described by simple equations.
2. Real gas(实际气体 )
真实工质, 如火力发电的水和水蒸气、制冷空调中制冷工质等 不能用简单的式子描述.
Interaction force exist among molecules (分子间有相互作用力)
The volumes of molecules can not be neglected. (分子本身有体积)
以上特点决定了实际气体的性质很复杂。
§3.1 Equation of State for Ideal Gases
While the pressure is not very large, the volume is not very small and the temperature is not too low, real gases can be treated as ideal gases
但是, 当实际气体 p 很小, V 很大, T不太低时, 即处于远 离液态的稀薄状态时, 可视为理想气体。
(理想气体的状态方程)
1. Two Assumptions(两点假设)
The volume of the gas molecule is negligible. (忽略分子的容积)
The interaction forces among molecules are negligible (忽略分子之间的作用力)
What kind of gas can be treated as Ideal Gas? 哪些气体可当作理想气体
T>常温,p<7MPa
的双原子分子
理想气体
O2, N2, Air, CO, H2
如汽车发动机和航空发动机以空气为主的燃气等
三原子分子(H2O, CO2)一般不能当作理想气体 特殊情况,如空调的湿空气,高温烟气的CO2 等可以视为 理想气体。
Chapter 3. Properties and Processes of Ideal Gas
第3章 理想气体的性质和过程
3.1 Equation of State for Ideal Gas 理想气体的状态方程
3.2 Specific Heat of Ideal Gas 理想气体的比热
3.3 Internal energy, enthalpy and entropy of Ideal Gas
相关文档
最新文档