重核离子束成分的加速器质谱分析
利用质谱仪进行物质成分分析的方法介绍
利用质谱仪进行物质成分分析的方法介绍质谱仪是一种非常重要的科学仪器,可以用来分析物质的成分。
它通过测量物质分子的质荷比,能够得到物质的分子质量、分子结构以及其他相关信息。
利用质谱仪进行物质成分分析,已经成为现代科学研究和工业应用的重要手段之一。
首先,我们来了解一下质谱仪的基本原理。
质谱仪的工作原理是将待测样品分子分子转化为带电离子,并将离子分子按照质量-电荷比进行分离和检测。
这个过程主要分为三个步骤:样品的离子化、离子分子的分离和离子分子的检测。
在样品的离子化过程中,常用的方法有电离和解析质谱法。
常用的电离方法有电子轰击电离、化学电离、电喷雾电离等。
当样品中的分子受到电子轰击后,会失去一个电子,形成带正电荷的离子。
此时,离子会被加速器电场加速,并经过带有孔径的半导体材料,形成高速离子束。
这些离子束会进入质谱仪中的磁场区域,经过分离器的作用,离子被分离成不同质量的离子。
离子分子的分离过程是通过磁场和/或电场来实现的。
在质谱仪中,有不同种类的分离器,如区域束分离器、四极杆分离器、离子阱分离器等。
这些分离器能够根据离子的质量和电荷量来进行有效的分离。
最后,离子分子的检测是质谱仪的最后一个关键步骤。
离子在经过分离后,会以不同的强度落到检测器上。
常用的检测器有离子多重探测器、电子倍增器、毛细管检测器等。
这些检测器能够将离子分子的信号转化为电信号,并进行放大和处理,从而得到样品的质谱图。
在质谱仪进行物质成分分析时,还需要进行一些预处理工作,如样品的制备、样品进样等。
样品制备是将待测样品处理成适合质谱仪分析的形式。
例如,在固体样品分析中,可以通过研磨、溶解等方法将样品转化为可供质谱仪分析的气态或液态物质。
样品进样是将样品引入到质谱仪中进行分析的过程。
常见的进样方式包括直接进样、气相色谱联用、液相色谱联用等。
质谱仪的应用非常广泛。
在环境科学中,质谱仪可以用于大气中有害气体的监测和分析,如空气中的VOCs(挥发性有机物)和PM2.5(可吸入颗粒物)等。
加速器、重离子束及其应用-近代物理研究所
核 物 理 实 验
裂变现象的发 开始超(铀)重 热核物质性质(状态方程), 现及应用 元素合成 素105—118合成
人工合成放射 新反应机制(深 超形变核(预言核形状的多样性) 性核素 部非弹,大质量 奇异核结构—晕结构, 新的衰变模 转移)高自旋 式
107号同位素264,265,266Bh的合成
宇宙射线的来源: • 银河宇宙射线-数百MeV-GeV高 能质子α粒子少量重离子; • 太阳宇宙射线-数百MeV高能质 子; • 范· 阿伦辐射带-数MeV的质子
辐射对航天器的危害 • 充放电效应 • 总剂量效应 • 单粒子效应-翻转,锁定,烧毁
高能离子
宇航元器件单粒子效应试验基地
近物所已与几十家航天单位、半导 体厂家、相关研究所和高校开展合作研 究;2010年,单粒子效应试验的束流时 间达770小时,占总供束时间1/6,2010 年用户提出了2500多小时的束流申请。
国防重大专项
利用HIRFL装置为我国 新一代卫星关键器件的选 用提供了重要参考依据。
束流需求
LET≥75 MeV·cm2/mg, >1000小时/年
国内只有HIRFL满足
LET<75 MeV· 2/mg, >1000小时/年 cm
航天—宇宙射线对宇航员的危害
造血系统,生殖系统,神经系统; 细胞变异,致癌作用,诱发白内障, 重离子辐照的地面模拟,找出预防措施! 重离子辐射生物学研究
重离子束的特点
• • • •
高能量的载体—MeV/nGeV/n; 脉冲窄,可调性好—几纳秒几十纳秒; 重复频率高(10Hz),重复性好—10-4 整体转换效率高—电能离子能量(感应加速)
可以用于惯性约束聚变!
环境和经济性能的考虑
西安加速器质谱中心-中国科学院地球环境研究所
西安加速器质谱中心简介“西安加速器质谱中心”是在中国科学院、教育部和国家科技部的大力支持下,由中科院地球环境研究所与西安交通大学于2004年7月签订协议,联合筹建。
该中心是院校合作的一个实例,它是由中国科学院院领导(路院长、陈院长、李院长),西安交通大学校长郑南宁院士以及中科院地球环境研究所原所长安芷生院士共同倡议的。
正在建设的中心拥有的主要设备是从荷兰高压工程公司(HVEE)引进的三百万伏特(3MV)串列加速器质谱仪。
加速器质谱仪(简称AMS)就是把加速器技术(一种把带电粒子加速到高能量的装置)结合质谱仪技术(一种分析和测量不同质量的原子或分子的仪器)而构成的一种超高灵敏度质谱分析设备。
它分析的灵敏度可达10-12-10-16,也就是可以从千万亿个被测量的原子中把一个所要探测的原子(如放射性14C原子)分辨出来。
AMS的高灵敏度特点也导致了另一个优点,就是可以进行微量分析,它所需的样品量可以少于1mg。
所以AMS成为精确探测微量的长寿命放射性同位素的最前沿的大型仪器装备。
天然的长寿命放射性核素(如10Be、 14C、 26Al和 129I)都是宇宙射线在大气层中核反应的产物,它们通过降雨或降尘沉降到地表(海洋、冰川、陆地等)。
当它们深埋在海底、冰芯和地层与大气隔绝后,放射性强度就不断衰减。
测量沉积物上残留的放射性强度,就能推算出它们的年代,也叫断代,这种方法叫“衰变法”。
由于这些长寿命放射性核素的半衰期很长,10Be(1.5×106年)、14C(5730年)、26Al(7.0×105年)、以及129I(1.6×107年),所以衰变法测量时间长,所需样品量多,它不适合测量半衰期比14C长的其它核素。
即使是测量半衰期较短的14C,一克现代碳样品,每分钟只有13次放射计数。
而一克现代碳样品中实际上却包含了六百五十亿个14C原子。
如果我们直接测量样品中的14C原子数,测量计数率将大大提高。
高精度加速器质谱_14_C测年_郭之虞
1. 1 样品14C 年龄的测定
AMS 是通过测量样品中碳的同位素组成比来确定样品年龄的。
T = - S ln( Rx / R 0) ,
( 1)
1) 国家自然科学基金资助项目( 49799060) 收稿日期: 1997-12-09
202 北京大学学报( 自然科学版) 百年校庆 纪念专刊 第 34 卷
量时间。
t 14 = n14e/ I 12R xG,
( 17)
其中 I 12为离子源12 C 引出流强, G为传输与探测
表1 不同误差限所要求的最低14C 计数 Table 1 T he m inimum 14C count s r equir ed
by differ ent err or
Rn/ n( % ) n( ×104)
年所直接测得的是样品的14 C 年龄, 即按现代碳标准及14 C 半衰期所推算的年龄。由于大气中 的14 C 放射性比活度随年度而变, 为得到样品的真实年龄尚需进行树轮较正[ 3] 。故高精度年代 数据的取得, 一要靠高精度的14C 测量, 二要靠有效的树轮校正。
1 加速器质谱14C 测量的误差分析
K s = 1/ 0. 95, Kfs = 1 -
2
(
19 + 10
D13 00
Cs
)
。
若用中国糖碳作为标准物质, 则 K s = 1. 362 ± 0. 002, K fs = 1。 实际上, 许多 AMS 只测量14C 与13C 含量的比值 R ′。测量过程中将离子源引出的14 C 与13C
其中 S 为14 C 放射性衰变的平均寿命, Rx 为被测样品中14 C 与12 C 含量的比值, R0 为其初始比 值。现国际上统一用现代碳标准( MC) 作为 R 0值, 这样求得的年龄 T 称为样品的14C 年龄( ra-
加速器质谱-北师大
四、加速器质谱的本底及抑制
(二)、本底的抑制 2.干扰本底的抑制—同量异位素干扰抑制 C.射程过滤器
不同原子序数的核素在物质中的射程不同,可使用适当 厚度的吸收片(固体)或吸收室(气体)吸收原子序数 大的干扰本底。 适用于较轻的核素,与能量有关。
四、加速器质谱的本底及抑制
(二)、本底的抑制 2.干扰本底的抑制—同量异位素干扰抑制
二、普通质谱计
速度(交叉场)分析器
ε
B
L
V
速度分析器
二、普通质谱计
速度(交叉场)分析器
带电离子垂直进入正交的均匀电磁场中,离 子受电场力q ε和磁场力qVB作用,如果电场 力和磁场力大小相等、方向相反,则离子按 原方向直线运动,不受偏转。
½.MV2=E M/E=(M/q)/(E/q)=2/V2 = 2(t/L)2=K3
二、普通质谱计
一些同位素测量中遇到的本底及所需要的分辨率 同位素
3H
本底
3He
所需分辨率 150000 230 400 170000 1500 8300 1800 1100 6000 15000 47000 29000 64000 89000 82000 62000
讨论 用负离子源消除 易分辨 易分辨 可分辨 易分辨 用负离子源消除 易分辨 易分辨 易分辨 可分辨 用负离子源消除 可分辨 分辨困难 用CaH3离子 困难 用负离子源消除
三、加速器质谱技术
串列加速器质谱的工作过程: 3.从强而稳定的高能束中选择感兴趣 的同位素
从加速器引出的离子包含大量的能量为E的 本底离子和不同能量(电荷剥离后电荷态q 不同)的感兴趣的同位素离子,必须用磁 分析器(或开关磁铁)、静电分析器进行 二次选择,从而大大消除本底干扰。
加速器质谱测量原理
加速器质谱测量原理加速器质谱(Accelerator Mass Spectrometry,AMS)是一种现代化的放射性同位素测量技术,常用于研究地球科学、天文学、生物学等领域。
本文将对AMS测量原理进行详细介绍。
一、 AMS技术背景AMS技术源于质谱学,是一种放射性同位素测量技术。
与传统质谱测量不同,AMS测量的是放射性同位素的质量。
在AMS技术测量中,使用加速器将待测样品中含有的放射性同位素加速到高能级别(一般千万亿级别的电子伏特),然后将样品离散为单个原子,这些离散原子具有较高的动能和较小的电荷,这种离散的单个原子可以在磁场中进行二次离子化,接下来,离子将被分离出来并在收集器中形成放射性同位素。
在AMS测量中,目标是测量含放射性同位素的样品中的稀有元素或同位素。
这些元素的分析受到各种因素的影响,如样品的制备方法,样品的来源和历史等。
随着AMS技术的不断发展,不断出现新的技术手段,可以测量的同位素也越来越多。
AMS测量中,样品中的放射性同位素第一次离子化,将成为正离子。
这种正离子在加速器中受到电场和磁场的作用进行加速,直到其动能达到足够高的水平,以进入能够进行质谱分析的区域。
在加速器的起始端,正离子会进入一个低压区域,其中包含一组扇形电极。
这些电极被设置在一定的角度上,使得离子在其上经历轨迹旋转。
接下来,离子进入一个更高的电场中,通常被称为“高压区域”。
在这个区域中,电场通过其引导离子以极高的速度进行运动,以通过加速器的整个长度。
加速器的核心组件是一个回旋加速器环,这个环的直径通常介于50到100米之间。
该环由一系列的磁铁组成,并在磁场内制造了一个旋转的电场加速器。
加速器中的离子在旋转过程中逐渐加速并获得更高能量,最终达到一定的最高能量(大约1个千万亿电子伏特)后,离子会进入一个“磁分离器”中。
磁分离器包括一个由强磁铁组成的“弯曲区域”,曲线是负切线形状。
正离子在穿过弯曲区域时会受到电磁力的重力,从而轨迹被扭曲。
加速器质谱碳—14测年法
加速器质谱碳—14测年法碳-14测年法,也被称为放射性碳定年法,是一种通过测量物质中放射性碳-14同位素的衰变速率,来确定该物质的年龄的方法。
本文将一步一步回答与加速器质谱碳-14测年法相关的问题,并详细解释这个过程的原理和应用。
什么是碳-14测年法?碳-14测年法利用放射性碳-14同位素的衰变速率来确定物质的年龄。
碳-14同位素是一种具有放射性的碳同位素,在地球上广泛存在于大气中,并通过生物食物链进入生物体内。
当生物体死亡后,它不再吸收新的碳-14,而现有的碳-14开始衰变。
通过测量物质中残留的碳-14的含量,可以推断出物质的年龄。
什么是加速器质谱?加速器质谱是一种测量放射性同位素含量的技术,它克服了传统质谱方法中对物质样本进行离子化的限制。
加速器质谱使用粒子加速器将样本中的原子离子化,并通过静电和磁场将离子引导到质谱仪中进行测量。
这种方法具有高灵敏度和高精确度的优势,因此广泛应用于碳-14测年法中。
碳-14测年法的原理是什么?碳-14同位素的衰变速率是已知的,它的半衰期约为5730年。
半衰期是指半数同位素原子衰变所需的时间。
在物质死亡后,它所含的碳-14会不断地衰变为氮-14。
通过测量物质中残留的碳-14含量与氮-14含量的比例,可以计算出该物质的年龄。
具体的测量过程如下:1. 采集样品:需要测定年龄的物质通常是有机物,例如骨骼、木材或纺织品。
为了保持样品的完整性,通常只需采集小的样品量即可。
2. 样品预处理:将采集的样品进行一系列的预处理步骤,以去除可能存在的污染物,例如现代大气中的碳含量。
这样可以确保测得的是来自于化石或遗物中的碳-14。
3. 离子化:将样品中的碳转化为离子态,通常采用加速器质谱技术中的离子源离子化样品。
这个步骤会产生一个含有样品离子的离子束。
4. 分选和加速:使用静电和磁场,加速器将样品离子束分选出其所需的碳-14离子,将其加速到一定能量。
5. 测量和计数:加速的碳-14离子进入质谱仪,在其中与收集屏幕碰撞,生成荧光。
离子探测器的工作原理
离子探测器的工作原理离子探测器是一种广泛应用于物理、化学、生物等领域的重要工具。
该设备能够测量分离出的离子在跟踪被测样品的路线过程中,通过其对样品的碰撞和电离作用,分析得到其化学成分及分布情况。
离子探测器是一个极为精密的仪器,能够准确测量样品中非常低的离子浓度,因此被广泛应用于环境监测、药物分析、核工业等领域,下面介绍一下离子探测器的工作原理。
离子探测器主要通过分析离子的数目、质量、电荷和动能等特性来确定其化学成分和分布情况。
离子探测器的工作流程包括质谱、电离和检测三个阶段。
1.质谱质谱是将被测样品中的离子转化为一个稳定的离子束。
样品再经过一系列的处理后,被加速至一个极高的能量,形成离子束。
离子束由束流发射器射入离子源区,该区域包括了离子化和加速器部分。
离子束进入离子源后,它们首先被气相中的中性分子离子化。
离子化过程是通过电子束、激光束和气体放电等方式实现的。
离子源区的气氛是保持恒定和稳定的,离子构成和气压的变化会影响到测量的准确性。
离子源区的环境应该保持极为稳定和可控,检测到的信号才能够有较高的精准度。
除此之外,离子源区内也应保持低压,以防止与静电场中非理想的粒子互相干扰。
离子加速器通常使用四极加速器,其目的是将离子束加速到一定的速度,以便在跟踪方式下对其进行分析。
四极加速器有两组偏转器宽的电极和两组较窄的回波电极组成,这些电极在电场配置的过程中可起到调节束流方向和速率的作用。
离子束通过四极加速器后,其电能与释放信息才最终处理。
2.电离当离子束进入离子源区时,它们遇到了水或气体分子,从而失去了一部分能量并被电离。
在离子源区的高压电场中,材料中微小的分子会逐步受到离子束的辐射,并被激发成为原子或分子的带电态。
带电的离子进一步激发周围的材料,从而导致更多的离子化产生。
在离子源区的中性气体分子被离子化后,产生的正离子和负离子会被分离时进行电位离子穿透,从而成为一个带电态的气体原子或分子,其质量重量取决于其他成分的相对数量。
质谱仪和回旋加速器知识点
质谱仪和回旋加速器知识点
质谱仪(Mass Spectrometer)是一种广泛应用于化学、生物、环境等领域的科学仪器,用
于分析物质的成分和结构。
其基本原理是通过将待分析样品中的分子或原子化为离子,然后根据离子的质量-电荷比(m/z)来进行分析和检测。
质谱仪的主要组成部分包括离子化源(Ionization Source)、质量分析器(Mass Analyzer)和检测器(Detector)。
离子化源将待分析样品中的分子或原子转化为离子,常用的离子化方法包
括电离(Ionization)、化学电离、电子轰击电离等。
质量分析器根据离子的质量-电荷比(m/z)来对其进行分析和筛选,常见的质量分析器有磁扇质谱仪(Magnetic Sector Mass Analyzer)、
四极杆质谱仪(Quadrupole Mass Analyzer)、飞行时间质谱仪(Time-of-Flight Mass Analyzer)等。
检测器用于检测离子的到达时间和强度,常见的检测器包括离子多道器(Multi-Channel Plate)、光电倍增管等。
回旋加速器(Cyclotron)是一种用于加速离子的设备,其基本原理是通过在强磁场中不断加速的方式,使离子绕着一个闭合轨道做圆周运动,并不断增加速度和能量。
回旋加速器的核心部分是一个圆形加速腔室,离子通过加速前部分的加速腔室进入回转腔室,然后在回转腔室内受到周期性变化的电场加速,最终达到所需的能量。
加速腔室中的强磁场用于控制离子在加速过程中的运动轨迹。
回旋加速器可以用于产生高能量的离子束,常见的应用包括核物理研究、粒子物理实验和医学放射治疗等领域。
大气^(14)CO_(2)的加速器质谱分析技术研究进展
大气^(14)CO_(2)的加速器质谱分析技术研究进展
崔晓宇;邢冠华;王超;于建钊;袁懋
【期刊名称】《中国环境监测》
【年(卷),期】2024(40)2
【摘要】利用加速器质谱技术测定大气^(14)CO_(2)以示踪大气化石源CO_(2)成为当前减污降碳工作的热点。
该文从加速器质谱14 C分析基础出发,系统介绍了加速器质谱的工作原理、大气样品的采集及纯化、石墨化样品的制备和测定,阐述了大气碳监测领域^(14)CO_(2)测试的研究进展。
随着加速器质谱技术的不断发展,大气^(14)CO_(2)的研究将会更加广泛和深入,有助于进一步认识大气化石源
CO_(2)的来源,更有针对性地开展减污降碳工作。
未来应统一制定^(14)CO_(2)监测方法标准,规范操作流程和质控手段,完善实验仪器配套设施,加快提升监测能力和水平。
【总页数】12页(P41-52)
【作者】崔晓宇;邢冠华;王超;于建钊;袁懋
【作者单位】中国环境监测总站;黑龙江省佳木斯生态环境监测中心
【正文语种】中文
【中图分类】X83
【相关文献】
1.基于小型单极加速器质谱测量14C的样品制备技术研究
2.加速器质谱14C分析石墨制备技术研究进展
3.应用加速器质谱技术检测体外细胞中^(14)C标记的苯并
芘-DNA加合物4.质谱分析及第二代测序技术检测白血病微小残留病的研究进展5.环境及生物样品中黑碳的质谱分析技术研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
^129 I 加速器质谱分析研究
子, 通 过 电 场 加 速 聚焦 轰 击 到 固体 样 品 表 面 , 样 品 中 的物 质 在 C s 溅 射下 转 化成 负离 子并在 电场 作用 下被 引 出( 图1 ) 。 C s 溅 射 离 子 源 束 流 强 , 能散 小 , 且 易 维护_ 1 州 ,目前 在 AMS中应 用 比较 广 泛 的 C s 溅 射 离 子 源 为 NE C公 司 的 MC —
在地球 科 学 、 环 境科 学 、 考 古学 、 生命 科 学 、 海 洋科 学和 宇宙化 学 等领域 有广 泛应 用 。AMS通常 由离子 源 、 低 能 端 注入 系 统 、 高压 加 速器 、 高 能 分析 系 统 、 探测 系 统 、 控制 及 数 据获 取 系统 等组 成 , 其 中离 子源 是 AMS进行 低
摘
要 : 通 过对” 。 I 加速器质谱 ( AMS ) 分 析 中影 响 敏 度 和 准 确 度 各 种 参 数 的 研 究 , 如 靶 电极 制 备 、 压样 、
靶 样 中辅 助 介 质 ( Ma t r i x ) 的 选 择 及 使 用 比例 等 , 优化 了用于 3 MV 加 速 器 质谱 仪 的 S O— i i 0型 离子 源 的 条 件 参 数, 确定 ” I - AMS测 量 的 最 佳 靶 电 极 材 料 为 C u , 最 佳 的辅 助 介 质 为 Nb粉 末 , Nb与 A g I 样 品 的最 佳 体 积 比 为
本底 、 高灵 敏度 测量 的关 键部 件之 一 。 目前 , 多数 的 AMS设备 采用 C s 溅 射负 离子 源| l 1 。 j 】 , 固体 样 品 的 C s 溅 射
离 子 源具 有束 流强且 稳定 、 测 试效率 较 高 、 换 样简 便 、 记 忆 效应 小 、 同量异 位 素 分离 较 彻 底等 优 点_ 6 ] , 成 为 目前 广 泛应 用 的加 速器 质谱仪 离 子源 。 。 I 是 碘元 素 的唯一 天然 长寿命 放 射 性 同位 素 , 半 衰期 达 1 5 7 0万 年 , AMS是 目前 最 为 灵 敏 的 。 1 分 析 方 法, 检 出 限为 1 O 个 原子 ( 1 0 g ) , 或 。 I / I 原子 比值 ( 简 称 。 I / I 比值 ) 达到 1 O , 优 于常 规分 析 方法 如 伽 马谱仪 、 液 体 闪烁测 量 和中子 活化 分析 等 3 ~8个 数量 级 ] 。 西 安加 速器 质谱 中心 2 0 0 7年开 始运 行 , 核心 仪器 为荷 兰高压 工程 公 司( HVE E ) 制造 的 3 MV 多核 素加 速 器 质谱 仪 , 采用 HVE E公 司 的 AMS专 用 S O— I 1 0型 固气 两用 C s 溅 射 负 离子 源 l g 。 。 随着 。 I 环 境 示踪 等 应
加速器质谱法中的微量元素分析
加速器质谱法中的微量元素分析随着科学技术的不断改进和发展,化学分析的技术也不断得到提高和创新。
其中,加速器质谱法(Accelerator Mass Spectrometry,简称AMS)是一种非常先进的分析技术,用于微量元素分析。
该技术采用高能量粒子加速器,可以精确地测量极少量元素的含量,并且有很高的可靠性和准确性。
AMS原理简介加速器质谱法的分析原理是利用加速器加速极微量元素,将其转化为高能量粒子,并通过粒子间的相互作用,测量元素的含量。
该技术的分析过程主要可以分为四个步骤。
首先,需要将原样品转化为纯净的样品。
通常采用萃取、化学处理等方法对原样品进行净化和纯化。
其次,将纯净的样品转化为固态物质,并通过加速器将其加速到高速和高能态。
这个步骤通常利用离子源断电器和弧光离子源等设备。
接下来,进入质谱分析阶段。
在加速器质谱仪中,将加速的粒子带到能够进行分析的检测器中,以获得所需的光谱信息。
最后,分析直接回到已经获得的样品,确定样品中微量元素的含量。
这个过程是通过改变检测器中的反应条件来完成的。
优势和应用与传统质谱技术相比,加速器质谱法有许多独特的优势,主要体现在以下几个方面:首先,AMS技术可以测量非常微量的元素。
其检测最低限度可达到10^-16,比传统分析技术低1到3个数量级,可以测出空气和水中的轻核素。
其次,由于AMS技术可以精确地测量同时含有多个同位素的样品,使得该技术成为大气和环境科学领域的首选分析技术。
最后,由于该技术使用加速器对样品进行分析而非化学反应法,因此减少了化合物的运用和反应过程中的误差。
AMS技术的应用范围非常广泛,主要应用于环境、生态和地球化学等学科中。
在生态学领域中,可以用于测量生物体内的微量元素,如膳食成分、氮同位素和碳同位素等;在地球化学领域中,可以分析来自地下或海洋的岩石和沉积物等。
结语经过多年的发展和改进,加速器质谱法已经成为微量元素分析领域中最先进的技术之一。
它具有高效、准确、可靠等优势,广泛应用于多个学科领域。
加速器质谱
核技术应用:加速器质谱
第二部分
加速器质谱
结构:
离子源
离子加速器
分析器 探பைடு நூலகம்器
2
核技术应用:加速器质谱
第二部分
高能分析器
(选定 M /q 值)
磁分析器: 利用磁场对带电粒子偏转作用,从而选定 EM /q2值 静电分析器: 带电粒子在静电场中受力,选定 E /q 值
速度选择器: 正交的静磁场与静电场选定 E/M 值
3
核技术应用:加速器质谱
第二部分
粒子探测器
作用:原子计数,同时要鉴别同量
异位素和重粒子相邻同位素。
分类:分为同位素鉴别与同量异位素 鉴别两类
4
核技术应用:加速器质谱
第二部分
离子源与加速器
固体离子源(Cs离子溅射)
气体离子源 其他离子源
加速器作用:加速器把离子加速到MeV的能量, 经剥离器剥去
外层电子(分子离子被瓦解),后成为带电荷量 为的正离子,在加速。
核技术应用:加速器质谱
第二部分
(Accelerator Mass Spectrometry)
黄禹竹 咪咤果 张智
0
史晨辉 张乾
核技术应用:加速器质谱
过渡页
加速器质谱发展背景
衰变计数法:直接对被测核数进行计数。
缺点:无法测量低丰度核素,和低活度核素 以及稳定核素
质谱仪:直接对被测核素计数
缺点:分辨率低,无法区分被测核素 离子与等量异位素离子以及等量分子 离子
5
核技术应用:加速器质谱
第二部分
加速器质谱优点
-16 具有极其高的同位素丰度灵敏度 AMS同位素丰度灵敏度可达到10
能够排除分子本底的干扰
14C测定年代和加速器质谱分析
2 加速器质谱计 (AMS)
Accelerator Mass Spectroscope
注入磁铁 离子源
分析和开 关磁铁
串列静电 加速器
静电 分析 器
探测器
北京大学加速器质谱计 1992 建成,1993年投入工作
核素分辨能力
3 14C-射线计数法与AMS法的比较
现代样品
6万年前样品 10万年前样品
14C测定年代和加速器质谱分析
2)经费问题 14C测定年代基础是核物理,而却应用在考古和地质方面。开 始探索性研究不易被理解,没人支持,经费只能取自其它项 目之余。消息传到了考古界,维竟金基金会主持人Fejos主 动提供资金,得以改进仪器,使研究继续进行。
3)样品问题
1946年底,同利比一起工作的阿拿德明白了利比的研究目的, 在新年假期告诉了他的父亲(律师,业余考古爱好者),消 息又传到了英大都会博物馆,馆长 Lansing 立即将11个埃 及出土已知年代的样品寄去。
亚利桑那大学 牛津大学 苏黎世工学院
结果惊人一致:在公元1260-1380年 可能性 95% 决不会早于公元1200年 100%
结果震惊了世界,与人们传说不一致
2)冰人(Ice Man)
1991年在阿尔卑斯山中发现,与现代人不同,引起轰动。 取了骨骼和臀部肌肉 20-30 mg, 用加速器质谱计测量 14C 的含量的结果表明 冰人生活年代
古埃及国王Sesostris 三世载尸船舱板的年代 为4500年前。
四, 加速器质谱计-超灵敏质谱方法
1 问题的提出和解决
1) 射线计数法的局限性 灵敏度低,需要样品量多。
对考古样品,在几天的测量时间内使测定的年代准确到 100年,需要1-5 g 纯碳或者25-1000 g 样品。许多稀 世珍宝样品没有这样的量或者不可能用来测定。
二次离子质谱仪的原理及其在半导体产业中的应用
二次离子质谱仪的原理及其在半导体产业中的应用二次离子质谱仪(Secondary Ion Mass Spectrometer,SIMS)是一种利用二次离子的质谱分析技术。
它可以用于深入分析材料的元素和化学组成,并广泛应用于半导体产业中的各个领域。
首先,让我们了解一下二次离子质谱仪的原理。
SIMS的基本原理是利用离子束轰击样品表面,使样品表面的原子或分子离子化,并产生二次离子(即从样品中溅射出的离子)。
这些二次离子被加速器加速,并经过质谱仪进行质量分析,最终得到样品的质谱图。
SIMS的工作步骤可以分为离子轰击和质谱分析两个主要步骤。
首先,离子源会产生一个离子束,这个束被聚焦后,轰击到目标样品的表面上。
当离子束与样品表面相互作用时,发生离子化反应,使得样品表面的原子或分子转化为带电的离子。
这些带电的离子通过电场加速器加速,并通过磁场进行质量分析。
质谱仪中的电子乘子放大并记录离子的质量、数量和能量信息。
通过对这些信息的分析,可以得到样品中不同元素的含量和组成。
在半导体产业中,二次离子质谱仪被广泛应用于探测和分析材料的表面和界面。
它在以下几个方面发挥着重要作用:1. 元素分析:SIMS可以准确地分析半导体材料中各种元素的含量和分布情况。
通过精确测量样品表面的二次离子,可以确定材料中的杂质、掺杂元素,以及特定区域的成分差异。
这对于半导体制造商来说非常重要,因为它们需要确保材料的纯度和组成符合要求。
2. 材料表面分析:SIMS可以提供关于表面形貌和化学成分的详细信息。
通过对二次离子轰击后的样品表面进行分析,可以了解材料表面的形貌、结构和成分。
这对于半导体制造商来说非常关键,因为材料表面的性质可以直接影响器件的性能。
3. 样品中杂质探测:通过对半导体材料进行二次离子质谱分析,可以检测和定量分析样品中的杂质元素。
这对于半导体制造商来说至关重要,因为即使微小的杂质也可能影响器件的性能和可靠性。
4. 深层探测:SIMS还可以进行深层材料分析。
加速器质谱仪检测放射性核素有效方式解读
加速器质谱仪检测放射性核素有效方式解读加速器质谱仪(Accelerator Mass Spectrometry,简称AMS)是一种高精度、高灵敏度的放射性核素检测方法。
通过AMS技术,可以非常准确地测量样品中微量的放射性核素含量,无论是自然界中就具有的放射性核素,还是人为引入的放射性核素,都可以通过这种方式进行检测。
AMS技术的应用范围非常广泛,可以用于各种不同类型的样品,包括土壤、水体、大气颗粒物、生物体等。
它在环境科学、地质学、考古学、生物医学等领域都发挥着重要的作用。
例如,在环境科学领域,利用AMS技术可以追踪放射性核素的来源和迁移路径,对于研究环境污染和核事故的影响具有重要意义。
相比传统的质谱仪技术,AMS具有许多独特的优点。
首先,AMS可以对微量的放射性核素进行测量,可以达到非常低的检测限。
其次,AMS技术对各种放射性核素具有非常高的选择性,可以准确地分析不同的核素。
而传统的质谱仪技术往往只能检测一种或少数几种核素。
此外,AMS还具有测量速度快、检测结果精确、分析范围广等优点。
AMS技术的工作原理是利用加速器将样品中的放射性核素离子加速到高能量,然后通过质谱仪将这些离子进行分析。
具体而言,AMS主要包括四个步骤:样品制备、加速器加速、离子分析和数据处理。
在样品制备阶段,首先需要将样品处理成可测量的形式,通常是将样品转化成纯净的金属或石墨形式,以便后续的离子加速和分析。
这个步骤非常重要,因为样品的制备质量直接影响到最终的检测结果。
在加速器加速阶段,样品中的核素离子被加速器加速到高能量。
在这个过程中,加速器会对离子进行多次加速和减速,以达到所需的能量范围。
通过控制加速器的参数,可以使得不同质量的核素离子达到所需的能量,从而进行精确的质量分析。
在离子分析阶段,加速后的离子进入质谱仪。
质谱仪会对离子进行质量分析,根据离子的质量和相对丰度进行测量。
与传统的质谱仪技术不同,AMS技术可以同时测量多个不同质量的核素离子,从而提高了测量的效率和准确性。
质谱仪工作原理
质谱仪工作原理质谱仪是一种用来分析物质成分和结构的仪器,它通过测量物质中离子的质量和相对丰度来实现这一目的。
质谱仪的工作原理主要包括样品离子化、质谱分析和数据处理三个步骤。
首先,样品被离子化,通常采用电离源将样品中的分子或原子转化为离子。
电离源的选择取决于样品的性质,常见的电离源包括电子轰击源、化学电离源和MALDI(基质辅助激光解吸电离)源。
离子化后的样品离子被加速器加速,形成高速离子束。
接下来,离子束进入质谱分析器,其中最常见的是质量分析器。
质量分析器通过施加磁场或电场对离子进行分离和分析。
在磁场中,离子受洛伦兹力的作用偏转,其偏转半径与离子的质荷比成正比。
因此,不同质荷比的离子会在检测器上形成不同的轨迹,从而实现质量分离。
电场分析器则通过电场对离子进行加速和分离,不同质量的离子会在电场中产生不同的加速度,从而实现质量分离。
质谱分析器通常与检测器相结合,检测器会对分离后的离子进行检测和记录。
最后,通过数据处理系统对检测器输出的信号进行处理和分析。
数据处理系统通常包括质谱仪控制软件和数据分析软件。
质谱仪控制软件用于控制仪器的运行和参数设置,数据分析软件用于对质谱数据进行处理、分析和解释。
通过数据处理系统,可以得到样品中各种成分的质谱图谱,进而确定样品的成分和结构。
总的来说,质谱仪的工作原理是通过将样品离子化、分离和检测,最终得到样品的质谱数据。
质谱仪在化学分析、生物医药、环境监测等领域有着广泛的应用,是一种非常重要的分析工具。
通过深入了解质谱仪的工作原理,可以更好地应用和操作这一仪器,为科学研究和工程实践提供有力支持。
质谱分析中的离子源与质谱检测
质谱分析中的离子源与质谱检测质谱分析是一种高精度、高灵敏度的分析方法,广泛应用于化学、生物、医学等领域。
在质谱分析中,离子源和质谱检测是两个关键的环节,它们对样品的分析结果和灵敏度有着重要影响。
一、离子源离子源是将分析物转化为离子的重要设备,它将待测物转化为电离子束,以便进入质谱仪,进行离子分析。
离子源的种类和工作原理有多种,下面介绍几种常见的离子源。
1. 电子轰击离子源电子轰击离子源是最早出现的离子源之一,它通过电子束轰击待测物,在离子源内产生离子,并将离子引入质谱仪。
这种离子源适用于易挥发性、不稳定的有机物分析,在脂肪酸、酚类、苯胺类化合物、烃类等有机物的分析中应用广泛。
2. 电喷雾离子源电喷雾离子源是一种常用的离子源,它是利用高压电场对待测物进行电喷雾形成带电的液滴,再使液滴在空气中蒸发,产生离子。
此类离子源用于化学药品以及色谱柱流出液等各类化合物的离子分析。
3. 二次离子源二次离子源是可以将气态分子转化为离子的设备,它将由电子束或其他方式产生的原初离子,通过加速器、反应器等进行一系列化学反应,再产生次级离子。
这种离子源主要用于对气体和其它无机化合物进行分析,在环境监测、化学工业等领域应用广泛。
二、质谱检测质谱检测是将离子按质量分选并计数的过程,质谱仪是一种实现离子分析和检测的仪器。
质谱仪分为四个部分:离子源、质量分析器、检测器和数据处理器。
下面介绍常用的质谱检测器。
1. 惯性质谱检测器惯性质谱检测器是最早的质谱检测器之一,它将离子根据质量和电荷分选,并通过碰撞法或者吸收法进行检测。
此类检测器对于大质量、稳定离子的分析特别有效,在地球科学、天体物理学等领域应用广泛。
2. 离子阱质谱检测器离子阱质谱检测器是一种性能稳定、检测灵敏度高的检测器,它在离子源中产生离子,并通过质量分选器进行分离检测。
离子阱质谱检测器广泛应用于生物学、医学和农业科学等领域,可用于蛋白质、核酸和生物活性物质的分析。
3. 时间飞行质谱检测器时间飞行质谱检测器是一种高速、高分辨率的质谱检测器,它将离子在空间电场中加速,然后在离子通道内飞行,由荧光屏、照相机或光电二极管进行检测。
加速器质谱仪在生物基塑料检测中的应用
降解 型生物基 塑料 可在环境 中通 气 层 中 C的含 量 总 会 保 持 相 对 稳 敏 度质 谱 分析 方法 ,通 过将 离子 加 速
过 氧化 、微生物 等作用 自然 降解 。其 种 定 ,这 也 意 味着 任何 采 自活 生命 体 的 到keV到M eV量级 ,有效地 抑 制 了分
等 。此类 生物基 塑料在包 装 、医药卫生 基 含量 可 用 聚 合物 中现代 “C的 含量 百分含量 。
等领 域具有广 泛应用 前景 。
占整 个 聚 合 物 生 物 降 解 性 区分 以生物 降解 性 区分 ,生 物基 塑料
可分 为 降解 型生物基 塑料 和非降解 型 生 物基塑料 2种 ’ 。
富 的 植 物 秸 秆 、淀 粉 等 天 然 材 料 为 速 ,再借 助 电荷 态 、荷 质 比、能量 和原 长 ,但 已经衍生 出种类繁 多的产 品。目 原 料 ,可 以降 低 石 油 资 源 的 消 耗 ,减 子序 数 的选 择 ,鉴 别被 加速 的离 子并 前 被 广 泛 接 受 的分 类 方 法 主 要 有 2
中的先 天 优势 ,使 得 生物 基 塑料 的产 测定样 品 中 c含 量这 一特性 ,该 仪器 然高分 子原料 包括淀粉 、纤维 素 、甲壳
业 化有 望 成为 新 的经 济增 长 点 ,并在 在生物 基塑料制 品检测 领域有着 良好 素 、木质 素等等 。此类 生物基塑料 具有
推 行和贯彻 可持续 发展经济 形式 的过 的应用 前景 。目前 ,国外 已有 多家机构 原 料 来源 广泛 、价格 低廉 、可降 解 、可
以合 成途 径 和制 备 方 式区分 ,生
工 、材 料 、能源 等领 域 渗透 应 用 ,实 现
目前 ,国 内外多 数 生物 基 塑料 产 物基 塑料可分 为天然高 分子生物 基塑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第33卷第2期原子能科学技术V o l.33,N o.2 1999年3月A tom ic Energy Science and T echno logy M ar.1999重核离子束成分的加速器质谱分析3何 明 姜 山 蒋崧生 武绍勇(中国原子能科学研究院核物理研究所,北京,102413)为拓展加速器质谱技术(AM S)测量范围及测量放射性核束成分,建立了利用入射离子发射特征X射线鉴别同量异位素的方法,开展了利用AM S测量重核离子束成分的工作。
用此方法可将测量79Se时的同量异位素干扰79B r压低2个数量级。
对将用于64Cu放射性束实验的铜靶离子束成分进行了分析。
关键词 离子束分析 入射离子X射线 加速器质谱中图法分类号 TL52 TH84加速器质谱技术(AM S)由于其高灵敏度而广泛应用于各个学科。
AM S在测量重核,如79Se、126Sn等会遇到同量异位素的严重干扰。
为拓展AM S测量范围,需建立重核的AM S分析新方法。
另外,放射性核束物理实验的束流是混合束(受到一些稳定核素的干扰),需要对其成分进行鉴别而对离子束成分分析提出了要求。
当离子经过加速器加速再经过分析磁铁选定所测核素后,离子束中一般只有所测核素的同位素和同量异位素。
因此,离子束成分分析主要是分析离子束中的同位素和同量异位素含量。
1 同位素的分析方法111 电刚度分析法待分析样品在离子源被电离、经加速器加速后由分析磁铁选择出某一核素,只有相同磁刚度2〔(E q)・(m q)〕1 2的离子才能通过分析磁铁(E、m、q分别为离子能量、质量和电荷态)。
离子在加速过程中由于电荷交换等原因使一些同位素的磁刚度满足选定的磁刚度而通过分析磁铁,因这些同位素离子质量不同,能量比选择的离子能量要高或低。
静电分析器是能量分析器,即只有电刚度(E q)相同的离子才会通过静电分析器,因此可对离子的同位素进行分析。
中国原子能科学研究院的高灵敏静电分析器[1]可对离子束中的同位素进行分析:通过改变静电分析器的电压让能量不同的离子(相应于质量不同的离子)通过静电分析器,对通过的离子进行测量来对离子束中的同位素进行鉴别。
静电分析器在分析模拟传输64Cu时离子束中同位3国家自然科学基金和核工业基金资助项目何 明:男,29岁,加速器质谱学专业,助理研究员收稿日期:1998205218 收到修改稿日期:1998208202图1 静电分析器分析同位素的成分F ig .1 Iso tope componen ts ob tained byelectro static deflecto r素成分的分析结果示于图1。
图中A =64代表质量数为64的同量异位素。
1.2 飞行时间分析方法离子经静电分析器后可排除绝大多数干扰同位素离子。
当被分析核素的丰度很低时,单用静电分析器很难对其分析,这时同位素仍会对所测核素产生干扰。
为此,除了用静电分析器外,仍需进一步对同位素进行分辨。
利用在非相对论时匀速飞行离子的飞行时间t 与离子质量m 的关系m =2E (t l )2(E 为离子能量,l 为离子飞行距离)可因飞行时间不同而将同位素分开[2]。
2 鉴别同量异位素的入射离子X 射线测量方法211 入射离子X 射线测量方法的提出同量异位素的质量基本一样,它们在加速图2 入射离子和靶的K 层电子空位截面F ig .2 P ro jectile and target K 2vacancycro ss secti on s器质谱系统中飞行路径也基本相同。
因此,对同量异位素的分辨需依靠能对离子核电荷数(Z )进行鉴别的方法来实现。
对Z 分辨一般常用在介质中离子能量损失∃E 2E 法,这种方法要求离子的能量达到1~5M eV u ,且只对Z <20的核素较为有效。
对Z >20的核素需要更高的能量[3],这对于常用的串列加速器很难满足。
当一定能量的离子打在靶上时,靶不仅会产生X 射线,入射离子也会产生X 射线。
不同元素的特征X 射线能量不同,测量入射离子产生的特征X 射线可对入射离子进行Z 鉴别。
这种方法对离子的能量要求不高,不同核素X 射线的分辨基本与离子能量无关,可实现在一般能量下重核的同量异位素鉴别。
212 入射离子X 射线产额1)入射离子X 射线产额与靶的关系入射离子产生K 层电子空位的截面与靶核的关系已由M eyerhof W .E .[4]进行了讨论。
在入射离子K 层电子结合能和靶离子的K 层电子结合能比较接近时,入射离子在此区域产生K 层的电离截面大,产生KX 射线的几率也高。
30M eV 的B r 打在不同靶上时入射离子和靶产生K 层电子空位截面随靶的变化情况示于图2。
可以看出,靶产生K 层电子空位截面随靶的核电荷数(Z 2)031原子能科学技术 第33卷急剧变化,而入射离子产生K 层电子空位截面随Z 2则有一共振区域,这一区域就是靶与入射离子的K 层电子结合能比较接近的区域。
另外,在Z 2接近80处也有一共振区域,这是由于在这一区域入射离子的K 层电子结合能与靶的L 层电子结合能比较接近的缘故。
2)入射离子X 射线产额与入射离子能量的关系对于厚靶,入射离子X 射线产额(Y )与离子能量(E )间遵循Y ∝E Β关系。
Β(Z 1,Z 2,E )[4]与入射离子核电荷数Z 1、能量E 及靶的核电荷数Z 2有关。
Β对E 不敏感,在很大能量范围内基本为一常数。
对于一定的入射离子和靶,X 射线产额随入射离子能量的增大而增大。
213 入射离子X 射线分析1)入射离子X 射线的分析经加速后的离子打在特定靶上,入射离子发射特征X 射线,这些特征X 射线能量一般约为十几keV ,可采用Si (L i )探测器对X 射线能量进行测量。
为增大测量的立体角,通常将探头直接放在靶的后面,同时为吸收低能离子和一些低能X 射线,在靶与探头间放置一吸收膜。
入射离子和靶产生的X 射线经探测器测量后进行X 射线分析。
78Se 和79B r 打在1717g m 2Zr 靶上的特征X 射线能谱示于图3。
可以看出:利用入射离子发射的X 射线可将束流中的同量异图3 B r 和Se 在Zr 靶上的X 射线谱F ig .3 X 2ray spectra of B r and Se on a Zr target fo il位素分开。
在此能量下,用能量损失∃E 2E 法根本无法做到。
2)入射离子X 射线分析需注意的几个问题(1)多普勒效应 与P I XE 方法不同的是,入射离子X 射线测量中要注意的问题是多普勒效应。
入射离子产生的X 射线是离子在通过靶的慢化过程中发出的,这些X 射线会产生多普勒频移。
多普勒频移的大小由E =E 0(1+vcco s Η)给出。
E 0为静止时发射X 射线的能量,v 为离子的速度,c为光速,Η为离子运动方向和探测器的夹角。
多普勒效应不仅使测得的X 射线峰位产生移动,而且还会使X 射线能谱展宽。
例如,对于将探测器放在靶后面(Η=0°)、能量为80M eV 的Se ,X 射线的多普勒频移为0.047E 0。
80M eV 的Se 从进入到停在靶中产生的X 射线的多普勒展宽为520eV (Η=0°)。
而Se 和B r 的K Α能量相差700eV ,这对分辨很不利。
当Η=90°时,多普勒展宽为0,但测量的立体角将减小。
另外,对实验装置的安排也存在困难。
减小多普勒效应的另一办法是让离子在靶中通过时能量损失减小,即离子进入靶和射出靶时的能量差小能有效降低多普勒展宽。
如,80M eV 的Se 通过22g m 2的Zr 膜时能量减小到40M eV ,它们产生的X 射线的展宽只有150eV ,穿过靶的离子用低Z 材料,如Cap ton 吸收膜。
Se 在低Z 材料上产生X 射线的截面比在Zr 靶上的截面小3个数量级,从而有效地避免了多普勒效应。
但薄靶的缺点在于降131第2期 何 明等:重核离子束成分的加速器质谱分析低了X 射线的产额。
在不同厚度的Zr 靶上,厚度与入射离子X 射线的产额Y 、峰的半高宽(FW HM )、压低因子R ±Ρ和R ±2Ρ的关系列于表1。
压低因子指干扰核素(如79B r )产生X 射线峰的总计数与此峰在被干扰峰(如79Se )的±1Ρ(±2Ρ)范围内拖尾的计数之比。
在测量中需根据情况选取适当的靶厚。
表1 靶厚与Se 的X 射线产额Y 、峰的半高宽及压低因子的关系Table 1 The rela tion sh ip between the target th ickness and the X -ray y ield ,F W H M ,suppression factorZr 靶厚 g ・m -2Y FW HM eVR ±ΡR ±2Ρ24.01.2×10-2291894517.71.45×10-22791276012.51.05×10-226618084图4 质量数为64的核素产生的X 射线谱F ig .4 X 2ray spectrum fo r the m ass num ber of 64(2)吸收膜 根据光电截面具有强烈吸收限这一特点,可选用合适的吸收物质来抑制某种元素的特征X 射线强度,从而比较明显地显示出那些原来被掩盖的元素的特征X 射线峰。
在分析某些元素时,如果它的干扰核素的X 射线能量高于欲分析的X 射线能量,可选用合适的吸收膜,使该膜的吸收限位于两条X 射线的能量之间来吸收干扰核素的X 射线。
3)入射离子X 射线分析的局限入射离子产生X 射线的产额较低,用于测量X 射线的Si (L i )探测器的B e 窗距探测器晶体有一定的距离,且晶体的有效直径在10mm 左右,虽然靶贴近探测器,但测量立体角最大也只有1Π左右,测量效率比较低。
另外,由多普勒效应引起能谱的展宽以及康普顿散射、边缘效应等引起的拖尾对于X 射线的分析都有不利影响。
尽管如此,它在低能下分析同量异位素的能力及在测量装置简单等方面的优点足以弥补上述不足。
3 重核离子束分析技术的应用311 加速器质谱技术加速器质谱计是目前分析技术中灵敏度最高的一种分析核素的方法。
在分析测量过程中主要是排除同位素和同量异位素的干扰,最后由探测器记录所要测量核素的原子数目。
同位素可用静电分析器和飞行时间系统进行分辨,而对于比较重的核素或离子能量比较低时用入射离子产生的特征X 射线分析法排除同量异位素干扰是最佳选择。
它和AM S 方法有机地结合231原子能科学技术 第33卷在一起可将测量的灵敏度在原有的基础上提高2个数量级。
方法在AM S 分析重核,如59N i 、63N i 、79Se 、126Sn 等已得到实际应用[5]。