高中数学必修一《集合》测试题 (169)

合集下载

高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案一、选择题(每小题5分,共20分)1.下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4A.只有①和④B.只有②和③C.只有②D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】C2.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】B3.已知集合A={x∈N*|-5≤x≤5},则必有()A.-1∈AB.0∈AC.3∈AD.1∈A【解析】∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A.故选D.【答案】D4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0B.2C.3D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.【答案】{1,-1}6.已知P={x|2【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.【解析】因为5∈A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.【解析】(1)∵A中有两个元素,∴方程ax2-3x-4=0有两个不等的实数根,∴a≠0,Δ=9+16a>0,即a>-916.∴a>-916,且a≠0.(2)当a=0时,A={-43};当a≠0时,若关于x的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,即a=-916;若关于x的方程无实数根,则Δ=9+16a<0,即a<-916;故所求的a的取值范围是a≤-916或a=0.集合通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

高中数学 第一章 集合测试题 必修1 试题

高中数学 第一章 集合测试题 必修1 试题
卜人入州八九几市潮王学校 第一章测试题
班级学号
1、集合 ,那么 〔〕
A、 B、 C、 D、
2、集合 ,那么 〔〕
A、 B、 C、 D、
3、假设集合 ,那么 〔〕
A、 B、 C、 D、
4、 满足条件 的集合 的个数是〔〕
A、4B、3 C、2D、1
5、设全集 ,集合 ,那么 是〔〕
A、 B、 C、 D、
6、设集合 ,那么 中元素的个数是〔〕
A、11B、10 C、16D、15
7、全集 ,那么集合 等于〔〕
A、 B、 C、 D、
8、假设集合 ,那么〔〕
A、 B、 C、 D、
9、设全集 ,集合 ,那么 〔〕
A、{b}B、{d}C、{a,c}D、{b,d}
10、设全集 ,集合 ,那么 〔〕
A、 B、 C、 D、
A、 B、 C、 D、
17、设全集是实数集R, , ,那么 等于〔〕,那么实数 等于〔〕
A、 B、 C、 或者 D、 或者 或者0
19、集合 且 那么实数 的取值范围是
20、设集合 ,集合 。假设 ,那么
21、设集合 ,假设 ,那么 的取值范围是
22、增城数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。假设该班学生一共有48名,问没有参加任何一科竞赛的学生有多少名?
11、设全集 ,集合 ,集合 ,那么()
A、 B、 C、 D、
12、集合 ,那么 的真子集的个数是〔〕
A、15B、16 C、3D、4
13、集合 ,那么集合 为〔〕

高中数学必修1集合测试题及答案

高中数学必修1集合测试题及答案

高中数学集合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ150分;考试时间90分钟.第Ⅰ卷(选择题;共60分)一、选择题:本大题共12小题;每小题5分;共60分. 在每小题给出的四个选项中;只有一项是符合题目要求的.1.已知集合M={x N|4-x N}∈∈;则集合M 中元素个数是( ) A .3 B .4 C .5 D .62.下列集合中;能表示由1、2、3组成的集合是( ) A .{6的质因数} B .{x|x<4;*x N ∈} C .{y||y |<4;y N ∈} D .{连续三个自然数} 3. 已知集合{}1,0,1-=A ;则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A4.集合}22{<<-=x x A ;}31{<≤-=x x B ;那么=⋃B A ( )A. }32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 5.已知集合}01|{2=-=x x A ;则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个6.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=;则a 的值为( ) A .-3或1 B .2 C .3或1 D .17. 若集合}8,7,6{=A ;则满足A B A =⋃的集合B 的个数是( )A. 1B. 2C. 7D. 88. 定义A —B={x|x A x B ∈∉且};若A={1;3;5;7;9};B={2;3;5};则A —B 等于( ) A .A B .B C .{2} D .{1;7;9}9.设I 为全集;1S ;2S ;3S 是I 的三个非空子集;且123S S S I ⋃⋃=;则下面论断正确的是( )A .()I 123(C S )S S ⋂⋃= φB .()1I 2I 3S [C S )(C S ]⊆⋂C .I 1I 2I 3(C S )(C S )(C S )⋂⋂=∅D .()1I 2I 3S [C S )(C S ]⊆⋃ 10.如图所示;I 是全集;M ;P ;S 是I 的三个子集;则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()I (C )M P S ⋂⋂D .()I (C )M P S ⋂⋃11. 设},2|{R x y y M x ∈==;},|{2R x x y y N ∈==;则( )A. )}4,2{(=⋂N MB. )}16,4(),4,2{(=⋂N MC. N M =D. N M ≠⊂12.已知集合M={x|x 1},N={x|x>}a ≤-;若M N ≠∅;则有( ) A .1a <- B .1a >- C . 1a ≤- D .1a ≥-第Ⅱ卷(非选择题 共90分)二、填空题:本大题6小题;每小题5分;共30分. 把正确答案填在题中横线上13.用描述法表示右侧图中阴影部分的点(含边界上的点)组成的集合M 是___________________________.14. 如果全集}6,5,4,3,2,1{=U 且}2,1{)(=⋂B C A U ;}5,4{)()(=⋂B C A C U U ;}6{=⋂B A ;则A 等于_________15. 若集合{}2,12,4a a A --=;{}9,1,5a a B --=;且{}9=B A ;则a 的值是________; 16.设全集{|230}U x N x =∈≤≤;集合*{|2,,15}A x x n n N n ==∈≤且;*{|31,,9}B x x n n N n ==+∈≤且;C={x|x 是小于30的质数};则[()]U C A B C =________________________.17.设全集R B C A x x B a x x A R =⋃<<-=<=)(},31{},{且;则实数a 的取值范围是________________18.某城市数、理、化竞赛时;高一某班有24名学生参加数学竞赛;28名学生参加物理竞赛;19名学生参加化学竞赛;其中参加数、理、化三科竞赛的有7名;只参加数、物两科的有5名;只参加物、化两科的有3名;只参加数、化两科的有4名;若该班学生共有48名;则没有参加任何一科竞赛的学生有____________名三、解答题:本大题共5小题;共60分;解答应写出文字说明;证明过程或演算步骤.19. 已知:集合{|A x y ==;集合2{|23[03]}B y y x x x ==-+∈,,; 求A B (本小题8分)20.若A={3;5};2{|0}B x x mx n =++=;A B A =;{5}A B =;求m 、n 的值。

高中数学必修一集合习题大全含答案

高中数学必修一集合习题大全含答案
《集合》
一、选择题 :( 每小题 5 分共 6 0 分 )
1. 下列命题正确的有(

( 1)很小的实数可以构成 集合;
练习一
( 2)集合 y | y
2
x
1 与集合
x, y | y
2
x
1 是同一个集合 ;
( 3) 1, 3 , 6 ,
1 ,0.5 这些数组成
的集合有
5 个元素;
24 2
( 4)集合 x, y | xy 0, x, y R 是指第二和第 四象限内的点集。

2
2
( A) N M ( B) N P ( C) N=M∪ P ( D) N=M∩ P
二、填空题(每小题 4 分,计 4× 4=16 分)
11.已知集合 P y | y x 2 1 , x R , Q
y | y x2 2x , x R ,
则集合 P Q
12.设全集 U 1 , 3 , 5 , 7 , 9 , A 1 , | a 5 | , 9 , CU A 5 , 7 ,
2.设集合 A x | 1 x 2 , B x | 0 x 4 ,则 A B ( )
(A) x | 0 x 2 ( B) x |1 x 2 ( C) x | 0 x 4 ( D) x | 1 x 4
3.下列表示① 0

0③
0 ④ 0 中 , 正确的个数为
( A) 1 ( B) 2 ( C)3 (D) 4
1.下列四种说法正确的一个是
()
A. f ( x) 表示的是含有 x 的代数式
B.函数的值域也就是其定义中的数集 B
C.函数是一种特殊的映射
D.映射是一种特殊的函数
2.已知 f 满足 f ( ab)= f ( a)+ f ( b) ,且 f (2)= p , f (3) q 那么 f (72) 等于

(必考题)高中数学必修一第一单元《集合》测试卷(包含答案解析)

(必考题)高中数学必修一第一单元《集合》测试卷(包含答案解析)

一、选择题1.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<2.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( )A .0B .1-C .1D .1或1-3.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个4.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,35.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,16.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+, B .[)2∞+,C .()3∞-+,D .[)3∞-+,7.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]28.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭9.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤11.设集合{}21xA y y ==-,{}1B x x =≥,则()R AC B =( )A .(],1-∞-B .(),1-∞C .()1,1-D .[)1,+∞12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 14.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________15.已知{|}A x x =>,{|(3)(3)0}B x x x x =-+>,则A B =________ 16.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且AB =________.17.已知集合M ={x ∈N |1≤x ≤15},集合A 1,A 2,A 3满足①每个集合都恰有5个元素; ②A 1∪A 2∪A 3=M .集合A i 中元素的最大值与最小值之和称为集合A i 的特征数,记为X i (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为_____. 18.已知集合(){}22330,,A x x a x a a R x R =+--=∈∈,集合(){}22330,,B x x a x a a a R x R =+-+-=∈∈,若,A B A B ≠⋂≠∅,则A B =_______19.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.设{}{},1,05U R A x x B x x ==≥=<<,求()U A B 和()U A B ∩22.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤(1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围. 23.设集合1|2432x A x -⎧⎫=≤≤⎨⎬⎩⎭,{}22|3210B x x mx m m =-+--<. (1)当x ∈Z 时,求A 的非空真子集的个数;(2)若B =∅,求m 的取值范围; (3)若A B ⊇,求m 的取值范围.24.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求U B A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.25.已知集合{|123}A x a x a =+≤≤+,{}2|7100B x x x =-+-≥. (1)已知3a =,求集合()R A B ;(2)若B A ⊆,求实数a 的范围.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭.(1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.2.B解析:B【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101ab +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.4.D解析:D 【解析】 【分析】由集合的补集的运算,求得{1,3,4}U C B =,再利用集合间交集的运算,即可求解. 【详解】由题意,集合{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =, 则{1,3,4}UC B =,所以(){}1,3U A C B ⋂=. 故选:D. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记的集合的运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=,所以{(011,1A x x =<-<=, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.6.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】 解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.7.D解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.8.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.9.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B.【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.10.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,A B =∅,符合题意.当0a >时,由于AB =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤. 故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.11.C解析:C 【解析】 【分析】化简集合A ,B 根据补集和交集的定义即可求出. 【详解】集合A ={y |y =2x ﹣1}=(﹣1,+∞),B ={x |x ≥1}=[1,+∞), 则∁R B =(﹣∞,1) 则A ∩(∁R B )=(﹣1,1), 故选:C . 【点睛】本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈, 当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-. 故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.14.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解, 当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想15.【分析】先分别求解集合中元素的所满足的不等式再由交集的定义求解即可【详解】由题因为解得则因为解得或则或所以故答案为:【点睛】本题考查集合的交集运算考查含根式的不等式的运算考查解高次不等式 解析:{|30}-<<x x【分析】先分别求解集合中元素的所满足的不等式,再由交集的定义求解即可 【详解】由题,因为20xx >-≥⎪⎩,解得1x <,则{}|1A x x =<,因为()()330x x x -+>,解得30x -<<或3x >,则{|30B x x =-<<或}3x >, 所以{}|30A B x x ⋂=-<<, 故答案为:{|30}-<<x x 【点睛】本题考查集合的交集运算,考查含根式的不等式的运算,考查解高次不等式16.【解析】【分析】求出中不等式的解集确定出找出与的交集即可【详解】解:∵∴解得∴∵∴故答案为:【点睛】此题考查了交集及其运算熟练掌握交集的定义是解本题的关键 解析:()2,5【解析】 【分析】求出A 中不等式的解集确定出A ,找出A 与B 的交集即可. 【详解】解:∵()2log 12x -<,∴1014x x ->⎧⎨-<⎩,解得15x <<,∴()1,5A =,∵2{|}()626B x x =<<=,,∴()2,5A B =,故答案为:()2,5. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.17.96【分析】对分三种情况讨论求出X1+X2+X3取最小值39X1+X2+X3取最大57即得解【详解】由题意集合M ={x ∈N*|1≤x≤15}={123456789101112131415}当A1={解析:96 【分析】对123,,A A A 分三种情况讨论,求出X 1+X 2+X 3取最小值39,X 1+X 2+X 3取最大57,即得解. 【详解】由题意集合M ={x ∈N*|1≤x ≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},当A 1={1,4,5,6,7},A 2={3,12,13,14,15},A 3={2,8,9,10,11}时, X 1+X 2+X 3取最小值:X 1+X 2+X 3=8+18+13=39,当A 1={1,4,5,6,15},A 2={2,7,8,9,14},A 3={3,10,11,12,13}时, X 1+X 2+X 3=16+16+16=48,当A 1={1,2,3,4,15},A 2={5,6,7,8,14},A 3={9,10,11,12,13}时, X 1+X 2+X 3取最大值:X 1+X 2+X 3=16+19+22=57, ∴X 1+X 2+X 3的最大值与最小值的和为:39+57=96. 【点睛】本题主要考查集合新定义的理解和应用,意在考查学生对这些知识的理解掌握水平.18.【分析】设公共根是代入两方程作差可得即公共根就是进一步代入原方程求解两集合即可得出答案【详解】两个方程有公共根设公共根为两式相减得:即①若则两个方程都是与矛盾;②则公共根为代入得:即解得:(舍)故答 解析:{2,3,1}--【分析】设公共根是b ,代入两方程,作差可得b a =,即公共根就是a ,进一步代入原方程求解两集合,即可得出答案.【详解】A B ⋂≠∅∴两个方程有公共根设公共根为b∴2(23)30b a b a +--=,22(3)30b a b a a +-+-=两式相减得:20ab a -=,即()0a b a -=.①若0a =,则两个方程都是230x x -=,与A B ≠矛盾;②0,a ≠则b a =,∴公共根为a ,代入2(23)30x a x a +--=得:2(23)30a a a a +--= 即220a a -=,解得:0a =(舍),2a ={}2|60{3,2}A x x x ∴=+-==- 2|20{1,2}B x x x{2,3,1}A B ∴⋃=--故答案为:{2,3,1}--【点睛】本题考查了集合并集运算,能够通过,A B A B ≠⋂≠∅解读出两个集合中的方程有公共根,是解题的关键.19.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】根据条件()()[3,5]A B =R R 可得()(),35,A B =-∞+∞,结合[1,2]B A =R 的意义,可得集合A .【详解】因为集合A 、B 是实数集R 的子集,若A B =∅,则[2,0]A B A =-=R ,[1,2]BA B ==R ,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]B A =R 表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x -≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤≤组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(){}|5U A B x x ⋃=<,(){}|5U A B x x ⋂=≥.【分析】 首先根据题中所给的集合,根据补集的定义,求得{}|1UA x x =<,{0UB x =≤或5}x ,之后利用交集并集的定义求得结果.【详解】因为U =R ,{}{}1,05A x x B x x =≥=<<,所以{}|1U A x x =<,{0U B x =≤或5}x , 所以(){}|5UA B x x ⋃=<,(){}|5U A B x x ⋂=≥. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于简单题目. 22.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【分析】(1)把2a =代入A 确定出A ,求出A B 即可; (2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可.【详解】(1)当2a =时,{}17A x x =<<,则{}|27A B x x ⋃=-≤<;(2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a -, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题.23.(1)254个;(2)2m =-;(3)2m =-或12m -【分析】(1)利用指数函数的性质化简集合A ,再利用子集个数公式求解即可;(2)由由B =∅,223210x mx m m -+--<无解,则其对应的方程的0∆≤ (3)讨论三种情况,分别化简集合B ,利用包含关系列不等式求出m 的范围,综合三种情况可得结果.【详解】解:化简集合{|25}A x x =-≤≤,集合{}|(1)(21)0B x x m x m =-+--<.(1){},2,1,0,1,2,3,4,5x Z A ∈∴=--,即A 中含有8个元素,故A 的非空真子集数为822254-=个.(2)由B =∅,则22(3)4(21)0m m m ∆=----≤,得2(2)0m +≤,得2m =-.(3)①2m =-时,B A =∅⊆;②当2m <-时,()()21120m m m +--=+<,所以()21,1B m m =+-,因此,要B A ⊆,则只要21236152m m m +≥-⎧⇒-≤≤⎨-≤⎩,所以m 的值不存在; ③当2m >- 时,()1,21B m m =-+ ,因此,要B A ⊆,则只要1212215m m m -≥-⎧⇒-≤≤⎨+≤⎩. 综上所述,知m 的取值范围是2m =-或12m -≤≤.【点睛】本题考查集合的真子集个数的求数,考查满足条件的实数的取值范围的求法,考查了分类讨论思想的应用,属于中档题.24.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.25.(1)(){|24}R A B x x ⋂=≤<(2)1a =【分析】 化简集合B ,(1)计算3a =时集合A ,根据补集与交集的定义;(2)由题意得出A ≠∅,根据包含关系,列出关于a 的不等式,求出实数a 的取值范围.【详解】集合{|123}A x a x a =+≤≤+{}{}22|7100|7100{|25}B x x x x x x x x =-+-≥=-+≤=≤≤;(1)当3a =时,{|49}A x x =≤≤{| 4 R A x x ∴=<或9}x >则(){|24}R A B x x ⋂=≤<(2)因为B A ⊆,{|25}B x x =≤≤,所以A ≠∅,则1232a a a +≤+⇒≥-并且由B A ⊆,得12235a a +≤⎧⎨+≥⎩,解得1a = 综上,实数a 的取值范围是1a =.【点睛】本题主要考查了交集,并集的运算以及根据包含关系求参数范围,属于中档题. 26.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出A B 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围.【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=- (2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-,则当C =∅时,21a a >+,即1a >, 当C ≠∅时,212310a a a a ≤+⎧⎪>-⎨⎪+<⎩,得312a -<<-,综上,312a -<<-或1a >. 【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.。

(必考题)高中数学必修一第一单元《集合》测试卷(含答案解析)(2)

(必考题)高中数学必修一第一单元《集合》测试卷(含答案解析)(2)

一、选择题1.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,22.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( )A .-3或-1或2B .-3或-1C .-3或2D .-1或23.已知x ,y 都是非零实数,||||||x y xyz x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉4.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-25.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4B .5C .6D .76.已知0a b >>,全集为R ,集合}2|{ba xb x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(R C F )B .M =(RC E )F C .F E M =D .FE M =7.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UB D .∅8.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .19.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( )A .x y A +∈B .x y A -∈C .xy A ∈D .xA y∈10.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<11.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤12.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是( ) A .{}a |0a 6≤≤B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤二、填空题13.集合1{}2|Ax x ≤=<,{|}B x x a =<,若A B B ⋃=,则a 的取值范围是_______.14.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且A B =________.15.已知{|14}A x x =-≤≤,{|}B x x a =<,若A B =∅,则a 的取值范围是__________16.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 17.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.18.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____.19.任意两个正整数x 、y ,定义某种运算⊗:()()x y x y x y x y x y +⎧⊗=⎨⨯⎩与奇偶相同与奇偶不同,则集合{(,)|6,,}M x y x y x y =⊗=∈*N 中元素的个数是________20.若集合{}|121A x m x m =+<≤-,{}|25B x x =-≤<,若()()R R C A C B ⊇,则m 的取值范围是_____________.三、解答题21.已知集合2212x A x x ⎧+⎫=<⎨⎬-⎩⎭,{}254B x x x =>-,{}1,C x x m m =-<∈R ,(1)求AB ;(2)若()A B C ⋂⊆,求m 的取值范围. 22.已知全集为R ,集合{}503x A x R x -=∈>+,()2{|21050}B x R x a x a =∈-++≤. (1)若RB A ⊆,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是RB A ⊆的什么条件(充分必要性).①[)7,10a ∈-;②(]7,10a ∈-;③(]6,10a ∈. 23.已知命题p :x ∈A ={x|a -1<x <a +1,x ∈R},命题 q :x ∈B ={x|x 2-4x +3≥0}. (1)或A∩B =∅,A ∪B =R ,求实数a (2)若是p 的必要条件,求实数a.24.已知集合{}{}27,32A x x B x a x a =-<<=≤≤-. (1)若4a =,求AB 、()RC A B ;(2)若A B A ⋃=,求实数a 的取值范围.25.设全集为R ,}{37A x x =≤<,}{510B x x =<<.求()R C A B ⋃. 26.已知集合|1|{|28}x A x -=<,2{|log (51)2}B x x =->,求AB .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题. 【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.2.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.3.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.4.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1};当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.5.D解析:D 【分析】写出集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的非空子集,根据和美集合的定义验证即可. 【详解】先考虑含一个元素的子集,并且其倒数是其本身,有{}{}1,1,- 再考虑 含有两个元素的和美集合,有{}11,1,,33⎧⎫-⎨⎬⎩⎭, 含有三个元素的子集且为和美集合的是111,,3,1,,3,33⎧⎫⎧⎫-⎨⎬⎨⎬⎩⎭⎩⎭含有四个元素的子集且为和美集合的是11,1,,33⎧⎫-⎨⎬⎩⎭. 【点睛】本题主要考查了集合的子集,考查了创设新情景下解决问题的能力,属于中档题.6.A解析:A 【分析】首先分析得出2a ba b +>>>,根据集合的运算,即可求解. 【详解】由题意,因为0a b >>,结合实数的性质以及基本不等式,可得2a ba b +>>>,可得{|R C F x x =≤}x a ≥,所以(){|R E C F x b x =<≤,即()R M E C F =故选A. 【点睛】本题主要考查了集合的运算,以及基本不等式的应用,其中解答中结合实数的性质和基本不等式求得2a ba b +>>>是解答的关键,着重考查了推理与运算能力,属于基础题. 7.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.8.B解析:B 【解析】 【分析】首先求解方程组3y x y x⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.9.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈,所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.10.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.11.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.12.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.二、填空题13.【分析】根据可知A 为B 的子集利用数轴求解即可【详解】根据题意作图如下:由图可知实数的取值范围为【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题常考题型 解析:2a >【分析】根据A B B ⋃=,可知A 为B 的子集,利用数轴求解即可. 【详解】 根据题意,作图如下:由图可知,实数a 的取值范围为2a >. 【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题、常考题型.14.【解析】【分析】求出中不等式的解集确定出找出与的交集即可【详解】解:∵∴解得∴∵∴故答案为:【点睛】此题考查了交集及其运算熟练掌握交集的定义是解本题的关键 解析:()2,5【解析】 【分析】求出A 中不等式的解集确定出A ,找出A 与B 的交集即可. 【详解】解:∵()2log 12x -<,∴1014x x ->⎧⎨-<⎩,解得15x <<,∴()1,5A =,∵2{|}()626B x x =<<=,,∴()2,5A B =,故答案为:()2,5. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.15.【分析】根据集合所以集合没有公共元素列出两个集合的端点满足的不等关系结合数轴可以得出的范围得到结果【详解】集合由借助于数轴如图所示可得故答案为:【点睛】该题主要考查集合中参数的取值范围的问题两个集合解析:(,1]-∞-. 【分析】根据集合{|14}A x x =-≤≤,{|}B x x a =<,A B φ⋂=,所以集合,A B 没有公共元素,列出两个集合的端点满足的不等关系,结合数轴可以得出a 的范围,得到结果. 【详解】集合{|14}A x x =-≤≤,{|}B x x a =<,由A B φ⋂=,借助于数轴,如图所示,可得1a ≤-, 故答案为:(,1]-∞-. 【点睛】该题主要考查集合中参数的取值范围的问题,两个集合的关系,属于中档题目.16.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a 【点睛】本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.17.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题解析:{0a a =或}1a ≥ 【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果 【详解】0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意;0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥ 【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题.18.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】 求AB 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】{}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-;当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-;当[]0x =时,[]222x x x +==⇒=,不满足[]0x =;当[]1x =时,[]223x x x +==⇒=x []1x =;即同时满足[]22x x -=和2x <的x 值有则AB ={-故答案为:{-【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题. 19.【分析】根据正整数的奇偶讨论的不同取值情况:若一奇一偶则取;若都是奇数或都是偶数则取列举出所有可能即可【详解】集合若一奇一偶则取此时所有个数为此时共有4个;若都是偶数则取此时所有个数为此时共有2个;解析:9【分析】根据正整数的奇偶,讨论x y 、的不同取值情况:若一奇一偶,则取6xy =;若都是奇数或都是偶数,则取6x y +=,列举出所有可能即可.【详解】集合{(,)|6,,}M x y x y x y =⊗=∈*N若x y 、一奇一偶,则取6xy =,此时所有个数为16x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,61x y =⎧⎨=⎩,此时(),x y 共有4个;若x y 、都是偶数,则取6x y +=,此时所有个数为24x y =⎧⎨=⎩,42x y =⎧⎨=⎩,此时共(),x y 有2个; 若x y 、都是奇数,则取6x y +=,此时所有个数为15x y =⎧⎨=⎩,33x y =⎧⎨=⎩, 51x y =⎧⎨=⎩此时(),x y 共有3个;综上可知,满足条件的元素共有9个.故答案为:9【点睛】本题考查了新定义运算与集合的综合应用,注意分析题意并正确理解新定义是解决此类问题的关键,属于中档题. 20.【分析】由进行反推可分为集合和集合两种情况进行分类讨论【详解】由进行反推若则解得成立由可知集合因应满足解得综上所述故答案为:【点睛】本题考查根据集合的补集与包含关系求解参数问题是中档题型在处理此类题 解析:(),3-∞【分析】由()()R R C A C B ⊇进行反推,可分为集合A =∅,和集合A ≠∅两种情况进行分类讨论【详解】由()()R R C A C B ⊇进行反推,若A =∅,则121m m +≥-,解得2m ≤,成立 由A ≠∅可知,集合{}|121U A x x m x m =≤+>-或,{}|25U B x x x =<-≥或因()()R R C A C B ⊇,应满足12215211m m m m +≥-⎧⎪-<⎨⎪->+⎩,解得()2,3m ∈综上所述,(),3m ∈-∞故答案为:(),3-∞【点睛】本题考查根据集合的补集与包含关系求解参数问题,是中档题型,在处理此类题型中,易错点为忽略端点处等号取不取得到的问题,解题时要特别仔细三、解答题21.(1){}12x x <<;(2)12m ≤≤【分析】(1)解不等式,可求出集合,A B ,进而求出二者的交集即可;(2)结合(1),由()A B C ⋂⊆,可得{}12x x <<⊆{}11x m x m -<<+,进而可列出不等关系,求解即可.【详解】(1)由2212x x +<-,得402x x +<-,等价于()()420x x +-<,解得42x -<<, 所以集合{}42A x x =-<<,由254x x >-,解得1x >或5x <-,所以{1B x x =>或}5x <-, 所以A B ={}42x x -<<{1x x >或}5x <-{}12x x =<<.(2)因为()A B C ⋂⊆,所以{}12x x <<⊆{}1,x x m m -<∈R , 即{}12x x <<⊆{}11x m x m -<<+, 所以1112m m -≤⎧⎨+≥⎩,解得12m ≤≤. 综上所述,实数m 的取值范围是12m ≤≤.【点睛】本题考查分式不等式、一元二次不等式的解法,考查集合的交集,考查根据集合的包含关系求参数,考查学生的推理能力与计算求解能力,属于中档题.22.(1)610a -≤≤;(2)答案见解析.【分析】()1先求集合A ,B ,A R ,再由R B A ⊆得到a 的不等式,解得即可;()2结合()1利用充分必要条件的定义逐一判定.【详解】解:()1集合5|0(3)(5,)3x A x R x -⎧⎫=∈>=-∞-⋃+∞⎨⎬+⎩⎭, 所以[]35R A =-,,集合()()()2{|21050}{|250}B x R x a x a x R x a x =∈-++≤=∈--≤,若R B A ⊆,只需352a -≤≤, 所以610a -≤≤.()2由()1可知的充要条件是[]610a ∈-,, 选择①,则结论是既不充分也不必要条件;选择②,则结论是必要不充分条件;选择③,则结论是充分不必要条件.【点睛】关键点睛,利用集合关系求参数范围,求集合A ,B ,A R ,再由RB A ⊆得到a 的不等式,进而利用a 的范围,判定充分必要条件,属于中档题. 23.(1) a =2;(2) a =2【详解】解:(1)由题意得B ={x|x≥3或x≤1},由A∩B =∅,A ∪B =R ,可知A =∁R B =(1,3)∴⇒a =2-(2)∵B ={x|x≥3或x≤1},∴:x ∈{x|1<x <3}.∵是p 的必要条件.即p ⇒, ∴A ⊆∁R B =(1,3) ∴⇒2≤a≤2⇒a =2. 本试题主要考查了命题的真值,以及集合的运算的综合运用,以及二次不等式的求解问题.24.(1)(]2,10AB =-;[]()7,10R A B =;(2)3a <. 【分析】(1)直接按集合并集的概念进行运算,先求出A R 再与集合B 取交集;(2)根据并集的结果可得B A ⊆,分B =∅、B ≠∅两种情况进行讨论求解a 的取值范围.【详解】(1)4a =,[](]4,10,(2,7)2,10B A A B ==-⇒=-, (][)[],27,+()7,10R R A A B =-∞-∞⇒=(2)A B A B A ⋃=⇒⊆,①若321B a a a =∅⇒>-⇒<;②若32122133273a a a B a a a a a ≤-≥⎧⎧⎪⎪≠∅⇒>-⇒>-⇒≤<⎨⎨⎪⎪-<<⎩⎩. 综上所述,3a <.【点睛】本题考查集合的基本运算、根据两集合并集的结果求参数的范围,属于中档题. 25.{|3x x <或}5x >【分析】根据补集的定义求出R C A ,再有并集的定义对R C A 和B 集合取并集即可.【详解】因为}{37A x x =≤<,所以由补集定义知, }{73R C A x x x =≥<或,因为}{510B x x =<<,所以作图如下:由图可知,()}{35R C A B x x x ⋃=<>或.故答案为:{|3x x <或}5x >【点睛】 本题主要考查集合交、补混合运算;熟练掌握各自定义是求解本题关键;对于此类题目学生应掌握画数轴辅助解题,画数轴时应注意实点和虚点的区别;属于中档题,常考题型.26.{|14}A B x x ⋂=<<.【分析】根据题意,先求出集合A 与集合B ,再利用交集的定义即可.【详解】由题意,集合{}{}{}{}113|28|22|13|24x x A x x x x x x --=<=<=-<=-<<,集合(){}(){}{}{}222|log 512|log 51log 4|514|1B x x x x x x x x =->=->=->=>, 所以,{}|14AB x x =<<. 【点睛】本题考查绝对值不等式,对数不等式的解法,考查交集的定义,属于基础题.。

高一数学必修一集合练习题及单元测试(含答案及解析)

高一数学必修一集合练习题及单元测试(含答案及解析)

集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于( )A.{x|x≥3} B.{x|x≥2} C.{x|2≤x<3} D.{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=( )A.{3,5} B.{3,6} C.{3,7} D.{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1} B.{x|x≤2 } C.{x|0<x≤2} D.{x|-1≤x≤2} 4. 满足M⊆{,,,},且M∩{,,}={,}的集合M的个数是( ) A.1 B.2 C.3 D.45.集合A={0,2,a},B={1, }.若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1 C.2 D.46.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=( )A.Ø B.{x|x<-1/2} C.{x|x>5/3} D.{x|-1/2<x<5/3}7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.10.已知集合A={-4,2a-1,},B={a-5,1-a,9},若A∩B={9},求a的值.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},求x及A∩B. 12.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10小题,每小题5分,共50分。

人教版高中数学新教材必修第一册集合测试题

人教版高中数学新教材必修第一册集合测试题

人教版高中数学新教材必修第一册集合测试题人教版高中数学材必修第一册集合测试题班级_________;姓名____________;座号__________;分数_________一、选择题(每小题7分,每小题给出的四个选项中,只有一项是符合题目要求的)1.如果集合P={x|x>-1},那么()A) ∅⊆ PB) { } ∈ PC) ∅∈ PD) { } ⊆ P解析:P中的元素都是大于-1的实数,∅既不是P的子集也不是P中的元素,故选项B、C、D均不符合题目要求,选A。

2.如果集合U={1,2,3,4,5,6,7,8},A={2,5,8},B={1,3,5,7},那么(U∪A)∩B等于()A) {5}B) { }C) {2,8}D) {1,3,7}解析:U∪A={1,2,3,4,5,6,7,8},(U∪A)∩B={5},故选A。

3.如果集合M={x|x=k/k,k∈Z},N={x|x=2k/4,k∈Z},那么M∩N=∅。

A) M=NB) XXXC) XXXD) MN解析:M中的元素为所有形如k/k的实数,N中的元素为所有形如2k/4的实数,显然M和N没有相同的元素,故M∩N=∅,选项D符合题目要求。

4.集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( )A) a<2B) a≥-1C) a>-1D) -1<a≤2解析:A∩B≠∅,即存在一个数x既满足-1≤x<2,又满足x<a,即-1≤x<a,故a的取值范围为选项B。

5.满足{a,b}⊆M⊆{a,b,c,d,e}的集合M的个数为()A) 6B) 7C) 8D) 9解析:M中的元素有2个或3个或4个,分别对应{a,b}、{a,b,c}、{a,b,c,d}、{a,b,c,d,e},故M的个数为4,选项D。

6.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A) S∩PB) S∪PC) V∖SD) V∖P解析:阴影部分表示的是在S和P中都出现过的元素,即S∩P,选项A。

(必考题)高中数学必修一第一单元《集合》测试卷(答案解析)(3)

(必考题)高中数学必修一第一单元《集合》测试卷(答案解析)(3)

一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃3.设全集U =R ,{}2560A x x x =-->,{}5B x x a =-<(a 为常数),且11B ∈,则下列成立的是( )A .U AB R = B .UA B R =C .UUAB R = D .AB R =4.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个5.已知{}lg M y y x ==,{}xN y y a ==,则MN =( )A .0,B .RC .∅D .,06.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .0 7.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉8.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥9.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .10.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集11.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,112.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-二、填空题13.设P 为非空实数集满足:对任意给定的x y P ∈、(x y 、可以相同),都有x y P +∈,x y P -∈,xy P ∈,则称P 为幸运集.①集合{2,1,0,1,2}P =--为幸运集;②集合{|2,}P x x n n ==∈Z 为幸运集;③若集合1P 、2P 为幸运集,则12P P 为幸运集;④若集合P 为幸运集,则一定有0P ∈;其中正确结论的序号是________ 14.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2230,B x x x x R =--≥∈,则A B =_________. 15.已知集合(){}22112|2103x P x Q x x x m ⎧-⎫=-=-+-⎨⎬⎩⎭≤,≤,其中m >0,全集U =R .若“Ux P ∈”是“∈Ux Q ”的必要不充分条件,则实数m 的取值范围为__________.16.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且A B =________.17.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.18.若关于x 的方程2210ax x ++=的解集有唯一子集 ,则实数a 的取值范围是_____. 19.若{}|224xA x ≤≤,1|1xB x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;20.已知集合{}A a =-,,2||b aB a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b +=______。

北师大版高中数学必修一第一单元《集合》测试题(有答案解析)

北师大版高中数学必修一第一单元《集合》测试题(有答案解析)

一、选择题1.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .32.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( )A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,3.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞4.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤ 5.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( ) A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉6.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<7.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈8.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,19.已知集合{}1A x x =>,{}1B x x =≥,则( ) A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R10.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<11.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1612.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-二、填空题13.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为________.14.非空集合G 关于运算*满足:① 对任意,a b G ∈,都有a b G *∈;② 存在e G ∈使对一切a G ∈都有a e e a a *=*=,则称G 是关于运算*的融洽集,现有下列集合及运算:①G 是非负整数集,*运算:实数的加法; ②G 是偶数集,*运算:实数的乘法;③G 是所有二次三项式组成的集合,*运算:多项式的乘法;④{|,}G x x a a b Q ==+∈,*运算:实数的乘法; 其中为融洽集的是________15.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________16.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.17.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号) 18.对于集合M ,定义函数1()1M x Mf x x M ∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.19.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.已知全集U =R ,集合1{|28},{22x A x B x x m =<≤=<-或2}x m >+ (1)若A {}|03R B x x ⋂=≤≤,求实数m 的值; (2)若AB =B ,求实数m 的取值范围.22.已知集合{}02A x x =<<,{}1B x x a =<<-(1)若3a =-,求()R A B ⋃;(2)若AB B =,求a 的取值范围.23.已知集合A ={x |12x -≤≤},B ={x |123m x m +≤≤+} (1)当m =1时,求AB ;(2)若B A ⊆,求实数m 的取值范围24.已知集合{}25A x x =-≤≤,集合{}121B x p x p =+≤≤-,若A B B =,求实数p 的取值范围.25.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭. (1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围. 26.设集合{}2|320A x x x =++=,{}2|2(1)30B x x a x a =++++=. (1)若{1}A B ⋂=-,求实数a 的值; (2)若A B A ⋃=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则AB A =正确.2.A解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.3.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.4.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A . 【点睛】本题考查交集与补集的混合运算,属于中档题5.C解析:C 【分析】用列举法表示集合Q ,这样就可以选出正确答案. 【详解】{}M P M a ⊆⇒=或{}b 或{},a b 或∅.因此{}{}{}{}{|},,,,Q M M P a b a b =⊆=∅,所以P Q ∈.故选:C 【点睛】本题考查了集合与集合之间的关系,理解本题中集合Q 元素的属性特征是解题的关键.6.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.7.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.8.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.9.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.10.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.11.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.12.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意; 当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.二、填空题13.【分析】由分和两种情况分别讨论进而建立不等关系可求出答案【详解】当即时此时满足;当即时此时由可得解得综上实数的取值范围为故答案为:【点睛】本题考查根据集合的包含关系求参数的范围其中的易漏点在于漏掉考 解析:(,3]-∞【分析】由B A ⊆,分B =∅和B ≠∅两种情况分别讨论,进而建立不等关系,可求出答案.【详解】当121m m +>-,即2m <时,此时B =∅,满足B A ⊆;当121m m +≤-,即2m ≥时,此时B ≠∅,由B A ⊆,可得12215m m +≥-⎧⎨-≤⎩,解得23m ≤≤.综上,实数m 的取值范围为(,3]-∞.故答案为:(,3]-∞ 【点睛】本题考查根据集合的包含关系求参数的范围,其中的易漏点在于漏掉考虑子集为空集的情况,易错点在于弄错不等关系,结合数轴依次分类讨论即可避免此类问题.14.①④【分析】逐一验证几个选项是否分别满足融洽集的两个条件若两个条件都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意非负整数则仍为非负整数即;取则故①符合题意;②对于任意偶数则仍为偶数即;但是解析:①④ 【分析】逐一验证几个选项是否分别满足“融洽集”的两个条件,若两个条件都满足,是“融洽集”,有一个不满足,则不是“融洽集” 【详解】①对于任意非负整数,a b ,则+a b 仍为非负整数,即a b G +∈;取0e =,则00a a a +=+=,故①符合题意;②对于任意偶数,a b ,则ab 仍为偶数,即ab G ∈;但是不存在e G ∈,使对一切a G ∈都有ae ea a ==,故②不符合题意;③对于G 是所有二次三项式组成的集合,若,a b G ∈,ab 不再是二次三项式,故③不符合题意;④对于{|,}G x x a a b Q ==+∈,设1x a =+2x c =+,则()(122x x ac bd ad bc ⋅=+++,即12x x G ⋅∈;取1e =,则11a a a ⨯=⨯=,故④符合题意,故答案为:①④ 【点睛】本题考查对新定义“融洽集”的理解,考查理解分析能力15.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若A B B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈-故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.16.【分析】根据集合中的元素的互异性列出不等式组求解【详解】由题:集合则化简得:解得:即所以故答案为:【点睛】此题考查根据集合中元素的互异性求参数的取值范围需要注意不重不漏 解析:{}4,2,0,1,4--【分析】根据集合中的元素的互异性,列出不等式组求解. 【详解】由题:集合{}24,,3A m m m =+,则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩, 解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞,即()()()()()(),44,22,00,11,44,M =-∞----+∞,所以{}4,2,0,1,4R C M =--. 故答案为:{}4,2,0,1,4-- 【点睛】此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.17.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④ 【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案.【详解】对于①,1==-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根, 由>0∆,可得0t <或4t >,故②错; 对于③,不妨设A 中123n a a a a <<<<,由1212n n n a a a a a a na =+++<得121n a a a n -<,当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确;对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =, 于是“复活集” A 只有一个,为{}1,2,3, 当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾,∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④ 【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.18.【分析】通过定义可以用集合中的补集来解释再根据取最小值时所满足的条件最后可以求出集合的个数【详解】因为所以有要想最小只需最大且最小要使最小则有所以集合是集合和集合子集的并集因此集合的个数为个故答案为 解析:8【分析】通过定义可以用集合中的补集来解释,再根据()()Card X A Card X B *+*取最小值时所满足的条件,最后可以求出集合X 的个数. 【详解】因为{|()()1}M N M N x f x f x *=⋅=-,所以有()MNM N C M N *=⋂,要想()Card X A *最小,只需()Card X A ⋂最大,且()Card X A ⋃最小,要使 ()()Card X A Card X B *+*最小, 则有A B X A B ⋂⊆⊆⋃,{}{}1,2,4,6,8,10,2,4,8A B A B ⋃=⋂=,所以集合X 是集合{}2,4,8和集合{}1,6,10子集的并集,因此集合X 的个数为328=个.故答案为:8【点睛】本题考查了新定义题,考查了集合与集合之间的关系,考查了数学阅读能力.19.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.【分析】先求得不等式的解集根据不等式的解集中的整数有且仅有得出不等式组即可求解得到答案【详解】由题意不等式即解得要使得不等式的解集中的整数有且仅有则满足解得即实数的取值范围是故答案为【点睛】本题主要 解析:[]16,17【分析】先求得不等式34x b -<的解集4433b b x -++<<,根据不等式34x b -<的解集中的整数有且仅有5,6,得出不等式组44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案. 【详解】 由题意,不等式34x b -<,即434x b -<-<,解得4433b b x -++<<, 要使得不等式34x b -<的解集中的整数有且仅有5,6, 则满足44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b ≤≤,即实数b 的取值范围是[]16,17.故答案为[]16,17.【点睛】本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题21.(1)m =2;(2){5m m >或3}m ≤-..【分析】(1)分别求集合A 和B R ,根据运算结果,求实数m 的值;(2)根据运算结果,转化为A B ⊆,列不等式求m 的取值范围. 【详解】解:(1)由已知得{}13A x x =-<≤,{}22R B x m x m =-≤≤+,∵A {}|03R B x x ⋂=≤≤, ∴2023m m -=⎧⎨+≥⎩,,即 2.1m m =⎧⎨≥⎩∴m =2.(2)A B B =,∴A B ⊆.∴23m ->或21m +≤-,∴5m >或3m ≤-.即实数m 的取值范围为{5m m >或3}m ≤-.【点睛】易错点点睛:1.一般涉及集合运算时,需注意端点值的开闭,以及列不等式时,需注意参数的端点值的开闭;2.根据集合交,并集的运算结果,转化为子集问题时,需注意有时有空集的情况,这点容易忽略.22.(1){2x x <或3x ≥};(2)[)2-+∞,. 【分析】(1)3a =-时,先计算B R ,再进行并集运算即可; (2)先利用交集结果判断B A ⊆,再讨论B 是否空集使其满足子集关系,列式计算即得结果.【详解】(1)因为3a =-,所以{}13B x x =<<,=B R {1x x ≤或3x ≥}, 故()=⋃R A B {2x x <或3x ≥};(2)因为AB B =,所以B A ⊆. 若B =∅,则1a -≤,解得1a ≥-;若B ≠∅,则12a a ->⎧⎨-≤⎩,解得21a -≤<-. 综上所述,a 的取值范围为[)2-+∞,. 【点睛】易错点睛:已知B A ⊆求参数范围时,需讨论集合B 是否是空集,因为空集是任意集合的子集,直接满足B A ⊆.23.(1){}2;(2)1,2⎛⎤-∞ ⎥⎝⎦. 【分析】(1)根据集合的交集运算求解即可;(2)讨论集合B 是否为空集,根据包含关系列出不等式,即可得出实数m 的取值范围.【详解】(1)当m =1时,B ={x |2≤x ≤5},因此A B ={2} (2)A B ⇔B A ⊆,则①当B =∅时,即123m m +>+,即2m <-,符合题意②当B ≠∅时,要满足B A ⊆,则12311232m m m m +≤+⎧⎪+≥-⎨⎪+≤⎩2212m m m ⎧⎪≥-⎪⇒≥-⎨⎪⎪≤-⎩122m ⇒-≤≤-综上所述,当B A ⊆时,实数m 的取值范围时1(,2)2,2⎡⎤-∞-⋃-⎢⎥⎣⎦=1,2⎛⎤-∞ ⎥⎝⎦ 【点睛】本题考查交集的运算,同时也考查了利用集合的包含关系求参数,解题的关键就是对含参集合分空集和非空集合两种情况讨论,考查分类讨论思想的应用,属于中档题. 24.3p ≤【分析】根据题意,由集合的性质,可得若满足A B B =,则B A ⊆,进而分:①121p p +>-,②121p p +=-,③121p p +<-,三种情况讨论,讨论时,先求出p 的取值范围,进而可得B ,讨论集合B 与A 的关系可得这种情况下p 的取值范围,对三种情况下求得的p 的范围求并集可得答案.【详解】解:根据题意,若AB B =,则B A ⊆; 分情况讨论:①当121p p +>-时,即2p <时,B =∅,此时B A ⊆,则A B B =,则2p <时,符合题意;②当121p p +=-时,即2p =时,{}{}333B x x =≤≤=,此时B A ⊆,则A B B =, 则2p =时,符合题意;③当121p p +<-时,即2p >时,{}121B x p x p =+≤≤-,若B A ⊆,则有21512p p -≤⎧⎨+≥-⎩,解可得33p -≤≤, 又由2p >,则当23p <≤时,符合题意;综上所述,满足AB B =成立的p 的取值范围为3p ≤. 【点睛】本题考查根据集合的包含关系求参数的取值范围,易错点为遗漏B =∅的情况,考查了分类讨论的思想,属于中档题.25.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出A B 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围.【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=- (2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-,则当C =∅时,21a a >+,即1a >, 当C ≠∅时,212310a a a a ≤+⎧⎪>-⎨⎪+<⎩,得312a -<<-,综上,312a -<<-或1a >. 【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.26.(1)2(2)21a -<≤【分析】(1)先化简{}{}2|3202,1=++==--A x x x ,再由{1}A B ⋂=-,则1B -∈,代入求解.(2)将A B A ⋃=转化为B A ⊆,再分B 是空集和不是空集两种情况讨论求解.【详解】(1)因为{}{}2|3202,1=++==--A x x x 又因为{1}A B ⋂=-所以1B -∈所以()12(1)130++⨯-++=a a解得:2a =(2)因为A B A ⋃=所以B A ⊆当()2[2(1)]430∆=+-+<a a 时 解得21a -<<,B =∅ 成立当()2[2(1)]430∆=+-+=a a 时 解得:2a =-或1a =当2a =-时, {}1B =,不成立,当1a =时,{}2B =-,成立,当()2[2(1)]43>0∆=+-+a a 时 解得:2a <-或>1a ,此时{}2,1==--B A 才成立,而2(a+1)=-332a ⎧⎨+=⎩ ,解得 5=-21a a ⎧⎪⎨⎪=-⎩无解. 综上:实数a 的取值范围21a -<≤【点睛】本题主要考查了集合的基本运算和已知集合关系求参数的问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.。

高中数学必修一集合测试题含详细答案

高中数学必修一集合测试题含详细答案

高中数学必修一集合测试题含详细答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-2x>0},B={x|-5<x<5},则( )A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B2.已知集合S={1,2},集合T={a},∅表示空集,如果S∪T=S,那么a的值构成的集合是( )A.∅B.{1}C.{2}D.{1,2}3.已知命题p:∃x0∈R,-3x0+3≤0,则下列说法正确的是( )A.p:∃x0∈R,-3x0+3>0,且p为真命题B.p:∃x0∈R,-3x0+3>0,且p为假命题C.p:∀x∈R,x2-3x+3>0,且p为真命题D.p:∀x∈R,x2-3x+3>0,且p为假命题4.已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( )A.{0}B.{0,1}C.{0,2}D.{0,1,2}5.已知ab>0,若a>b,则<的否命题是( )A.已知ab≤0,若a≤b,则≥B.已知ab≤0,若a>b,则≥C.已知ab>0,若a≤b,则≥D.已知ab>0,若a>b,则≥6.已知集合{1,2,3,4,5}的非空子集A具有性质P:当a∈A时,必有6-a∈A.则具有性质P的集合A的个数是( )A.8B.7C.6D.57.设a,b为实数,则“0<ab<1”是“b<”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.给定下列两个命题:①“p∨q”为真是“p”为假的必要不充分条件;②“∃x0∈R,使sinx0>0”的否定是“∀x∈R,使sinx≤0”.其中说法正确的是( )A.①真②假B.①假②真C.①和②都为假D.①和②都为真9.给定两个命题p,q,若p是q的必要而不充分条件,则p是q的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.)给出下列命题:(1)等比数列{a n}的公比为q,则“q>1”是“a n+1>a n(n∈N*)”的既不充分也不必要条件;(2)“x≠1”是“x2≠1”的必要不充分条件;(3)函数y=lg(x2+ax+1)的值域为R,则实数-2<a<2;(4)“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件.其中真命题的个数是( )A.1B.2C.3D.411.已知函数f(x)=x2+bx+c,则“c<0”是“∃x0∈R,使f(x0)<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12.已知下列四个命题:①命题“若α=,则tanα=1”的逆否命题为假命题;②命题p:∀x∈R,sinx≤1,则p:∃x0∈R,使sinx0>1;③“φ=+kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;④命题p:“∃x0∈R,使sinx0+cosx0=”;命题q:“若sinα>sinβ,则α>β”,那么(p)∧q为真命题.其中正确的个数是( )A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若命题“∃x0∈R,+(a-3)x0+4<0”为假命题,则实数a的取值范围是.14.已知A=,B={x|log2(x-2)<1},则A∪B= .15.已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点;命题q:函数y=x2-a在(0,+∞)上是减函数.若p且q为真命题,则实数a的取值范围是.16.已知下列四个结论:①命题“若p,则q”与命题“若q,则p”互为逆否命题;②命题p:∃x0∈[0,1],≥1,命题q:∃x0∈R,+x0+1<0,则p∨q为真;③若p∨q为假命题,则p,q均为假命题;④“若am2<bm2,则a<b”的逆命题为真命题.其中正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知A={x||x-a|<4},B={x||x-2|>3}.(1)若a=1,求A∩B.(2)若A∪B=R,求实数a的取值范围.18.(12分)已知命题p:方程x2+mx+1=0有两个不相等的负实根,命题q:不等式4x2+4(m-2)x+1>0的解集为R.若p∨q为真命题、p∧q为假命题,求实数m的取值范围.19.(12分)已知全集U=R,集合A={x|(x-2)(x-3)<0},B={x|(x-a)(x-a2-2)<0}.(1)当a=时,求(∁U B)∩A.(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.20.(12分)设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)求证:方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.22.(12分)已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0,求p的取值范围.答案解析1.【解析】选B.由A={x|x2-2x>0}得,A={x|x<0或x>2},又B={x|-5<x<5},所以A∪B=R.2.【解析】选D.因为S={1,2},T={a},S∪T=S,所以T⊆S,a∈S,所以a=1或a=2,故选D.3.【解析】选C.依题意,命题p:∃x0∈R,-3x0+3≤0的否命题为不存在x∈R,使得x2-3x+3≤0,即对任意的x∈R,x2-3x+3>0.又x2-3x+3=+>0,所以命题p为假命题,所以p为真命题.4.【解析】选B. B={x||x|<2}={x|-2<x<2},则A∩B={0,1,2,3,4}∩{x|-2<x<2}={0,1}.5.【解析】选C.条件ab>0是大前提,所以其否命题是:已知ab>0,若a≤b,则≥.6.【解析】选B.由题意,知3∈A可以,若1∈A,则5∈A,若2∈A,则4∈A,所以具有性质P的集合A有{3},{1,5},{1,3,5},{2,4},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.7.【解析】选D.若0<ab<1,则当a>0时,有b<,当a<0时,有b>.当b<时,不妨设b=-1,a=1,则满足b<,但ab=-1,不满足0<ab<1.所以0<ab<1是b<成立的既不充分也不必要条件,选D.【解析】选B.由10a>10b得a>b.由lga>lgb得a>b>0,所以“10a>10b”是“lga>lgb”的必要不充分条件,选B.8.【解析】选D.①中,“p∨q”为真,说明,p,q至少有一为真,但不一定p为真,即“p”不一定为假;反之,“p”为假,那么p一定为真,即“p∨q”为真,命题①为真;特称命题的否定是全称命题,所以,②为真,综上知,①和②都为真.9.【解析】选A.因为p是q的必要而不充分条件,所以q是p的必要而不充分条件,即p是q的充分而不必要条件.【解析】选A.因为函数f(x)=a x在R上是减函数,所以0<a<1.由函数g(x)=(2-a)x3在R上是增函数可得:2-a>0,即a<2.所以若0<a<1,则a<2,而若a<2,推不出0<a<1.所以“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.10.【解析】选B.若首项为负,则公比q>1时,数列为递减数列,a n+1<a n(n∈N*),当a n+1>a n(n∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故(1)正确;“x≠1”时,“x2≠1”在x=-1时不成立,“x2≠1”时,“x≠1”一定成立,故(2)正确;函数y=lg(x2+ax+1)的值域为R,则x2+ax+1=0的Δ=a2-4≥0,解得a≥2或a≤-2,故(3)错误;“a=1”时,“函数y=cos2x-sin2x=cos2x的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=±1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故(4)错误.故选B.【解析】选C.由p∨q为假命题知,p,q都是假命题,所以p,q都为真命题,故(p)∧(q)为真命题,A正确;在△ABC中,A=B⇔a=b⇔sinA=sinB,所以B正确;由p为真知,p为假,所以p∧q为假,反过来,若p∧q为假,则p与q都假或一个为假,所以p不一定为真,故“p”为真是“p∧q”为假的充分不必要条件,所以C错误;因为x=y=0的否定是x≠0或y≠0,即实数x,y中至少有一个不为0,所以D正确.11.【解析】选A.若c<0,则Δ=b2-4c>0,所以∃x0∈R,使f(x0)<0,成立.若∃x0∈R,使f(x0)<0,则有Δ=b2-4c>0,即b2-4c>0即可,所以当c=1,b=3时,满足Δ=b2-4c>0,所以“c<0”是“∃x0∈R,使f(x0)<0”的充分不必要条件,故选A.12.【解析】选B.①中的原命题为真,所以逆否命题也为真,所以①错误.②根据全称命题的否定是特称命题知,②为真.③当函数为偶函数时,有φ=+kπ(k∈Z),所以为充要条件,所以③正确.④因为sinx+cosx=sin的最大值为<,所以命题p为假命题,p为真,三角函数在定义域上不单调,所以q为假命题,所以(p)∧q为假命题,所以④错误.所以正确的个数为2,故选B.13.【解析】由题意,知“∀x∈R,x2+(a-3)x+4≥0”是真命题.故Δ=(a-3)2-16≤0,即a2-6a-7≤0,解得-1≤a≤7,即a∈[-1,7].答案:[-1,7]14.【解析】因为A=={x|2-3<2-x<2-1}={x|1<x<3},B={x|log2(x-2)<1}={x|0<x-2<2}={x|2<x<4},所以A∪B={x|1<x<4}.答案:{x|1<x<4}答案:{x|1≤x<2}15.【解析】若p为真,则f(0)·f(1)=-1·(2a-2)<0,即a>1,若q为真,则2-a<0,即a>2,所以q 为真时,a ≤2,故p ∧q 为真时,1<a ≤2.答案:(1,2]16.【解析】根据四种命题的关系,结论①正确;②中命题p 为真命题、q 为假命题,故p ∨q 是真命题,结论②正确;根据或命题的真假判断方法知结论③正确; ④中命题的逆命题是“若a<b,则am 2<bm 2”,这个命题在m=0时不成立,结论④不正确.答案:①②③17.【解析】(1)当a=1时,A={x|-3<x<5},B={x|x<-1或x>5}.所以A ∩B={x|-3<x<-1}.(2)因为A={x|a-4<x<a+4},B={x|x<-1或x>5},且A ∪B=R ,所以a 41,a 45-<-⎧⎨+>⎩⇒1<a<3. 所以实数a 的取值范围是(1,3).18.【解析】命题p 为真时,实数m 满足Δ1=m 2-4>0且-m<0,解得m>2;命题q 为真时,实数m 满足Δ2=16(m-2)2-16<0,解得1<m<3.p ∨q 为真命题、p ∧q 为假命题,等价于p 真且q 假或者p 假且q 真. 若p 真且q 假,则实数m 满足m>2且m ≤1或m ≥3,解得m ≥3;若p 假且q 真,则实数m 满足m ≤2且1<m<3,解得1<m ≤2.综上可知,所求m 的取值范围是(1,2]∪[3,+∞).19.【解析】(1)A={x|2<x<3},当a=时,B=.∁U B=,(∁U B)∩A=.(2)由若q是p的必要条件知p⇒q,可知A⊆B. 由a2+2>a知B={x|a<x<a2+2}.所以解得a≤-1或1≤a≤2.即a∈(-∞,-1]∪[1,2].20.【解析】(1)由得q:2<x≤3. 当a=1时,由x2-4x+3<0,得p:1<x<3,因为p∧q为真,所以p真,q真.由得2<x<3,所以实数x的取值范围是(2,3).(2)由x2-4ax+3a2<0,得(x-a)(x-3a)<0.①当a>0时,p:a<x<3a,由题意,得(2,3](a,3a),所以即1<a≤2;②当a<0时,p:3a<x<a,由题意,得(2,3](3a,a),所以无解.综上,可得a∈(1,2].21.【证明】充分性:当a=0时,方程为2x+1=0,其根为x=-,方程只有一负根.当a=1时,方程为x2+2x+1=0,其根为x=-1,方程只有一负根.当a<0时,Δ=4(1-a)>0,方程有两个不相等的根,且<0,方程有一正一负两个根.必要性:若方程ax2+2x+1=0有且只有一负根.当a=0时,符合条件.当a≠0时,方程ax2+2x+1=0有实根,则Δ=4-4a≥0,所以a≤1,当a=1时,方程有一负根x=-1.当a<1时,若方程有且只有一负根,则所以a<0.综上,方程ax2+2x+1=0有且只有一个负根的充要条件为a≤0或a=1.22.【解析】记p的取值范围是I,原题可作为命题:若p∈I,则函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0. 若函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上对任意的x都有f(x)≤0,则p ∈∁I.由对任意的x都有f(x)≤0,结合图形知⇒⇒p≤-3或p≥,即∁I=,所以I=,故所求p 的取值范围为.【解析】由y2-(a2+a+1)y+a(a2+1)>0,得(y-a)(y-a2-1)>0,由于a2+1-a=+>0,所以A=(-∞,a)∪(a2+1,+∞).集合B为函数y=x2-x+,0≤x≤3的值域,二次函数y=x2-x+的对称轴方程为x=1,故在[0,3]上,当x=1时函数值最小,当x=3时函数值最大,故可得B=[2,4].(1)若A∩B=∅,则只要a2+1≥4且a≤2即可,解得a≤-或≤a≤2,即实数a的取值范围是(-∞,-]∪[,2].(2)不等式x2+1≥ax对任意x恒成立的充要条件是a2-4≤0,解得-2≤a≤2,最小a 值为-2,此时A=(-∞,-2)∪(5,+∞),∁R A=[-2,5],所以(∁R A)∩B=[2,4].。

高中必修一集合测试题(含答案)

高中必修一集合测试题(含答案)

集合单元测试姓名: 得分:一.填空题(每题5分,共70分)1.已知集合{1378},{2368}A B ==,,,,,,,则A B = .2.集合2{4,,}A y y x x N y N ==-+∈∈的真子集的个数为 .3.如果集合2{|210}A x ax x =++=中只有一个元素,则a 的值是 .4.设S 是全集,集合M P 、是它的子集,则图中阴影部分可表示为 .5.已知含有三个元素的集合2{,,1}{,,0},b a a a b a=+则20042005=a b + . 6.设集合{|12},B {|}A x x x x a =<<=<,且A B ⊆,则实数a 取值范围是 .7.已知2{1,},{1,}M y y x x R P x x a a R ==-∈==-∈,则集合M P 与的关系是8.已知集合2{|230}P x x x =--=,{|20}S x ax =+=,若S P ⊆,则实数a 的取值集合为 .9.已知集合2{10},A x x =+=若A R ⋂=∅,则实数m 的取值范围是 .10.定义集合运算{|(),,}A B z z xy x y x A y B ⊗==+∈∈,设A={0,1},B={2,3},则集合A B ⊗中所有元素之和为 .11.集合A B 、各有两个元素,A B 中有一个元素,若集合C 同时满足:(1) ⊆⋃C (A B),(2)⊇⋂C (A B),则满足条件C 的个数为 .12.设全集{(,),},I x y x y R =∈集合3{(,)1},{(,)1}2y M x y N x y y x x -===≠+-,那么()()=I I C M C N ⋂ .13.设{123456}U =,,,,,,若{2},(C ){4},(C )(C ){15}U U U A B A B A B ===,,则A = .14.已知集合31{|},{|}43M x m x m N x n x n =≤≤+=-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集合,如果把b a -叫做集合{|}x a x b ≤≤的“长度”,那么集合M N⋂的“长度”最小值为 .二.解答题(15-17题每题14分,18-20题每题16分,共90分)15. 已知集合2{|0}5x A x x -=≤+,{|(1)(3)0}B x x x =-->,U R = (1)求A B ;(2)求)U A C B (16.设集合2{1,2,},{1,}A a B a a ==-,若A B ⊇求实数a 的值.17. 已知22{|320},{|410}A x x x B x mx x m =++≥=-+->,若A B φ=,A B A =,求m 的取值范围.18. 在全国高中数学联赛第二试中只有三道题,已知(1)某校25个学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍;(3)只解出第一题的学生比余下的学生中解出第一题的人数多1;(4)只解出一道题的学生中,有一半没有解出第一题,问共有多少学生只解出第二题?19. 集合22{|190}A x x ax a =-+-=,22{|560},C {|280}B x x x x x x =-+==+-=(1)若A B A B =,求a 的值;(2)若AB φ≠,AC φ=,求a 的值20.对于整数,a b ,存在唯一一对整数0||q r r b ≤<和,.特别地,当0r =时,称b 能整除a ,记作|b a ,已知{123,23}A =,,,(1)存在q A ∈,使得2011=91(091)q r r +≤<,试求,q r 的值;(2)若,()12,((B A C a r d B C a r d B ⊆=指集合B 中的元素的个数),且存在,,|a b B b a b a ∈<,,则称B 为“和谐集”.请写出一个含有元素7的“和谐集”0B 和一个含有元素8的非“和谐集”C ,并求最大的m A ∈,使含m 的集合A 有12个元素的任意子集为“和谐集”,并说明理由。

人教版高中数学必修一1.1集合试题

人教版高中数学必修一1.1集合试题

勤思考 第 1页 / 共3页 多练习必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求) 1. 下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3. 已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d }4. 下列图形中,表示N M ⊆的是 ( )5. 下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅6. 设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A∪BD.A ⊆B 7. 集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 8. 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x = ( ) A. 1 B. 3 C. 4 D. 59. 满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是 ( )A. 8B. 7C. 6D. 510. 全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1,3 ,6 },那么集合 { 2 ,7 ,8}是 ( ) A. A B B. B A C. B C A C U U D. B C A C U U 11. 设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( ) A .0 B .0 或1 C .1 D .不能确定 二、填空题(共4小题,每题4分,把答案填在题中横线上) 13.用描述法表示被3除余1的集合 .MNA MNBNMC MND勤思考 第 2页 / 共3页 多练习14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤) 17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足}73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.勤思考 第 3页 / 共3页 多练习必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 CBBCC 11~12 BB 二、13 },13{Z n n x x ∈+=,14 (1)φ⊆}01{2=-x x ;(2){1,2,3}⊆N ; (3){1}⊆}{2x x x =;(4)0∈}2{2x x x =; 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 2=a ; 19. (1) a 2-4b=0 (2) a=-4, b=3 20. 32≤≤a .。

(常考题)北师大版高中数学必修一第一单元《集合》测试卷(含答案解析)

(常考题)北师大版高中数学必修一第一单元《集合》测试卷(含答案解析)

一、选择题1.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .2.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞3.下图中的阴影部分,可用集合符号表示为( )A .()()U U A B ⋂ B .()()U UA BC .()UA BD .()UA B ⋂4.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集5.已知集合P 的元素个数为()*3n n N ∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,A B =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9B .16C .18D .276.非空集合G 关于运算⊕满足:①对任意a 、b G ∈,都有a b G ⊕∈;②存在e G ∈使对一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合及运算中正确的说法有( )个(1)G 是非负整数集,⊕:实数的加法; (2)G 是偶数集,⊕:实数的乘法;(3)G 是所有二次三项式组成的集合,⊕多项式的乘法; (4){}|2G x x a b a b Q ==+∈,,,⊕:实数的乘法. A .1 B .2 C .3 D .47.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤8.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4B .5C .6D .79.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<<10.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,111.已知非空集合M 满足:对任意x M ∈,总有2x M ∉x M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1612.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( )A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.已知集合{}1,2,5,7,13,15,16,19A =,设,i j x x A ∈,若方程(0)i j x x k k -=>至少有三组不同的解,则实数k 的所有可能取值是________14.已知{|}A x x =>,{|(3)(3)0}B x x x x =-+>,则A B =________15.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.16.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________17.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.18.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号) 19.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.20.已知集合{|||1,}A x x a x R =-<∈,2{|1,}1x aB x x R x -=<∈+,且A B =∅,则实数a 的取值范围是________.三、解答题21.已知集合2212x A x x ⎧+⎫=<⎨⎬-⎩⎭,{}254B x x x =>-,{}1,C x x m m =-<∈R ,(1)求AB ;(2)若()A B C ⋂⊆,求m 的取值范围.22.已知集合{|14}A x x =<<,集合{|21}B x m x m =<<- (1)当1m =-时,求A B ,()R A B ⋂;(2)若AB =∅,求实数m 的取值范围.23.已知集合2A {x |x x 20}=--≥,集合()22{|1210,}B x m x mx m R =-+-<∈()1当m 2=时,求集合RA 和集合B ;()2若集合B Z ⋂为单元素集,求实数m 的取值集合;()3若集合()A B Z ⋂⋂的元素个数为()*n n N ∈个,求实数m 的取值集合24.已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-. (1)若()UA B R ⋃=,求a 的取值范围;(2)若AB B ≠,求a 的取值范围.25.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.26.已知集合{1,2,3}A =,2{|(1)0,}B x x a x a x R =-++=∈,若A B A ⋃=,求实数a ;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C . 【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.2.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.3.C解析:C 【分析】图中阴影部分是集合A 与集合B 的补集的交集. 【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()UA B 表示. 【点睛】本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.4.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集.对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.5.D解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立; 若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合. 所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=;若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=, 故选:D . 【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.6.B解析:B 【分析】根据新定义运算⊕判断. 【详解】(1)任意两个非负整数的和仍然是非负整数,对任意a G ∈,0G ∈,00a a a +=+=,(1)正确;(2)任意两个偶数的积仍然是偶数,但不存在e G ∈,对任意a G ∈,使ae ea a ==,(2)错误;(3)21x x -+和21x x +-是两个二次三项式,它们的积2242(1)(1)21x x x x x x x -++-=-+-不是二次三项式,(3)错误;(4)设x a y c =+=+,,,a b c d Q ∈,则2(xy ac bd ad bc G =+++,而且1G ∈,11x x x ⋅=⋅=,(4)正确.∴正确的有2个. 故选:B. 【点睛】本题考查新定义,解题关键是对新定义的理解与应用.7.B解析:B 【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.8.D解析:D 【分析】写出集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的非空子集,根据和美集合的定义验证即可. 【详解】先考虑含一个元素的子集,并且其倒数是其本身,有{}{}1,1,- 再考虑 含有两个元素的和美集合,有{}11,1,,33⎧⎫-⎨⎬⎩⎭, 含有三个元素的子集且为和美集合的是111,,3,1,,3,33⎧⎫⎧⎫-⎨⎬⎨⎬⎩⎭⎩⎭ 含有四个元素的子集且为和美集合的是11,1,,33⎧⎫-⎨⎬⎩⎭. 【点睛】本题主要考查了集合的子集,考查了创设新情景下解决问题的能力,属于中档题.9.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R A C B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-,∵R A C B A =即R A C B ⊆,∴23m ->或21m +<-. 即5m >或3m <-,即实数m 的取值范围是5m >或3m <-. 故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.10.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.11.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.12.C解析:C 【分析】化简集合,根据集合的并集补集运算即可. 【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-, 所以AB {|3}x x =>-,()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.二、填空题13.【分析】先将的可能结果列出然后根据相同结果出现的次数确定出的取值集合【详解】将表示为可得如下结果:其中为都出现了次所以若方程至少有三组不同的解则的取值集合为故答案为:【点睛】关键点点睛:解答本题的关 解析:{}3,6,14【分析】先将i j x x -的可能结果列出,然后根据i j x x -相同结果出现的次数确定出k 的取值集合. 【详解】将i j x x k -=表示为(),,i j x x k ,可得如下结果:()()()()()()()19,1,18,16,1,15,15,1,14,13,1,12,7,1,6,5,1,4,2,1,1, ()()()()()()19,2,17,16,2,14,15,2,13,13,2,11,7,2,5,5,2,3, ()()()()()()19,5,14,16,5,11,15,5,10,13,5,8,7,5,2,19,7,12, ()()()()()()16,7,9,15,7,8,13,7,6,19,13,6,16,13,3,15,13,2, ()()()19,15,4,16,15,1,19,16,3,其中k 为3,6,14都出现了3次,所以若方程(0)i j x x k k -=>至少有三组不同的解, 则k 的取值集合为{}3,6,14, 故答案为:{}3,6,14 【点睛】关键点点睛:解答本题的关键是理解方程(0)i j x x k k -=>至少有三组不同的解的含义,即i j x x -的差值出现的次数不小于三次,由此可进行问题的求解.14.【分析】先分别求解集合中元素的所满足的不等式再由交集的定义求解即可【详解】由题因为解得则因为解得或则或所以故答案为:【点睛】本题考查集合的交集运算考查含根式的不等式的运算考查解高次不等式 解析:{|30}-<<x x【分析】先分别求解集合中元素的所满足的不等式,再由交集的定义求解即可 【详解】由题,因为20xx >-≥⎪⎩,解得1x <,则{}|1A x x =<,因为()()330x x x -+>,解得30x -<<或3x >,则{|30B x x =-<<或}3x >, 所以{}|30A B x x ⋂=-<<, 故答案为:{|30}-<<x x 【点睛】本题考查集合的交集运算,考查含根式的不等式的运算,考查解高次不等式15.【分析】先求出和再计算【详解】由已知则∴故答案为:【点睛】本题考查集合的新定义解题关键是理解新定义运算把新运算转化为集合的运算 解析:[3,1)(3,)--+∞【分析】先求出A B -和B A -,再计算A B ∆ 【详解】由已知{|1}A y y =≥-,则{|3}(3,)A B y y -=>=+∞,{|31}[3,1)B A y y -=-≤<-=--,∴()()[3,1)(3,)A B A B B A ∆=--=--+∞, 故答案为:[3,1)(3,)--+∞【点睛】本题考查集合的新定义,解题关键是理解新定义运算,把新运算转化为集合的运算.16.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若AB B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈- 故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.17.【分析】根据集合中的元素的互异性列出不等式组求解【详解】由题:集合则化简得:解得:即所以故答案为:【点睛】此题考查根据集合中元素的互异性求参数的取值范围需要注意不重不漏 解析:{}4,2,0,1,4--【分析】根据集合中的元素的互异性,列出不等式组求解. 【详解】由题:集合{}24,,3A m m m =+,则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩,解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞,即()()()()()(),44,22,00,11,44,M =-∞----+∞,所以{}4,2,0,1,4R C M =--.故答案为:{}4,2,0,1,4--【点睛】此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.18.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案.【详解】对于①,111112222-----=+=-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根,由>0∆,可得0t <或4t >,故②错;对于③,不妨设A 中123n a a a a <<<<, 由1212n n n a a a a a a na =+++<得121n a a a n -<, 当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确; 对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =,于是“复活集” A 只有一个,为{}1,2,3,当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾, ∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.19.-2或0【分析】由可得即可得到或分别求解可求出答案【详解】由题意①若解得或当时集合中不符合集合的互异性舍去;当时符合题意②若解得符合题意综上的值是-2或0故答案为:-2或0【点睛】本题考查了交集的性解析:-2或0【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.20.【分析】解绝对值不等式得集合对分三种情况:;;讨论解分式不等式可得集合然后根据列式可得【详解】因为所以所以因为所以即所以所以当即时得此时满足;当即时满足;当即时时不符合题意综上所述:实数的取值范围是解析:2a ≤-【分析】解绝对值不等式得集合A ,对a 分三种情况: 11a +<-;11a +=-;11a +>-讨论,解分式不等式可得集合B ,然后根据AB =∅列式可得. 【详解】因为||1x a -<,所以11a x a -<<+,所以{|11}A x a x a =-<<+, 因为211x a x -<+,所以2101x a x x ---<+ ,即101x a x --<+,所以(1)(1)0x a x --+<, 所以当11a +<-,即2a <-时,得11a x +<<-,此时{|11}B x a x =+<<-,满足A B φ⋂=;当11a +=-,即2a =-时,B φ=,满足A B φ⋂=;当11a +>-,即2a >-时,{|11}B x x a =-<<+时,A B φ⋂≠,不符合题意.综上所述: 实数a 的取值范围是:2a ≤-.故答案为: 2a ≤-.【点睛】本题考查了分类讨论思想,集合的交集运算,分式不等式的解法,绝对值不等式的解法,属于中档题.三、解答题21.(1){}12x x <<;(2)12m ≤≤【分析】(1)解不等式,可求出集合,A B ,进而求出二者的交集即可;(2)结合(1),由()A B C ⋂⊆,可得{}12x x <<⊆{}11x m x m -<<+,进而可列出不等关系,求解即可.【详解】(1)由2212x x +<-,得402x x +<-,等价于()()420x x +-<,解得42x -<<, 所以集合{}42A x x =-<<,由254x x >-,解得1x >或5x <-,所以{1B x x =>或}5x <-, 所以A B ={}42x x -<<{1x x >或}5x <-{}12x x =<<.(2)因为()A B C ⋂⊆,所以{}12x x <<⊆{}1,x x m m -<∈R , 即{}12x x <<⊆{}11x m x m -<<+, 所以1112m m -≤⎧⎨+≥⎩,解得12m ≤≤. 综上所述,实数m 的取值范围是12m ≤≤.【点睛】本题考查分式不等式、一元二次不等式的解法,考查集合的交集,考查根据集合的包含关系求参数,考查学生的推理能力与计算求解能力,属于中档题.22.(1){|24}A B x x ⋃=-<<,()=R A B {|21}x x -<≤;(2)0m ≥. 【分析】(1)当1m =-时,求集合B ,再求集合的交并补集;(2)讨论B =∅ 和B ≠∅两种情况讨论当AB =∅时,求参数的取值范围. 【详解】(1)1m =-时,{|22}Bx x ,{|24}A B x x ⋃=-<<, {1R A x x =≤或4}x ≥,{|21}R A B x x ⋂=-<≤()(2)由A B =∅,当B =∅时,21m m ,解得:13m ≥ 当B ≠∅时,2111m m m <-⎧⎨-≤⎩,解得:103m ≤< 或2124m m m <-⎧⎨≥⎩,无解 综上可得:0m ≥【点睛】易错点睛:根据集合的运算结果求参数或是根据集合的包含关系求参数时,容易忽略空集的情况,这一点需注意.23.(1)R A {x |1x 2}=-<<,1{|3B x x =<或1}x >;(2){}0;(3)211 1.32m m -<<-<<或 【分析】(1)m =2时,化简集合A ,B ,即可得集合∁R A 和集合B ;(2)集合B ∩Z 为单元素集,所以集合B 中有且只有一个整数,而0∈B ,所以抛物线y =(1﹣m 2)x 2+2mx ﹣1的开口向上,且与x 轴的两个交点都在[﹣1,1]内,据此列式可得m =0;(3)因为A =(﹣∞,﹣1)∪(2,+∞),(A ∩B )∩Z 中由n 个元素,所以1﹣m 2>0,即﹣1<m <1;A ∩B 中至少有3或﹣2中的一个,由此列式可得.【详解】集合A ={x |x 2﹣x ﹣2≥0}={x |x ≥2或x ≤﹣1},集合{x |(1﹣m 2)x 2+2mx ﹣1<0,m ∈R}={x |[(1+m )x ﹣1][(1﹣m )x +1]<0}(1)当m =2时,集合∁R A ={x |﹣1<x <2};集合1{|3B x x =<或1}x > ; (2)因为集合B ∩Z 为单元素集,且0∈B ,所以,解得m =0,当m =0时,经验证,满足题意.故实数m 的取值集合为{0}(3)集合(A ∩B )∩Z 的元素个数为n (n ∈N *)个,A ∩B 中至少有3或﹣2中的一个, 所以令f (x )=(1﹣m 2)x 2+2mx ﹣1,依题意有或, 解得﹣1<m <﹣或<m <1∴【点睛】本题考查了交、并、补集的混合运算.属难题.24.(1)1 , 2⎛⎤-∞⎥⎝⎦;(2)1,2a⎡⎫+∞⎢⎣∈⎪⎭.【分析】(1)先计算UA,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出A B B=时a的取值范围,再求其补集即可.【详解】(1)∵{}|02A x x=≤≤,∴{|0UA x x=<或}2x>,若()UA B R⋃=,则32322a aaa-≥⎧⎪⎨⎪-≥⎩,即12a≤∴实数a的取值范围是1,2⎛⎤-∞⎥⎝⎦.(2)若A B B=,则B A⊆.当B =∅时,则32-<a a得1,a>当B≠∅时,若B A⊆则322aa≥⎧⎨-≤⎩,得1,12a⎡⎤∈⎢⎥⎣⎦,综上故a的取值范围为1,2a⎡⎫+∞⎢⎣∈⎪⎭,故A B B≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞⎪⎝⎭【点睛】本题主要考查了集合的交并补运算,属于中档题.25.(1)R(2)16m<≤或413m≤≤【分析】(1)求出集合A,B,根据集合的并集运算即可;(2){|3},C x m x m=<<1{|02A B x x⋂=<<或14}x<≤,利用()C A B⊆,列出不等式组,求出实数m的取值范围.【详解】由2()lg(231)f x x x=-+可得:22310x x-+>,所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞,所以{|04}B x x =<,所以A B R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C A B ⊆, 所以0132m m <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩, 解得106m <≤或413m ≤≤, 故实数m 的取值范围106m <≤或413m ≤≤. 【点睛】 本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题. 26.1a =或2或3【分析】由A B A ⋃=可得B A ⊆,分别讨论B =∅与B ≠∅的情况,进而求解即可【详解】由A B A ⋃=可得B A ⊆,若B =∅,则()2140a a ∆=+-<,解得a ∈∅;若B ≠∅,则()()10x a x --=,解得1x a =,21x =,①当1a =,则{}1B =,符合题意;②当2a =,则{}1,2B =,符合题意;③当3a =,则{}1,3B =,符合题意;综上,1a =或2或3【点睛】本题考查已知集合的包含关系求参数,考查分类讨论思想。

高中数学必修一集合习题大全含答案

高中数学必修一集合习题大全含答案

的实数 x 是否存在?若存在,求出 x ;若不存在,请说明理由。
0 , 则这样
练习二
一、选择题(每小题 5 分,计 5× 12=60 分)
1.下列集合中,结果为空集的为(

( A) x R | x2 4 0
( B) x | x 9 或 x 3
( C) ( x , y) | x 2 y 2 0 ( D) x | x 9 且 x 3
则 a 的值为
13.不等式 |x-1|>-3 的解集是

14.若集合 M { x | ax 2 2x 1 0 , x R} 只有一个元素,则实数 a 的值为
三解答题
2
21、已知全集 U={x |x -3x+2 ≥0} ,A={x||x-2|>1}
,B= x x 1 2x
0 ,求 CUA,CUB,A∩ B A ∩
设集合 M
{x| x
k
1 ,k
Z} , N
{x |x
k
1 ,k
Z} ,则()
24
42
A. M N B. M N C. N M D. M N
二、填空题 ( 每小题 4 分 , 共 16 分 )
13. 某班有学生 55 人,其中体育爱好者 43 人,音乐爱好者 34 人,还有 4 人既不爱好
体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人
《集合》
一、选择题 :( 每小题 5 分共 6 0 分 )
1. 下列命题正确的有(

( 1)很小的实数可以构成 集合;
练习一
( 2)集合 y | y
2
x
1 与集合
x, y | y
2
x
1 是同一个集合 ;

高中数学单元测试题必修1第一章《集合》

高中数学单元测试题必修1第一章《集合》

高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为A .1B .1-C .1或1-D .1或1-或0 3.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则A .U AB = B .()U U A B = ðC .()U U A B = ðD .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧, 则下列结论正确的是A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<216.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ7.下列四个集合中,是空集的是 A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 A .M N = B .M ÜNC .N ÜMD .M N ϕ=9.表示图形中的阴影部分A .()()A CBC B .()()A B A CC .()()A B B CD .()A B C 10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.下列命题之中,U 为全集时,不正确的是A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b = .14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为 .15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.CB A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.19.(12分)在1到100的自然数中有多少个能被2或3整除的数?20.(12分)已知集合22{|320},{|20}A x x x B x x x m =-+==-+=且=B A ,A 求m的取值范围.21.设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .①当A B =A B 时,求a 的值;②当φÜA B ,且A C =φ时,求a 的值; ③当A B =A C ≠φ时,求a 的值;(12分)22.(12分)设1a ,2a ,3a ,4a ,5a 为自然数,A={1a ,2a ,3a ,4a ,5a }, B={21a ,22a ,23a ,24a ,25a },且1a <2a <3a <4a <5a ,并满足A ∩B={1a ,4a }, 1a +4a =10,A ∪B 中各元素之和为256,求集合A ?高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为(D )A .3,1x y ==-B .(3,1)-C .{3,1}-D .{(3,1)}-2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为(D ) A .1 B .1- C .1或1- D .1或1-或03.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则(C ) A .U A B = B .()U U A B = ð C .()U U A B = ð D .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧,则下列结论正确的是 ( B )A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于(A )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 设集合{1,2,3,4,5,6},{|26}P Q x R x ==∈≤≤,那么下列结论正确的是(D )A .P Q P =B .P Q Q ÝC .P Q Q =D .P Q P Ü 集合{|22},{|13}A x x B x x =-<<=-≤<,那么A B = (A )A .{|23}x x -<<B .{|12}x x ≤<C .{|21}x x -<≤D .{|23}x x <<以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φÜ}0{,其中正确的个数是( A )A .1B .2C .3D .4 下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆④0;∈∅⑤0 ∅.=∅ 其中错误..写法的个数为 (C ) A .1 B .2 C .3 D .4 如果集合{}1->=x x P ,那么 (D )A .P ⊆0B .{}P ∈0C .P ∈∅D .{}P ⊆06.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 ( B ) A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ 7.下列四个集合中,是空集的是 ( D )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 ( B ) A .M N = B .M ÜNC .N ÜMD .M N ϕ= 已知集合 },61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, =P x x |{+=2p },61Z p ∈,则P N M ,,的关系 (B ) A .N M =ÜP B .M ÜP N = C .M ÜN ÜP D . N ÜP ÜM设集合},3|{Z k k x x M ∈==,},13|{Z k k x x P ∈+==,},13|{Z k k x x Q ∈-==,若Q c P b M a ∈∈∈,,,则∈-+c b a( C ) A .M B . P C .Q D .P M ⋃9.表示图形中的阴影部分( A )A .()()A CBC B .()()A B A CC .()()A B B CD .()A B CB A10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于( B )A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是(C ) A .8 B .7 C .6 D .5满足{,}M N a b = 的集合N M ,共有(C )A .7组B .8组C .9组D .10组 满足条件{1}{1,2,3}M = 的集合M 的个数是 ( C )A .4B .3C .2D .112.下列命题之中,U 为全集时,不正确的是 (B )A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b =2.14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为A ∪B.15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围a =0或89≥a . 16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是{|1}a a -?设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅ ,则实数m 范围是(D ) A .1m ≥- B .1m >- C .1m ≤- D .1m <-三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.证明:(1)3=22-12 ∴3∈A ;(2)设4k -2∈A,得存在m,n ∈Z,使4k -2=m 2-n 2成立.(m -n )(m +n )=4k -2,当m,n 同奇或同偶时,m -n,m +n 均为偶数.∴(m -n )(m +n )为4的倍数,与4k -2不是4 倍数矛盾.当m,n 同分别为奇,偶数时,m -n,m +n 均为奇数.(m -n)(m +n )为奇数,与4k -2是偶数矛盾.∴4k -2∉A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.解:(1)a =0,S =φ,φ⊆P 成立 a ≠0,S ≠φ,由S ⊆P ,P ={3,-1}得3a +2=0,a =23-或-a +2=0,a =2; ∴a 值为0或23-或2. (2)B =φ,即m +1>2m -1,m <2 φ⊆A 成立.B≠φ,由题得121,21,215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩得2≤m ≤3,∴m <2或2≤m ≤3 , 即m ≤3为取值范围.注:(1)特殊集合φ作用,常易漏掉;(2合思想常使集合问题简捷比. 用描述法表示图中的阴影部分(包括边界)解:}0,121,231|),{(≥≤≤-≤≤-xy y x y x19.(12分)在1到100的自然数中有多少个能被2或3整除的数?解:设集合A 为能被2整除的数组成的集合,集合B 为能被3整除的数组成的集合,则A B 为能被2或3整除的数组成的集合,A B 为能被2和3(也即6)整除的数组成的集合.显然集合A 中元素的个数为50,集合B 中元素的个数为33,集合A B 中元素的个数为16,可得集合A B 中元素的个数为50+33-16=67.某市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。

其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《集合》测试题
学校:__________ 姓名:__________ 班级:__________ 考号:__________
一、选择题
1.设全集为R , 函数()f x M , 则C M R 为 (A) [-1,1]
(B) (-1,1)
(C) ,1][1,)(∞−⋃+∞− (D) ,1)(1,)(∞−⋃+∞−(2013年高考陕西卷(理)) 2.已知集合{}
12,M x x x R =−≤∈,51,1P x
x Z x ⎧

=≥∈⎨⎬+⎩⎭
,则M
P 等于
(A){}03,x x x Z <≤∈ (B){}
03,x x x Z ≤≤∈
(C){}10,x x x Z −≤≤∈ (D){}
10,x x x Z −≤<∈ (2005上海理)
3.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于 ( ) (A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}(2004江苏) 4.已知全集U =R ,集合2{|20}A x x x =−>,则U A ð等于 A . {|02}x x
剟 B {|02}x x <<
C . {|02}x x x <>或
D {|02}x x x 或剟(2009福建理)
5.若集合M={-1,0,1},N={0,1,2},则M∩N 等于( )
(A).{0,1} (B).{-1,0,1}(C).{0,1,2} (D).{-1,0,1,2}(2011福建文1)
6.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则 )(B A C U 等于( )
A .{1,2,4}
B .{4}
C .{3,5}
D .φ (2004福建文)
7.设集合{,}A a b =,{,,}B b c d =,则A B =( )
A 、{}b
B 、{,,}b c d
C 、{,,}a c d
D 、{,,,}a b c d
8.设集合M={-1,0,1},N={x|x 2
≤x},则M∩N= ( )
A .{0}
B .{0,1}
C .{-1,1}
D .{-1,0,0}(2012湖
南理)
9.已知集合M =﹛x|-3<x ≤5﹜,N =﹛x|x <-5或x >5﹜,则M N =
(A) ﹛x|x <-5或x >-3﹜ (B) ﹛x|-5<x <5﹜
(C) ﹛x|-3<x <5﹜ (D) ﹛x|x <-3或x >5﹜(2009辽宁卷文)
10.集合{|lg 0}M x x =>,2
{|4}N x x =≤,则M N =( ) A. (1,2) B. [1,2)
C. (1,2]
D. [1,2]
11.已知0>>b a ,全集U=R ,集合M ={b x |<x <
2
b a +N },={ab x |<x <a },
P ={b x |<x ≤ab },则N M P ,,满足的关系是---------------------------------------------------------( )
A.P =M ∪N.
B. P=M ∪N .
C.P=M ∩(u C N ).
D. P = (u C M )∩N. 12.若关于x 的一元二次不等式20ax bx c ++<的解集为实数集R ,则a 、b 、c 应满足的条件为-----------------------------------------------------------------------( )
(A ) a >0,b 2
―4ac >0 (B ) a >0,b 2
―4ac <0 (C ) a <0,b 2
―4ac >0 (D ) a <0,b 2
―4ac <0 二、填空题
13.若集合A ={1,2,3,4,5},B ={2,4,8},则A B = ▲ .
14.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是_____4_________ 15.若集合{1,0,1},{cos ,},A B y y x x A =−==∈|则A B = {}1
16.集合{1,1},{0,1,2}P Q =−=,则P Q = ▲
17.集合{}*∈==N n n x x P ,2,{}
*∈==N n n x x Q ,3,则Q P ⋂中的最小元素为
18.若集合{}
1A x x =≥,{}
24B x x =≤,则A B = .
19.已知集合2|{2
−+=x x x A ≤0,}Z x ∈,则集合A 中所有元素之和为 ▲ .
20. 设全集R U =,集合}1|{},03|{−<=<<−=x x B x x A , 则图中阴影部分表示的集合为 ▲
21.已知集合{}2,A x x x R =<∈,集合{}
13,B x x x R =<<∈,则A
B = .
22.已知全集{12345}U =,,,,,集合{134}{23}A B ==,,,,,则()
U A B =ð
▲ .
23.已知集合{124}A =,,,{246}B =,,,则A B = ▲ .
关键字:已知数集;求并集
24.含三个元素的集合A ,既可表示为{,
,1}b
a a
,也可表示为2{,,0}a a b +,则20132013a b +=________;
25.已知集合{|1),{|21}x
M x x N x =<=>,则M N = ▲ .
26.若集合{|20}P x x a =−<,{|30}Q x x b =−> ,,a b N ∈,且{1}P Q N ⋂⋂=,则满足条件的整数对(,)a b 的个数为______▲_______.
27.设S 为复数集C 的非空子集.若对任意x,y S ∈,都有x y,x y,xy S +−∈,则称S 为封闭集.下列命题:①集合S ={a bi +|a,b 为整数,i 为虚数单位}为封闭集;②若S 为封闭集,则一定有0S ∈;③封闭集一定是无限集;④若S 为封闭集,则满足S T C ⊆⊆的
任意集合T 也是封闭集.其中真命题是 ▲ (写出所有真命题的序号).
28.已知集合{}{}12,1A x x B x x =−=<≤≤,则()A B R ð= ▲ .(江苏省徐州市2011届高三第一次调研考试)
{|12}x x ≤≤
29.已知集合(]2 1A =−,,[)1 2B =−,,则A B =U .
30.若含有集合A={1,2,4,8,16}中三个元素的A 的所有子集依次记为B 1,B 2,B 3,…,B n
(其中n ∈N*),又将集合B i (i =1,2,3,…,n )的元素的和记为i a ,则
321a a a ++n a ++ = .
31.已知集合{}|lg M x y x ==,{|N x y ==,则M N = 32.若集合U R =,{}20A x x =+>,{}
1B x x =…,则U A B С= ;
33.某班共40人,其中17人喜爱篮球运动,20人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱乒乓球运动但不喜爱篮球运动的人数为_ _.
三、解答题
34.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R}. (1) 当m=2时,求A B ;
(2) 若A ∩B =[1,3],求实数m 的值;
(3) 若A ⊆∁R B ,求实数m 的取值范围.(本题满分14分)
35.对正整数n ,记{}1,2,3,,m I n =,,m m m P I k I ⎫
=∈∈⎬⎭
. (1)求集合7P 中元素的个数;
(2)若m P 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”.求n 的最大值,使m P 能分成两人上不相交的稀疏集的并. (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))
36.已知集合2
{|4260},{|0},A x x mx m B x x A B =−++==<⋂=∅,求m 的范围。

37.设集合}012|{>−=x x A ,}043|{2
<−−=x x x B ,求B A B A ⋃⋂,; 38.已知集合{}
a x a x A +≤≤−=22,{
}
0452
≥+−=x x x B , (1)当3=a 时,求)(,B C A B A R ⋃ ; (2)若Φ=B A ,求实数a 的取值范围.
39.设集合}4232
/1{≤≤=−x x A ,{}012322<−−+−=m m mx x x B .
(1)当Z x ∈时,求A 的非空真子集的个数; (2)若B=φ,求m 的取值范围; (3)若B A ⊇,求m 的取值范围.
40.已知集合A ={x ∈R|ax 2-3x +2=0}. (1)若A =∅,求实数a 的取值范围; (2)若A 是单元素集,求a 的值及集合A ; (3)求集合M ={a ∈R|A ≠∅}.。

相关文档
最新文档