运筹学-图与网络模型以及最小费用最大流

合集下载

运筹学(第6章 图与网络分析)

运筹学(第6章 图与网络分析)
a1 (v1) 赵
(v2)钱
a2 a3 a4 a14 a15
a8 a9
a7 (v4) 李
(v3)孙
a5 (v5) 周 a6 a10 (v6)吴
图6-3
a12 a11 a13
(v7)陈

定义: 图中的点用v表示,边用e表示。对每条边可用它
所连接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
树是图论中结构最简单但又十分重要的图。在自然和社会领 域应用极为广泛。 例6.2 乒乓求单打比赛抽签后,可用图来表示相遇情况,如 下图所示。
运动员 A
B C
D
E
F G
H

例6.3 某企业的组织机构图也可用树图表示。
厂长
人事科
财务科
总工 程师
生产副 厂长
经营副 厂长
开发科
技术科
生产科
设备科
供应科
动力科
e2
(v1) 赵
e1
e3
e4 孙(v3) 李(v4)
周(v5)
图6-2
e5 吴(v6) 陈(v7)
(v2)钱
如果我们把上面例子中的“相互认识”关系改为“认识” 的关系,那么只用两点之间的联线就很难刻画他们之间的关 系了,这是我们引入一个带箭头的联线,称为弧。图6-3就是 一个反映这七人“认识”关系的图。相互认识用两条反向的 弧表示。
端点,关联边,相邻 若有边e可表示为e=[vi,vj],称vi和
e2 v2 e6 e1 e4 v1 e3 v3 e8
vj是边e的端点,反之称边e为点vi
或vj的关联边。若点vi、vj与同一条 边关联,称点vi和vj相邻;若边ei和
e5
e7

运筹学知识点总结

运筹学知识点总结

运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。

线性规划的三要素:变量或决策变量、目标函数、约束条件。

目标函数:是变量的线性函数。

约束条件:变量的线性等式或不等式。

可行解:满足所有约束条件的解称为该线性规划的可行解。

可行域:可行解的集合称为可行域。

最优解:使得目标函数值最大的可行解称为该线性规划的最优解。

唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。

凸集:要求集合中任意两点的连线段落在这个集合中。

等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。

松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。

剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。

2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。

4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。

5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。

当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。

第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。

2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。

4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。

最小费用最大流问题的算法_运筹学_[共7页]

最小费用最大流问题的算法_运筹学_[共7页]

∑ ∑ cij − cij 。称 Δ(c μ)是沿增广链 μ 当可行流增加单位流值时费用的增量。简称为增广链 μ
u+
u−
的单位费用增量。
可以证明,若 X 是流量为 (f X)的所有可行流中费用最小者,而 μ 是关于 X 的所有增广
链中费用最小的增广链,则沿 μ 去调整 X ,得到的可行流 X ′ 就是流量为 (f X ′)的所有可行流
中的最小费用流。这样,当 X ′ 是最大流时,它也是我们所要寻找的最小费用最大流了。
注意到 cij ≥ 0 ,故 X = 0 必是流量为 0 的最小费用流。这样,总可以从 X = 0 开始。一般 地,若已知 X 是流量 (f X)的最小费用流,为了寻求关于 X 的最小费用增广链,我们构造一
个赋权有向图 D(X),它的顶点是原网络 D 的顶点,而把 D 中的每一条弧(vi,v j)变成两个相
反方向的弧(vi,v j)和(vj,vi),定义 D(X)中弧的权 wij′ :
wij′
=
w(′ vi
,v j)=
⎧⎪⎨⎪⎩c+i∞j ,若,若xijxi<j =wwij ij

w

ji
=
w(′ v
j,vi)=
⎨⎪⎩⎧⎪+−∞cij,,若若xxijij
> 0
0
在 D(X)中长度为 +∞ 的弧可以略去。
故在网络 D 中寻找关于 X 的最小费用增广链就等价于在赋权有向图 D(X)中,寻找从 v1 到 vn 的最短路。这样,我们有如下算法。
第 6章 图 与 网 络 分 析
181


Step1 确定初始可行流 X (0) = 0 ,令 k := 0 ;

运筹学最小费用最大流流问题

运筹学最小费用最大流流问题
第五节 最小费用最大流流问题
在实际的网络系统中,当涉及到有关流的问 题的时候,我们往往不仅仅考虑的是流量,还经 常要考虑费用的问题。比如一个铁路系统的运输 网络流,即要考虑网络流的货运量最大,又要考 虑总费用最小。最小费用最大流问题就是要解决 这一类问题。
最小费用最大流问题提法:
设一个网络G=(V,E,C),对于每一个弧(vi ,vj )∈E ,给 定容量cij外,还给出单位流量的费用dij 0 ,网络记为 G=(V,E,C,d)。网络系统的最小费用最大流问题,
bij bij
我们将 bij bij 叫做这条增广链的费用。
结论:如果可行流 f 在流量为w(f )的所有可行流中 的费用最小,并且 是关于f 的所有增广链中的费
用最小的增广链,那么沿增广链μ调整可行流f,得
到的新可行流f ’ ,也是流量为w(f ’)的所有可行流中 的最小费用流。依次类推,当 f ’ 是最大流时,就是 所要求的最小费用最大流。
对偶算法基本思路:
零流f ={0}是流量为0的最小费用流。一般地,寻求最小 费用流,总可以从零流f ={0}开始。下面的问题是:如果 已知f 是流量为w(f)的最小费用流,那么就要去寻找关于 f 的最小费用增广链,用最大流的方法将f(0)调整到f(1), 使f(1)流量为w(f(0))+θ,且保证f(1)在w(f(0))+θ流量下的
(5, 2)
(4, 2)
v2 (10, 3) v3
v1
(7, 1)
解:((110), 4取) 初始可行流(2,为6)零流f
(cij, dij) (0)v=t{0},构造赋权
有 (vs
向vs图 L(f(0)), 用
,v2 ,v1(,8v,t)1,)如图

运筹学第八章--图与网络分析-胡运权

运筹学第八章--图与网络分析-胡运权
运筹学
赵明霞山西大学经济与管理学院
2
第八章 图与网络分析
图与网络的基本概念 树 最短路问题 最大流问题 最小费用最大流问题
3
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题哈密尔顿回路:经过每点且仅一次 货郎担问题、快递送货问题
例8-9
28
基本步骤标号T(j)→P(j)

29
2017/10/26
30
最长路问题例8-10(7-9)设某台新设备的年效益及年均维修费、更新净费用如表。试确定今后5年内的更新策略,使总收益最大。
役龄项目
0
1
2
3
4
5
效益vk(t)
5
4.5
4
3.75
3
2.5
14
15
柯尼斯堡七桥问题
欧拉回路:经过每边且仅一次 厄尼斯堡七桥问题、邮路问题 充要条件:无向图中无奇点,有向图每个顶点出次等于入次
16
第二节 树
树是图论中的重要概念,所谓树就是一个无圈的连通图。
图8-4中,(a)就是一个树,而(b)因为图中有圈所以就不是树, (c)因为不连通所以也不是树。
7
G=(V,E)关联边(m):ei端(顶)点(n):vi, vj点相邻(同一条边): v1, v3边相邻(同一个端点):e2, e3环:e1多重边: e4, e5
8
简单图:无环无多重边
多重图:多重边
9
完全图:每一对顶点间都有边(弧)相连的简单图
10
次(d):结点的关联边数目d(v3)=4,偶点d(v2)=3,奇点d(v1)=4d(v4)=1,悬挂点e6, 悬挂边d(v5)=0,孤立点
(一)线性(整数)规划法

运筹学-图与网络模型以及最小费用最大流(高级课堂)

运筹学-图与网络模型以及最小费用最大流(高级课堂)

v4
v5
高等课堂 7
图与网络的基本概念与模型
环, 多重边, 简单图
e1
如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 v2
e2
e4 v1e3
v3
之间多于一条,称为多重边,如右图
e5
中的e4和e5,对无环、无多重边的图
e6
e7
e8
称作简单图。
v4
v5
高等课堂 8
图与网络的基本概念与模型
的长度(单位:公里)。
17
v2
5
6
15
6 v4
V1
(甲地)
43
10
4
4
2
v5
v6
解:这是一个求v3无向图的最短路的问题。可以把无向图的每一边
(vi,vj)都用方向相反的两条弧(vi,vj)和(vj,vi)代替,就化为有向图,
即可用Dijkstra算法来求解。也可直接在无向图中用Dijkstra算法来求解。
最短路问题
最短路问题:对一个赋权的有向图D中的指定的两个点Vs和Vt找 到一条从 Vs 到 Vt 的路,使得这条路上所有弧的权数的总和最小, 这条路被称之为从Vs到Vt的最短路。这条路上所有弧的权数的总 和被称为从Vs到Vt的距离。
• 求最短路有两种算法:
狄克斯屈拉(Dijkstra)(双标号)算法 逐次逼近算法
• 图论中图是由点和边构成,可以反映一些对象之间的关系。 • 一般情况下图中点的相对位置如何、点与点之间联线的长短曲
直,对于反映对象之间的关系并不是重要的。
图的定义(P230)
若用点表示研究的对象,用边表示这些对象之间的联系,则图 G可以定义为点和边的集合,记作:

最小费用最大流问题

最小费用最大流问题

近似算法和启发式算法
要点一
近似算法
近似算法是一种用于求解NP-hard问题的有效方法,它可 以在多项式时间内找到一个近似最优解。最小费用最大流 问题的近似算法包括Ford-Fulkerson算法、EdmondsKarp算法等。
要点二
启发式算法
启发式算法是一种基于经验或直观的算法,它可以在合理 的时间内找到一个近似最优解。最小费用最大流问题的启 发式算法包括基于增广路径的算法、基于贪婪的算法等。
研究如何将最小费用最大流问题 应用于计算机科学领域,例如计 算机网络、云计算等。
物理学
研究如何借鉴物理学中的理论和 思想,解决最小费用最大流问题, 例如利用流体动力学中的思想来 研究网络中的流。
谢谢观看
Hale Waihona Puke 06未来研究方向和展望算法优化和改进
动态规划算法
研究如何优化动态规划算法,减少时间复杂度 和空间复杂度,提高求解效率。
近似算法
研究近似算法,在保证求解质量的前提下,提 高求解速度。
并行计算和分布式计算
研究如何利用并行计算和分布式计算技术,加速最小费用最大流问题的求解。
新的问题定义和模型
考虑更复杂的情况
和技术。
有界容量和无界容量
总结词
有界容量和无界容量是指在网络中节点之间 的容量是否有限制。
详细描述
在最小费用最大流问题中,如果节点之间的 容量有限制,即为有界容量问题;如果节点 之间的容量没有限制,即为无界容量问题。 有界容量问题可以通过增广路径算法、预流 推进算法等求解,而无界容量问题则需要采
用其他算法和技术进行求解。
算法概述
最小费用最大流问题是一种网络流问 题,旨在在给定有向图中寻找一条路 径,使得从源节点到汇点之间的总流 量最大,同时满足每个节点的流入量 等于流出量,以及每条边的容量限制。

运筹学第6章 图与网络

运筹学第6章 图与网络

也就是说| V1 |必为偶数。
定理6.2有学者也称作定理6.1的推论。根据定理6.2,握手定理也可以 表述为,在任何集体聚会中,握过奇次手的人数一定是偶数个。
12 该课件的所有权属于熊义杰
另外,现实中不存在面数为奇数且每个面的边数也是奇数的多面 体,如表面为正三角形的多面体有4个面,表面为正五边形的多面体有 12个面等等,也可以用这一定理予以证明。因为在任意的一个多面体 中, 当且仅当两个面有公共边时,相应的两顶点间才会有一条边,即 任意多面体中的一个边总关联着两个面。所以,以多面体的面数为顶
v j V2
(m为G中的边数)
因式中 2m 是偶数, d (v j ) 是偶数,所以 d (vi ) 也必为偶数
v j V2
vi V1
( 两个同奇同偶数的和差必为偶数 ), 同时,由于 d (vi ) 中的每个加数 d (vi )
均为奇数,因而 d (vi ) 为偶数就表明, d (vi ) 必然是偶数个加数的和 ,
图论、算法图论、极值图论、网络图论、代数图论、随机图论、 模糊图论、超图论等等。由于现代科技尤其是大型计算机的迅 猛发展,使图论的用武之地大大拓展,无论是数学、物理、化 学、天文、地理、生物等基础科学,还是信息、交通、战争、 经济乃至社会科学的众多问题.都可以应用图论方法子以解决。
1976年,世界上发生了不少大事,其中一件是美国数学家 Appel和Haken在Koch的协作之下,用计算机证明了图论难题— —四色猜想(4CC):任何地图,用四种颜色,可以把每国领土染 上一种颜色,并使相邻国家异色。4CC的提法和内容十分简朴, 以至于可以随便向一个人(哪怕他目不识丁)在几分钟之内讲清 楚。1852年英国的一个大学生格思里(Guthrie)向他的老师德·摩 根(De Morgan)请教这个问题,德·摩根是当时十分有名的数学家, 他不能判断这个猜想是否成立,于是这个问题很快有数学界流 传开来。1879年伦敦数学会会员Kemple声称,证明了4CC成立, 且发表了论文。10年后,Heawood指出了Kemple的证明中

运筹学最大流问题

运筹学最大流问题
最小割是这些路中的咽喉部分, 其容量最小,
它决定了整个网络的最大通过能力。
四、最大匹配问题
|M |表示集合M中M的边数。
一个图的最大匹配中所含边数是确定的, 但匹配方案可以不同。
定义23 二部图G=(X,Y,E), M是边集E的子集, 若M中的任意
若不存在另一匹配M1, 使得|M1|>|M|, 则称M为最大匹配.
x5
y1x3y2x2y3x1
y4
x4
y5
x5
y1
x3
y2
x2
y3
x1
y4
x4
y5
vs
vt
1
1
1
1
1
1
1
1
1
1
1
1
如图,要求设计一个方案,使量多的人能就业。
(1,3)
(2,4)
(4,3)
(1,2)
(3,2)
(3,t)
(2,4)
(3,t)
(4,3)
(4,t)
(1,3)
(3,t)
15
(4,t)
21
17
18
19
24
14
25
15

容量
4-3、最大流-最小割定理
定理
定理2 (最大流-最小割定理) 任一网络G中, 从vs 到 vt 的
定义
设 f 为网络G=(V, E, C)的任一可行流, 流量为W ,
未标号点集合为 S = {v1, v2, v4, v5, v6, v7}
割集(S, S )= {(vs, v1), (vs, v2), (v3, v6)}
割集容量
可得到一个最小割. 见图中虚线.

运筹学:第2章 图与网络分析 第4节 最大流

运筹学:第2章 图与网络分析 第4节 最大流

v2
13 (5)
6(3)
v5
9 (5)
5 (2)
v1
4 (1) 5 (2)
v4
9 (3)
v3
5 (0)
4 (2) 4 (1)
v6
v7
10 (1)
设 V1 v1 , v2 , v5 ,V2 v3 , v4 , v6 , v7 则截集为
(V1,V2 ) (v1v3 ), (v2 , v4 ), (v5 , v7 ) 截量为24
凡与u方向相同的称为正向弧; 凡与u方向相反的称为反向弧; 其集合分别用u+和u-表示。 f 是一个可行流,如果满足:
0 fi j ci j 0 fi j ci j
(vi , vj ) 即μ+中的每一条弧都是非饱和弧 (vi , vj ) 即μ-中的每一条弧都是非零流弧
则称 u为从vs到vt 的关于f 的一条增广链。
是一个(V,A,C),vs为始点,vt为终点。如 果把V分成两个非空集合V1 ,V2(V1 V2 ,V1 V2 V )
使vs V1 ,vt V2 ,则所有始点属于V1 ,而终点属于 V2的 弧的集合,称为D的截集,记作 (V1 ,V2。) 截集(V1 ,V2)中所有弧的 容量之和,称为这个截集的截量,记为C(V1,V2) 。
2 .把节点集V分成VA :已标号点集
VB :未标号点集
3.考虑所有这样的弧(vi ,vj) 或(vj,vi ) ,其中vi VA,v j VB
若该弧为
(1)流出未饱弧,那么给vj标号(θj, vi) ,其中: θj=cij-fij
(2)流入非零弧,那么给vj标号(θj, -vi) ,其中: θj=fij 4.重复步骤2,3,直到vt被标号或标号过程无法进行下去 ,则标号结束。

运筹学-第7章-图与网络优化

运筹学-第7章-图与网络优化
(v1 , v2 , v3 , v6 , v7)是一条初等链 (v4 , v1 , v2 , v3 , v5 , v7, v6 , v3 , v4)是一个简单圈 (v1 , v2 , v3 , v4 , v1)是一个初等圈
20/139
连通图、子图、支撑子图、基础图
• 连通图 图G中,若任何两个点之间,至少有一条链,称为连通图。否 则称为不连通图。
• 奇点 次为奇数的点, 如 v5
18/139
链,圈,初等链,初等圈,简单链(圈)
• 链: 由两两相邻的点及其相关联的边构成的点边 序列, 如:
(v0 ,e1 ,v1 ,e2 ,v2 ,e3 ,v3 ,…,vn-1 ,en , vn ); 其中v0 ,vn分别为链的起点和终点, v1 ,v2 ,…,vn-1称 为中间点 ; • 圈: 起点与终点重合的链; • 简单链(圈):链(圈)中所含的边均不相同; • 初等链(圈):链(圈)中所含的点均不相同,也 称通路;
v2
a8
v5
a10
a4 a6
a9
a7
a5
v4
v7 a11 v6
•路 • 初等路 • 回路
(v1, a2 , v3 , a4 , v4 , a7 , v6 )是从v1到v6的路。也是一条初等路。 在上图中,(v3 , a3 , v2 , a5 , v4 , a6 , v5 , a8 , v3 )是一个回路。
vV1
vV2
vV
2m为偶数,且偶点的次之和 d(v)也为偶数,所以 d(v) 必为偶
数,即奇数点的个数必为偶数vV。2
vV1
27/139
第二节 树
本节主要内容: • 树的概念 • 构造生成树的方法 • 最小生成树问题

第六章物流运筹学——图与网络分析.

第六章物流运筹学——图与网络分析.
L( )
( vi ,v j )
l
ij
最小的 。
Dijkstra算法
算法的基本步骤: (1)给 v s 以 P 标号, P(vs ) 0 ,其余各点均给 T 标号, T (vi ) 。 (2)若 vi 点为刚得到 P 标号的点,考虑这样的点 v j: (vi , v j ) E ,且 v j 为 T 标号,对 v j 的 T 标号进行如下的更改:
v2
(4,3)
v4
(3,3)
(5,3) (1,1) (1,1) (3,0)
vs
(5,1)
vt
(2,1)
v1
(2,2)
v3
图 6-14
运输线路图
第四节 最小费用最大流问题
在容量网络 G (V , E, C ) ,每一条边 (vi , v j ) E 上,除了已 给容量 cij 外,还给了一个单位流量的费用 bij 0 ,记此时的容 量网络为 G (V , E, C , B) 。 所谓最小费用最大流问题就是要求一个最大流 f ,使流的 总运输费用 b( f )
定理 6-1 任何图中顶点次数的总和等于边数的 2 倍。 推论 6-1 任何图中,次为奇数的顶点必有偶数个。 图 G (V , E ) 和图 H (V , E ) ,若 V V且E E ,则 称 H 是 G 的子图,记作: H G ;特别的,当 V V 时, 称 H 为 G 的生成子图。
容量网络g若?为网络中从sv到tv的一条链给?定向为从sv到tv?上的边凡与?同向称为前向边凡与?反向称为后向边其集合分别用??和??表示??ijff?是一个可行流如果满足??????0ijijijijiijjffcvv??????????c???0ijijijfvv????则称?为从sv到tv的关于f的可增广链

运筹学-图与网络模型以及最小费用最大流.详解共102页文档

运筹学-图与网络模型以及最小费用最大流.详解共102页文档

Hale Waihona Puke 31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
运筹学-图与网络模型以及最小费用最大 流.详解
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比

运筹学-5-5最小费用最大流问题

运筹学-5-5最小费用最大流问题
若不存在最短路,则X(k-1)即最小费 用最大流,停止迭代;
否则,转下一步。
第四步---将最短路还原成原网 络图中的最小费用增广链μ,在μ上 对可行流X(k-1)进行调整,得到新的 可行流图,若其流量等于fmax,迭代结 束。否则转入第一步,进入下一次 迭代过程。
4、举例
增广费用网络图
(容量费用图(bij,cij))
μ去调整X得到的新的可行流 ~x就是 流量为 f ( )的~x 最小费用流。
(2)实现思路
基于第一种求解途径,根据上述 定理,只要找到最小费用增广链,在 该链上调整流量,得到增加流量后的 最小费用流。循环往复直至求出最小 费用最大流。
对偶法原理和步骤
f max
求最大流
确保流 量最大
将0流作为初始可行流
零流弧上,保持原弧不变,将单位费用 作为权数,即wij= cij:
(bij , cij , 0)
Vi
Vj
原网络
(bij , cij )
Vi
Vj
增广费用网络
非饱和弧上 (0 xij bij ) ,原有弧以单位 费用作权数,后加弧(虚线弧)以单位
费用的负数作权数(p167更正):
(bij ,cij , xij )
绘制扩展 费用网络
Ford算法找从vs到 vt的最短增广链
No
流量等于 最大流?
Yes 得最小费用最大流
调整流量 得费用最小的可行流
确保费用最小
实施中的关键
为什么?
构造增广费用网络图(即扩展费用网络图), 借助最短路算法寻找最小费用增广链。
增广链流量调整:正向弧增加流量 j,反向弧减少流量 j。
2、最小费用流
对一费用容量网络,具有相同流 量 f 的可行流中,总费用最小的可行 流称为该费用容量网络关于流量 f 的 最小费用流,简称流量为 f 的最小费 用流。

运筹学第六章6.5最小费用最大流问题

运筹学第六章6.5最小费用最大流问题
该算法基于Ford-Fulkerson方法和增广路径的概念,通过不断寻找增广路径并更 新流,最终得到最大流。
预处理步骤
初始化
为每个节点和边设置相应的容量和费 用。
残量网络构建
寻找增广路径
在残量网络中寻找增广路径,即从源 点到汇点存在一条路径,该路径上的 所有边都未满载且具有正的残量。
根据边的容量和费用,构建残量网络。
05
算法的复杂度和优化
时间复杂度分析
算法时间复杂度
最小费用最大流问题通常使用Ford-Fulkerson算法或其变种来解决,时间复杂度为O(V^3 * E),其中V是 顶点数,E是边数。
优化策略
为了提高算法效率,可以采用预处理、动态规划、记忆化搜索等策略,减少不必要的计算和重复计算 。
空间复杂度分析
最小费用最大流问题可以应用于多种 实际场景,如物流运输、能源分配、 通信网络等。
背景和重要性
最小费用最大流问题作为网络流问题 的一个重要分支,在计算机科学、运 筹学和工程领域具有广泛的应用价值。
解决最小费用最大流问题有助于优化 资源配置、降低成本和提高效率,对 于实际问题的解决具有重要的意义。
02
此外,随着计算科学和数据科学的快速发展,如 何利用新的技术和方法来求解最小费用最大流问 题也是值得关注的方向。
例如,如何设计更高效的算法来求解大规模的最 小费用最大流问题?如何处理具有特殊性质的最 小费用最大流问题?如何将最小费用最大流问题 的思想和方法应用到其他领域?
因此,未来对于最小费用最大流问题的研究仍具 有广阔的空间和挑战性。
案例一:简单网络流问题
问题描述
给定一个有向图G(V,E),其中V是顶点的集合, E是边的集合。每条边(u,v)有一个非负的容量 c(u,v)和一个非负的费用f(u,v)。求从源点s到 汇点t的最大流,使得流的总费用最小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直,对于反映对象之间的关系并不是重要的。
图的定义(P230)
若用点表示研究的对象,用边表示这些对象之间的联系,则图 G可以定义为点和边的集合,记作:
G {V , E}
其中: V——点集 E——边集
※ 图G区别于几何学中的图。这里只关心图中有多少个点以及哪 些点之间有连线。
图与网络的基本概念与模型
e6
e7
e8
称作简单图。
v4
v5
图与网络的基本概念与模型
链,圈,连通图(P231)
图中某些点和边的交替序列,若其 中各边互不相同,且对任意Vi-1,Vi 和vi+1均相邻称为链。用μ表示:
{v0 , e1 , v1 , , ek , vk }
起点与终点重合的链称作圈。如 果每一对顶点之间至少存在一条 链,称这样的图为连通图,否则 称图不连通。
向网络。

15
9
7 ④ 14


10
19
20
6 ⑥

25
图与网络的基本概念与模型
▪ 主要概念(p231-p232)
▪ 无向图:由点和边构成的图,记作G=(V,E)。 • 有向图:由点和弧构成的图,记作D=(V,A)。 • 连通图:对无向图G,若任何两个不同的点之间,至少存在一条链,则
G为连通图。 • 回路:若路的第一个点和最后一个点相同,则该路为回路。 • 赋权图:对一个无向图G的每一条边(vi,vj),相应地有一个数wij,则称
a15 a9
(v4) 李
(v3)孙
a5
a6
a12
a11
(v5) 周
a10
(v6)吴 a13
(v7)陈
图11-3
图与网络的基本概念与模型
• 定义: 图中的点用v表示,边用e表示。对每条边可用它所
连接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
端点,关联边,相邻
若有边e可表示为e=[vi,vj],称vi和vj 是边e的端点,反之称边e为点vi或vj 的关联边。若点vi、vj与同一条边关 联,称点vi和vj相邻;若边ei和ej具
7
0 v1
1
V2
7
V6
3
3
2
3
6
2
V4 4
V3
2
V5
4
2
最短路问题
1
7
0 v1
1
V2
7
V6
3
3
2
3
6
2
V4 4
V3 2
2
V5 4
最短路问题
• 算法适用条件:
• Dijkstra算法只适用于全部权为非负情况,如果 某边上权为负的,算法失效。此时可采用逐次 逼近算法。
• 例6.7 如右图所示中按dijkstra
4. 对上述弧的集合中的每一条弧,计算 sij=li+cij 。在所有的 sij中, 找到其值为最小的弧。不妨设此弧为(Vc,Vd),则给此弧的终 点以双标号(scd,c),返回步骤2。
最短路问题
(P233)例1 求下图中v1到v6的最短路 v2
7
3
v6
v1
5 2 v4 5
21
31
5
v3
v5
解:采用Dijkstra算法,可解得最短路径为v1 v3 v4 v6
各点的标号图如下:
(3,1)
v2
7
(8,4) v6
(V01,s)
3 5
2
(3,3) 5 v4
21
31
5
(2,1)
v5
v3
最短路问题
( P234) 例2 电信公司准备在甲、乙两地沿路架设一条光缆线,问如何架设使
其光缆线路最短?下图给出了甲乙两地间的交通图。权数V表7 (示乙两地地) 间公路
的长度(单位:公里)。
e1
e2
e4 v1e3
v2
v3
e5
e6
e7
e8
v4
v5
图与网络的基本概念与模型
网络(赋权图)(P232)
设图G=(V,E),对G的每一条边(vi,vj)相应赋予数量指标
wij,wij称为边(vi,vj)的权,赋予权的图G称为网络(或赋权图)。
权可以代表距离、费用、通过能力(容量)等等。
端点无序的赋权图称为无向网络,端点有序的赋权图称为有
30
最终得到下图,可知,v1到v6的距离是5431,最短路径有两条: v1 v3 v6和 v1 v4 v6
59
(V01,s)
41
Байду номын сангаас
22
30
23
(30,1)
16
V2
16 v3 17
(16,1) (22,1)
30
v4 17 (41,1)18 23 31 v5
v6 (53,3) (53,4)
41
最短路问题
v1
v2
v3
v4
v5
v6
把所有弧的权数计算如下表:
1
2
3
4
5
6
1
16
22
30
41
59
2
16
22
30
41
3
17
23
31
4
17
23
5
18
6
最短路问题
(继上页) 把权数赋到图中,再用Dijkstra算法求最短路。
59
22
30 41
23
v1
16
v2 16 v3 17 v4 17 v5 18
v6
22
23
31
图G为赋权图,wij称为边(vi,vj)上的权。 • 网络:在赋权的有向图D中指定一点,称为发点,指定另一点称为收点,
其它点称为中间点,并把D中的每一条弧的赋权数称为弧的容量,D就 称为网络。
11
最短路问题
• 如何用最短的线路将三部电话连起来? • 此问题可抽象为设△ABC为等边三角形,,连接三顶点
未标号的点的边的集合即可。
最短路问题
15 (0,s)
V1 (甲地) 10
(13,3) v2 3 V3
(10,1)
17
5 6
V4
(18,5) 4
2
4
V5
(14,3)
(22,6) V7 (乙地) 6 V(166,5)
最短路问题
例3 设备更新问题。某公司使用一台设备,在每年年初,公司就要 决定是购买新的设备还是继续使用旧设备。如果购置新设备,就要支付一 定的购置费,当然新设备的维修费用就低。如果继续使用旧设备,可以省 去购置费,但维修费用就高了。请设计一个五年之内的更新设备的计划, 使得五年内购置费用和维修费用总的支付费用最小。
的路线(称为网络)。这种网络有许多个,其中最短路 线者显然是二边之和(如AB∪AC)。
A
B
C
最短路问题
• 但若增加一个周转站(新点P),连接4点的新网络的最短 路线为PA+PB+PC。最短新路径之长N比原来只连三点 的最短路径O要短。这样得到的网络不仅比原来节省材料, 而且稳定性也更好。 A
P
B
C
武昌
图与网络的基本概念与模型
近代图论的历史可追溯到18世纪的七桥问题—穿过Königsberg 城的七座桥,要求每座桥通过一次且仅通过一次。 这就是著名 的“哥尼斯堡 7 桥”难题。Euler1736年证明了不可能存在这样 的路线。
Königsberg桥对应的图
图与网络的基本概念与模型
• 图论中图是由点和边构成,可以反映一些对象之间的关系。 • 一般情况下图中点的相对位置如何、点与点之间联线的长短曲
§1 图与网络的基本概念
如果我们把上面例子中的“相互认识”关系改为“认识”
的关系,那么只用两点之间的联线就很难刻画他们之间的关
系了,这是我们引入一个带箭头的联线,称为弧。图11-3就
是一个反映这七人“认识”关系的图。相互认识用两条反向
的弧表示。
6
a1
(v2)钱
a7
a2
a8
(赵v1)
a3 a14 a4
此游戏转化为在下面的二部图中求从 v1 到 u1 的最短路问题。
v1
v2
v3
v4
v5
u5
u4
u3
u2
u1
最短路问题
最短路问题:对一个赋权的有向图D中的指定的两个点Vs和Vt找 到一条从 Vs 到 Vt 的路,使得这条路上所有弧的权数的总和最小, 这条路被称之为从Vs到Vt的最短路。这条路上所有弧的权数的总 和被称为从Vs到Vt的距离。
到北岸,河上只有一条独木舟,每次除了人以外,只能 带一样东西;另外,如果人不在,狼就要吃羊,羊就要 吃白菜,问应该怎样安排渡河,才能做到既把所有东西 都运过河去,并且在河上来回次数最少?这个问题就可 以用求最短路方法解决。
最短路问题
• 定义:
• 1)人—M(Man),狼—W(Wolf), 羊—G(Goat), 草—H(Hay)
3
p2=2 2
2
1
10
p4=1
4
7
6
5
9
p5=6
5
p3=8 3
6
5
2
3
4
6 p6=3
7 4
p7=3
8 8
p8=10
• v1到v8的最短路径为v1→v4→v7→v5→v8,最短距离为10
最短路问题
• 3. 求下图中v1点到另外任意一点的最短路径
v1
1
v2
7
v6
3
3
2
3
6
相关文档
最新文档