2017年全国初中数学联合竞赛试题(pdf版,含答案)
2017年全国初中数学联合竞赛(初二年级)试题参考答案及
在 Rt △ EAD 中,有 422 (98 x)2 x2 ,解得 x 58 .
2017 年全国初中数学联合竞赛试题(初二年级)参考答案及评分标准 第 2 页(共 5 页)
二、填空题:(本题满分 28 分,每小题 7 分)
1.使得等式 1 1 a 3 a 成立的实数 a 的值为_______. 【答】 8 . 由所给等式可得 (1 1 a)3 a2 .令 x 1 a ,则 x 0 ,且 a x2 1,于是有 (1 x)3 (x2 1)2 ,
4.已知正整数 a,b, c 满足 a2 6b 3c 9 0 , 6a b2 c 0 ,则 a2 b2 c2 = ( )
A. 424. 【答】C.
B. 430.
C. 441.
D. 460.
由已知等式消去 c 整理得 (a 9)2 3(b 1)2 75 ,所以 3(b 1)2 75 ,又 b 为正整数,解得1 b 6 .
2
2
Байду номын сангаас
3
A
D
F
所以梯形的面积为 1 (1 4) 4 2 10 2 .
2
3
3
E
6.如图,梯形 ABCD 中, AD // BC , A 90 ,点 E 在 AB 上,若 AE 42 ,
BE 28, BC 70 , DCE 45 ,则 DE =
()
B
C
A. 56.
B. 58.
C.60.
D. 62.
为 A. 4. 【答】B.
B.3.
C.2.
D.1.
()
若 (a,b, c) 为好数组,则 abc 2(a b c) 6c ,所以 ab 6 .显然, a 只能为 1 或 2.
2017年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则详解
2017年全国初中数学联赛(初三组)初赛试卷试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.选择题和填空题只设7分和0分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、设实数a 、b 满足1-=-b a ,则ab b a 333+-的值为( B ) A 、3-B 、1-C 、1D 、3解析:()()()13332222233-=--=+---=+++-=+-b a ab b ab a ab b ab a b a ab b a 2、若实数a 为常数,关于x 的不等式组⎩⎨⎧-≤+722 x aa x 的整数解只有8个,则a 的值为(C )A 、1-B 、0C 、1D 、2解析:()10122127722222=⇒≤-⇒+-≤⇒+--⇒⎩⎨⎧-≤+a a a a a a x x a a x 3、在菱形ABCD 中,4=AB ,︒=∠60A ,E 为AB 的中点,若在线段BD 上取一点P ,则PE PA +的最小值是( D )A 、32B 、4C 、52D 、72解析:如图,连结AC ,EC 交BD 于点P ,则点P 是所求的 菱形ABCD 中,4=AB ,︒=∠60A ,E 为AB 的中点 32=⇒DE281612222=+=+=⇒DC DE CE72=⇒CE4、对于任意实数a ,b ,c ,用{}c b a M ,,表示三个数的平均数,用{}c b a ,,min 表示这三个数中最小的数,若{}=-+++y x y x y x M 2222,,{}y x y x y x -+++2222min ,,,则=+y x (A )A 、4-B 、2-C 、2D 、4解析:不妨设a 最小,则()()033=-+-⇒=++⇒=++⇒a c ab ac b a a cb a 00≥-≥-⇒ac a b , c a b ==⇒故4132222-=+⇒-=-=⇒-=+=++y x y x y x y x y x ,5、如图,ABC Rt ∆的斜边AB 与⊙O 相切于点P ,直角顶点C 在⊙O 上,若22=AC ,4=BC ,BEACDP则⊙O 的半径是( B )A 、3B 、32C 、4D 、62解析:如图,由射影定理得: DC AC BC ⋅=⇒2 24=⇒CD48222=+=⇒BC CD BD34=⇒BD 32=⇒BO6、不超过()615+的最大整数是( D )A 、1142B 、1145C 、1148D 、1151解析:()()3652615+=+a =+⇒526,b =-5261612==+⇒ab b a ,b a ,⇒是016122=+-x x 的两根016122=+-⇒a a ,016122=+-b b a a a 161223-=⇒, b b b 161223-=()()()[]()115216212161222233=+--+=+-+=+⇒b a ab b a b a b a b a由10103 b b ⇒ 3a ⇒的最大整数不超过1151二、填空题(本大题满分28分,每小题7分)7、若012=-+x x ,则()()11124---+x x x x 的值为 .答案:3解析:()()11124---+x x x x ()()()()()3221111122322=++=++=--+-++⇒x x xxx x x x x x x x 8、在正方形ABCD 中,点E 、F 分别在线段BC 、CD 上,且︒=∠20BAE ,︒=∠25DAF ,则CEF ∠等于 .答案:︒40解析: 如图所示,ABG ADF ∆≅∆AE AE AD AG DAF GAB ==︒=∠=∠⇒,,25 AFE AGE ∆≅∆⇒ ︒=∠=∠⇒70AEB AEF︒=∠⇒40CEF9、小丽与小明一起用A 、B 两个骰子玩游戏,以小丽掷的A 骰子朝上的数字为x ,小明掷的BBEAFGBDC骰子朝上的数字为y ,来确定点(x ,y ),那么,他们各掷一次所确定的点P (x ,y )落在已知抛物线542+-=x x y 的概率为 .答案:91解析:两个立方体都有6个数字,那么共有36种可能,可在抛物线上的有(1,2)、(2,1)、(3,2)、(4,5)共4种情况,故概率为9110、如图,设点P 在函数x y 6=的图像上,x PC ⊥轴于点C ,交函数xy 2=的图像于点A ,y PD ⊥轴于点D ,交函数xy 2=的图像于点B ,则四边形P AOB 的面积为 .答案:4 解析:四边形P AOB 的面积=矩形ODPC AOC DBO S S ∆∆--=426=- 三、(本大题满分20分)11、已知关于x 的一元二次方程052=+-kx x 与052=-+k x x 只有一个公共的实根,求关于x 的方程k kx x =+2所有的实根之和。
2017年全国初中数学联赛试题-含详细解析
2017年全国初中数学联合竞赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题(本题满分42分,每小题7分)1. 已知实数a b c ,,满足2133903972a b c a b c ++=++= ,,则32b ca b+=+ ( ) A .2 B .1 C .0 D .1− 2. 已知△ABC 的三边长分别是a ,b ,c ,有以下三个结论:(1) (2)以a 2,b 2,c 2为边长的三角形一定存在;(3)以|a -b |+1,|b -c |+1,|c -a |+1为边长的三角形一定存在. 其中正确结论的个数为( )A .0B .1C .2D .33. 若正整数a ,b ,c 满足a b c ≤≤且()2abc a b c =++,则称(a ,b ,c )为好数组.那么,好数组的个数为( )A .1B .2C .3D .44. 设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180︒,且BC =3,AD =4,AC =5,AB =6,则DOOB=( ) A .109 B .87 C .65 D .435. 设A 是以BC 为直径的圆上的一点,AD ⊥BC 于点D ,点E 在线段DC 上,点F 在CB的延长线上,满足∠BAF =∠CAE .已知BC =15,BF =6,BD =3,则AE =( ) A .43 B .213 C .214 D .2156. 对于正整数n ,设a n 是最接近n 的整数,则1a 1+1a 2+1a 3+…+1a 200=( )A .1917B .1927C .1937D .1947二、填空题(本题满分28分,每小题7分)7.成立的实数a 的值为______.8. 如图,平行四边形ABCD 中,∠ABC =72︒,AF ⊥BC 于点F ,AF 交BD 于点E ,若DE =2AB ,则∠AED =______.9. 设m ,n 是正整数,且m >n .若9m 与9n 的末两位数字相同,则m -n 的最小值为____.10. 若实数x ,y 满足x 3+y 3+3xy =1,则x 2+ y 2的最小值为______.第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y =ax 2+bx +c (c ≠0)的图象与x 轴有唯一交点,则二次函数y =a 3x 2+b 3x +c 3的图象与x 轴的交点个数为( )A .0B .1C .2D .不确定 2.题目与(A )卷第1题相同. 3.题目与(A )卷第3题相同.4.已知正整数a ,b ,c 满足a 2-6b -3c +9=0,-6a +b 2+c =0,则a 2+b 2+c 2=( ) A .424. B .430. C .441. D .460.5.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180,且BC =3,AD =4,AC =5,AB =6,DOOB=( )A .43B .65C .87D .1096.题目与(A )卷第5题相同.二、填空题(本题满分28分,每小题7分) 1.题目与(A )卷第1题相同.2.设O 是锐角三角形ABC 的外心,D ,E 分别为线段BC ,OA 的中点,∠ACB =7∠OED ,∠ABC =5∠OED ,则∠OED =______. 3.题目与(A )卷第3题相同. 4.题目与(A )卷第4题相同.第二试(A)一、(本题满分20分)已知实数x ,y 满足x + y =3,1x +y 2+1x 2+y =12,求x 5+y 5的值.二、(本题满分25分)如图,△ABC 中,AB >AC ,∠BAC =45︒,E 是∠BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF ⊥AB .已知AF =1,BF =5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a ,b ),使得a 3=49×3b +8.第二试(B)一、(本题满分20分)已知实数a ,b ,c 满足a ≤b ≤c ,a +b +c =16,a 2+b 2+c 2+14abc = ,求c 的值.二、(本题满分25分)求所有的正整数m ,使得22m -1-2m +1是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,∠OAD =∠OCB ,OA ⊥OD ,OB ⊥OC .求证:AB 2+CD 2=AD 2+BC 2.7。
2017年全国初中数学联赛试题
2017年全国初中数学联赛试题第一试一、选择题(每小题7分,共42分)1、已知实数c b a ,,满足7293,903132=++=++c b a c b a ,则b ac b 23++=().A、2B、1C、0D、-12、已知ΔABC 的三边长分别为c b a ,,,以下三个结论:(1)以c b a ,,为边长的三角形一定存在;(2)以222,,c b a 为边长的三角形一定存在;(3)以1,1,1+-+-+-a c c b b a 为边长的三角形一定存在.其中,正确的结论的个数为().A、0B、1C、2D、33、若正整数c b a ,,满足c b a ≤≤,()c b a abc ++=2,则称()c b a ,,为“好数组”,,则“好数组”的个数为().A、1B、2C、3D、44、设O 为四边形ABCD 的对角线AC 和BD 的交点,若∠BAD+∠ACB=。
180,且BC=3,AD=4,AC=5,AB=6,则OB DO =().A、910B、78C、56D、345、如图,设A 是以BC 为直径的圆上的一点,AD 垂直BC 于点D,点E 在线段DC 上,点F 在CB 的延长线上,满足∠BAF=∠CAE,已知BC=15,BF=6,BD=3,则AE=().A、34B、132C、142D、1526、对于正整数n ,设n a 为最接近n 的整数,则=++++2003211......111a a a a ().A、7191B、7192C、7193D、7194二、填空题(每小题7分,共28分)1、使得等式311a a =++成立的实数a 的值为_________.2、如图,在平行四边形ABCD 中,∠ABC=。
72,AF 垂直BC 于点F,AF 与BD 交于点E,若DE=2AB,则∠AED=_______.3、设n m ,为正整数,且n m >,若m 9与n 9的末两位数字相同,则n m -的最小值为______.4、若实数y x ,满足1333=++xy y x ,则22y x +的最小值为______.第二试一、(20分)已知实数y x ,满足2111,322=+++=+y x y x y x ,求55y x +的值.二、(25分)如图,在ΔABC 中,AB>AC,∠BAC=。
2017年全国初中数学联合竞赛试题及详细解答(含一试二试)
2. 设 O是 锐 角 三 角 形 ABC的 外 心 , D,E分 别 为 线 段 BC,OA的 中 点 ,
,
,则
_________.
3.题目与(A)卷第 3题相同. 4.题目与(A)卷第 4题相同
第二试 (A)
一、(本题满分 20分)已知实数 x,y满足 x+y=3,
,求
的值.
二、(本题满分25分)如图,△ABC中,AB AC, BAC 45,E是 BAC的 外角平分线与△ABC 的外接圆的交点,点F在AB 上且EF AB.已知AF 1,BF
1.已知二次函数 y ax2 bx c(c 0)的图象与x轴有唯一交点,则二次函
数
y a3x2 b3x c3 的图象与x轴的交点个数为 ( )
A.0
B.1
C.2
D.不确定.
2.题目与(A)卷第1 题相同.
3.题目与(A)卷第3 题相同.
4.已知正整数a,b,c满足 a2 6b 3c 9 0, 6a b2 c 0,则a2 b2 c2
CB的延长线上, 满足
.已知BC=15,BF=6,BD=3,则AE= ( )
A.
B.
C.
D.
6.对于正整数 n,设 an是最接近 的整数,则
A.191/7
B.192/7
C.193/7
() D.194/7
二、填空题(本题满分 28分,每小题 7分) (本题共有 4个小题,要求直接将答案写在横线上.)
1.使得等式
2017 年全国初中数学联合竞赛试题
2017年3月26日(星期日)上午8:30-11:30
第一试(A)
一、选择题(本题满分 42分,每小题 7分) (本题共有 6个小题,每题均给出了代号为 A,B,C,D的四个答案,其中有且仅
2017年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则详解
2017年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则详解2017年全国初中数学联赛(初三组)初赛试卷试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
选择题和填空题只设7分和分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
一、选择题(本题满分42分,每小题7分)1、设实数a、b满足a-b=-1,则a³-b³+3ab的值为(B)A、-3B、-1C、1D、3解析:a³-b³+3ab=(a-b)(a²+ab+b²)+3ab=-(a-b)=-12、若实数a为常数,关于x的不等式组{x+a²≤2a x≤-7}的整数解只有8个,则a的值为(C)A、-1B、0C、1D、2解析:{x+a²≤2a x≤-7}⇒-7≤x≤-a²+2a⇒1≤-a²+2a⇒(a-1)≤0⇒a≤1因为a是常数,所以a=13、在菱形ABCD中,AB=4,E为AB的中点,若在线段BD上取一点P,则PA+PE∠A=60°,的最小值是(D)A、23B、4C、25D、27解析:如图,连结AC,EC交BD于点P,则点P是所求的菱形ABCD中,AB=4,∠A=60°,E为AB的中点DE=√3×AB/2=2√3CE=DE+DC=2√3+4AE=√(CE²+AC²)=√(28²+16)=4√10PA+PE∠A=AE×sin(∠APE)=4√10×sin(60°+∠BPD)令∠BPD=θ,则∠APE=60°+θPA+PE∠A=4√10×(cosθ+√3sinθ)=4√10×(sinθ+√3cosθ+2)/24√10×(sin(θ-60°)+2)/2=2√10×(√3cosθ+sinθ+1)≥2√10所以最小值为2√10,即274、对于任意实数a,b,c,用M{a,b,c}表示三个数的平均数,用min{a,b,c}表示这三个数中最小的数,若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=(A)A、-4B、-2C、2D、4解析:不妨设a最小,则M{a,b,c}=aa+b+c=3ab-a)+(c-a)=ab-a≥0,c-a≥0b=a,c=a2x+y+2=x+2y=2x-yx=-3,y=-1x+y=-45、如图,RtΔABC的斜边AB与⊙O相切于点P,直角顶点C在⊙O上,若AC=22,BC=4,则⊙O的半径是(B)A、3B、23C、4D、26解析:如图,由射影定理得:BC²=AC×DCCD=4²/22BD²=CD²+BC²=48BO=BD/2=√48/2=2√3OP=OB-√AB²-AP²=2√3-√22²-4²=2√3-2r=OP=2√3-2=2(√3-1)=2∙236、不超过1142无明显问题的段落,不需修改)即有:x2kx5x 2x25x k x 2将两式相减,得:10x52x化XXX:2x210x50由于方程只有一个公共实根,所以判别式为0,即:24250解得:2或 5又因为x2kx k的实根为0或k,所以:当2时,实根为0,k,所以实根之和为k;当5时,实根为0,k,所以实根之和为k;综上所述,关于x的方程x2kx k所有的实根之和为k k0.题目一:已知方程组 $\begin{cases}\alpha^2-k\alpha+5=0 \\\alpha^2+5\alpha-k=0\end{cases}$,求所有实数根的和。
2017全国初中数学联赛初二卷及详解
2017年全国初中数学联合竞赛试题 初二卷第一试一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1,1110135a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2的值为( ). A.125 B.120 C.100 D.813.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.14.已知正整数a,b,c 满足a 2-6b-3c+9=0,-6a+b 2+c=0,则a 2+b 2+c 2的值为( ). A.424 B.430 C.441 D.4605.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A.1023 B.1033C.32D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________.9.设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c 55a bb c++为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().A.1023B.1033C.32D.33答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得423AH =. 所以梯形ABCD 的面积为()14210214233⨯+⨯=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。
2017年全国初中数学联赛初二试题及参考答案(详解版)
2017年全国初中数学联合竞赛试题(初二)第一试一、选择题(本题满分 42 分,每小题 7 分)1.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b ca b++的值为( ) A .2 B . 1 C . 0 D .1- 2.已知实数,,a b c 满足1a b c ++=,1110135a b c ++=+++,则()()()222135a b c +++++的值为( )A . 125B . 120C . 100D . 813.若正整数,,a b c 满足a b c ≤≤且()2abc a b c =++,则称(),,a b c 为好数组.那么好数组的个数为( )A . 4B . 3C . 2D . 14.已知正整数,,a b c 满足26390a b c --+=,260a b c -++=,则222a b c ++的值为( ) A .424 B . 430 C . 441 D . 4605.梯形ABCD 中,AD ∥BC ,3AB =,4BC =,2CD =,1AD =,则梯形的面积为( ) ABC. D.6.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,点E 在AB 上,若42AE =,28BE =,70BC =,45DCE ∠=︒,则DE 的值为( )A . 56B . 58C . 60D . 62二、填空题:(本题满分 28 分,每小题 7 分)7.=a 的值为________.8.已知ABC 的三个内角满足100A B C <<<︒.用θ表示100,,C C B B A ︒---中的最小者,则θ的最大值为________.9.设,a b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分 20 分)设,A B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果22A B -是完全平方数,求A 的值.二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分ADB ∠,DF 平分ADC ∠,BE DE ⊥,CF DF ⊥,P 为AD 与EF 的交点.证明:2EF PD =.三、(本题满分 25 分)已知,,a b c 是不全相等的正整数,求222a b c a b c ++++的最小值.2017年全国初中数学联合竞赛试题 初二卷参考答案第一试一、选择题(本题满分 42 分,每小题 7 分)1.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b ca b++的值为( ) A .2 B . 1 C . 0 D .1- 【答案】B【思路】因为所求分式的特点可以想到把2a b +,3b c +看成一个整体变量求解方程. 【解析】已知等式可变形为()()223390a b b c +++=,()()32372a b b c +++=,解得218a b +=,318b c +=,所以312b ca b+=+. 2.已知实数,,a b c 满足1a b c ++=,1110135a b c ++=+++,则()()()222135a b c +++++的值为( )A . 125B . 120C . 100D . 81 【答案】C 【思路】换元法【解析】设1x a =+,3y b =+,5z c =+,则10x y z ++=,1110x y z++=, 0xy xz yz ∴++=,由()()22222100x y z x y z xy xz yz ++=++-++=.则()()()222135100a b c +++++=.3.若正整数,,a b c 满足a b c ≤≤且()2abc a b c =++,则称(),,a b c 为好数组.那么好数组的个数为( )A . 4B . 3C . 2D . 1 【答案】B【思路】先通过a b c ≤≤且()2abc a b c =++的限定关系确定可能的种类,再通过枚举法一一验证.【解析】若(),,a b c 为好数组,则()26abc a b c c =++≤,即6ab ≤,显然1a =或2. 若1a =,则()21bc b c =++,即()()226b c --=,可得()(),,1,3,8a b c =或()1,4,5,共2个好数组.若2a =,则2b =或3,可得2,4b c ==;53,2b c ==,不是整数舍去,共1个好数组. 共3个好数组()()()(),,1,3,8,1,4,5,2,2,4a b c =.4.已知正整数,,a b c 满足26390a b c --+=,260a b c -++=,则222a b c ++的值为( ) A .424 B . 430 C . 441 D . 460 【答案】C【思路】由已知等式消去c 整理后,通过,a b 是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.【解析】联立方程可得()()2293175a b -+-=,则()23175b -≤,即16b ≤≤. 当1,2,3,4,5b =时,均无与之对应的正整数a ;当6b =时,9a =,符合要求,此时18c =,代入验证满足原方程. 因此,9a =,6b =,18c =,则222441a b c ++=.5.梯形ABCD 中,AD ∥BC ,3AB =,4BC =,2CD =,1AD =,则梯形的面积为( ) ABC. D.【答案】A【思路】通过作平行四边形把边长关系转化到一个三角形中来.【解析】作AE ∥DC ,AH ⊥BC ,则ADCE 是平行四边形,则3BE BC CE BC AD AB =-=-==, 则ABE 是等腰三角形,3BE AB ==,2AE =,经计算可得AH =. 所以梯形ABCD 的面积为()1142⨯+. 6.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,点E 在AB 上,若42AE =,28BE =,70BC =,45DCE ∠=︒,则DE 的值为( )A . 56B . 58C . 60D . 62【答案】B【思路】补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.【解析】作CF △AD ,交AD 的延长线于点F ,将CDF 绕点C 逆时针旋转90︒至CGB ,则ABCF 为正方形,可得ECG △ECD ,EG ED ∴=. 设DE x =,则28DF BG x ==-,98AD x =-. 在RtEAD 中,有()2224298x x +-=,解得58x =.二、填空题:(本题满分 28 分,每小题 7 分) 7.=a 的值为________. 【答案】8【思路】通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.【解析】易得(321a =.令x ,则0x ≥,代入整理可得()()2310x x x -+=,解得1230,3,1x x x ===-,舍负,即1a =-或8,验证可得8a =.8.已知△ABC 的三个内角满足100A B C <<<︒.用θ表示100,,C C B B A ︒---中的最小者,则θ的最大值为________. 【答案】20︒【思路】一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况.【解析】100C θ≤︒-,C B θ≤-,B A θ≤-()()()131002206C C B B A θ∴≤︒-+-+-=︒⎡⎤⎣⎦ 又当40,60,80A B C =︒=︒=︒时,20θ=︒可以取到. 则θ的最大值为20︒.9.设,a b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.【答案】7【思路】因为p 是质数,只能拆成1和p ,另一方面通过a b +、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.【解析】因为,a b 互质,所以a b +、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得1a b ==,4p =,不是质数舍; 381ab p a b⎧=⎪⎨=⎪+⎩可得7a =,1b =,7p =,符合题意. 则7p =.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 【答案】34【思路】考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.【解析】设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34. 由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设,A B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果22A B -是完全平方数,求A 的值.【思路】对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a b +,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果.【解析】设()101,9,,A a b a b a b N =+≤≤∈,则10B b a =+,由,A B 不同得a b ≠,()()()()22221010911A B a b b a a b a b -=+-+=⨯⨯+-.由22A B -是完全平方数,则a b >,()()11|a b a b +-,可得11a b +=,a b -也是完全平方数,所以1a b -=或4.若1a b -=,则6a =,5b =; 若4a b -=,则没有正整数解. 因此6a =,5b =,65A =.二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分ADB ∠,DF 平分ADC ∠,BE DE ⊥,CF DF ⊥,P 为AD 与EF 的交点.证明:2EF PD =.【思路】因为EF 、PD 都在DEF 中,所以想办法推出其性质,比较容易得出90EDF ∠=︒,此时若能得出EP PD =,则自然可以得到结论.【解析】由DE 平分ADB ∠,DF 平分ADC ∠,可得90EDF ∠=︒. 由BE DE ⊥得BE △DF ,则EBD FDC ∠=∠.又BD DC =,90BED DFC ∠=∠=︒,则BED △DFC ,BE DF =. 得四边形BDFE 是平行四边形,PED EDB EDP ∠=∠=∠,EP PD =. 又△EDF 是直角三角形,2EF PD ∴=.三、(本题满分 25 分)已知,,a b c 是不全相等的正整数,求222a b c a b c ++++的最小值.【思路】通过,,a b c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用,,a b c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b c b c +--+-==--可得2b ac =.()()22222a c ba b c a c b a b c a c b+-++==+-++++.不妨设a c <,若1a =,2c b =,因为a b ≠,则()113a c b b b +-=+-≥,取等号当且仅当2b =时.若2a ≥,因为1c b ≠≠,则()1243a c b a b b a +-=+-≥+≥>.所以222a b c a b c++++的最小值为3,当1a =,2b =,4c =时.。
2017年全国初中数学联合竞赛试题含答案
2017 年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分 42 分,每小题 7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则3b+c=()a +2bA. 2.B. 1.C. 0.D.-1.【答】B.已知等式可变形为 2( a+ 2b) + 3(3b+c ) = 90 , 3( a+ 2b) + (3b+c ) = 72 ,解得a+2b=18,3b+c=18 ,所以3b+c=1.a +2b2.已知△ABC的三边长分别是a,b,c,有以下三个结论:(1)以a,b,c为边长的三角形一定存在;(2)以 a 2, b 2, c2为边长的三角形一定存在;(3)以 | a-b | +1,| b-c | +1,| c-a | +1 为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设 a ≥ b ≥ c ,则有 b + c > a .(1)因为 b + c > a ,所以 b + c +222b +c > a ,故以a,b,c为bc > a ,即( b + c ) >( a),即边长的三角形一定存在;(2)以 a =2, b =3, c =4为边长可以构成三角形,但以 a 2= 4, b2= 9, c2=16 为边长的三角形不存在;(3)因为 a ≥ b ≥ c ,所以| a - b |+1= a - b +1,| b - c |+1= b - c +1,| c - a |+1= a - c +1,故三条边中| c - a |+1大于或等于其余两边,而(| a-b | +1)+(| b-c | +1)=(a-b+ 1)+(b-c+1)=a-c+ 1 + 1 >a -c+ 1 =| c-a | +1 ,故以 | a-b | +1 , | b-c | +1 , | c-a | +1 为边长的三角形一定存在.3.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么,好数组的个数为()A. 1.B.2.C.3.D.4.【答】C.若( a, b, c) 为好数组,则abc= 2( a+b+c ) ≤ 6c,所以ab≤6.显然,a只能为1或2.若a =2,由ab≤6可得b=2或3,b=2时可得c=4,b=3时可得c=52(不是整数);若a =1,则bc=2(1+b+c),于是可得(b-2)(c-2)=6,可求得(a,b,c)=(1,3,8)或(1,4,5).综合可知:共有 3 个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 ∠BAD + ∠ACB = 180︒,且 BC = 3,AD = 4 ,AC = 5 , AB = 6 ,则 DO = ( )OB10 8 64A..B..C..D..D9 7 5 3E【答】A.C过 B 作 BE // AD ,交 AC 的延长线于点 E ,则 ∠ABE = 180︒ - ∠BAD= ∠ACB ,所以△ ABC ∽△ AEB ,所以AC = BC ,所以4O3AB EBAB ⋅ BC6 ⨯318BEB = = = .A6AC 5 5再由 BE // AD ,得 DO = AD = 4 = 10 .BEOB 18 955.设 A 是以 BC 为直径的圆上的一点,AD ⊥ BC 于点 D ,点 E 在线段 DC 上,点 F 在 CB 的延长线上,满足 ∠BAF = ∠CAE .已知 BC =15 , BF = 6 , BD = 3 ,则 AE = ( )AA. 4 3 .B. 2 13 .C. 2 14 .D. 2 15 .【答】B.FBDEC如图,因为 ∠BAF = ∠CAE ,所以 ∠BAF + ∠BAE = ∠CAE + ∠BAE ,即 6 3∠FAE = ∠BAC = 90︒ .又因为 AD ⊥ BC ,故 AD 2 = DE ⋅ DF = DB ⋅ DC .而 DF = BF + BD = 6 + 3 = 9 ,DC = BC - BD = 15 - 3 =12 ,所以 AD 2 = DE ⋅ 9 = 3 ⋅ 12 ,所以 AD = 6 ,DE= 4 . 从而 AE = AD 2 + DE 2 = 62 + 42 = 213 .6.对于正整数 n ,设 a 是最接近的整数,则 1 + 1 + 1 + +1 = ( n)na 1 a 2 a 3a200A. 191 .B. 192 .C. 193 .D. 194 .777 7 【答】A.对于任意自然数 k , ( k +1 )2 = k 2 + k + 1不是整数,所以,对于正整数 n ,- 1 一定不是整数.n24 2的整数,则| m - |< 1 , m ≥1.设 m 是最接近 nn2易知:当 m ≥1时,| m - |< 1 ⇔ ( m - 1 ) 2 < n < ( m + 1 )2⇔ m 2 - m + 1 < n < m 2 + m + 1 .n 2 2 24 4 于是可知:对确定的正整数 m ,当正整数 n 满足 m 2 - m + 1 ≤ n ≤ m 2+ m 时,m 是最接近的整数,n 即 a n = m .所以,使得 a n = m 的正整数 n 的个数为 2m .注意到132 + 13 = 182 < 200 < 14 2 + 14 = 210 ,因此, a , a , ,8 个 4,……,26 个 13,18 个 14.所以1+1+1+ +1= 2 ⨯1+ 4 ⨯1+ 6 ⨯1+ + 26 ⨯1+ 18⨯1=191.a a a a12313147 123200二、填空题:(本题满分 28 分,每小题 7 分)1.使得等式 1 + 1+a=3a 成立的实数 a 的值为_______.【答】 8 .由所给等式可得 (1 + 1 +a )3=a2.令 x =1+a,则 x ≥0,且a=x2-1,于是有(1+ x )3=( x2-1)2,整理后因式分解得x ( x -3)( x +1)2=0,解得 x= 0 ,x= 3 ,x= -1 (舍去),所以a= -1或a=8.123验证可知: a = -1是原方程的增根, a =8是原方程的根.所以, a =8.2.如图,平行四边形ABCD中,∠ABC=72︒,AF⊥BC于点F, AFM交 BD 于点 E ,若 DE =2AB ,则∠AED =_______.【答】 66︒.BE 取 DE 的中点 M ,在Rt△ ADE中,有 AM = EM =1DE = AB .2设∠AED =α,则∠AME =180︒ -2α,∠ABM =α-18︒.又∠ABM = ∠AMB ,所以180︒ -2α=α-18︒,解得α=66︒.3.设m,n是正整数,且m>n.若9m与9n的末两位数字相同,则m-n的最小值为.【答】10.由题意知,9m- 9n= 9n⋅ (9m-n-1) 是100的倍数,所以9m-n-1是100的倍数,所以9m-n的末两位数字是 01,显然,m-n是偶数,设m-n=2t(t是正整数),则9m-n=92t=81t .计算可知: 812的末两位数字是61, 813的末两位数字是41, 814的末两位数字是21, 815的末两位数字是 01.所以 t 的最小值为5,从而可得 m - n 的最小值为10.4.若实数 x, y 满足 x 3+ y 3+3 xy =1,则 x 2+ y2的最小值为.1【答】2 .因为0= x 3+ y 3+3 xy -1=( x + y )3+(-1)3-3 x 2 y -3 xy 2+3xy=( x+y- 1)( x2+y2-xy+x+y+1) =12(x+y-1)[(x-y)2+(x+1)2+(y+1)2],所以 x = y = -1或x+y=1.若x = y = -1,则 x 2+ y2=2.若x + y =1,则x2+y2=12[(x+y)2+(x-y)2]=12[1+(x-y)2]≥12,当且仅当x=y=12时等号成立.所以, x 2+ y2的最小值为12.第一试(B)一、选择题:(本题满分 42 分,每小题 7 分)1.已知二次函数y=ax2+bx+c(c≠0)的图象与x轴有唯一交点,则二次函数y=a3x2+b3x+c3的图象与 x 轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数 y = ax 2+ bx + c 的图象与 x 轴有唯一交点,所以∆1=b2-4ac=0,所以b2=4ac≠0.故二次函数 y = a 3 x 2+ b3 x + c3的判别式∆2=(b3)2-4a3c3=b6-161(4ac)3=b6-161(b2)3=1615b6>0 ,所以,二次函数y=a3x2+b3x+c3的图象与x轴有两个交点.2.题目和解答与(A)卷第 1 题相同.3.题目和解答与(A)卷第 3 题相同.4.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2=()A. 424.B. 430.C. 441.D. 460.【答】C.由已知等式消去 c 整理得( a -9)2+3(b -1)2=75,所以3(b -1)2≤75,又b为正整数,所以1≤b≤6.若b =1,则( a -9)2=75,无正整数解;若b =2,则( a -9)2=72,无正整数解;若b =3,则( a -9)2=63,无正整数解;若b =4,则( a -9)2=48,无正整数解;若b =5,则( a -9)2=27,无正整数解;若b =6,则( a -9)2=0,解得a=9,此时c=18.因此, a =9,b=6, c =18,故a2+b2+c2==441.5.设O是四边形ABCD的对角线AC、BD的交点,若∠BAD+ ∠ACB=180︒,且BC=3,AD=4,AC =5, AB =6,则DO=()OBA.4.B.6.C.8.D.10.3579【答】D.解答过程与(A)卷第 4 题相同.6.题目和解答与(A)卷第 5 题相同.二、填空题:(本题满分 28 分,每小题 7 分)1.题目和解答与(A)卷第 1 题相同.2 .设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠ACB=7∠OED,∠ABC =5∠OED ,则∠OED =_________.A 【答】10︒.如图,设∠OED = x ,则∠A B =C5,x ∠ACB =7x ,∠DOC= ∠BAC =180︒ -12x ,∠AOC =10x ,所以∠AOD =180︒ -2x ,∠ODE =180︒ - x -(180︒ -2 x)= x ,所以OD=OE=1OA =1OC ,所22B 以∠DOC =60︒,从而可得 x =10︒.3.题目和解答与(A)卷第 3 题相同.4.题目和解答与(A)卷第 4 题相同.EODC第二试(A)一、(本题满分20分)已知实数 x, y 满足x+y=3,1+1=1,求 x 5+ y5的值. x+ y 2x 2+ y2解由1+1=1可得 2( x+y+x2+ y 2)= x 3+ y 3+ x 2 y 2+ xy . x + y 2x 2+ y2设xy = t ,则 x 2+ y 2=( x + y )2-2xy =9-2t , x 3+ y 3=( x + y )[( x + y )2-3 xy ]=3(9-3t ),代入上式可得 2(3 + 9 - 2t ) = 3(9 - 3t ) +t2+t,解得t=1或t=3.……………………10分当 t =3时,xy=3,又x+y=3,故x,y是一元二次方程m2-3m+3=0的两实数根,但易知此方程没有实数根,不合题意.……………………15分当 t =1时,xy=1,又x+y=3,故x,y是一元二次方程m2-3m+1=0的两实数根,符合题意.此时x 5+ y 5=( x 2+ y 2)( x 3+ y 3)-( x + y ) x 2 y 2=(9-2t )⋅[3(9-3t )]-3t 2=123.……………………20分二(、本题满分 25 分)如图,△ ABC 中,AB > AC ,∠BAC = 45︒ ,E 是 ∠BAC的外角平分线与 △ ABC 的外接圆的交点,点 F 在 AB 上且 EF ⊥ AB . 已知 AF =1, BF = 5,求△ ABC 的面积.解 在 FB 上取点 D ,使 FD =AF ,连接 ED 并延长,交△ ABC 的外接圆于点 G.由 EF ⊥AD ,AF =FD 知△AED 是等腰三角形,所以∠AED =180︒ - 2 ∠EAD =∠BAC , ……………………10 分EAFDCGB……………………15 分 所以 AG = BC ,所以 AC = BG ,所以 AC =BG. 又∠BGE =∠BAE =∠ADE =∠BDG ,所以 BG =BD ,所以 AC =BD =5-1=4, ……………………20 分△ ABC 的 AB 边上的高 h = AC sin 45︒ = 2 2 .所以,△ ABC 的面积 S = 1 ⋅ AB ⋅ h = 1 ⨯ 6 ⨯ 2 = 6 .2 2 ……………………25 分22三、(本题满分 25 分)求所有的正整数数对 ( a , b ) ,使得 a 3 = 49 ⨯ 3b +8 . 解 显然, 49 ⨯ 3b +8 为奇数,所以 a 为奇数.又因为 a 3 = 49 ⨯ 3b + 8 ≥ 49 ⨯ 3 + 8 > 53 ,所以 a > 5 .……………………5 分由 a 3 = 49 ⨯ 3b +8 可得 a 3 - 8 = 49 ⨯3b ,即 ( a - 2)( a 2 + 2a + 4) = 7 2 ⨯3b . ……………………10 分设 ( a - 2, a 2 + 2a + 4) = d ,则 d 为奇数.注意到 a 2 + 2a + 4 = ( a - 2)( a + 4) +12 ,所以 d | 12 ,所以 d=1 或 3. ……………………15 分⎧a - 2 = 7 2,⎧a - 2 = 3b,均无正整数解.……………………20 分若 d =1,则有 ⎨a 2 + 2 a + 4 或 ⎨a 2 + 2 a + 4 = 7 2 ⎪ = 3b ,⎪ , ⎩⎩⎧a - 2 = 3 ⨯7 2, ⎧a - 2 = 3b -1,解得 a =11, b = 3 . 若 d =3,则有 ⎨ 2 + 2 a + 4 b -1或 ⎨ 2 + 2 a + 4 = 3 ⨯7 2 ⎪ a = 3 , ⎪ a ,⎩⎩所以,满足条件的正整数对只有一个,为(11,3).……………………25 分第二试 (B )一、(本题满分 20 分)已知实数 a , b , c 满足 a ≤ b ≤ c , a + b + c =16 , a 2 + b 2 + c 2 +14 abc =128 ,求 c 的值.解 设 a + b = x , ab = y ,依题意有 x 2 - 2 y + (16 - x ) 2 +14 y (16 - x ) =128 ,整理得( x - 8) 2 = 1y ( x -8) ,8所以 x = 8 或 y = 8( x -8) .……………………10 分(1)若 x =8,则 a + b =8,此时 c =8.(2)若 y =8( x -8),即 ab =8( a + b -8),则( a -8)(b -8)=0,所以a=8或b=8.当a =8时,结合 a ≤ b ≤ c 可得 a + b + c ≥24,与 a + b + c =16矛盾.当b =8时,结合 a ≤ b ≤ c 及 a + b + c =16可得 a =0, c =8.综合可知: c =8.……………………20分二、(本题满分 25 分)求所有的正整数m,使得22m-1-2m+1是完全平方数.解当 m =1时,22m-1-2m+1=1是完全平方数.……………………5分当 m >1时,设22m-1-2m+1=n2( n 为正整数).注意到 22m-1- 2m+ 1 = 2 ⋅ (2m-1 ) 2- 2 ⋅ 2 m-1+ 1 = (2 m-1- 1) 2+ (2 m-1 )2,故可得(2 m-1- 1) 2+ (2 m-1 )2=n2,……………………10分所以 22m-2=n2- (2m-1- 1) 2= ( n+ 2 m-1- 1)( n- 2 m-1+1) .……………………15分设 x = n -2m-1+1, y = n +2m-1-1,则x<y, xy =22m-2,所以x,y均为2的方幂.……………………20分又 y - x =2m-2被4除余数为2,所以,只可能x=2, y =2m,故2⨯2m=22m-2,解得m=3.综上可知:满足条件的正整数 m 有两个,分别为1和3.……………………25分三、(本题满分 25 分)如图,O为四边形ABCD内一点,∠OAD= ∠OCB,DOA ⊥ OD , OB ⊥ OC .求证:AB2+CD2=AD2+BC2.AOP 证明由题设条件可知∠AOD = ∠BOC =90︒,又∠OAD =∠OCB,所以△ AOD ∽△ COB ,……………………5分OD AO OC AOB所以OB=CO,从而OB=OD .……………………10分C 又∠AOC = ∠AOB + ∠BOC = ∠AOB + ∠AOD = ∠DOB ,所以△ AOC ∽ △ DOB ,所以∠OAC = ∠ODB .……………………15分设AC 和BD交于点P,则∠APD = ∠AOD =90︒,所以 AC ⊥ DB ,……………………20分所以 AB 2+ CD 2=( AP 2+ PB 2)+( PD 2+ PC 2)=( AP 2+ PD 2)+( PB 2+ PC 2)= AD 2+ BC2.……………………25分。
2017年全国初中数学联合竞赛试题
2017年全国初中数学联合竞赛试题(初二年级)第一试(3月26日上午8﹕30——9﹕30)考生注意:1. 本试两个大题共10个小题,全卷满分70分.2. 用圆珠笔或钢笔作答.3. 解题书写不要超出装订线.一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b ca b++=( )A. 2.B. 1.C. 0.D. 1-.2.已知实数,,a b c 满足1a b c ++=,1110135a b c ++=+++,则 222(1)(3)(5)=a b c +++++ ( )A.125. B .120. C .100. D .81.3.若正整数,,a b c 满足a b c ≤≤且2()abc a b c =++,则称(,,)a b c 为好数组.那么,好数组的个数为( )A. 4. B .3. C .2. D .1.4.已知正整数,,a b c 满足26390a b c --+=,260a b c -++=,则222a b c ++=()A. 424.B. 430.C. 441.D. 460.市(区、县) 学校 姓名 性别 准考证号_________________________ (密封装订线内不要答题)。
2017全国初中数学联赛初一试题及答案
省市县(区)学校姓名考号(密封装订线内不要答题)得分 评卷人得分评卷人)题答要不内线订装封密()题答要不内线订装封密(90745154100,,=∴⎪⎩⎪⎨⎧=+=+x y x y x y x 则道做错道设做对10.已知: a =1×2+2×3+3×4+!+99×100, b =2×4+3×5+4×6+!+100×102则b a −=_________.【解析】: −15147a −b =−3×2−3×3−3×4−!−3×100=−3×(2+3+!+100) −3×99×51=−1514711.小华为了备战2017年全国初中数学联赛,做了100道模拟选择题,估分时把对的20%估为错的,把错的20%估为对的,这样得到74道是正确的,那么小华真正做对道.【解析】: 12.若 a ,b ,c ,d 都是自然数,满足 a 3=b 2,c 4=d 3,且 a −d =33,则 b −c =______.【解析】4849或335设 a 3=b 2=p 6,c 4=d 3=q 12,所以 a =p 2,d =q 4.所以 33=p 2−q 4=(p −q 2)(p +q 2),得 p +q 2=33,p −q 2=1或 p +q 2=11,p −q 2=3所以 p =17,q =4或 p =7,q =2,所以 b −c =p 3−q 3=4849或 335.三、解答题(本题满分20分)如图,一个九宫格内有八个正方形滑块,分别标有数字1, 2, 3, 4, 5, 6, 7, 8. 现在滑动九宫格中的滑块,例如:依次将滑块 2下移一格,滑块 1右移一格,滑块 8上移 1格,滑块 2左移一格,可以得到图2.图1 图2图3 图4(1)是否可以经过若干次滑动,使得图1变为图3的情形?若可以,请指出操作方法;若不能,说明理由.(2)是否可以经过若干次滑动,使得图1变为图4的情形?若可以,请指出操作方法;若不能,说明理由.【解析】:(1)可以,先将滑块8移至空白处,其它滑块从7至1依次顺时针滑动一格,再重复一次该操作得到下图.再将8上移一格.即可得到图2.……………………(10分)(2)不能将某个滑块移入中间空格处,然后移动外围的7个滑块,再将中间的滑块移至外围。
2017年全国初中数学联赛初二卷和详解
2017年全国初中数学联合竞赛试题初二卷第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-12.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.813.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.14.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.4605.梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().C. D.6.如图,梯形ABCD中,AD∥BC,∠A=90°,点E在AB上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE的值为().A.56B.58C.60D.62二、填空题:(本题满分28分,每小题7分)7.=a的值为________.8.已知△ABC的三个内角满足A<B<C<100°.用θ表示100°-C,C-B,B-A中的最小者,则θ的最大值为________.9.设a,b是两个互质的正整数,且38abpa b=+为质数.则p的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().C. D.答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得AH =所以梯形ABCD 的面积为()1142⨯+=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。
2017年全国初中数学联合竞赛四川初赛
2017年全国初中数学联合竞赛(四川初赛)试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.选择题和填空题只设7分和0分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、B2、C3、D4、A5、B6、C二、填空题(本题满分28分,每小题7分)7、3 8、40 9、1910、4三、(本大题满分20分)11、已知关于x的一元二次方程x2-kx+5=0与x2+5x-k=0只有一个公共的实根,求关于x的方程|x2+kx|=|k|所有的实根之和。
解:设x2-kx+5=0与x2+5x-k=0的公共实根为α,则α 2-kα+5=0,α 2+5α-k=0, ············································(5分)两式相减,得(k+5)α -(k+5) =0.·········································(10分)因为当k=-5时两方程相同,有两个公共的实根,不合题意.所以k≠-5.因此α =1.从而求得k=6.················································(15分)所以方程|x2+kx|=|k|即为|x2+6x|=6,x2+6x=6或x2+6x=-6.显然两方程都有实根,因此方程所有实根之和是-12. ············(20分)四、(本大题满分25分)12、如图,已知圆O的直径AB与CD互相垂直,E为OB中点,CE的延长线交圆O于G,AG交CD于F,求DFFC的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.4.
()
若 (a,b, c) 为好数组,则 abc 2(a b c) 6c ,所以 ab 6 .显然, a 只能为 1 或 2.
若 a =2,由 ab 6 可得 b 2 或 3, b 2 时可得 c 4 , b 3 时可得 c 5 (不是整数); 2
若 a =1,则 bc 2(1 b c) ,于是可得 (b 2)(c 2) 6 ,可求得 (a,b, c) =(1,3,8)或(1,4,
若 b =6,则 (a 9)2 0 ,解得 a 9 ,此时 c 18 .
2017 年全国初中数学联合竞赛试题参考答案及评分标准 第 4 页(共 7 页)
因此, a 9 , b =6, c 18 ,故 a2 b2 c2 =441.
5.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 BAD ACB 180,且 BC 3,AD 4 ,
(2)以 a 2,b 3,c 4 为边长可以构成三角形,但以 a2 4,b2 9,c2 16 为边长的三角形不存在;
(3)因为 a b c ,所以 | a b | 1 a b 1,| b c | 1 b c 1,| c a | 1 a c 1 ,故三条边中 | c a | 1 大于或等于其余两边,而(| a b | 1)(| b c | 1)(a b 1)(b c 1)=a c 11 a c 1 | c a | 1 ,故
2
4
2
设 m 是最接近 n 的整数,则| m n | 1 , m 1. 2
易知:当 m 1时,| m n | 1 (m 1)2 n (m 1)2 m2 m 1 n m2 m 1 .
2
2
2
4
4
于是可知:对确定的正整数 m ,当正整数 n 满足 m2 m 1 n m2 m 时,m 是最接近 n 的整数,
以 | a b | 1 , | b c | 1, | c a | 1 为边长的三角形一定存在.
3.若正整数 a,b, c 满足 a b c 且 abc 2(a b c) ,则称 (a,b, c) 为好数组.那么,好数组的个数
为 A. 1. 【答】C.
B.2.
C.3.
第一试(A)
一、选择题:(本题满分 42 分,每小题 7 分)
1.已知实数 a,b, c 满足 2a 13b 3c 90, 3a 9b c 72 ,则 3b c = a 2b
A. 2.
B. 1.
C. 0.
D. 1.
【答】B.
()
已知等式可变形为 2(a 2b) 3(3b c) 90 , 3(a 2b) (3b c) 72 ,解得 a 2b 18 ,
验证可知: a 1是原方程的增根, a 8 是原方程的根.
所以, a 8.
A
D
2.如图,平行四边形 ABCD 中,ABC 72 , AF BC 于点 F , AF
交 BD 于点 E ,若 DE 2AB ,则 AED =_______.
【答】 66 . 取 DE 的中点 M ,在 Rt △ ADE 中,有 AM EM 1 DE AB .
AC 5, AB 6,则 DO = OB
()
A. 10 .
B. 8 .
C.Hale Waihona Puke 6 .D. 4 .9
7
5
3
D
【答】A.
过 B 作 BE // AD , 交 AC 的 延 长 线 于 点 E , 则 ABE 180 BAD
E C
ACB ,所以△ ABC ∽△ AEB ,所以 AC BC ,所以
其中正确结论的个数为
()
A.0.
B.1.
C.2.
D.3.
【答】C. 不妨设 a b c ,则有 b c a .
(1)因为 b c a ,所以 b c 2 bc a ,即 ( b c)2 ( a)2 ,即 b c a ,故以 a, b, c 为 边长的三角形一定存在;
数字是 01.
所以 t 的最小值为 5,从而可得 m n 的最小值为 10.
4.若实数 x, y 满足 x3 y3 3xy 1,则 x2 y2 的最小值为
.
【答】 1 . 2
因为
0 x3 y3 3xy 1 (x y)3 (1)3 3x2 y 3xy2 3xy
2017 年全国初中数学联合竞赛试题参考答案及评分标准
说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题, 请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在 评卷时请参照本评分标准划分的档次,给予相应的分数.
O
AB EB
EB AB BC 63 18 .
AC
55
A
B
再由 BE // AD ,得 DO AD OB BE
4 18
10 . 9
5
5.设 A 是以 BC 为直径的圆上的一点,AD BC 于点 D ,点 E 在线段 DC 上,点 F 在 CB 的延长线上,
满足 BAF CAE .已知 BC 15 , BF 6 , BD 3 ,则 AE =
()
A
A. 4 3 .
B. 2 13 .
C. 2 14 . D. 2 15 .
【答】B.
F
B
D
E
C
如图,因为 BAF CAE ,所以 BAF BAE CAE BAE ,即
FAE BAC 90 .
又因为 AD BC ,故 AD2 DE DF DB DC .
8 个 4,……,26 个 13,18 个 14.
所以 1 1 1 1 21 4 1 6 1 26 1 18 1 191 .
a1 a2 a3
a200
123
13 14 7
二、填空题:(本题满分 28 分,每小题 7 分)
1.使得等式 1 1 a 3 a 成立的实数 a 的值为_______. 【答】 8 . 由所给等式可得 (1 1 a)3 a2 .
即 an m .所以,使得 an = m 的正整数 n 的个数为 2m . 注意到132 13 182 200 142 14 210 ,因此, a1, a2,, a200 中,有:2 个 1,4 个 2,6 个 3,
2017 年全国初中数学联合竞赛试题参考答案及评分标准 第 2 页(共 7 页)
故二次函数
y a3x2 b3x c3 的 判 别 式 2
(b3)2 4a3c3 b6 1 (4ac)3 b6 1 (b2 )3
16
16
15 b6 16
0 ,所以,二次函数 y a3x2 b3x c3 的图象与 x 轴有两个交点.
2.题目和解答与(A)卷第 1 题相同. 3. 题目和解答与(A)卷第 3 题相同.
若 b =1,则 (a 9)2 75 ,无正整数解;
若 b =2,则 (a 9)2 72 ,无正整数解;
若 b =3,则 (a 9)2 63 ,无正整数解;
若 b =4,则 (a 9)2 48 ,无正整数解;
若 b =5,则 (a 9)2 27 ,无正整数解;
所以 x y 1或 x y 1.
若 x y 1,则 x2 y2 =2.
若 x y 1,则 x2 y2 1 [(x y)2 (x y)2 ] 1 [1 (x y)2 ] 1 ,当且仅当 x y 1 时等号
2
2
2
2
成立.
所以, x2 y2 的最小值为 1 . 2
.
【答】10.
由题意知,9m 9n 9n (9mn 1) 是 100 的倍数,所以 9mn 1是 100 的倍数,所以 9mn 的末两位数
字是 01,显然, m n 是偶数,设 m n 2t ( t 是正整数),则 9mn 92t 81t .
计算可知: 812 的末两位数字是 61, 813 的末两位数字是 41, 814 的末两位数字是 21, 815 的末两位
n 的整数,则 1 1 1 1 (
a1 a2 a3
a200
)
A. 191 . 7
B. 192 . 7
C. 193 . 7
D. 194 . 7
【答】A.
对于任意自然数 k , (k 1)2 k 2 k 1 不是整数,所以,对于正整数 n , n 1 一定不是整数.
令 x 1 a , 则 x 0 , 且 a x2 1 , 于 是 有 (1 x)3 (x2 1)2 , 整 理 后 因 式 分 解 得
x(x 3)(x 1)2 0 ,解得 x1 0 , x2 3 , x3 1 (舍去),所以 a 1或 a 8 .
2017 年全国初中数学联合竞赛试题参考答案及评分标准 第 1 页(共 7 页)
5). 综合可知:共有 3 个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).
4.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 BAD ACB 180,且 BC 3,AD 4 ,
第一试(B)
一、选择题:(本题满分 42 分,每小题 7 分)
1.已知二次函数 y ax2 bx c(c 0) 的图象与 x 轴有唯一交点,则二次函数 y a3x2 b3x c3 的
图象与 x 轴的交点个数为