数学-初一-错题本含答案

合集下载

初一数学易错题讲解及答案

初一数学易错题讲解及答案

初一数学易错题汇总第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑸ 绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x =- (-11),那么x = -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是1个. ⑼ 若0,a =则0ab=. ⑽绝对值等于本身的数是1. 二.填空题⑴若1a -=a -1,则a 的取值范围是: .⑵式子3-5│x │的最 值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________.⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为 ;如果│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻如果a <b <0,那么1a 1b. ⑼在数轴上表示数-113的点和表示152-的点之间的距离为: . ⑽11a b ⋅=-,则a 、b 的关系是________. ⑾若a b <0,bc<0,则ac 0.⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 . 三.解答题⑴已知a 、b 互为倒数,- c 与2d 互为相反数,且│x │=4,求2ab -2c +d +3x的值.⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值. ①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分): ⑺比较4a 和-4a 的大小 ①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536; ②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097; ③已知3.412=11.63,那么(34.1)2=116300; ④近似数2.40×104精确到百分位,它的有效数字是2,4; ⑤已知5.4953=165.9,x 3=0.0001659,则x =0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y |>|x |,化简|x |-|y |-|x +y |.⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值.⑾已知a <0,b <0,c >0,判断(a +b )(c -b )和(a +b )(b -c )的大小.⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+---- ⎪⎝⎭ ⑶77(35)9-÷+⑷523120001999400016342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ ⑸221.430.57()33⨯-⨯- ⑹6(5)(6)()5-÷-÷-⑺91118×18 ⑻-15×12÷6×5 ⑼24221(10.5)2(3)3⎡⎤---⨯÷---⎣⎦ ⑽-24-(-2)4⑾33(32)32-⨯+⨯有理数·易错题练习一.多种情况的问题(考虑问题要全面)(1)已知一个数的绝对值是3,这个数为_______; 此题用符号表示:已知,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________; (3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)若a 是负数,则a________-a ;a --是一个________数;(2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x, x 满足________; 若=-<2,2a a 化简____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( )-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。

初一年级名校易错题目汇编及答案十一(语数英合辑)假期提升

初一年级名校易错题目汇编及答案十一(语数英合辑)假期提升

初一年级错题本(语数英合辑)试题部分数学篇1.把下列各数填在相应的集合内:﹣3,7,﹣,﹣0.86,0,,0.7523,﹣.整数集合:{…};分数集合:{…};非负数集合:{…};非负整数集合:{…}.2.下列各式运算(1)﹣(﹣a﹣b)=a﹣b;(2)5x﹣(2x﹣1)﹣x2=5x﹣2x﹣1+x2;(3)3xy﹣(xy﹣y2)=3xy﹣xy+y2;(4)(a3+b3)﹣3(2a3﹣3b3)=a3+b3﹣6a3+9b3其中去括号不正确的有()A.(1)(2)B.(1)(2)(3)C.(2)(3)(4)D.(1)(2)(3)(4)3.已知多项式(4x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),若多项式的值与字母x的取值无关,则a b=.24.已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣(1)当x=y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.5.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最小值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是,此时x为;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.英语篇一、单项选择( ) 1. You should ________ more. Don’t always sit at the desk doing Maths ________ all the time.A. to exercise; exercisesB. exercise; exerciseC. to exercise; exerciseD. exercise; exercises( ) 2. Daniel with his good friends ________after school every day.A. walk homeB. walks homeC. walk to homeD. walks to home( ) 3. The boy’s mother is ________, so he has to look after his ________ mother.A. bad; sickB. ill; badC. ill; sickD. sick; ill( ) 4. ---Can you ________English? ---Yes, I am very good at ________ English jokes.A. speak; tellB. tell; sayingC. speak; tellingD. tell; speak( ) 5. ________ the Music Club ________ every Monday afternoon is happy.A. Go to; onB. Going to; atC. Go to; /D. Going to; /( ) 6. They live in a small house ________ interesting garden.A. with anB. have anC. has anD. with a( ) 7. It's getting dark. We'd better go home ________.A. on busB. by Mike's carC. in Mike's carD. take a bus( ) 8. --- Can you give me ________ money?--- I am sorry. I don't have ________.A. some; someB. any; anyC. some; anyD. any; some( ) 9. The shop ________ at 9 o’clock in the morning. It ________ for twelve hours a day.A. opens;is openB. opens; closesC. is open; opensD. opens; is closed( ) 10. --- Excuse me, could you please help me carry the bag?---________.A. That’s all right.B. It’s my pleasure.C. I hope so.D. With pleasure.二、阅读理解Fans often only see the good side of fame. They see the happy smiles and great success of famous people. But it’s difficult for them to understand everything that comes before them. They can’ t see the hard work or the hours of practice(练习).4Li Yundi, the 34-year-old Chinese piano genius (天才), released (发行) his first concert recording ten years ago. He talked with teens about his art and his job.“Of course, the job is hard work.” Li said. “You need to work hard to be a professional(专家). But you have to play hundreds of concerts, meet fans, and listen to critics(评论) of your music.”In 2000, he won the top prize at the International Chopin Piano Competition in Warsaw, Poland. This was the first time the top prize had been given in 15 years. Li was also the youngest, and the first Chinese to win the prize. Since then, Li became famous and his list of honors goes on and on.He worked hard. Li played for eight hours or more at a piano school every day. He often played even after school had closed. Today, Li still can’t play a beautiful tune(曲调)without careful preparation(准备).“ You need to be ready on stage, ” Li said. “ People are waiting for you. Nobody knows whether you have slept enough, or whether you have another problem in your life. But you need to play great music for your audience(观众). That’s what they want to hear. ”1. What can’t the fans see about famous people?A. Happy smiles.B. Great success.C. The good side of fame.D. The hard work or the hours of practice.2. Who did Li talk with?A. Piano prodigy.B. Teens.C. Boys.D. Students.3. Why does Li think the job is hard work?A. Because he has been very professional.B. Because he is a piano prodigy.C. Because he has to play hundreds of concerts, meet fans, and listen to critics.D. Because he became famous and his list of honors goes on and on.4. Which is NOT true about Li Yundi?A. He is a Chinese piano prodigy.B. He began to play piano when he was seven.C. He can play a beautiful tune without enough practice(练习).D. Every day, Li played for 8 hours or more at a piano school when he was young.语文篇一、基础知识(共3小题)1.阅读下面一段文字,按要求回答问题。

七年级上册数学一二单元错题

七年级上册数学一二单元错题

七年级上册数学一二单元错题一、有理数的概念与分类相关错题。

1. 下列各数:-2,0,(1)/(3),0.020020002·s,π,√(9),其中无理数有()- A. 1个。

- B. 2个。

- C. 3个。

- D. 4个。

- 答案:A。

- 解析:无理数是无限不循环小数。

-2是整数,属于有理数;0是整数,属于有理数;(1)/(3)是分数,属于有理数;0.020020002·s是无限不循环小数,属于无理数;π是无理数;√(9)=3是整数,属于有理数。

所以无理数只有0.020020002·s这1个。

2. 把下列各数填在相应的大括号里:-5,+(1)/(3),0.62,4,0,-1.1,(7)/(6),-6.4,-7,(7)/(3)。

- 正整数集合:{ 4};- 负整数集合:{ -5,-7};- 分数集合:{ +(1)/(3),0.62,(7)/(6), - 1.1,-6.4,(7)/(3)};- 非负有理数集合:{ +(1)/(3),0.62,4,0,(7)/(6),(7)/(3)}。

- 解析:正整数就是大于0的整数;负整数是小于0的整数;分数包括有限小数和无限循环小数;非负有理数是正有理数和0的统称。

- 常见错误是对概念理解不清,比如把0的分类弄错,或者小数与分数的转换不熟练。

3. 下列说法正确的是()- A. 整数就是正整数和负整数。

- B. 分数包括正分数、负分数。

- C. 正有理数和负有理数组成全体有理数。

- D. 一个数不是正数就是负数。

- 答案:B。

- 解析:- A选项,整数包括正整数、0和负整数,所以A错误。

- B选项,分数包括正分数和负分数,B正确。

- C选项,有理数包括正有理数、0和负有理数,C错误。

- D选项,一个数还可能是0,D错误。

二、数轴相关错题。

4. 在数轴上表示-2.5和1.5两点之间的所有整数有()- A. 4个。

- B. 3个。

- C. 2个。

初一数学错题精选及解析

初一数学错题精选及解析

第一章三角形的初步知识.三角形任意两边之和大于第三边.三角形任意两边之差小于第三边2. 角的知识:.三角形三个内角的和等于180°.三角形的一个外角等于和它不相邻的两个内角的和。

.三角形的任何一个外角大于和它不相邻的一个内角。

3. 三角形线的知识:三角形的中线、高、角平分线都是线段。

锐角三角形的三条高都在三角形的内部。

直角三角形的三条高,一条在三角形的内部,其他两条是直角边。

钝角三角形的三条高,一条在三角形的内部,其他两条在三角形的外部。

.垂直平分线的性质:线段的垂直平分线上的点到线段两端点的距离相等。

.角平分线性质:角平分线上的点到角的两边的距离相等。

4. 三角形全等的知识:全等三角形的性质:全等三角形的对应边相等,对应角相等..全等三角形的判断:SSS 、SAS 、ASA 、AAS 这四种。

5. 画图方面的知识:1.1 认识三角形1.在Rt △ABC 中,一个锐角为250, 则另一个锐角为________;2. 在△ABC 中,AB =3,BC =7,则AC 的长x 的取值范围是___ _____; 3.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A .1个B .2个C .3个D .4个4.如图,∠1=750,∠A=∠BCA,∠CBD=∠CDB,∠DCE=∠DEC, ∠EDF=∠EFD.则∠A 的度数为……………( ) A. 150B. 200C .250 D. 3005.a 、b 、c 为三角形的三边长,化简c b a c b a c b a c b a -+-+-----++,结果是 ( )A 、0B 、c b a 222++C 、a 4D 、c b 22-(第4题图)ECBD A6.若a 、b 、c 是△ABC 的三边,化简c -b -a +b -c a ++b -a -c =( ) A 、a+b-c B. a-b+c C. a+b+c D. a-b-c7.点P 是△ABC 内一点,连结BP 并延长交AC 于D ,连结PC ,则图中∠1、∠2、∠A 的大小关系是( )A 、∠A >∠2>∠1B 、∠A >∠2>∠1C 、∠2>∠1>∠AD 、∠1>∠2>∠A 8.如图,∠A+∠B+∠C+∠D+∠E+∠F 的 和为 度9.如图,是中国共产主义青年团团旗上的图案,点A B C D E 、、、、五等分圆,则 A B C D E ∠+∠+∠+∠+∠的度数是 A.1800 B. 1500 C. 1350 D. 12001.2 -1.3三角形的角平分线和中线.高1.如图,把△ABC 纸片沿DE 折叠,当A 落在四边形BCDE 内时,则A ∠与21∠+∠之间有始终不变的关系是 ( )A .21∠+∠=∠A B .212∠+∠=∠A C .213∠+∠=∠A D .)21(23∠+∠=∠A2.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是 A .212∠-∠=∠A B .)21(23∠-∠=∠A C .2123∠-∠=∠A D .21∠-∠=∠A3.如图(1)△ABC 是一个三角形的纸片,点D 、E 分别是△ABC 边上的两点, 研究(1):如果沿直线DE 折叠,则∠BDA ′与∠A 的关系是_____ __。

人教版七年级数学易错题讲解及答案

人教版七年级数学易错题讲解及答案
⑶已知│a+5│=1,│b-2│=3,求a-b的值.
⑷若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值
⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.
①(-7)- (-4)- (+9)+(+2)- (-5);
②(-5) - (+7)- (-6)+4.
④近似数2.40×104精确到百分位,它的有效数字是2,4;
⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?
⑼若x、y是有理数,且|x|-x=0,|y|+y=0,|y|>|x|,化简|x|-|y|-|x+y|.
⑽已知abcd≠0,试说明ac、-ad、bc、bd中至少有一个取正值,并且至少有一个取负值.
(2)当a>b时,________有|a|>|b|;
(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;
(4)|x|+|y|________是正数;
(5)一个数________大于它的相反数;
(6)一个数________小于或等于它的绝对值;
5.把下列各数从小到大,用“<”号连接:
并用“>”连接起来.
8.填空:
(1)如果-x=-(-11),那么x=________;
(2)绝对值不大于4的负整数是________;
(3)绝对值小于4.5而大于3的整数是________.
9.根据所给的条件列出代数式:
(1)a,b两数之和除a,b两数绝对值之和;
(2)a与b的相反数的和乘以a,b两数差的绝对值;
(2)已知 则x满足________;若 则x满足________;若x=-x, x满足________;

七年级数学错题本-0102

七年级数学错题本-0102

● 已知样本容量为60的频数分布直方图中,若其中一个小长方形的面积是其余7个小长方形面积和的51,则这一组的频数为 。

● 为了庆祝中国共产党建党80周年,某市各单位都举行了“红歌大赛”。

某中学将参加本校预赛选手的成绩(满分为100分,得分为整数,最低为80分,且无满分)分成四组,并绘制了如下的统计图。

请根据统计图的信息解答下列问题。

(1)参加本校预赛的选手共有 人;(2)大多数预赛选手的成绩所在的分数段是 ;(3)成绩在94.5分以上的预赛选手人数占参赛选手总数的百分比是多少?(结果精确到0.1%)● 某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查.问卷调查的结果分为 A.“非常了解”,B.“比较了解”,C.“基本了解”,D.“不太了解”,四个等级,划分等级后的数据整理成如下表格和频数分布直方图.等级频数 频率 非常了解30 b 比较了解0.25 基本了解100 0.5 不太了解20 0.1 合计 a 1根据以上信息,请回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1800人,请根据调查结果估计这些学生中“不太了解”垃圾分类知识的人数.● 为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是 ( )A. 本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8°D.选“感恩”的人数最多● 如图,长方形纸片ABCD ,M 为AD 边的一任意点,将纸片沿BM ,CM 折叠,使点A 落在点A'处,点D 落在D'点处,若∠1=30°,则∠BMC=()A.135°B.120°C.105°D.100°● 已知f(1)=2(取1×2计算结果的末位数字),f(2)=6(取2×3计算结果的末位数字),f(3)=2(取3×4计算结果的末位数字),…,则f(1)+f(2)+f(3)+…+f(2020)的值为() A.2020 B.4040 C.4042 D.4030● 如图所示,甲从A 点以66m/min 的速度,乙从B 点以76m/min 的速度,同时沿着边长为100m 的正79.5 84.5 89.5 94.5 99.5方形按A→B→C→D→A…的方向行走.当乙第一次追上甲时,在正方形的 边上。

七年级下册数学易错题整理附答案(超好)

七年级下册数学易错题整理附答案(超好)

七年级数学下易错题练习答案第五章相交线与平行线1.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14° B.16° C.90°﹣α D.α﹣44°【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,故选:A.2.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14° B.15° C.16° D.17°【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.3.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70° C.80° D.110°【解答】∴∠2=180°﹣50°﹣50°=80°.故选:C.4.如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30° C.40° D.50°【解答】解:∵直尺对边互相平行,故选:C.∴∠3=∠1=50°,∴∠2=180°﹣50°﹣90°=40°.5.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.6.如图,AB∥CD,点E在线段BC上,∠CDE=∠CED.若∠ABC=30°,则∠D为()A.85°B.75° C.60° D.30°【解答】故选:B.7.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选:D.8.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°【解答】解:如图,过点C作CD∥a,则∠1=∠ACD.∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.9.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补二、填空题1.如图,把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,则∠EMF = 90°2.如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF= 115度.3 将长方形纸片ABCD 沿过A 点的直线折叠,折痕为线段AE ,得到图8所示的图形,已知∠CED ′=50º,则∠AED = 65 度.4、改写成如果…那么…形式1、改写:如果三个角是一个三角形的内角,那么这三个角的和是180°。

七年级上册数学第一单元错题集

七年级上册数学第一单元错题集

七年级上册数学第一单元错题集一、有理数的概念类。

1. 下列各数:-2,0,(1)/(3),0.020020002·s(每两个2之间依次多一个0),π,√(9),其中无理数有()- A. 1个。

- B. 2个。

- C. 3个。

- D. 4个。

- 答案:B。

- 解析:无理数是无限不循环小数。

在这些数中,0.020020002·s(每两个2之间依次多一个0)和π是无理数,-2是整数,属于有理数;0是有理数;(1)/(3)是分数,属于有理数;√(9)=3是整数,属于有理数。

2. 下列说法正确的是()- A. 正数和负数统称为有理数。

- B. 0是最小的有理数。

- C. 整数就是正整数、负整数的统称。

- D. -1是最大的负整数。

- 答案:D。

- 解析:- A选项,有理数包括整数和分数,正数、负数和0统称为有理数,所以A错误。

- B选项,没有最小的有理数,所以B错误。

- C选项,整数包括正整数、0和负整数,所以C错误。

- D选项, -1是最大的负整数,D正确。

二、数轴相关类。

3. 在数轴上表示数 -3和表示数5的点之间的距离是()- A. -8.- B. 8.- C. 2.- D. -2.- 答案:B。

- 解析:数轴上两点之间的距离等于这两点所表示的数的差的绝对值。

即|5 - (-3)|=|5 + 3| = 8。

4. 点A在数轴上表示的数是 -2,将点A向右移动3个单位长度后表示的数是()- A. 1.- B. -1.- C. 5.- D. -5.- 答案:A。

- 解析:在数轴上,向右移动为加法运算。

点A表示 -2,向右移动3个单位长度后表示的数是-2+3 = 1。

三、相反数与绝对值类。

5. 若| a|=5,则a的值为()- A. 5.- B. -5.- C. ±5- D. 以上都不对。

- 答案:C。

- 解析:绝对值的定义是一个数在数轴上所对应点到原点的距离。

所以绝对值为5的数有两个,即±5。

七年级上数学错题集(习题及答案)

七年级上数学错题集(习题及答案)

七年级上数学错题集1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.12.写出绝对值不大于2的整数.13.由|x|=a能推出x=±a吗?14.由|a|=|b|一定能得出a=b吗?15.绝对值小于5的偶数是几?16.用代数式表示:比a的相反数大11的数.17.用语言叙述代数式:-a-3.18.算式-3+5-7+2-9如何读?19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.20.计算下列各题:21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.22.若a为有理数,求a的相反数与a的绝对值的和.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.24.列式并计算:-7与-15的绝对值的和.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;29.用简便方法计算:30.比较4a和-4a的大小:31.计算下列各题:(5)-15×12÷6×5.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;35.计算下列各题;(1)-0.752;(2)2×32.36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是;(2)有理数a与它的立方相等,那么a= ;(3)有理数a的平方与它的立方相等,那么a= ;(4)若|a|=3,那么a3=(5)若x2=9,且x<0,那么x3= .38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有.(2)用四舍五入法,把0.63048精确到千分位的近似数是.(3)由四舍五入得到的近似数3.70和3.7是.(4)由四舍五入得到的近似数4.7万,它精确到.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362= ,0.050362= ;(2)已知7.4273=409.7,那么74.273= ,0.074273= ;(3)已知3.412=11.63,那么 =116300;(4)近似数2.40×104精确到,它的有效数字是,;(5)已知5.4953=165.9,x3=0.0001659,则x= .有理数·错解诊断练习答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.。

(完整)七年级上册数学易错题精选及讲解答案

(完整)七年级上册数学易错题精选及讲解答案

有理数部分1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.错解(1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.错解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.错解(1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;错解(1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.错解(1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?错解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.错解(1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.错解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?错解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?错解绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.错解-a-11.17.用语言叙述代数式:-a-3.错解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?错解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.错解(1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.错解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.错解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.错解|-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.错解(1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.错解(1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;错解(1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:错解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5错解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;错解(1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.错解(1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.错解(1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.错解(1)314000000=3.14×106;(2)0.000034=3.4×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40×104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.有理数·错解诊断练习正确答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.整式的加减例1 下列说法正确的是()A. 的指数是0B. 没有系数C. -3是一次单项式D. -3是单项式分析:正确答案应选D。

人教版七年级上学期数学错题集含答案

人教版七年级上学期数学错题集含答案

1 七年级数学上学期错题集1下表中有两种移动电话计费方式:请思考并完成下列问题:(1)设一个月内移动电话主叫tmin (t 是正整数),根据上表,列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费?(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法。

2 已知|a|=3,|b|=2,且a <b ,则a+b=______.3 已知:|x-2|与|y-5|互为相反数,求x 和y 的值。

4 根据下面给出的数轴,解答下面的问题:⑴请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数A :B :;⑵ 观察数轴,与点A 的距离为4的点表示的数是: ;⑶ 若将数轴折叠,使得A 点与-2表示的点重合,则B 点与数 表示的点重合;⑷ 若数轴上M 、N 两点之间的距离为2010(M 在N 的左侧),且M 、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M: N: .5求|x-3|+|x+4|的最小值,并说明此时有理数x 的取值范围。

的取值范围。

6 知识链接:对于关于x 的方程ax=b ,(a 、b 为常数)为常数)⑴当a ≠0时,此方程是一元一次方程,方程有唯一解x=b/a ;⑵当a=0,b ≠0时,没有任何实数x 能满足方程使等式成立,此时,我们说方程无解;无解;⑶当a=0,b=0时,所有实数x 都能使方程成立,也就是说方程的解为全体实数,所以我们说方程有无数个解。

所以我们说方程有无数个解。

问题解决:问题解决:⑴解关于x 的方程:(m-1)x=2 ⑵解关于x 的方程:mx-4=2x+n 7 (2011•宜昌)随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资.尹进2008年的月工资为2000元,在2010年时他的月工资增加到2420元,他2011年的月工资按2008到2010年的月工资的平均增长率继续增长.继续增长.(1)尹进2011年的月工资为多少?年的月工资为多少?(2)尹进看了甲、乙两种工具书的单价,乙两种工具书的单价,认为用自己认为用自己2011年6月份的月工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2011年6月份的月工资少了242元,于是他用这242元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给西部山区的学校.并把购买的这两种工具书全部捐献给西部山区的学校.请问,请问,请问,尹进总共捐尹进总共捐献了多少本工具书?献了多少本工具书?8如图,M 是线段AB 上一点,且AB=10cm,C,D 两点分别从M,B 同时出发时1cm/s,3cm/s 的速度沿直线BA 向左运动, (1)当点C,D 运动了2s,求这时AC+MD 的值.的值. (2)若点C,D 运动时,总有MD=3AC,求AM 的长.的长.9 如图,四个点,分别对应的数为分别对应的数为a、b、c、d,且满足a,如图,数轴上有数轴上有A、B、C、D四个点,b是方程|x+9|=1的两根(a<b),(c-16)²与|d-20|互为相反数,互为相反数,的值;(1)求a、b、c、d的值;(2)若A、B两点以6个单位长度/秒的速度向右匀速运动,同时C、D两点保持不动,并设运动时间为t秒,问t为多少时,A、B两点都运动在线段CD上(不与C、D两个端点重合)(3)若A、B两点以6个单位长度/秒的速度向右匀速运动,同时C、D两点以2个单位长度/秒向左匀速运动,并设运动时间为t秒,问t为多少时,A、B两点都运动在线段CD上(不与C、D两个端点重合)?10 如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动,2秒后,两点相距16个单位长度.已知动点A、B的速度比为1∶3(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)在数轴上标出A、B两点从原点出发运动2秒时的位置;(3)若表示数0的点记为O,A、B两点分别从(2)中标出的位置同时向数轴负方向运动,再经过多长时间,满足OB=2OA?11 小明想在两种灯中选购一种,其中一种是10瓦的节能灯,售价32元;另一种是40瓦的白炽灯,售价为2元.两种灯的照明效果一样,使用寿命也相同.如果电费是0.5元/每千瓦时.你选择购买哪一种灯?12 已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度。

七年级数学易错题集及答案解析

七年级数学易错题集及答案解析

七年级知识点检测一.选择题(共8小题)1.(益阳)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()元D.元9.(昆明)据报道,2014年4月昆明库塘蓄水量为58500万立方米,将58500万立方米用科学记数法表示为_________万立方米.10.(普陀区二模)1纳米等于0.000000001米,用科学记数法表示:2014纳米=_________米.11.已知一个多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有_________条,可以将此多边形分成_________个三角形.12.(思明区模拟)一个多边形的每个外角都等于72°,则这个多边形的边数为_________.13.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是_________14.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于_________.15.如图,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE:EC= _________.三.解答题(共15小题)16.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为_________.17.(1)在数轴上画出表示﹣2,1.5,﹣|﹣4|,,0.(2)有理数a、b在数轴上如图,用“>、=或<”填空.①a_________b,②﹣a_________﹣b,③|a|_________|b|,④|a|_________a,⑤|b|_________b.18.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:∠A=∠F.19.解三元一次方程组.20.已知关于x,y的方程组的解为满足x+y=4,求a的值.21.(黔东南州)若不等式组无解,求m的取值范围.22.(栖霞市二模)解不等式组并写出它的正整数解.23.已知:如图,点A和点B在直线l同一侧.求作:直线l上一点P,使PA+PB的值最小.24.如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.(1)试求BF的长;(2)试求AD的长;(3)试求ED的长.25.(禅城区模拟)A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.26.某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?27.(柳州)列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?解:设张红购买甲礼物x件,则购买乙礼物_________件,依题意,得.28.(包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?29.某校暑假准备组织该校的“三好学生”参加夏令营,由1名老师带队.甲旅行社说:“若老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内都6折优惠”若全票价是1200元,则:(1)设三好学生人数为x人,则参加甲旅行社的费用是_________元;参加乙旅行社的费用是_________元.(2)当学生人数取何值时,选择参加甲旅行社比较合算?参考答案与试题解析一.选择题(共8小题)1.(益阳)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()4.(鄂尔多斯)为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价元D.元是底边时,腰长为7.如图,∠BAD=90°,∠ADC=30°,∠BCD=142°,则∠B=()2二.填空题(共7小题)9.(昆明)据报道,2014年4月昆明库塘蓄水量为58500万立方米,将58500万立方米用科学记数法表示为 5.85×104万立方米.10.(普陀区二模)1纳米等于0.000000001米,用科学记数法表示:2014纳米= 2.014×10﹣6米.11.已知一个多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有9条,可以将此多边12.(思明区模拟)一个多边形的每个外角都等于72°,则这个多边形的边数为5.13.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是10:5114.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于2.PC=215.如图,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=,AE:EC=1:3.AF=AB==AF=,=三.解答题(共15小题)16.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为﹣2.17.(1)在数轴上画出表示﹣2,1.5,﹣|﹣4|,,0.(2)有理数a、b在数轴上如图,用“>、=或<”填空.①a<b,②﹣a>﹣b,③|a|>|b|,④|a|>a,⑤|b|=b.,)∵﹣,﹣=18.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:∠A=∠F.19.解三元一次方程组.,把代入方程,的解为20.已知关于x,y的方程组的解为满足x+y=4,求a的值.,21.(黔东南州)若不等式组无解,求m的取值范围.22.(栖霞市二模)解不等式组并写出它的正整数解.23.已知:如图,点A和点B在直线l同一侧.求作:直线l上一点P,使PA+PB的值最小.24.如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.(1)试求BF的长;(2)试求AD的长;(3)试求ED的长.=,cm25.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?26.(禅城区模拟)A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.,小时后两车之间的距离为27.某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?28.(柳州)列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?解:设张红购买甲礼物x件,则购买乙礼物x+1件,依题意,得.29.(包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?.30.某校暑假准备组织该校的“三好学生”参加夏令营,由1名老师带队.甲旅行社说:“若老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内都6折优惠”若全票价是1200元,则:(1)设三好学生人数为x人,则参加甲旅行社的费用是1200+600x元;参加乙旅行社的费用是720(x+1)元.(2)当学生人数取何值时,选择参加甲旅行社比较合算?。

初一数学易错题讲解及答案

初一数学易错题讲解及答案

初一数学易错题汇总第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑸ 绝对值小于4.5而大于3的整数是3、4. ⑺ 如果-x =- (-11),那么x = -11.⑻ 如果四个有理数相乘,积为负数,那么负因数个数是1个. ⑼ 假设0,a =则0ab=. ⑽绝对值等于本身的数是1. 二.填空题⑴假设1a -=a -1,则a 的取值范围是: .⑵式子3-5│x │的最 值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为 ;如果│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻如果a <b <0,那么1a 1b. ⑼在数轴上表示数-113的点和表示152-的点之间的距离为: .⑽11a b ⋅=-,则a 、b 的关系是________. ⑾假设a b <0,bc<0,则ac 0.⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 .三.解答题⑴已知a 、b 互为倒数,- c 与2d互为相反数,且│x │=4,求2ab -2c +d +3x 的值.⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷假设|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把以下各式先改写成省略括号的和的形式,再求出各式的值. ①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分): ⑺比较4a 和-4a 的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536; ②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097; ③已知3.412=11.63,那么(34.1)2=116300; ④近似数2.40×104精确到百分位,它的有效数字是2,4; ⑤已知5.4953=165.9,x 3=0.0001659,则x =0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼假设x 、y 是有理数,且|x |-x =0,|y |+y =0,|y |>|x |,化简|x |-|y |-|x +y |.⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值.⑾已知a <0,b <0,c >0,判断(a +b )(c -b )和(a +b )(b -c )的大小.⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算以下各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+---- ⎪⎝⎭ ⑶77(35)9-÷+⑷523120001999400016342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ ⑸221.430.57()33⨯-⨯- ⑹6(5)(6)()5-÷-÷-⑺91118×18 ⑻-15×12÷6×5 ⑼24221(10.5)2(3)3⎡⎤---⨯÷---⎣⎦ ⑽-24-(-2)4⑾33(32)32-⨯+⨯有理数·易错题练习一.多种情况的问题〔考虑问题要全面〕〔1〕已知一个数的绝对值是3,这个数为_______; 此题用符号表示:已知,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________; (3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)假设|a|=|b|,则a,b 的关系是________;〔8〕假设|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值. 二.特值法帮你解决含字母的问题〔此方法只适用于选择、填空〕有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)假设a 是负数,则a________-a ;a --是一个________数;〔2〕已知,x x -=则x 满足________;假设,x x =则x 满足________;假设x=-x, x 满足________; 假设=-<2,2a a 化简____ ;(3)有理数a 、b 在数轴上的对应的位置如下列图: 则〔 〕A .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 〔4〕如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-〔c+d 〕+m 2=_______。

初中数学七年级下册易错题汇总大全附答案带解析

初中数学七年级下册易错题汇总大全附答案带解析

初中数学七年级下册易错题相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。

正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC ∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数.错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组.错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.3.将方程变形时忽略常数项3.利用加减法解方程组.错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组.错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果. 正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与十位上的数个位上的数对应的两位数相等关系 原两位数 x y 10x+y 10x+y=x+y+9 新两位数yx10y+x10y+x=10x+y+27数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。

初一数学错题本 (数学)(含答案)034120

初一数学错题本 (数学)(含答案)034120

初一数学错题本 (数学)试卷考试总分:135 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 的相反数是( )A.B.C.D.2. 在,中,正数有 ( )A.个B.个C.个D.个3. 下列方程中,不是一元一次方程的是 ( )A.B.C.D.4. 下列去括号正确的是( )A.=B.=C.=D.=5. 下列式子中,是同类项的一组是( )A. 与B. 与C.与D. 与6. 在式子,,,,中,多项式的个数是( )5515−5−150−(−5),−|−6.18|,−(−2)51234+12=07y 2x+8=03z =03x =−2−xx−(2y−)12x−2y−121+2(x+y)1+2x−2y−(6x−4y+3)12−3x+2y+3x+(−y+2z)x−y+2z5y x 2−4xy 2xy −2xx 1y x 2−2yx 2a 2+y x 21x −53m−3n6. 在式子,,,,中,多项式的个数是( )A.个B.个C.个D.个7. 已知代数式的值是,则代数式的值是 A.B.C.D.不能确定8. 如图,在数轴上,点表示的数为,则化简的结果为( )A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )9. 请写出一个无理数________.10. 据教育部数据统计,年考研报考人数达到万,数据万用科学记数法可表示为________.11. 比较大小:________(填“”、“”或“=”).12. 在数轴上有,,三点,,分别表示数和,且,则线段的长为________.13. 若关于,的多项式中不含有项,则_________.14. 已知,则的值是________.15. 如果=是关于的一元一次方程,那么=________.16. 若,,且,则的值是________.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )17. 如图,已知在一张纸条上画有一条数轴.x 4321x+2y+13−2x−4y ()−2−4−6P a |a −1|−|a +4|−2a −5−2a −3−2a +5320192902906–√ 2.5><A B C A B −24BC =3AC a b 3(−2ab −)−a 2b 2(+mab +2)a 2b 2ab m=(5x+1=+++...+)6a 0a 1x 1a 2x 2a 6x 6+++a 0a 2a 4a 6−3+6x 2a−10x a |a|=4|b|=8ab >0a b沿过原点且垂直于数轴的直线折叠纸条,则表示的点与表示________的点重合;为数轴上一点,沿过点 且垂直于数轴的直线折叠纸条,当表示的点与表示的点重合时,①点所表示的数为________;②若数轴上的,两点也同时重合,且,求点所表示的数.18. 如图所示,数轴上的个点,,分别表示有理数,,,化简:.19. 在数轴上表示下列各数:,,,,,,并用“”号连接.20. 计算: .21. 化简.;.22. 先化简,再求值(1),其中,(2)若,且,求的值.(3)已知,求的值. 23. 某出租车驾驶员从公司出发,在东西方向的路上连续接送五批客人,行驶的路程记录分别为:(规定向东为正,向西为负,单位:千米)接送完第五批客人后,该驾驶员在公司的什么方向?距离公司多少千米?若该出租车每千米耗油升,则在接送五批客人的过程中,一共耗油多少升如果该出租车出发前油箱内的油量为升,司机接送完第五批客人后,在不加油的情况下返回公司,油箱内的剩余油量为多少升?24. 同学们都知道,表示与之差的绝对值,实际上也可理解为与两数在数轴上所对应的两点之间的距离,试探索:________.同理表示数轴上有理数所对应的点到和所对应的两点距离之和,请你找出所有符合条件的整数,使得,这样的整数是________.由以上探索猜想对于任何有理数,是否有最小值?如果有,写出最小值;如果没有,说明理由. 25. 甲、乙两车分别从,两地出发,相向而行,都以一定的速度匀速行驶.甲车出发分钟后乙车再出发,两车在,之间的地相遇,在,之间有一个服务区,途中乙车在服务区休息了分钟,随后乙车的速度比原来减少千米小时(仍保持匀速行驶),甲车到达地分钟后,乙车才到达地,甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示.,两地的距离为________千米,甲车的速度是________千米小时,在两车相遇前乙车的速度是________千米小时.两车相遇时,求的值.(1)O −3(2)M M −31M A B AB =9A 3A B C a b c |a +b|+|c −a|−|b −c|0−4.2312−2+7113<−−32+[(−2+4]14)3(1)2(2a −3b)−3(a −2b)(2)y−a +2x −5y−4a +3x x 2y 2x 2y25−[2xy−3(xy+2)+4]x 213x 2x =−2y =12(2a −1+|2a +b |=0)2|c −1|=2c ⋅(−b)a 3−2y−1=0x 2(3−)−(−4y−2)x 2x 2+8,+9,−4,−14,+10(1)(2)0.2(3)15|5−(−2)|5−25−2(1)|5−(−2)|=(2)|x+5|+|x−2|x −52x |x+5|+|x−2|=7(3)x |x+6|+|x−3|A B 30A B C A C D D 3020/B 24A y x (1)A B //(2)x求,之间的距离是多少?当乙车正要离开服务区时,甲车离地还有多少千米?26. 给出下列算式;;;,观察上面一系列式子,你能发现什么规律?用含有的式子表示出来:________(为正整数);根据你发现的规律,计算:_________.这时,_________.27.计算:;已知,求的值.(3)C D (4)B −=8×13212−=16=8×25232−=24=8×37252−=32=8×49272……(1)n n (2)−=2021220192n =(1)−−|3−|81−−√−8−−−√310−−√(2)−27=0(x+1)3x参考答案与试题解析初一数学错题本 (数学)试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】相反数【解析】此题暂无解析【解答】解:除零外正负号相反的两个数互为相反数.的相反数是.故选.2.【答案】B【考点】有理数的乘方绝对值正数和负数的识别【解析】正负数的分类:数字前面带有“”号或不带任何号的数叫做正数;数字前面带有“”号的数叫做负数;是正数和负数的分界点,所以既不是正数也不是负数.据此进行分类即可.【解答】解:∵,,,∴在,,,中,正数有,,∴共有个.故选.3.【答案】A【考点】一元一次方程的定义【解析】此题暂无解析5−5C +−00−(−5)=5−|−6.18|=−6.18−=(−2)5250−(−5)−|−6.18|−(−2)5−(−5)−(−2)52B【解答】解:一元一次方程是指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,中的最高次幂是,不符合一元一次方程的定义,故选.4.【答案】D【考点】去括号与添括号【解析】根据去括号法则解答.【解答】、原式=,故本选项不符合题意.、原式=,故本选项不符合题意.、原式=,故本选项不符合题意.、原式=,故本选项符合题意.5.【答案】D【考点】同类项的概念【解析】此题暂无解析【解答】解:, 与,字母相同,指数不同,不是同类项,故本选项错误;, 与,字母不同,指数不同,不是同类项,故本选项错误;,与字母不同,指数不同,不是同类项,故本选项错误;, 与,字母相同,指数相同,是同类项,故本选项正确.故选.6.【答案】C【考点】多项式的概念的应用【解析】此题暂无解析【解答】解:多项式有:,,共个.A y −1A A x−2y+12B 1+2x+2yC −3x+2y−32D x−y+2z A 5y x 2−4x y 2B xy −2x C x 1D y x 2−2y x 2D 2+y x 23m−3n 2故选.7.【答案】B【考点】列代数式求值【解析】先求出,故即可求解.【解答】解:由题意可得:,则,故.故选.8.【答案】B【考点】数轴在数轴上表示实数绝对值【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,即可得到结果.【解答】解:由数轴可知,,,则.故选.二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )9.【答案】【考点】无理数的判定无理数的识别算术平方根【解析】根据无理数定义,随便找出一个无理数即可.C x+2y =2−2x−4y =−2(x+2y)=−4x+2y+1=3x+2y =2−2x−4y =−2(x+2y)=−2×2=−4B −3<a <−2∴a +4>0a −1<0|a −1|−|a +4|=1−a −(a +4)=1−a −a −4=−2a −3B 2–√是无理数.10.【答案】【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值大于时,是正数;当原数的绝对值小于时,是负数.【解答】解:万用科学记数法表示为.故答案为:.11.【答案】【考点】实数大小比较【解析】此题暂无解析【解答】此题暂无解答12.【答案】或【考点】数轴【解析】首先求出点在数轴上表示的数,再讨论即可得到答案.【解答】解:设点在数轴上表示的数为,由题意得:,解得或.当点在数轴上表示的数为时,.当点在数轴上表示的数为时,,故或.故答案为:或.13.2–√2.9×106a ×10n 1≤|a |<10n n a n 10n 1n 290 2.9×1062.9×106<93C C x |x−4|=3x =71C 7AC =|7−(−2)|=9C 1AC =|1−(−2)|=3AC =9393【考点】整式的加减【解析】原式去括号合并得到最简结果,根据结果不含项,求出的值即可.【解答】解:,因为此多项式不含项,所以,解得:.故答案为:.14.【答案】【考点】列代数式求值【解析】在所给的等式中,令可得,再令可得,两式相加初除以可得的值.【解答】解:在中,令可得.再令可得,两式相加初除以可得,故答案为:.15.【答案】【考点】一元一次方程的定义【解析】只含有一个未知数(元),并且未知数的指数是(次)的方程叫做一元一次方程.它的一般形式是=,是常数且.【解答】由=是关于的一元一次方程,得=.解得=,16.【答案】−6ab m 3(−2ab −)−a 2b 2(+mab +2)a 2b 2=2−(6+m)ab −5a 2b 2ab 6+m=0m=−6−625376=1x 2++++++=a 0a 1a 2a 3a 4a 5a 636=−1x 2−+−+−+=1a 0a 1a 2a 3a 4a 5a 62+++a 0a 2a 4a 6(5x+1=+++...+)6a 0a 1x 1a 2x 2a 6x 6x =1++++++=46656a 0a 1a 2a 3a 4a 5a 6x =−1−+−+−+=4096a 0a 1a 2a 3a 4a 5a 62+++=25376a 0a 2a 4a 62537611ax+b 0(a b a ≠0)−3+6x 2a−10x 2a −11a 10.5有理数的除法绝对值【解析】根据已知条件和绝对值的性质求得、的值,然后由,确定,的符号,最后再求出的值即可.【解答】解:∵,,∴,.,∴同号,或当,时, ,当,时,.故答案为:.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )17.【答案】①∵表示的点与表示的点重合,∴点表示的数是.故答案为:.②∵,点表示的数是,∴点表示的数是或.【考点】数轴翻折变换(折叠问题)【解析】利用数轴的对称性即可得解.利用对称性求解即可【解答】解:∵与关于原点对称,∴沿过原点且垂直于数轴的直线折叠纸条,则表示的点与表示的点重合.故答案为:.①∵表示的点与表示的点重合,∴点表示的数是.故答案为:.②∵,点表示的数是,∴点表示的数是或.18.【答案】解:由数轴上,,点可知,,,,a b ab >0a b a b |a|=4|b|=8a =±4b =±8∵ab >0ab ∴{a =−4,b =−8{a =4,b =8.a =−4b =−8=0.5a ba =4b =8=0.5a b 0.53(2)−31M =−1−3+12−1AB =9M −1A −1+=3.592−1−=−5.592−33O −333(2)−31M =−1−3+12−1AB =9M −1A −1+=3.592−1−=−5.592a b c a <0b <0c >0c >b >a所以【考点】数轴绝对值【解析】【解答】解:由数轴上,,点可知,,,,所以19.【答案】解:这些数分别为,,,,,,在数轴上表示出来如图所示,根据这些点在数轴上的排列顺序,从左至右分别用“”连接为:.【考点】数轴有理数大小比较【解析】先分别把各数化简为,,,,,,再在数轴上找出对应的点,注意在数轴上标数时要用原数,最后比较大小的结果也要用化简的原数.【解答】解:这些数分别为,,,,,,在数轴上表示出来如图所示,根据这些点在数轴上的排列顺序,从左至右分别用“”连接为:.20.【答案】解:原式 .【考点】有理数的混合运算【解析】|a +b|+|c −a|−|b −c|=−(a +b)+c −a −(c −b)=−2a.a b c a <0b <0c >0c >b >a |a +b|+|c −a|−|b −c|=−(a +b)+c −a −(c −b)=−2a.0−4.2312−27113<−4.2<−2<0<1<3<+713120−4.2312−271130−4.2312−27113<−4.2<−2<0<1<3<+71312=−1−32÷(−8+4)=−1−32÷(−4)=−1+8=7原式 . 【解答】解:原式 . 21.【答案】解:原式.原式.【考点】整式的加减合并同类项【解析】此题暂无解析【解答】解:原式.原式.22.【答案】解:(1)原式,当,时,原式;(2)∵,且,∴,,或,当时,原式;当时,原式;(3)原式,已知等式整理得:,则原式.【考点】整式的加减——化简求值非负数的性质:绝对值非负数的性质:偶次方【解析】(1)原式去括号合并得到最简结果,把与的值代入计算即可求出值;(2)利用非负数的性质,以及绝对值的代数意义求出,,的值,代入原式计算即可得到结果;(3)原式去括号整理后,将已知等式变形后代入计算即可求出值.【解答】解:(1)原式,当,时,原式;(2)∵,且,=−1−32÷(−8+4)=−1+8=7=−1−32÷(−8+4)=−1−32÷(−4)=−1+8=7(1)=4a −6b −3a +6b =a (2)=y−5y+2x +3x −a −4a x 2x 2y 2y 2=−4y+5x −5ax 2y 2(1)=4a −6b −3a +6b =a (2)=y−5y+2x +3x −a −4a x 2x 2y 2y 2=−4y+5x −5a x 2y 2=5−2xy+xy+6−4=−xy+6x 2x 2x 2x =−2y =12=4+1+6=11(2a −1+|2a +b |=0)2|c −1|=2a =12b =−1c =3−1c =3=278c =−1=−98=3−−+4y+2=−2(−2y)+5x 2x 2x 2−2y =1x 2=−2+5=3x y a b c =5−2xy+xy+6−4=−xy+6x 2x 2x 2x =−2y =12=4+1+6=11(2a −1+|2a +b |=0)2|c −1|=2=1∴,,或,当时,原式;当时,原式;(3)原式,已知等式整理得:,则原式.23.【答案】解:(千米)答:该驾驶员在公司的东方,距离公司千米.(升)答:一共耗油升.(升)答:油箱内的剩余油量为升.【考点】有理数的混合运算有理数的加减混合运算绝对值正数和负数的识别【解析】此题暂无解析【解答】解:(千米)答:该驾驶员在公司的东方,距离公司千米.(升)答:一共耗油升.(升)答:油箱内的剩余油量为升.24.【答案】,,,,,,,当有理数所对应的点在,之间的线段上的点时,值最小为.【考点】绝对值数轴【解析】(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要找出的整数值可以进行分段计算,令或时,分为段进行计算,最后确定的值.(3)根据绝对值的意义,即可解答.【解答】解:.故答案为:.令或时,则或,当时,;a =12b =−1c =3−1c =3=278c =−1=−98=3−−+4y+2=−2(−2y)+5x 2x 2x 2−2y =1x 2=−2+5=3(1)8+9−4−14+10=99(2)(|8|+|9|+|−4|+|−14|+|10|)×0.2=99(3)15−9−9×0.2=4.2 4.2(1)8+9−4−14+10=99(2)(|8|+|9|+|−4|+|−14|+|10|)×0.2=99(3)15−9−9×0.2=4.2 4.27−5−4−3−2−1012(3)x −639x x+5=0x−2=03x (1)|5−(−2)|=|5+2|=77(2)x+5=0x−2=0x =−5x =2x =−5|x+5|+|x−2|=7当时,;当时,∴,,(范围内不成立),当时,∴,,,∴,,,,,,当时,∴,,,(范围内不成立).∴综上所述,符合条件的整数有:,,,,,,,.故答案为:,,,,,,,.当有理数所对应的点在,之间的线段上的点时,值最小为.25.【答案】,,由题意得,,解得,∴两辆车相遇时, .如图所示,当小时,甲、乙两车相遇,即甲、乙两车到达点处,∵的距离为: (千米),∴的距离为: (千米)∴甲车在行驶时间为: 小时,乙车从到行驶总时间为: (小时),设乙车在行驶时间为,行驶时间为,∴解得: 小时,∴距离为:(千米).当乙车正要离开服务区时,甲行驶时间为: (小时),甲车行驶距离为(千米),甲车离地距离地为:(千米).【考点】有理数的减法有理数的除法有理数的混合运算一元一次方程的应用——路程问题二元一次方程组的应用——行程问题有理数的加法有理数的乘法x =2|x+5|+|x−2|=7x <−5−(x+5)−(x−2)=7−x−5−x+2=7x =−5−5<x <2(x+5)−(x−2)=7x+5−x+2=77=7x =−4−3−2−101x >2(x+5)+(x−2)=7x+5+x−2=72x =4x =2x −5−4−3−2−1012−5−4−3−2−1012(3)x −6393555060(2)50+60(x−)=35512x =72x =72(3)x =72C AC ×50=17572BC 355−175=180BC =18050185C A +=41852460CD t 1AD t 2{+=4−0.5=3.5,t 1t 260+40=175,t 1t 2=t 174CD ×60=10574(4)+=741294×50=112.594B B 180−112.5=67.5【解析】此题暂无解析【解答】解:由图可知,当时,表示甲、乙两车距离,即,两地距离为千米,由图知甲车分钟走了:(千米),∴(千米/小时),又,解得: 千米/小时.故答案为:;;.由题意得,,解得,∴两辆车相遇时, .如图所示,当小时,甲、乙两车相遇,即甲、乙两车到达点处,∵的距离为: (千米),∴的距离为: (千米)∴甲车在行驶时间为: 小时,乙车从到行驶总时间为: (小时),设乙车在行驶时间为,行驶时间为,∴解得: 小时,∴距离为:(千米).当乙车正要离开服务区时,甲行驶时间为: (小时),甲车行驶距离为(千米),甲车离地距离地为:(千米).26.【答案】,【考点】规律型:数字的变化类有理数的混合运算【解析】两个连续奇数的平方差等于的倍数,由此得出第个等式为,由此解决问题即可;理由中的规律求得答案即可.【解答】解:∵①;②;(1)x =0A B 35530355−330=25==50V 甲2512∵(+)×(−)=330−110V 甲V 乙5212=60V 乙3555060(2)50+60(x−)=35512x =72x =72(3)x =72C AC ×50=17572BC 355−175=180BC =18050185C A +=41852460CD t 1AD t 2{+=4−0.5=3.5,t 1t 260+40=175,t 1t 2=t 174CD ×60=10574(4)+=741294×50=112.594B B 180−112.5=67.5−=8n(2n+1)2(2n−1)280801010(1)8n −=8n (2n+1)2(2n−1)2(2)(1)(1)−=8=8×13212−=16=8×25232−=24=8×322③;④;∴第个等式为;故答案为:.,∵,,∴.故答案为:;.27.【答案】解:.移项得:,.【考点】实数的运算非负数的性质:绝对值立方根【解析】本题涉及绝对值、二次根式化简、三次根式化简个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.化成的形式,推出,求出即可.【解答】解:.移项得:,.−=24=8×37252−=32=8×49272…n −=8n (2n+1)2(2n−1)2−=8n (2n+1)2(2n−1)2(2)−=808020212201922×1010+1=20212×1010−1=2019n =101080801010(1)−−|3−|81−−√−8−−−√310−−√=9−(−2)−(−3)10−−√=9+2−+310−−√=14−10−−√(2)=27(x+1)3∴x+1=3∴x =2(1)3(2)=27(x+1)3x+1=3(1)−−|3−|81−−√−8−−−√310−−√=9−(−2)−(−3)10−−√=9+2−+310−−√=14−10−−√(2)=27(x+1)3∴x+1=3∴x =2。

初一数学易错题及答案

初一数学易错题及答案

【导语:】这篇关于初⼀数学易错题及答案的⽂章,是特地为⼤家整理的,希望对⼤家有所帮助! 1.下列说法错误的是() A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数 C.正有理数与负有理数组成全体有理数D.3.14是⼩数,也是分数 考点:有理数。

分析:按照有理数的分类判断: 有理数. 解答:解:负整数和负分数统称负有理数,A正确. 整数分为正整数、负整数和0,B正确. 正有理数与0,负有理数组成全体有理数,C错误. 3.14是⼩数,也是分数,⼩数是分数的⼀种表达形式,D正确. 故选C. 点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、⾮负数的定义与特点. 注意整数和正数的区别,注意0是整数,但不是正数. 变式: 2.下列四种说法:①0是整数;②0是⾃然数;③0是偶数;④0是⾮负数.其中正确的有() A.4个B.3个C.2个D.1个 考点:有理数。

分析:根据0的特殊规定和性质对各选项作出判断后选取答案,注意:2002年国际数学协会规定,零为偶数;我国2004年也规定零为偶数. 解答:解:①0是整数,故本选项正确; ②0是⾃然数,故本选项正确; ③能被2整除的数是偶数,0可以,故本选项正确; ④⾮负数包括正数和0,故本选项正确. 所以①②③④都正确,共4个. 故选A. 点评:本题主要对0的特殊性的考查,熟练掌握是解题的关键. 3.下列说法正确的是() A.零是最⼩的整数B.有理数中存在的数 C.整数包括正整数和负整数D.0是最⼩的⾮负数 考点:有理数。

分析:根据有理数的分类进⾏判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数). 解答:解:A、整数包括正整数、0、负整数,负整数⼩于0,且没有最⼩值,故A错误; B、有理数没有值,故B错误; C、整数包括正整数、0、负整数,故C错误; D、正确.故选D. 点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、⾮负数的定义与特点. 注意整数和正数的区别,注意0是整数,但不是正数. 4.把下⾯的有理数填在相应的⼤括号⾥:(★友情提⽰:将各数⽤逗号分开)15,,0,﹣30,0.15,﹣128,,+20,﹣2.6 正数集合﹛15,0.15,,+20…﹜ 负数集合﹛,﹣30,﹣128,﹣2.6…﹜ 整数集合﹛15,0,﹣30,﹣128,+20…﹜ 分数集合﹛,0.15,,﹣2.6…﹜ 考点:有理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.根据等式的性质,下列变形正确的是()
A、若,则
B、若,则
C、若,则
D、若,则
【答案】D
【解析】解:A、在等式的两边同时除以,等式仍成立,即.故本选项错误; B、在等式的两边同
时乘以,等式仍成立,即.故本选项错误; C、当时,不一定成立,故本选项错误; D、在等式
的两边同时乘以,等式仍成立,即,故本选项正确;故选:D.
2.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①,图②,已知大长方形的长为,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长
与图②阴影部分周长的差是()(用的代数式表示)
A 、
B、
C、
D、
【答案】C
【解析】解:设图③中小长方形的长为,宽为,大长方形的宽为,根据题意得:,即,图①中
阴影部分的周长为,图②中阴影部分的周长,则图①阴影部分周长与图②阴影部分周长之差为.故选C.
3.减去后,等于的代数式是()
A、
B、
C、
D、
【答案】A
【解析】
4.下列关于单项式的说法中,正确的是()
A、系数是,次数是
B、系数是,次数是
C、系数是,次数是
D、系数是,次数是
【答案】D
【解析】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是.故选D.
5.有下列说法:①每一个正数都有两个立方根;②零的平方根等于零的算术平方根;③没有
平方根的数也没有立方根;④有理数中绝对值最小的数是零. 正确的个数是()
A、
B、
C、
D、
【答案】B
【解析】(1)根据立方根的性质,每一个正数都有一个立方根,故说法错误; (2)根据平方根的定义,零的平方根等于零的算术平方根,故说法正确; (3)根据平方根、立方根的定义,没有平方
根的数也有立方根,故说法错误; (4)根据绝对值的定义,有理数中绝对值最小的数是零,故说
法正确. 故(2)和(4)正确,共个. 故选B .
6.下列各式:,,,,,,,中单项式的个数有()
A、个
B、个
C、个
D、个
【答案】C
【解析】下列各式: ,,,,,,,中单项式有,,共个. 故选C.
7.若,,则的值为()
A、
B、
C、或
D、或
【答案】D
【解析】解:因为,,所以,,则的值为或故选D.
8.在下列实数中:,,,,,…无理数有()
A、个
B、个
C、个
D、个
【答案】B
【解析】解:,…是无理数,故选B.
9.已知实数、、在数轴上的位置如图所示,化简:.
【答案】见解析
【解析】解:由题意得:,且,则,,,则原式.
10.求下列各数的立方根. ①;②;③;④;⑤;⑥
【答案】见解析
【解析】①;②;③;④;⑤;⑥
11.下列说法中,其中不正确的有() ①任何数都有平方根;②一个数的算术平方根一定是正数;
③的算术平方根是;④算术平方根不可能是负数.
A、个
B、个
C、个
D、个
【答案】D
【解析】解:根据平方根概念可知:①负数没有平方根,故错误;②反例:的算术平方根是,故
错误;③当时,的算术平方根是,故错误;④算术平方根不可能是负数,故正确.所以不正确
的有①②③.故选D.
12.下列各对数中,数值相等的是()
A、与
B、与
C、与
D、与
【答案】A
【解析】解: A、根据有理数乘方的法则可知,,故A选项符合题意; B、,,故B选项不符合题意; C、,,故C选项不符合题意; D、,,故D选项不符合题意.故选A.
13.
【答案】见解析
【解析】.
14.计算:.
【答案】见解析
【解析】.
15.计算:
【答案】见解析
【解析】.
16.用“”、“”或“”填空:⑴________;⑵________;⑶________;⑷________;⑸________;
⑹________(为有理数).
17.计算:________.
【答案】1
【解析】解: .故答案为:1.
18.
【答案】见解析
【解析】.
19.计算:
【答案】见解析
【解析】.
20.
【答案】见解析
【解析】.
21.
【答案】见解析
【解析】.
22.甲、乙、丙三地的海拔高度为米、米、米,那么最高的地方比最低的地方高()
A、米
B、米
C、米
D、米
【答案】D
【解析】解:米.故选D.
23.如果,且,那么()
A、,
B、,
C、、异号
D、、异号且正数的绝对值较大
【答案】D
【解析】解:,、异号.,正数的绝对值较大.故选D.
相同的错误题目,下载时只显示一次,下载数量和错题显示数量可能会有偏差哦~。

相关文档
最新文档