2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量

合集下载

高考数学一轮总复习10年高考真题分类题组5-1平面向量的概念及线性运算平面向量基本定理及坐标表示

高考数学一轮总复习10年高考真题分类题组5-1平面向量的概念及线性运算平面向量基本定理及坐标表示

5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则( ) A.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ C.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 答案 ABB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .故选A.2.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗B.12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ C.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗答案 A 设BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,则BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-12b+a,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-12a+b,从而BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-12B +B )+(-12B +B )=12(a+b)=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,故选A.3.(2015课标Ⅱ理,13,5分)设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 答案 12解析 由于a,b 不平行,所以可以以a,b 作为一组基底,于是λa+b 与a+2b 平行等价于B 1=12,即λ=12.4.(2015北京理,13,5分)在△ABC 中,点M,N 满足BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .若BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x= ,y= .答案 12;-16解析 由BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),所以BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-23·BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -16BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 又因为BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以x=12,y=-16.5.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λ1BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 .答案 12解析 BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-16BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , ∵BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λ1BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12.6.(2013北京理,13,5分)向量a,b,c 在正方形网格中的位置如图所示.若c=λa+μb(λ,μ∈R),则BB= .答案 4解析 以向量a 和b 的交点为坐标原点建立如图所示的坐标系,令每个小正方形的边长为1个单位,则A(1,-1),B(6,2),C(5,-1),所以a=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,1),b=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(6,2),c=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-3).由c=λa+μb 可得{-1=-B +6B ,-3=B +2B ,解得{B =-2,B =-12,所以BB =4.评析 本题主要考查平面向量的基本定理和坐标运算,考查学生的运算求解能力和在向量中解析法的应用,构建关于λ和μ的方程组是求解本题的关键. 考点二 平面向量基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,-3),则向量BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)答案 A 根据题意得BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(3,1),∴BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a=(2,4)知2a=(4,8),所以2a-b=(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b-a=(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a=(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{B 2=3,2B 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{-B 1+5B 2=3,2B 1-2B 2=2,解之得{B 1=2,B 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2019课标Ⅲ文,13,5分)已知向量a=(2,2),b=(-8,6),则cos<a,b>= . 答案 -√210解析 本题考查平面向量夹角的计算,通过向量的坐标运算考查学生的运算求解能力,体现运算法则与运算方法的素养要素. 由题意知cos<a,b>=B ·B|B |·|B |=√22+22×√(-8)2+62=-√210.6.(2019北京文,9,5分)已知向量a=(-4,3),b=(6,m),且a⊥b,则m= . 答案 8解析 本题考查两向量垂直的充要条件和向量的坐标运算,考查了方程的思想方法. ∵a⊥b,∴a·b=(-4,3)·(6,m)=-24+3m=0, ∴m=8.易错警示容易把两向量平行与垂直的条件混淆.7.(2017山东文,11,5分)已知向量a=(2,6),b=(-1,λ).若a∥b,则λ=. 答案-3解析本题考查向量平行的条件.∵a=(2,6),b=(-1,λ),a∥b,∴2λ-6×(-1)=0,∴λ=-3.8.(2016课标Ⅱ文,13,5分)已知向量a=(m,4),b=(3,-2),且a∥b,则m= . 答案-6解析因为a∥b,所以B3=4-2,解得m=-6.易错警示容易把两个向量平行与垂直的条件混淆.评析本题考查了两个向量平行的充要条件.9.(2014陕西,13,5分)设0<θ<π2,向量a=(sin2θ,cosθ),b=(cosθ,1),若a∥b,则tanθ=.答案12解析∵a∥b,∴sin2θ×1-cos2θ=0,∴2sinθcosθ-cos2θ=0,∵0<θ<π2,∴cosθ>0,∴2sinθ=cosθ,∴tanθ=12.。

2014年数学一轮复习试题_平面向量的应用

2014年数学一轮复习试题_平面向量的应用

第二十六讲 平面向量的应用一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.(2010·全国Ⅰ)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么P A ·PB 的最小值为( )A .-4+2B .-3+ 2C .-4+2 2D .-3+2 2解析:设|||PA PB = ,∠APB =θ,则tan θ2=1x ,cos θ=x 2-1x 2+1,则P AP B =x 2·x 2-1x 2+1=x 4-x 2x 2+1=(x 2+1)2-3(x 2+1)+2x 2+1=x 2+1+2x 2+1-3≥22-3,当且仅当x 2+1=2,即x 2=2-1时,取“=”,故PA PB的最小值为22-3,故选D. 答案:D2.设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C =( )A.π6B.π3C.2π3D.5π6解析:依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin ⎝⎛⎭⎫C +π6=1,sin ⎝⎛⎭⎫C +π6=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3,选C.答案:C3.已知两点M (-3,0),N (3,0),点P 为坐标平面内一动点,且||||0,MN MP MNoNP +==0,则动点P (x ,y )到点M (-3,0)的距离d 的最小值为( )A .2B .3C .4D .6解析:因为M(-3,0),N(3,0),所以(6,0),||6,MN MN MP ===(x+3,y),NP =(x-3,y).由||||MN MP MN NP + =0得化简得y 2=-12x,所以点M 是抛物线y 2=-12x 的焦点,所以点P 到M 的距离的最小值就是原点到M(-3,0)的距离,所以d min =3.答案:B4.在△ABC 中,已知a 、b 、c 分别为角A 、B 、C 所对的边,且a 、b 、c 成等比数列,a +c =3,cos B =34,则AB BC 等于( )A.32B .-32C .3D .-3解析:由已知b 2=ac ,a +c =3,cos B =34,得34=a 2+c 2-b 22ac =(a +c )2-3ac2ac,解得ac =2.则AB ·BC =ac ·cos 〈AB ,BC 〉=2×⎝⎛⎭⎫-34=-32. 答案:B5.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态,已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .6B .2C .2 5D .27解析:F 23=F 21+F 22+2|F 1||F 2|cos60°=28,所以|F 3|=27,选D. 答案:D6.若O 为△ABC 所在平面内一点,且满足()(2)0,OB OC OB OC OA -+-= =0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .以上都不对解析:由已知得()0,CB AB AC += =0,设BC 中点为D , 则0CB AD =,即中线AD 与高线重合,∴△ABC 为等腰三角形.答案:C二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.若等边△ABC 的边长为23,平面内一点M 满足CM =16CB +23,CA 则MA MB =_____.解析:建立如图所示的直角坐标系,根据题设条件可知A (0,3),B (-3,0),M (0,2),∴MA =(0,1),MB =(-3,-2).∴MA MB=-2.答案:-28.在长江南岸渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h.渡船要垂直地渡过长江,则航向为________.解析:如图所示,渡船速度为OB ,水流速度为OA ,船实际垂直过江的速度为,OD依题意知|OA |=12.5=252,|OB|=25. ∵OD OB OA =+ ,∴OD OA OB OA OA =+ 2, ∵OD ⊥OA ,∴OD ·OA =0,∴25×252cos(∠BOD +90°)+⎝⎛⎭⎫2522=0,∴cos(∠BOD +90°)=-12,∴sin ∠BOD =12,∴∠BOD =30°,∴航向为北偏西30°.答案:北偏西30°9.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++则实数m =________.解析:取BC 的中点D ,则2,OB OC OD +=,且OD ⊥BC ,AH ⊥BC . 由()OH m OA OB OC =++ ,可得(2)OA AH m OA OD +=+ , ∴(1)2.AH m OA mOD =-+ .(1)2,AH BC m OA BC m OD BC =-+即0=(m -1)·OA BC+0,故m =1.答案:110.已知|a |=2,|b |=4,a 与b 的夹角为π3,以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为________.解析:画图可知,较短一条对角线的长度为 |a |2+|b |2-2|a ||b |cos π3=22+42-2×2×4×12=2 3.答案:2 3三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知a =(1,x ),b =(x 2+x ,-x ),m 为实数,求使m (a ·b )2-(m +1)a ·b +1<0成立的x 的取值范围.解:∵a ·b =x 2+x -x 2=x . ∴m (a ·b )2-(m +1)a ·b +1<0⇔mx 2-(m +1)x +1<0. (1)当m =0时,x >1.(2)当m ≠0时,m (x -1m)(x -1)<0,①当m <0时,x >1或x <1m . ②当0<m <1时,1<x <1m .③当m =1时,x ∈∅. ④当m >1时,1m<x <1.12.在▱ABCD 中,A (1,1),AB=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若AD=(3,5),求点C 的坐标;(2)当|AB |=|AD|时,求点P 的轨迹.解:(1)设点C 的坐标为(x 0,y 0),又AC AD AB =+=(3,5)+(6,0)=(9,5),即(x 0-1,y 0-1)=(9,5),∴x 0=10,y 0=6,即点C (10,6).(2)设P (x ,y ),则BP AP AB =-=(x -1,y -1)-(6,0)=(x -7,y -1),AC AM MC =+ =123AB MP + =1113()222AB AP AB =+-=3AP AB -=(3(x -1),3(y -1))-(6,0)=(3x -9,3y -3).∵||||AB AD =,∴▱ABCD 为菱形.∴BP ⊥AC ,∴(x -7,y -1)·(3x -9,3y -3)=0,即(x -7)(3x -9)+(y -1)(3y -3)=0.∴x 2+y 2-10x -2y +22=0(y ≠1). 故点P 的轨迹是以(5,1)为圆心,2为半径的圆且去掉与直线y =1的两个交点.13.已知OM =(cos α,sin α),ON =(cos x ,sin x ),PQ =⎝⎛⎭⎫cos x ,-sin x +45cos α. (1)当cos α=45sin x时,求函数y =ON PQ 的最小正周期;(2)当OM ON =1213,OM PQ ∥,α-x ,α+x 都是锐角时,求cos2α的值.解:(1)∵cos α=45sin x ,∴y =cos 2x -sin 2x +4sin x5cos α=cos2x +sin 2x =cos2x +1-cos2x 2=12cos2x +12,∴该函数的最小正周期是π. (2)∵OM ON=cos αcos x +sin αsin x =cos(α-x )=1213,且α-x 是锐角, ∴sin (α-x )=1-cos 2(α-x )=513,∵OM PQ ∥,∴-cos αsin x +45-sin αcos x =0,即sin(α+x )=45.∵α+x 是锐角,∴cos(α+x )=1-sin 2(α+x )=35,∴cos2α=cos[(α+x )+(α-x )]=cos (α+x )cos(α-x )-sin(α+x )sin(α-x )=35×1213-45×513=1665,即cos2α=1665.。

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量一、填空题1 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知非零向量,a b 满足(2)(2)-⊥-⊥,,a b a b a b 则向量a 与b 的夹角为______. 【答案】π32 .(江苏省南京市2014届高三9月学情调研数学试题)如图,在△ABC 中,D,E 分别为边BC,AC 的中点. F 为边AB 上. 的,且,则x+y 的值为____【答案】523 .(江苏省徐州市2014届高三上学期期中考试数学试题)已知O 是ABC ∆的外心,10,6==AC AB ,若AC y AB x AO ⋅+⋅=且5102=+y x ,则=∠BAC cos _____________. 【答案】31 4 .(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,若22()||5CA CB AB AB +⋅= ,则tan tan A B= ________. 【答案】735 .(江苏省兴化市2014届高三第一学期期中调研测试)已知在ABC ∆中,3==BC AB ,4=AC ,设O 是ABC ∆的内心,若AC n AB m AO +=,则=n m :__★__.【答案】3:4 提示一:利用夹角相等,AB =||.提示二:利用角平分线定理,根据相似比求得AC AB AO 103104+= 6 .(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知非零向量a ,b 满足|a |=|a +b |=1,a与b 夹角为120°,则向量b 的模为________.【答案】17 .(江苏省启东中学2014届高三上学期期中模拟数学试题)如图, 在等腰三角形ABC 中, 底边2=BC ,=, 12AE EB = , 若12BD AC ⋅=- , 则⋅=_____.【答案】43- 8 .(江苏省无锡市2014届高三上学期期中调研考试数学试题)在ABC ∆中,M 为AB 的的三等分点,:1:3,AM AB N =为AC 的中点,BN 与CM 交于点E ,,AB m AC n == ,则AE = _____________________. 【答案】1255m n + 9 .(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)在平面直角坐标系中,O 是坐标原点,()2,0A ,()0,1B ,则点集{},1,,P OP OA OB R λμλμλμ=++≤∈ 所表示的平面区域的面积是________. 【答案】410.(江苏省兴化市2014届高三第一学期期中调研测试)设向量a 、b 满足:|a |3=,|b |1=,a·b 23=,则向量a 与b 的夹角为__★__. 【答案】6π 11.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)向量n m --==若),3,2(),2,1(与2+共线(其中,,0m m n R n n∈≠且)则等于_ . 【答案】21-12.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知a 、b 、c 都是单位向量,且a b c += ,则a c ⋅ 的值为_________. 【答案】1213.(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,6BC =,BC 边上的高为2,则AB AC ⋅ 的最小值为________.【答案】5-。

东南大学附中2014届高考数学一轮单元复习精品练习:平面向量 Word版含答案

东南大学附中2014届高考数学一轮单元复习精品练习:平面向量 Word版含答案

东南大学附中2014三维设计高考数学一轮单元复习精品练习:平面向量本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若向量a 与b 的夹角为120° ,且||1,||2,a b c a b ===+,则有( )A . c a ⊥B . ⊥C . //D . //【答案】B 2.已知向量)2,2(=OA,)1,4(=OB ,O 为坐标原点,在x 轴上找一点P ,使⋅最小,则P 点坐标为( ) A .)0,3(- B .)0,2(C .)0,3(D .)0,4(【答案】C3.已知向量,是不平行于轴的单位向量,且,则( )A .()B .()C .()D .()【答案】B4.若平面向量(1,2)=-a 与b 的夹角是180°,且||=b b 等于( )A .(6,3)-B .(3,6)-C .(6,3)-D .(3,6)-【答案】D5.已知向量(1,),(1,),a n b n a b a ==-⊥若,则|| = ( )A .1 BC .2D .4【答案】B6.设非零向量a 、b 、c 满足c ba cb a =+==|,|||||,则>=<b a ,( )A .150° B.120° C .60° D .30° 【答案】B7.已知1||=,2||=,0=⋅OM ,点P 在∠MON 内,且∠POM=60°,设),(R ON OM OP ∈+=ϑλϑλ,则λϑ等于( )A .3B .32C .332 D .23【答案】D8.设向量,向量,且,则锐角θ为( ) A . 60° B . 30°C . 75°D . 45°【答案】D9.已知向量(cos ,2)a α=- ,(sin ,1)b α= ,a ∥b ,则tan()4πα+等于( )A .13B .-3C .3D .13-【答案】A10.在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ 则点Q的坐标是( )A .(-B . (-C . (2)--D . (2)-【答案】A11.若向量u=()3,6-,v=()4,2,w=()12,6--,则下列结论中错误的是( )A . u ⊥ vB . v // wC . w =u-3 vD .对任一向量AB ,存在实数,a b 使AB=a u+b v【答案】C120≠=,且关于x 的方程02=⋅++b a x 有实数根,则与的夹角的取值范围是( ) A . [,]3ππB . [0,]6πC . 2[,]33ππD . [,]6ππ【答案】C第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.设向量a ,b 满足a b += ,a b -= a 与b 夹角的最大值为【答案】12014.已知(cos 23,cos 67)AB =︒︒ ,(2cos 68,2cos 22)BC =︒︒,则ABC ∆的面积为【答案】215.已知21,e e 是两个不共线的平面向量,向量212e e a -=,21e e b λ+=)(R ∈λ,若//a b,则λ= . 【答案】21-16.在平面直角坐标系xOy 中,给定两定点M(- 1,2)和N( 1,4),点P 在x 轴上移动,当取最大值时,点P 的横坐标是____________. 【答案】1三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在平面直角坐标系xOy 中,点O 是坐标原点,平行四边形ABCD 的三个顶点坐标为)3,2(A ,)2,1(--B ,)1,2(--C(1)求对角线AC 及BD 的长;(2)若实数t 满足0)(=⋅+OC OC t AB ,求t 值.【答案】(1)设),(y x D ,由平行四边形ABCD 中=,得)1,2()5,3(++=y x ,所以4,1==y x ,所以)4,1(D , 102||,24||==BD AC(2)因为)5,3(--=,)1,2(--= 0)(=⋅+t , 所以05562=++=+⋅t OC t OC AB , 所以511-=t 18.已知向量()1,3,2sin ,2cos ,23sin ,23cos -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=c x x b x x a(1)当b a⊥时,求x 的值的集合; (2)求c a -的最大值.【答案】(1)a b ⊥r r Q ,0a b ∴⋅=r r ,即02sin 23sin 2cos 23cos =⋅-⋅xx x x即02cos )223cos(==+x xx所以2,2x k k =+∈Z ππ,即,24k x k =+∈Z ππ所以,x 的集合为{|,}24k x x k =+∈Z ππ(2)2222a c a a c c -=-⋅+r r r r r r Q )23sin 23cos 3(2423sin 23cos 22x x x x --++= )23sin 2123cos 23(45x x --= )323sin(45π-+=x2max9a c∴-=r r ,即max3a c-=r r19.已知向量C n m B B n A A m 2sin ),sin ,cos 31(),cos ,sin 3(=∙==,且C B A 、、分别为ABC ∆三边c b a 、、所对的角.(Ⅰ)求角C 的大小;(Ⅱ)若C B A sin ,sin ,sin 成等比数列,且,18=∙CBCA 求c 的值.【答案】(Ⅰ)∵m (3sin ,cos ),A A = n 1(cos ,sin )3B B =, sin2C =⋅∴sin cos cos sin sin 2A B A B C += 即 sin sin 2C C =sin 0C ≠ ∴ cos C = 21 又C 为三角形的内角, ∴ 3π=C(Ⅱ) ∵sin ,sin ,sin A C B 成等比数列, ∴2sin sin sin C A B =∴ab c =2又 18=⋅ ∴ 18cos =C ab∴36ab = 故 2c =36 ∴c =620.已知向量).0,1(),cos ,cos (),sin ,(cos -=-==c x x b x x a(1)若c a x,,6求向量π=的夹角;(2)当]89,2[ππ∈x 时,求函数12)(+⋅=b a x f的最大值。

江西省南昌市2014届高三数学一轮复习 平面向量训练题

江西省南昌市2014届高三数学一轮复习 平面向量训练题

江西省南昌市2014届高三数学一轮复习 平面向量训练题一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知点(5,6)(1,2),3M a MN a -=-=-和向量若,则点N 的坐标为 A .(-3,6) B .(2,0) C .(6,2) D .(—2,0) 2.设平面向量(1,2)=a ,b =(2,)y -,若a //b ,则|3a +b |等于D.263.已知向量()()k b a ,2,1,2-==,且()b a a -⊥2,则实数=kA.14-B.6-C.6D.144.在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若0cAC aPA bPB ++=,则ABC ∆的形状为 A. 等边三角形 B.钝角三角形 C.直角三角形 D.等腰三角形但不是等边三角 5. 已知a 、b 均为单位向量,它们的夹角为3π,那么3a b +等于C.13D.46.在△ABC 中,AB=4,∠ABC=30°,D 是边BC 上的一点,且,AD AB AD AC ⋅=⋅则AD AB ⋅的值等于 A .—4 B .0 C .4 D .8 7.非零向量,a b 使得||||||a b a b -=+成立的一个充分非必要条件是 A . //a b B. 20a b += C. ||||a ba b =D. a b = 8.对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量,a b 满足0≥>a b ,a 与b 的夹角(0,)3θπ∈,且⋅a b 和⋅b a 都在集合{|}2nn ∈Z 中,则a b =A. 21 B. 1 C. 23 D.1或239.△ABC 的外接圆的圆心为O ,半径为1,若,且AO AC AB 2=+=,则向量BA 在向量BC 方向上的投影为 A.23B.23C.3D.23-10.平面直角坐标系xOy 中,已知A(1,0),B (0,1),点C 在第二象限内,56AOC π∠=,且|OC|=2,若OC OA OB λμ=+,则λ+μ的值是A.1--11 D. 1二、填空题:本大题共5小题;每小题5分,共25分,把答案填在题中的横线上。

2014年高考数学真题分类汇编理科-平面向量(理科)

2014年高考数学真题分类汇编理科-平面向量(理科)

一、 选择题1.(2014 安徽理 10)在平面直角坐标系xOy 中,已知向量,a b ,1==a b ,=0⋅a b ,点Q 满足()2OQ =+a b .曲线{}cos sin 02πC P OP θθθ==+<,…a b ,区域{}0P r PQ R r R Ω=<<<≤,.若C Ω为两段分离的曲线,则( ).A. 13r R <<<B. 13r R <<…C. 13r R <<…D. 13r R <<<2.(2014 大纲理 4) 若向量,a b 满足:1=a ,()+⊥a b a ,()2+⊥a b b ,则=b ( ).A .2BC .1D 3.(2014 福建理 8)在下列向量组中,可以把向量()3,2=a 表示出来的是( ).A.()()120,0,1,2==e eB.()()121,2,5,2=-=-e eC.()()123,5,6,10==e eD.()()122,3,2,3=-=-e e4.(2014 广东理 5)已知向量()1,0,1,=-a 则下列向量中与a 成60︒夹角的是( ).A .()1,1,0- B. ()1,1,0- C. ()0,1,1- D. ()1,0,1-5.(2014 辽宁理 5)设,,a b c 是非零向量,已知命题p :若0⋅=a b ,0⋅=b c ,则0⋅=a c ;命题q :若//a b ,//b c ,则//a c ,则下列命题中真命题是( ).A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.(2014 四川理 7)平面向量()1,2=a ,()4,2=b ,m =+c a b ()m ∈R ,且c 与a 的夹角等于c 与b 的夹角,则m =( ).A .2-B .1-C .1D .27.(2014 天津理 8)已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上, BE BC λ=,DF DC μ=.若1AE AF ?,23CE CF ?-,则λμ+=( ). A.12 B.23 C.56 D.7128.(2014 新课标2理3)设向量,a b 满足+=a b -=a b ,则⋅=a b ( ).A.1B.2C.3D.59.(2014 浙江理 8)记{},max ,,x x y x y y x y ⎧=⎨<⎩…,{},min ,,y x y x y x x y ⎧=⎨<⎩…,设,a b 为平面向量,则( ).A.{}{}min ,min ,a b a b a b +-…B. {}{}min ,min ,a b a b a b +-… C.{}2222max ,a b a b a b +-+… D.{}2222max ,a b a b a b +-+… 10.(2014 重庆理 4)已知向量()()(),3,1,4,2,1k ===a b c ,且()23-⊥a b c ,则实数k =( ). A. 92-B. 0C. 3D. 152二、填空题 1.(2014 北京理 10)已知向量a ,b 满足1=a ,()2,1=b ,且()λλ+=∈0R a b ,则λ=________.2.(2014 湖北理 11)设向量()3,3=a ,()1,1=-b ,若()()λλ+⊥-a b a b ,则实数λ=________.3.(2014 湖南理 16)在平面直角坐标系中,O 为原点,()1,0A -,(0B ,()30C ,,动点D 满足1CD =,则OA OB OD ++的最大值是________.4.(2014 江苏理 12)如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP ⋅=,则A B A D ⋅的值是 .5.(2014 江西理 14)已知单位向量1e 与2e 的夹角为α,且1cos 3α=,向量1232=-a e e 与123=-b e e 的夹角为β,则cos β= .6.(2014 山东理 12)在ABC △中,已知tan AB AC A ⋅=uu u r uuu r ,当π6A =时,ABC △的面积为 .7.(2014 陕西理 13) 设π02θ<<,向量()()sin 2,cos ,cos ,1θθθ==a b ,若//a b,A则=θtan _______.8.(2014 新课标1理15)已知,,A B C 是圆O 上的三点,若()12AO AB AC =+,则AB 与AC 的夹角为 .三、解答题1.(2014 辽宁理 17)(本小题满分12分)在ABC △中,内角,,A B C 的对边,,a b c ,且a c >.已知2BA BC ⋅=,1cos 3B =,3b =.求:(1)a 和c 的值;(2)()cos B C -的值.2.(2014 山东理 16)(本小题满分12分)已知向量()(),cos2,sin 2,m x x n ==a b ,函数()f x =⋅a b ,且()y f x =的图像过点π12⎛ ⎝和点2π,23⎛⎫- ⎪⎝⎭. (1)求,m n 的值;(2)将()y f x =的图像向左平移()0πϕϕ<<个单位后得到函数()y g x =的图像,若()y g x =图像上各最高点到点()0,3的距离的最小值为1,求()y g x =的单调递增区间.3.(2014 陕西理 18)(本小题满分12分)在直角坐标系xOy 中,已知点()()()1,12,3,3,2A B C ,点(),P x y 在ABC △三边围成的区域(含边界)上.(1)若PA PB PC ++=0,求OP ;(2)设(),OP mAB nAC m n =+∈R ,用,x y 表示m n -,并求m n -的最大值.。

2014年平面向量高考题及答案

2014年平面向量高考题及答案

平面向量【知识点】1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+.baCBAa b C C -=A -AB =B⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。

「精选」人教版最新江苏省高三数学一轮复习备考试题:平面向量(含答案)及参考答案-精选文档

「精选」人教版最新江苏省高三数学一轮复习备考试题:平面向量(含答案)及参考答案-精选文档

高考一轮复习备考试题(附参考答案) 平面向量一、填空题1、(2014年江苏高考)如图,在平行四边形ABCD 中,已知5,8==AD AB ,2,3=⋅=BP AP PD CP ,则AD AB ⋅的值是 ▲ .2、(2013年江苏高考)设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+= (21λλ,为实数),则21λλ+的值为 。

3、(2012年江苏高考)如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是 ▲ .4、(2015届江苏南京高三9月调研)已知向量a =(2,1),b =(0,-1).若(a +λb )⊥a , 则实数λ= ▲ .5、(2015届江苏南通市直中学高三9月调研)已知△ABC 中,∠C =90°,34CA CB ==,,D E 、分别为边CA CB 、上的点,且6BD CA ⋅=, 8A E C B⋅=,则AE BD ⋅= ▲ . 6、(2015届江苏苏州高三9月调研)如图,AB 是半径为3的圆O 的直径,P 是圆O 上异于,A B 的一点 Q 是线段AP 上靠近A 的三等分点,且4,AQ AB ⋅=则BQ BP ⋅的值为 ▲7、(南京市2014届高三第三次模拟)在R t △ABC 中,CA =CB =2,M ,N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →的取值范围为 ▲ .8、(南通市2014届高三第三次调研)在直角三角形ABC 中,C =90°,6AC =,4BC =.若点D 满足2AD DB =-,则||CD = ▲ .9、(苏锡常镇四市2014届高三5月调研(二))已知平面内的四点O ,A ,B ,C 满足2OA BC ⋅=,3OB CA ⋅=,则OC AB ⋅ = ▲ .10、(徐州市2014届高三第三次模拟)如图,在△ABC 中,已知π3BAC ∠=,2AB =,3AC =, 2DC BD =,3AE ED =,则BE = ▲ .11、(南京、盐城市2014届高三第二次模拟(淮安三模))已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 ▲12、(2014江苏百校联考一)如图,PQ 是半径为1的圆A 的直径,△ABC 是边长为1的正三角形,则CQ BP ∙的最大值为13、(2014南通二模)在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 14、(苏锡常镇四市2014届高三3月调研(一))如图,在△ABC 中,BO 为边AC 上的中线,2BG GO =,设CD ∥AG ,若15AD AB AC =+λ()∈R λ,则λ的值为 ▲15、(兴化市2014届高三上学期期中)已知在ABC ∆中,3==BC AB ,4=AC ,设O 是ABC ∆的内心,若AC n AB m AO +=,则=n m :3:4.二、解答题1、(2013年江苏高考)已知(cos ,sin )(cos ,sin )a b ααββ==,,παβ<<<0。

2014年高考数学平面向量真题汇总

2014年高考数学平面向量真题汇总
若点 P 分有向线段 P 1P 2 所成的比为 ,则点 P 分有向线段 P 2P 1 所成的比为






1
3.线段的定比分点公式:设 P 1 ( x1 , y1 ) 、 P 2 ( x2 , y2 ) , P ( x, y ) 分有向线段 P 1P 2 所成的







2 x 2 y 2 , a | a |2 x 2 y 2 。
⑥两点间的距离:若 A x1 , y1 , B x2 , y2 ,则 | AB | 七.向量的运算律: 1.交换律: a b b a ,
x2 x1 y2 y1


x x x1 x2 x 1 2 x 2 1 比为 , 则 , 特别地, 当 =1 时, 就得到线段 P 1 P 2 的中点公式 。 y y 1 y2 y y1 y2 2 1
在使用定比分点的坐标公式时,应明确 ( x, y ) , ( x1 , y1 ) 、 ( x2 , y2 ) 的意义,即分别为分点, 起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据 这些点确定对应的定比 。 x x h 十一.平移公式:如果点 P ( x, y ) 按向量 a h, k 平移至 P ( x, y) ,则 ; 曲 y y k 线 f ( x, y ) 0 按向量 a h, k 平移得曲线 f ( x h, y k ) 0 .注意: (1)函数按向量平移 与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊! 十二.向量中一些常用的结论: (1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;

安徽省2014届高三数学一轮复习 考试试题精选(1)分类汇编10 平面向量

安徽省2014届高三数学一轮复习 考试试题精选(1)分类汇编10 平面向量

安徽省2014届高三理科数学一轮复习考试试题精选(1)分类汇编10:平面向量一、选择题 1 .(安徽省屯溪一中2014届高三上学期期中考试数学(理)试题)已知ABC ∆所在的平面内一点P 满足02=++PC PB PA ,则=∆∆∆PBC PAC PAB S S S ::.)(A 3:2:1 .)(B 1:2:1 .)(C 1:1:2 .)(D 2:1:1【答案】B2 .(安徽省芜湖市沈巷中学2014届高三一轮复习测试(一)数学理试题)点O 在ABC ∆所在平面内,给出下列关系式:(1)0=++OC OB OA ; (2)OA OC OC OB OB OA ⋅=⋅=⋅;(3)0=⎫⎛-⋅=⎫⎛-⋅BA BC OB AB AC OA ;(4)0)()(=⋅+=⋅+BC OC OB AB OB OA . 则点O 依次为ABC ∆的 ( )A .内心、外心、重心、垂心B .重心、外心、内心、垂心C .重心、垂心、内心、外心D .外心、内心、垂心、重心 【答案】C 3 .(安徽省芜湖市沈巷中学2014届高三一轮复习测试(一)数学理试题)已知向量,,a b c 满足++=0a b c ,且a 与c 的夹角为60,|||=b a ,则tan ,<>=a b ( )ABC. D.【答案】C 4 .(安徽省淮北一中2014届高三第三次月考数学理试题)ABC ∆中,60,A A ∠=︒∠的平分线AD 交边BC于D,已知AB=3,且1()3AD AC AB R λλ=+∈,则AD 的长为 ( )A .1BC.D .3【答案】C 5 .(安徽省皖南八校2014届高三10月第一次联考数学(理)试题)已知ABC ∆为等边三角形,2AB =,设,P Q 满足,(1)()AP AB AQ AC R λλλ==-∈,若32BQ CP ⋅=-,则λ等于 ( )A .12BCD【答案】A ∵BQ →=BA →+AQ →,CP →=CA →+AP →,∴BQ →·CP →=(BA →+AQ →)·(CA →+AP →)=AB →·AC →-AB →·AP →-AC →·AQ →+AQ →·AP →=AB →·AC →-λAB →2-(1-λ)AC →2+λ(1-λ)AB →· =2-4λ-4(1-λ)+2λ(1-λ)=2λ(1-λ)-2=-32,∴λ=12.6 .(安徽省皖南八校2014届高三10月第一次联考数学(理)试题)已知向量a 、b 满足||1,()(2)0a a b a b =+⋅-=,则||b 的取值范围为( )A .[1,2]B .[2,4]C .11[,]42D .1[,1]2【答案】D 由题意知b ≠0,设向量a ,b 的夹角为θ,(a +b )·(a -2b )=a 2-a·b -2b 2,1-|b |cos θ-2|b |2=0,∴cos θ=1-2|b |2|b |,∵-1≤cos θ≤1,∴-1≤1-2|b |2|b |≤1,∴12≤|b |≤1. 二、填空题 7 .(安徽省屯溪一中2014届高三上学期期中考试数学(理)试题)已知点O 、N 、P 在ABC ∆所在的平面内,==,0=++NC NB NA ,PA PC PC PB PB PA ⋅=⋅=⋅,则点O 、N 、P 依次ABC ∆是的_____、_____、____.__【答案】外心、重心、垂心8 .(安徽省屯溪一中2014届高三上学期期中考试数学(理)试题)已知向量)1,3(=a ,)1,0(-=b ,)3,(k c =,若b a 2+与c 共线,则=k ___________【答案】3-=k 9 .(安徽省寿县第一中学2014届高三上学期第二次月考数学(理)试卷(实验A 班月考))已知直线:1()l y ax a a R =+-∈.若存在实数a 使得一条曲线与直线l 有两个不同的交点,且以这两个交点为端点的线段长度恰好等于a ,则称此曲线为直线l 的“绝对曲线”.下面给出四条曲线方程:①21y x =--;②2y x =;③22(1)(1)1x y -+-=;④2234x y +=;则其中直线l 的“绝对曲线”有_______________【答案】②③④ 10.(安徽省寿县第一中学2014届高三上学期第二次月考数学(理)试卷(实验A 班月考))在平面直角坐标系中,O 是坐标原点,若两定点,A B 满足2OA OB OA OB ==⋅=,则点集{}R ,,2,|∈≤++=μλμλμλOB OA OP P 所表示的区域的面积是_______________.【答案】11.(安徽省芜湖市沈巷中学2014届高三一轮复习测试(一)数学理试题)12,e e 是两个不共线的向量,已知122AB e ke =+,123CB e e =+,122CD e e =-,且D B A ,,三点共线,则实数k =_______;【答案】8-12.(安徽省皖南八校2014届高三10月第一次联考数学(理)试题)若(1,2),(1,0)a b ==-,则2a b -=_________.【答案】(3,4) 2a -b =(2,4)-(-1,0)=(3,4).13.(安徽省江南十校2014届新高三摸底联考数学理试题)向量a,b 满足则a 与b 的夹角为___【答案】23π三、解答题14.(安徽省芜湖市沈巷中学2014届高三一轮复习测试(一)数学理试题)若向量 (1,2),(2,1),a b →→==-,k t 为正实数.且211(1),x a t b y a b k t→→→→→→=++=-+,(1)若x y →→⊥,求k 的最大值;(2)是否存在,k t ,使//x y ?若存在,求出k 的取值范围;若不存在,请说明理由. 【答案】解:由已知可得x =(1,2)+(t 2+1)(-2,1)=(-2t 2-1,t 2+3),y =-1k (1,2)+1t (-2,1)=⎝ ⎛⎭⎪⎫-1k -2t,-2k +1t(1)若x y →→⊥,则0x y =,即(-2t 2-1)⎝ ⎛⎭⎪⎫-1k -2t +(t 2+3)⎝ ⎛⎭⎪⎫-2k +1t =0,整理得,k=t t 2+1=1t +1t≤12t ·1t=12, 当且仅当t =1t ,即t =1时取等号,∴k max =12(2)假设存在正实数k,t ,使//x y ,则(-2t 2-1)⎝ ⎛⎭⎪⎫-2k +1t -(t 2+3)⎝ ⎛⎭⎪⎫-1k -2t =0.化简得t 2+1k +1t=0,即t 3+t +k=0又∵k,t 是正实数,故满足上式的k,t 不存在, ∴不存在k,t ,使//x y。

一轮效果监测2014届高考数学一轮复习检测《平面向量的数量积及平面向量的应用》Word版含解析

一轮效果监测2014届高考数学一轮复习检测《平面向量的数量积及平面向量的应用》Word版含解析

平面向量的数量积及平面向量的应用知识点、方法题号数量积的运算1、4、9长度及垂直问题1、2、3、5夹角问题7、10平面向量的应用6、8、11、121.(2012年高考重庆卷)设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|等于( B )(A)(B)(C)2(D)10解析:∵a⊥b,∴x-2=0,∴x=2.∴|a+b|====.故选B.2.(2013乐山市第一次调研)已知两点A(-1,0),B(1,3),向量a=(2k-1,2),若⊥a,则实数k的值为( C )(A)2 (B)1 (C)-1 (D)-2解析:由=(2,3),因为⊥a,所以2(2k-1)+2×3=0,得k=-1,故选C.3.(2012年高考辽宁卷)已知两个非零向量a、b满足|a+b|=|a-b|,则下面结论正确的是( B )(A)a∥b (B)a⊥b(C)|a|=|b| (D)a+b=a-b解析:法一代数法:将原式平方得|a+b|2=|a-b|2,∴a2+2a·b+b2=a2-2a·b+b2,∴a·b=0,∴a⊥b,故选B.法二几何法:如图所示,在▱ABCD中,设=a,=b,∴=a+b,=a-b,∵|a+b|=|a-b|,∴平行四边形两条对角线长度相等,即平行四边形ABCD为矩形,∴a⊥b,故选B.4.(2013玉溪一中月考)已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( A )(A)-4 (B)4 (C)-2 (D)2解析:cos<a,b>===-,向量a在向量b方向上的投影为|a|cos<a,b>=6×(-)=-4,故选A.5.(2012东北四校联考)已知平面向量a和b,|a|=1,|b|=2,且a与b的夹角为120°,则|2a+b|等于( A )(A)2 (B)4 (C)2(D)6解析:由题意可知|2a+b|2=4a2+b2+4a·b=4|a|2+|b|2+4|a||b|·cos 120°=4,所以|2a+b|=2,故选A.6.(2013成都市高三一诊模拟)已知向量a=(cos θ,sin θ),向量b=(,1),则|2a-b|的最大值和最小值分别为( B )(A)4,0 (B)4,0 (C)16,0 (D)4,4解析:|2a-b|=|(2cos θ-,2sin θ-1)|==,所以最大值和最小值分别为4,0.故选B.二、填空题7.单位圆上三点A,B,C满足++=0,则向量,的夹角为.解析:∵A,B,C为单位圆上三点 ,∴||=||=||=1,又++=0,∴-=+,∴=(+)2=++2·,可得cos<,>=-,∴向量,的夹角为120°.答案:120°8.(2011年高考天津卷)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为.解析:如图建立平面直角坐标系,设C(0,b),则B(1,b),又A(2,0),设P(0,y),则+3=(2,-y)+3(1,b-y)=(5,3b-4y),∴|+3|2=25+(3b-4y)2,∴当3b-4y=0,即y=b时,|+3|2的最小值为25.∴|+3|的最小值为5.答案:59.(2012德州一模)已知a=(m,n),b=(p,q),定义a⊗b=mn-pq,下列等式中,①a⊗a=0;②a⊗b=b⊗a;③(a+b)⊗a=a⊗a+b⊗a;④(a⊗b)2+(a·b)2=(m2+q2)(n2+p2),一定成立的是.(填上所有正确等式的序号)解析:由a⊗b的定义可知,①a⊗a=mn-mn=0,故①正确,②a⊗b=mn-pq,b⊗a=pq-mn,故②错误,③a+b=(m+p,n+q),所以(a+b)⊗a=(m+p)(n+q)-mn,而a⊗a+b⊗a=pq-mn,故③错误,④(a⊗b)2=(mn-pq)2,(a·b)2=(mp+nq)2,所以(a⊗b)2+(a·b)2=(m2+q2)(n2+p2),故④正确.答案:①④三、解答题10.已知a、b、c是同一平面内的三个向量,其中a=(1,2).(1)若|c|=2,且c∥a,求c的坐标;(2)若|b|=,且a+2b与2a-b垂直,求a与b的夹角θ.解:(1)设c=(x,y),由c∥a和|c|=2,可得:∴或∴c=(2,4)或c=(-2,-4).(2)∵(a+2b)⊥(2a-b),∴(a+2b)·(2a-b)=0,即2a2+3a·b-2b2=0,∴2|a|2+3a·b-2|b|2=0,∴2×5+3a·b-2×=0,∴a·b=-,∴cos θ==-1,∵θ∈[0,π],∴θ=π.即a与b的夹角大小为π.11.在△ABC中,角A、B、C的对边分别为a、b、c.若·=·=k(k∈R).(1)判断△ABC的形状;(2)若k=2,求b的值.解:(1)∵·=cbcos A,·=bacos C,∴bccos A=abcos C,根据正弦定理,得sin Ccos A=sin Acos C,即sin Acos C-cos Asin C=0,sin(A-C)=0,∴A=C,即a=c.则△ABC为等腰三角形.(2)由(1)知a=c,由余弦定理,得·=bccos A=bc·=.·=k=2,即=2,解得b=2.12.(2012山东省威海市高三第一次模拟)已知向量m=(2cos x,cos x-sin x),n=,且满足f(x)=m·n.(1)求函数y=f(x)的单调递增区间;(2)设△ABC的内角A满足f(A)=2,a、b、c分别为角A、B、C所对的边,且·=,求边BC的最小值.解:(1)f(x)=2cos x(sin x+cos x)+sin x·cos x-sin2x=2sin x·cos x+cos2x-sin2 x=sin 2x+cos 2x=2sin,由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,故所求单调递增区间为(k∈Z).(2)由f(A)=2sin=2,0<A<π得A=,∵·=,即bccos A=,∴bc=2,又△ABC中,a2=b2+c2-2bccos A=b2+c2-bc≥2bc-bc =(2-)bc,∴=(2-)×2=4-2,∴a min==-1.即边BC的最小值为-1。

数学-兴化市安丰高级中学2014届高三数学一轮复习平面向量测试题

数学-兴化市安丰高级中学2014届高三数学一轮复习平面向量测试题

兴化市安丰高级中学2014届高三一轮复习数学试题(平面向量)姓名_________________ 学号__________ 成绩___________一、填空题:本大题共14小题,每小题5分,共70分,请将正确答案填在答题纸的相应题号中的横线上.1、已知在ABC ∆中,||||2AC AB AC AB ⋅=⋅,则角A 的大小为 .2、已知向量a )3,1(=,b )0,2(-=,则| a -2b | = .3、如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则实数λ= .4、已知向量a ()m ,1=,b ()2,m =, 若a // b , 则实数m 等于 .5、已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b ,若b ·c =0,则t = .6、设a ()2,1-=,b ()4,3-=, c ()2,3=,则(a + 2b )·c = .7、在四边形ABCD 中,)2,4(),2,1(-==BD AC ,则该四边形的面积为 . 8、已知点()3,1A ,()1,4-B ,则与向量AB 同方向的单位向量为 . 9、已知向量m ()1,1+=λ,n ()2,2+=λ,若(m + n )⊥(m - n ),则=λ . 10、已知正方形ABCD 的边长为2,E 为CD 的中点,则=⋅BD AE . 11、若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a ,b 夹角的余弦值为 .12、OA 为边,OB 为对角线的矩形中,(3,1)OA =-,(2,)OB k =- ,则实数k = .13、已知O ,A ,B 是平面上不共线的三点,设P 为线段AB 垂直平分线上任意一点,若7=OA ,5=OB ,则()OB OA OP -⋅的值为 .14、如图,在ABC ∆中,2=BC ,DC AD =,EB AE 21=,若21-=⋅AC BD ,则=⋅AB CE .二、解答题:本大题共6小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤.15、(本小题满分14分)已知向量a ,b 满足|a |=2,|b |=1,|a -b |=2.OCABDA BCDE(1)求a·b 的值; (2)求|a + b |的值. 16、(本小题满分14分) 设向量a ()x x sin ,sin 3=,b ()x x sin ,cos =,⎥⎦⎤⎢⎣⎡∈2,0πx .(1)若|a |=|b |,求x 的值;(2)设函数()=x f a ·b ,求()x f 的最大值. 17、(本小题满分15分)在平面直角坐标系xOy 中,点A (-1,-2)、B (2,3)、C (-2,-1) . (1) 求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (2) 设实数t 满足(OC t AB -)·OC =0,求t 的值.18、(本小题满分15分)已知a ()βαsin ,sin =,b ()()1,cos --=βα,c ()()2,cos βα+=,≠βα,2ππ+k ,Z k ∈.(1)若b //c ,求βαtan tan ⋅的值; (2)求a 2+ c ·b 的值.19、(本小题满分16分)已知向量a ()()θλλθ-=10cos ,cos ,b ()()λθθλsin ,10sin -=,R ∈θλ,. (1)求 |a |2+ |b |2的值; (2)若a ⊥b ,求θ的值; (3)若20πθ=,求证:a //b .20、(本小题满分16分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量m ()b c a ,2-=与向量n ()C B cos ,cos -=互相垂直. (1)求角B 的大小;(2)求函数()C B C y 2cos sin 22-+=的值域;(3)若AB 边上的中线2=CO ,动点P 满足()R AC AO AP ∈⋅+⋅=θθθ22cos sin ,求()PC PB PA ⋅+的最小值.兴化市安丰高级中学2014届高三一轮复习数学答案(平面向量)姓名_________________ 学号__________ 成绩___________一、填空题:本大题共14小题,每小题5分,共70分. 1、3π. 2、2. 3、2. 4、2±. 5、2. 6、3-. 7、5. 8、3455⎛⎫ ⎪⎝⎭,-. 9、=λ-3. 10、2. 11、13-. 12、4. 13、12. 14、34-. 二、解答题:本大题共6小题,共90分.15、解:(1)由|a -b |=2,得|a -b |2=a 2-2a·b +b 2412=+-a·b 4=,∴ a·b 12=.(2)|a +b |2=a 22+a·b +b 2142162=+⨯+=,∴ |a +b |6=.16、 [思路](Ⅰ)一般给出模的关系就可以考虑把模平方,进而可以把向量问题转化为三角函数问题求出24sin 1x =因为[0,]2x π∈,根据象限符号知sin 0x >求出1sin 2x =,所以6x π=.(2)通过降幂公式和二倍角公式可化简1()sin(2)62f x x π=-+, 最后解得最大值为32. 17、[解析](1)(方法一)由题设知(3,5),(1,1)AB AC ==-,则 (2,6),(4,4).AB AC AB AC +=-=所以||210,||4 2.AB AC AB AC +=-=故所求的两条对角线的长分别为42、210。

2014届一轮复习数学试题选编11平面向量(教师版)

2014届一轮复习数学试题选编11平面向量(教师版)


2 e1 , e2 是 夹 角 为 的 两 个 单 位 向 3
5 【 解 析 】 4 2 2 1 a b (e1 2e2 ) (ke1 e2 ) ke1 2e2 (1 2k )e1 e1 k 2 (1 2k )( ) 0 , 2 5 因此, k . 4
OA (k , 3) , OB (0,2k ) , OA , OB 的夹角为120 ,则实数 k ___________.
【答案】3 12. (江苏省 2013 届高三高考模拟卷(二) (数学) )在边长为 3 的正方形 ABCD 中,E 为 DC
→ → 的中点,AE 与 BD 相交于点 F,则 FD · DE 的值为_______.
→ → → → → =(3,-1), OB =(0,2).若 OC · AB =0, AC =λ OB ,则实数 λ 的值为________.
【答案】2 8 . (江苏省南京市四校 2013 届高三上学期期中联考数学试题)已知向量 a 的模为 2,向量 e 为
单位向量, e (a e) ,则向量 a 与 e 的夹角大小为_______.
4

b ( 3,1) ,则 2a b 的最大值为_______.
【答案】
4
25( .扬州市 2012-2013 学年度第一学期期末检测高三数学试题) 已知向量 a
2,1, b 1, k ,
若 a b ,则 k 等于____.
【答案】 2 26. (扬州、南通、泰州、宿迁四市 2013 届高三第二次调研测试数学试卷)在平面直角坐标系

2 1 2 .

10 . ( 苏州市 2012-2013 学年 度第一学 期高三期 末考试 数学试卷 ) 已知向量 a , b , 满足

2014届高考数学一轮复习 第五章《平面向量》精编配套试题(含解析)文 新人教A版

2014届高考数学一轮复习 第五章《平面向量》精编配套试题(含解析)文 新人教A版
A. B. C. D.
4、【某某省某某一中2013届高三第二次高中新课程双基检测数学文】已知平面向量 共线,则 =
A. B. C. D.5
5、(2013年高考某某卷(文))已知点 、 、 、 ,则向量 在 方向上的投影为( )
A. B. C. D.
6、(某某省某某市2013年3月高三第一次模拟文)若两个非零向量 , 满足
19、(本小题满分12分)(某某某某市2013届高三期末)
已知向量a=(cos ,cos( ),b=( ,sin ),
(1)求 的值
(2)若 ,求
(3) ,求证:
20、(本小题满分12分)(某某某某市2013届高三期末)已知△ 的面积为 ,且 .
(1)求 的值;
(2)若 , ,求△ABC的面积 .
21.(本小题满分12分)已知向量 = , = 。
⑴求 与 ;⑵当 为何值时,向量 与 垂直?
⑶当 为何值时,向量 与 平行?并确定此时它们是同向还是反向?

22.(本小题满分12分)若a,b是两个不共线的非零向量,t∈R.
(1)若a,b起点相同,t为何值时,a,tb, (a+b)三向量的终点在一直线上?
(2)若|a|=|b|且a与b夹角为60°,t为何值时,|a-tb|的值最小?
(1) , ;
(2)当向量 与 垂直时,则有 , ,即 解得 所以当 时,向量 与 垂直;
(3)当向量 与 平行时,则存在 使 成立,于是 解得 ,当 时, ,所以 时向量 与 平行且它们同向.
22、解(1)设a-tb=m[a- (a+b)],m∈R,
化简得( m-1)a=( -t)b,
∵a与b不共线,∴ ⇒
6、B
7、【答案】C
【解析】本题考查的是向量垂直的判断以及向量的模长.因为 ,所以 ,所以四边形的面积为 ,故选C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量一、填空题 1 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知非零向量,a b 满足(2)(2)-⊥-⊥,,a b a b a b 则向量a 与b 的夹角为______.【答案】π32 .(江苏省南京市2014届高三9月学情调研数学试题)如图,在△ABC 中,D,E 分别为边BC,AC的中点. F 为边AB 上. 的,且,则x+y 的值为____【答案】523 .(江苏省徐州市2014届高三上学期期中考试数学试题)已知O 是ABC ∆的外心,10,6==AC AB ,若ACy AB x AO ⋅+⋅=且5102=+y x ,则=∠BAC cos _____________.【答案】314 .(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,若22()||5CA CB AB AB +⋅= ,则tan tan AB= ________. 【答案】735 .(江苏省兴化市2014届高三第一学期期中调研测试)已知在ABC∆中,3==BC AB ,4=AC ,设O 是ABC ∆的内心,若AC n AB m AO +=,则=n m :__★__.【答案】3:4 提示一:利用夹角相等,则有ACAC AO AB AB AO ⋅=⋅||.提示二:利用角平分线定理,根据相似比求得AC AB AO 103104+=6 .(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知非零向量a ,b 满足|a |=|a +b |=1,a 与b 夹角为120°,则向量b 的模为________.【答案】17 .(江苏省启东中学2014届高三上学期期中模拟数学试题)如图, 在等腰三角形ABC 中, 底边2=BC , DC AD =, 12AE EB = , 若12BD AC ⋅=- , 则AB CE ⋅=_____.【答案】43-8 .(江苏省无锡市2014届高三上学期期中调研考试数学试题)在ABC ∆中,M 为AB 的的三等分点,:1:3,AM AB N =为AC 的中点,BN 与CM 交于点E ,,AB m AC n ==,则AE =_____________________.【答案】1255m n +9 .(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)在平面直角坐标系中,O是坐标原点,()2,0A ,()0,1B ,则点集{},1,,P OP OA OB R λμλμλμ=++≤∈所表示的平面区域的面积是________.【答案】410.(江苏省兴化市2014届高三第一学期期中调研测试)设向量a 、b 满足:|a |3=,|b |1=,a·b 23=,则向量a 与b 的夹角为__★__. 【答案】6π 11.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)向量b n a m b a --==若),3,2(),2,1(与b a 2+共线(其中,,0m m n R n n∈≠且)则等于_.【答案】21-12.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知a 、b 、c都是单位向量,且a b c += ,则a c ⋅的值为_________.【答案】1213.(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,6BC =,BC 边上的高为2,则AB AC ⋅的最小值为________.【答案】5-14.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知ABC ∆是边长为4的正三角形,D 、P 是ABC ∆内部两点,且满足11(),48AD AB AC AP AD BC =+=+,则APD ∆的面积为__________.【答案】3415.(江苏省南京市第五十五中学2014届高三上学期第一次月考数学试题)P 是ABC ∆所在平面内一点,若PB PA CB +=λ,其中R ∈λ,则P 点一定在(A)ABC ∆内部 (B)AC 边所在直线上 (C)AB 边所在直线上 (D)BC 边所在直线上【答案】B16.(江苏省启东中学2014届高三上学期期中模拟数学试题)已知)2s i n ,2(),sin ,1(2x b x a ==,其中()0,x π∈,若a b a b ⋅=⋅,则tan x =_____. 【答案】1;17.(江苏省泰州中学2014届第一学学期高三数学摸底考试)在平面直角坐标系x O y 中,已知=(3,﹣1),=(0,2).若•=0,=λ,则实数λ的值为__________.【答案】218.(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)如图,,,A B C 是直线上三点,P 是直线外一点,1==BC AB ,︒=∠90APB ,︒=∠30BPC ,则PA PC ⋅=________.【答案】74-19.(江苏省南莫中学2014届高三10月自主检测数学试题)已知向量a 的模为2,向量e 为单位向量,)(e a e -⊥,则向量a 与e 的夹角大小为_______.【答案】3π; 20.(江苏省诚贤中学2014届高三上学期摸底考试数学试题)已知向量a 与b 的夹角为60º,300lABCP且|a |=1,|b |=2,那么2()+a b 的值为________.【答案】721.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知O 为△ABC 的外心,,120,2,20=∠==BAC aAC a AB 若AC AB AO βα+=,则βα+的最小值为____【答案】222.(江苏省泰州市姜堰区张甸中学2014届高三数学期中模拟试卷)已知平面向量(1,2)a = ,(1,3)b =-,则a 与b 夹角的余弦值为___________【答案】22; 23.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)已知b a ,是非零向量且满足a b a ⊥-)(2,b a b ⊥-)(2,则a 与b 的夹角是________.【答案】3π24.(江苏省扬州中学2014届高三开学检测数学试题)已知正方形ABCD 的边长为1,若点E 是AB 边上的动点,则DC DE ⋅的最大值为 ▲ .【答案】125.(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)若向量→a 、→b 满足|→a |=1,|→b|=2,且→a 与→b 的夹角为π3,则|→a +2→b |=_______【答案】2126.(江苏省连云港市赣榆县清华园双语学校2014届高三10月月考数学试题)已知向量a =(2,1),a ·b =10,|a +b |52=,则|b |=__________【答案】527.(江苏省盐城市2014届高三上学期期中考试数学试题)设向量(1,),(3,4)a x b ==- ,若//a b,则实数x 的值为________.【答案】43-28.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =________. 【答案】1-29.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)若等腰梯形ABCD中,//AB CD ,3AB =,2BC =,45ABC ∠=,则AC BD ⋅的值为____________【答案】330.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)设x ∈R,向量(,1),(3,2)x ==-a b 且⊥a b ,则x = ______. 【答案】2331.(江苏省无锡市洛社高级中学2014届高三10月月考数学试题)设平面向量(1,2)a =,与向量(1,2)a =共线的单位向量坐标为_______.【答案】525(,)55或255(,)55-- 32.(江苏省扬州市扬州中学2014届高三10月月考数学试题)已知向量(12,2)a x =-,()2,1b - =,若→→b a //,则实数x =______.【答案】25 二、解答题33.(江苏省南莫中学2014届高三10月自主检测数学试题)设(,1)a x = ,(2,1)b =- ,(,1)c x m m =--(,x m ∈∈R R ). (Ⅰ)若a 与b的夹角为钝角,求x 的取值范围; (Ⅱ)解关于x 的不等式a c a c +<- .【答案】(1)由题知:210a b x ⋅=-< ,解得12x <;又当2x =-时,a 与b 的夹角为π,所以当a 与b 的夹角为钝角时, x 的取值范围为1(,2)(2,)2-∞-⋃-(2)由a c a c +<-知,0a c ⋅< ,即(1)[(1)]0x x m ---<;当2m <时,解集为{11}x m x -<<; 当2m =时,解集为空集;当2m >时,解集为{11}x x m <<-34.(江苏省徐州市2014届高三上学期期中考试数学试题)设向量(2,sin ),(1,cos ),a b θθθ==为锐角.(1)若136a b ⋅= ,求sin cos θθ+的值;(2)若//a b ,求sin(2)3πθ+的值.【答案】解:(1)因为a ·b =2 + sin θcos θ =136 , 所以sin θcos θ = 16, 所以(sin θ +cos θ)2= 1+2sin θcos θ = 34 .又因为θ为锐角,所以sin θ + cos θ =233(2)因为a ∥b ,所以tan θ = 2,所以sin2θ = 2sin θcos θ = 2sin θcos θsin 2θ+cos 2θ = 2tan θtan 2θ+1 = 45 , cos2θ = cos 2θ-sin 2θ = cos 2θ-sin 2θsin 2θ+cos 2θ = 1-tan 2θtan 2θ+1 = — 35所以sin(2θ+ π3 ) = 12 sin2θ + 32 cos2θ = 12 ×45+32 ×(-35) = 4-331035.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知在等边三角形ABC中,点P 为线段AB 上一点,且(01)AP AB =≤≤λλ.(1)若等边三角形边长为6,且13=λ,求CP ; (2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围.【答案】(1)当13=λ时,13AP AB = , 2222221()262622282CP CA AP CA CA AP AP =+=+⋅+=-⨯⨯⨯+= .∴||27CP =(2)设等边三角形的边长为a ,则221()()2CP AB CA AP AB CA AB AB a a ⋅=+⋅=+λ⋅=-+λ ,222()()PA PB PA AB AP AB AB AB a a ⋅=⋅-=λ⋅-λ=-λ+λ即2222212a a a a -+λ≥-λ+λ,∴21202λ-λ+≤,∴222222-+≤λ≤. 又00≤λ≤,∴2212-≤λ≤. 36.(江苏省无锡市2014届高三上学期期中调研考试数学试题)已知向量,m n的夹角为45︒,则||1,||2m n == ,又2,3a m n b m n =+=-+ .(1)求a 与b 的夹角;(2)设,2c ta b d m n =-=-,若//c d ,求实数t 的值.【答案】37.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)设(cos ,(1)sin ),(cos ,sin ),(0,0)2a b παλαββλαβ=-=><<< 是平面上的两个向量,若向量a b + 与a b -互相垂直.(Ⅰ)求实数λ的值;(Ⅱ)若45a b ⋅= ,且4tan 3β=,求tan α的值.【答案】(Ⅰ)由题设可得()()0,a b a b +⋅-=即220,a b -= 代入,a b 坐标可得22222cos +(1)sin cos sin 0αλαββ---=.222(1)sin sin 0,λαα∴--=0,0,22παλλ<<>∴= .(Ⅱ)由(1)知,4cos cos sin sin cos(),5a b αβαβαβ⋅=+=-=02παβ<<<∴ 02παβ-<-<33sin(),tan()54αβαβ∴-=--=-.34tan()tan 743tan tan[()]=341tan()tan 241()43αββααββαββ-+-+∴=-+==--⋅--⨯. 7tan 24α∴= 38.(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)已知平面向量a =(1,2sin θ),b =(5cos θ,3).(1)若a ∥b ,求sin2θ的值; (2)若a ⊥b ,求tan(θ+π4)的值.【答案】 (1)因为a ∥b ,所以1×3-2sin θ×5cos θ=0,即5sin2θ-3=0,所以sin2θ=35(2)因为a ⊥b ,所以1×5cos θ+2sin θ×3=0 所以tan θ=-56所以tan(θ+π4)=tan θ+tanπ41-tan θtanπ4=11139.(江苏省启东中学2014届高三上学期期中模拟数学试题)已知,,a b c是同一平面内的三个向量,其中(1,2)a =(1)若||25c =,且//c a ,求:c 的坐标(2)若5||2b = ,且2a b + 与2a b - 垂直,求a 与b 的夹角【答案】解:设(,)c x y = 由//||25c a c =及得2212022,4420y x x x y y x y ⋅-⋅===-⎧⎧⎧∴⎨⎨⎨==-+=⎩⎩⎩或 所以,(2,4)(2,4)c c ==-- 或 (2)∵2a b + 与2a b - 垂直,∴(2)(2)0a b a b +⋅-=即222320a a b b +⋅-= ;∴52a b ⋅=-∴cos 1||||a ba b θ⋅==- ,∵[0,]θπ∈∴θπ=40.(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)设平面向量)23,21(),1,3(=-=b a ,若存在实数)0(≠m m 和角θ,其中)2,2(ππθ-∈,使向量θθtan ,)3(tan 2⋅+-=-+=b a m d b a c ,且d c ⊥.(Ⅰ)求)(θf m =的关系式; (Ⅱ)若]3,6[ππθ-∈,求)(θf 的最小值,并求出此时的θ值. 【答案】解: (Ⅰ)∵dc ⊥,且1,2,0===⋅b a b a ,∴0)tan 3(tan 232=-+-=⋅b a m d c θθ∴)2,2(),tan 3(tan 41)(3ππθθθθ-∈-==f m (Ⅱ)设θtan =t ,又∵]3,6[ππθ-∈,∴]3,33[-∈t ,则)3(41)(3t t t g m -== )1(43)(''2-==t t g m 令0)('=t g 得1-=t (舍去) 1=t ∴)1,33(-∈t 时0)('<t g ,)3,1(∈t 时0)('>t g ,∴1=t 时,即4πθ=时, )1(g 为极小值也是最小值,)(t g 最小值为21- 41.(江苏省如皋中学2014届高三上学期期中模拟数学试卷)如图,在△OAB 中,已知P 为线段AB 上的一点,.OP x OA y OB =⋅+⋅(1)若BP PA =,求x ,y 的值;(2)若3BP PA = ,||4OA = ,||2OB =,且OA 与OB 的夹角为60°时,求OP AB ⋅ 的值.【答案】(1)∵BP PA =,∴BO OP PO OA +=+ ,即2OP OB OA =+ ,∴1122OP OA OB =+ ,即12x =,12y =(2)∵3BP PA = ,∴33BO OP PO OA +=+,即43OP OB OA =+∴3144OP OA OB =+∴34x =,14y =31()()44OP AB OA OB OB OA ⋅=+⋅-131442OB OB OA OA OA OB =⋅-⋅+⋅221311244294422=⨯-⨯+⨯⨯⨯=-。

相关文档
最新文档