钢板弹簧悬架设计
微型汽车后钢板弹簧悬架设计
![微型汽车后钢板弹簧悬架设计](https://img.taocdn.com/s3/m/55ff66c2d5d8d15abe23482fb4daa58da1111c11.png)
微型汽车后钢板弹簧悬架设计引言:随着城市化进程的不断加剧,城市交通拥堵问题越来越严重。
因此,市场对于小型和经济型微型汽车的需求也越来越大。
在微型汽车的设计中,悬架系统是一个非常重要的组成部分,它直接影响到汽车的行驶稳定性、舒适性和操控性。
本文将对微型汽车的后钢板弹簧悬架进行设计和优化。
1.简介后钢板弹簧悬架是一种常见的汽车悬架系统,它由钢板弹簧、减震器和连接件组成。
该悬架系统具有结构简单、制造成本低、可靠性高等优点,因此在微型汽车中广泛应用。
2.悬架系统设计参数在设计后钢板弹簧悬架系统时,需要考虑以下几个主要参数:a.轴距:轴距是指前后轮轴中心之间的距离。
较大的轴距可以提高汽车的稳定性,但同时会增加车身长度,影响车辆的机动性。
b.弹簧刚度:弹簧刚度是指弹簧对重力或外力施加的力与弹簧位移之间的关系。
合适的弹簧刚度可以保证汽车在行驶过程中的平稳性和舒适性。
c.减震器:减震器的作用是减少车辆行驶过程中的颠簸和震动,提高悬架系统的舒适性。
在选择减震器时,需要考虑减震器的压缩和回弹力、摩擦阻尼等因素。
d.响应频率:响应频率是指悬架系统在受到外力激励时产生的周期性振动的频率。
合适的响应频率可以提高悬架系统对不同路面的适应性,减少车辆在行驶过程中的颠簸和震动。
3.悬架系统优化为了优化后钢板弹簧悬架系统的设计,可以采取以下几个策略:a.优化弹簧刚度:通过调整弹簧的材料和参数,可以实现弹簧刚度的优化。
优化后的弹簧可以提供更好的悬架支撑能力和稳定性。
b.配置合适的减震器:根据车辆的重量和行驶需求,选择合适的减震器。
减震器的性能直接影响到悬架系统的舒适性和稳定性。
c.调整悬架系统的参数:通过调整悬架系统的参数,如轴距、悬架点位置等,可以实现悬架系统的优化。
优化后的悬架系统可以提高车辆的操控性和稳定性。
4.结论后钢板弹簧悬架是微型汽车中常用的悬架系统之一,它具有结构简单、制造成本低等优点。
在设计后钢板弹簧悬架系统时,需要考虑轴距、弹簧刚度、减震器等参数,并进行优化,以提高汽车的行驶稳定性、舒适性和操控性。
钢板弹簧悬架匹配设计
![钢板弹簧悬架匹配设计](https://img.taocdn.com/s3/m/caf29d93a1116c175f0e7cd184254b35eefd1a17.png)
钢板弹簧悬架匹配设计目录1 引言11.1研究现状和发展趋势:11.2汽车构造32 汽车悬架的作用、组成和分类1.2.1汽车悬架的作用31.2.2汽车悬架的组成31.2.3汽车悬架的分类42.2.2减振器42.2.3 导向机构42.3 悬架的分类52.3.1 非独立悬架52.3.2 独立悬架52.4 钢板弹簧72.4.1 钢板弹簧的基本结构和作用原理72.4.2弹性元件种类及其特点93 110微型汽车后钢板弹簧悬架系统104 后悬挂系统钢板弹簧设计114.1 钢板弹簧主要参数的确定114.2 钢板弹簧叶片断面尺寸的选择164.3 钢板弹簧各片长度的确定174.4 钢板弹簧刚度的验算194.4.1 弹簧刚度计算194.5 钢板弹簧总成在自由状态下的弧高和曲率半径计算20 4.5.1钢板弹簧总成在自由状态下的弧高204.5.2 钢板弹簧总成在自由状态下的曲率半径214.6 钢板弹簧各片预应力的确定214.6.1 簧预应力确定224.7钢板弹簧各叶片在自由状态下的曲率半径和弧高的计算224.8 钢板弹簧总成弧高的核算244.8.1 簧总成弧高核算254.9钢板弹簧各片的应力验算265 结论28参考文献29致谢301引言1.1研究现状和发展趋势随着人类技术的不断发展,人们对交通出行的要求也越来越高,自从工业革命以来,瓦特在1766年制作发明出了第一台蒸汽机,使人类社会进入了“蒸汽时代”。
并且开始打响了工业革命的第一枪。
1769年,蒸汽机被瓦特和博尔顿开发研究并且使用。
由蒸汽机开始,机械工业得到愤俗的发展,并为汽轮机和内燃机的发展奠定了基础。
1895年,二冲程煤气内燃机在法国的勒努瓦的努力下发明了出来,它是利用煤气和空气混合气在电火花的点燃爆燃的方式产生燃烧制作出巨大的能量,这就是二冲程煤气内燃机。
1861年,四冲程工作循环方式由法国的德·罗夏提出,它的工作方式是进气、压缩、做功、排气。
并且被法国有关部门授予了专利。
钢板弹簧悬架设计
![钢板弹簧悬架设计](https://img.taocdn.com/s3/m/02fa3c8afd0a79563c1e726e.png)
专业课程设计说明书题目:商用汽车后悬架设计学院机械与汽车学院专业班级 10车辆工程一班学生姓名学生学号 201030081360指导教师提交日期 2013 年 7 月 12 日一.设计任务:商用汽车后悬架设计二.基本参数:协助同组总体设计同学完成车辆性能计算后确定额定装载质量5000KG 最大总质量 8700KG轴荷分配空载前:后 52:48满载前:后 32:68满载校核后前:后 33::67质心位置:高度:空载 793mm满载 1070mm至前轴距离:空载 2040mm满载 2890mm三.设计内容主要进行悬架设计,设计的内容包括:1.查阅资料、调查研究、制定设计原则2.根据给定的设计参数(发动机最大力矩,驱动轮类型与规格,汽车总质量和使用工况,前后轴荷,前后簧上质量,轴距,制动时前轴轴荷转移系数,驱动时后轴轴荷转移系数),选择悬架的布置方案及零部件方案,设计出一套完整的后悬架,设计过程中要进行必要的计算。
3.悬架结构设计和主要技术参数的确定(1)后悬架主要性能参数的确定(2)钢板弹簧主要参数的确定(3)钢板弹簧刚度与强度验算(4)减振器主要参数的确定4.绘制钢板弹簧总成装配图及主要零部件的零件图5.负责整车质心高度和轴荷的计算和校核。
*6.计算20m/s车速下,B级路面下整车平顺性(参见<汽车理论>P278 题6.5之第1问)。
四.设计要求1.钢板弹簧总成的装配图,1号图纸一张。
装配图要求表达清楚各部件之间的装配关系,标注出总体尺寸,配合关系及其它需要标注的尺寸,在技术要求部分应写出总成的调整方法和装配要求。
2.主要零部件的零件图,3号图纸4张。
要求零件形状表达清楚、尺寸标注完整,有必要的尺寸公差和形位公差。
在技术要求应标明对零件毛胚的要求,材料的热处理方法、标明处理方法及其它特殊要求。
3.编写设计说明书。
五.设计进度与时间安排本课程设计为2周1.明确任务,分析有关原始资料,复习有关讲课内容及熟悉参考资料0.5周。
钢板弹簧悬架设计
![钢板弹簧悬架设计](https://img.taocdn.com/s3/m/3ae8ac42c850ad02de804154.png)
( ) Ri
=
R0
1+ (2σ 0i R0 ) / ( Ehi )i
H 02 = 123.5mm 、 H 03 = 99mm 、 H 04 = 77.3mm 、 H 05 = 58.2mm 、 H 06 = 41.8mm 、
H 07 = 28.1mm 、 H 08 = 17.2mm 、 H 09 = 8.9mm 、 H 010 = 3.3mm 。
6
汽车设计课程设计 ————钢板弹簧的设计
片 等 厚 , 其 长 度 成 等 差 数 列 , 即 li = l2 − (i − 2)a , i ∈[0,10] 。 其 中 l10 = s + a , 将
s
=
70mm, l 2
= 1180mm 代入得
a
=
1110 mm 9
=
370 3
mm
, l10
=
580 3
mm
,则各板长度为:
l1
=1180mm、
五、钢板弹簧各片自由状态下曲率半径的确定:
因钢板弹簧各片在自由状态下和装配后的曲率半径不同,装配后各片产生预应力,其值确定
了自由状态下的曲率半径 Ri 。各片自由状态下做成不同曲率半径的目的是:使各片厚度相同的钢
板弹簧装配后能很好地贴紧,减少主片工作应力,使各片寿命接近。 矩形断面钢板弹簧装配前各片曲率半径由下式确定
计算过程与步骤
一、 钢板弹簧片数取为 10,确定其宽度 b 的计算:
1.钢板断面宽度 b 的确定 有关钢板弹簧 的刚度、强度等,可按等截面简支梁的计算公式计算,但需引入挠度增大系数
δ加以修正。因此,可根据修正后的简支梁公式计算钢板弹簧所需要的总惯性矩 J0 。对于对称钢
1钢板弹簧悬架设计规范
![1钢板弹簧悬架设计规范](https://img.taocdn.com/s3/m/1b172e0babea998fcc22bcd126fff705cc175ca5.png)
1钢板弹簧悬架设计规范钢板弹簧悬架设计规范(提纲)一、钢板弹簧钢断面参数(R=h/2, R=h, R=3h/4) 1.单面双槽钢(1)断面积(2)中性层位置(3)惯性矩(4)断面系数(5)拉、压应力比2.矩形断面钢(1)断面积(2)惯性矩(3)断面系数*主要(常用)规格列表,给出数值,供查用。
二、钢板弹簧总成基本特征参数1.刚度(自由刚度,夹紧刚度)(1)多片簧(2)少片簧2.比应力(1)多片簧(根部应力)(2)少片簧(a.根部应力;b.最大应力点应力)3.弧高(1)夹紧弧高(2)自由弧高三、有关整车性能参数的校核1.悬架固有频率(1)静挠度(2)固有频率(推荐值)(3)两级刚度复式板簧的挠度和频率2.侧倾校核(1)侧倾角刚度(a.板簧,b.稳定杆)(2)侧倾力臂(3)侧倾角(推荐值)3.杆系的运动学校核(1)板簧运动当量杆的计算a.基线角b.圆心位置c.当量杆长度(半径)d.相关点的平移(2)纵拉杆与板簧运动干涉量计算(推荐限值)(3)传动轴伸缩量与万向节夹角校核4.制动时的纵扭干涉(1)板簧纵扭特性a.纵扭瞬心位置b.纵扭角(2)纯纵扭干涉引起的跑偏量(3)纵扭与“点头”同时干涉的跑偏量5.轴转向效应(1)当量杆斜度(2)轴转向效应系数四、强度校核1.设计载荷下的平均静应力(推荐值)(1)等比应力(2)不等比应力a.多片簧各片不等厚b.少片簧2.最大行程下的极限应力(推荐值)(1)等比应力(2)不等比应力3.纵扭时应力校核(推荐值)(1)制动a.前簧b.后簧(倒车)(2)驱动后簧4.卷耳应力校核(推荐值)(1)制动(2)驱动五、钢板弹簧各单片的设计1.多片簧各单片长度的确定2.各单片弧高的确定(1)总成弧高的选定a.装车后满载弧高b.装车后无载弧高c.自由弧高与曲率半径(2)各单片预应力的选定a.预应力选取原则b.自平衡条件(3)各单片自由弧高和曲率半径的计算(多片簧,少片簧)a.Rkb.Hk六、生产文件中有关参数的选定1.预压缩行程2.验证负荷3.无载与设计负荷下的总成弧高4.设计负荷下的刚度值及其测定点。
钢板弹簧悬架设计
![钢板弹簧悬架设计](https://img.taocdn.com/s3/m/27cfa09951e2524de518964bcf84b9d529ea2c45.png)
钢板弹簧悬架设计钢板弹簧悬架通过多块钢板弹簧叠加组成,每块钢板弹簧都有不同的长度和宽度,这样可以在受力时,弹簧可以按照不同的程度进行弯曲,以实现对车身的支撑和减震效果。
钢板弹簧悬架的设计原理是通过弹性变形将震动能量转化成弹性势能,从而实现车身的平稳行驶。
钢板弹簧悬架结构特点主要有以下几点:首先,由于钢板弹簧是由多块钢板叠加组成,所以它的刚度可以根据具体需要进行调节。
通过增加或减少钢板的数量和厚度,可以改变弹簧的刚度,从而实现对车身的支撑调节。
其次,钢板弹簧相对于螺旋弹簧来说,其自重相对较轻。
这可以减少车身的总重量,并且对节约燃油也有积极的影响。
再次,钢板弹簧的制造成本相对较低,容易进行批量生产,从而在汽车制造业中得到广泛应用。
钢板弹簧悬架的优点是:首先,由于钢板弹簧可以根据需要进行调整,所以它适用于不同类型和大小的车辆。
不同的车型可以选择不同的弹簧刚度,以适应各种道路条件和驾驶方式。
其次,钢板弹簧悬架可以提供较为平稳的悬挂效果,对车身的支撑能力较强,可以减少路面颠簸对驾驶员和乘客的影响。
此外,钢板弹簧悬架还具有较高的耐久性和可靠性,能够适应各种恶劣的路况和环境。
然而,钢板弹簧悬架也存在一些缺点。
首先,由于钢板弹簧的结构相对较大,所以需要占用较多的空间。
这在一些小型车辆中可能会受到限制。
其次,虽然钢板弹簧悬架可以提供较好的支撑和减震效果,但相对于其他悬挂系统来说,它的舒适性稍逊一筹。
在一些高端豪华车型中,往往采用更为复杂的悬挂系统,以提供更好的驾驶舒适性。
总结起来,钢板弹簧悬架是一种常见的汽车悬挂系统设计。
它通过多块钢板叠加组成,可以提供较为坚硬的支撑,并且具有调整刚度、轻量化和低成本的优点。
然而,它的空间占用较大和相对较低的舒适性是其缺点。
在实际应用中,钢板弹簧悬架可以根据具体需求进行选择和调整,以满足不同车型的悬挂需求。
汽车钢板弹簧悬架设计
![汽车钢板弹簧悬架设计](https://img.taocdn.com/s3/m/021f14317dd184254b35eefdc8d376eeaeaa1716.png)
汽车钢板弹簧悬架设计汽车钢板弹簧悬架设计引言钢板弹簧悬架是汽车悬架系统中通用的一种。
它具有结构简单、可靠耐用、维护方便等优点,已经成为了汽车悬架系统中不可少的一个组成部分。
本文将探讨汽车钢板弹簧悬架设计的相关知识,包括设计原理、结构材料、设计参数等内容。
一、设计原理汽车钢板弹簧悬架的设计原理是基于弹性和变形实现对汽车震动的吸收和减少。
其基本原理就是利用钢板的弹性变形来吸收汽车在行驶过程中的震动。
弹簧最基本的原理就是哈客定理,即移动的钢板弯曲,因而有了张力和弯曲的复合作用。
钢板弹簧的弹力与材料尺寸、形状和弯曲角度等有关,形状越大、角度越大、宽度越宽,就越能产生弹射力,抗弯曲能力就越好。
二、结构材料汽车钢板弹簧悬架的结构材料是弹簧钢板,它是一种高强度的钢板。
弹簧钢板的化学成分比较复杂,其中含有较多的铬、钼、锰等合金元素,从而保证了钢板的强度和韧性。
弹簧钢板的强度分为两种,一种是静载强度,即弹簧钢板未经过加载状态,所能承受的最大应力;另一种是动载强度,即弹簧钢板在载荷加速状态下,所能承受的应力。
在制造钢板弹簧悬架时,应根据车重、行驶条件、路面状况等因素进行设计选择材料。
三、设计参数汽车钢板弹簧悬架的设计参数有弹簧高度、弹簧宽度、弹簧板厚等。
弹簧高度是弹簧的有效长度,弹簧宽度是弹簧的有效宽度,应根据汽车底盘结构与弹簧安装方式选定。
弹簧板厚直接影响钢板弹簧的强度和韧性,通常采用1.5mm到4mm的钢板材料加工制造。
如果太薄,就不能在车载荷下承受高的撞击力;如果太厚,则不能很好地吸收地面颠簸,影响行驶舒适性。
此外,还需要考虑弹簧孔距、总圈数、自由高度等因素,以达到最优的悬架系统设计效果。
四、结论本文综述了汽车钢板弹簧悬架的设计原理、结构材料和设计参数等知识点,这里强调一下设计数据的选择是钢板弹簧悬架设计中非常关键的一环。
必须根据所要使用的车辆的行驶条件、驾驶员驾驶习惯和所装载的重量等,对钢板弹簧的各项基本参数进行科学合理的结构设计,使得汽车钢板弹簧悬架的设计能满足汽车行驶舒适和悬架稳定等各种要求。
汽车钢板弹簧悬架设计
![汽车钢板弹簧悬架设计](https://img.taocdn.com/s3/m/0a483f868ad63186bceb19e8b8f67c1cfad6ee81.png)
汽车钢板弹簧悬架设计1.弹簧选用汽车钢板弹簧主要由弹簧片组成,弹簧片之间通过铆钉连接。
在选用弹簧片时,需要根据车辆的重量和使用环境来确定合适的弹簧片数量和材料。
弹簧片的数量越多,弹簧刚度就越高,对于重负荷的车辆,需要选择刚度较高的弹簧片。
弹簧片的材料可以选择高强度钢板,以提高弹簧的寿命和可靠性。
2.弹簧布局汽车钢板弹簧的布局主要包括前后轴的弹簧组织和布置。
为了保证车辆的稳定性和悬挂的平衡性,前后轴的弹簧刚度需要相对均衡,可以根据车辆设计的重心位置和工况来确定各个轴的刚度比例。
同时,在弹簧的布置上,需要考虑到弹簧的有效作用长度,以及与减震器和车架的配合情况,确保弹簧在工作时能够正常运动。
3.减震器选用汽车钢板弹簧悬架中的减震器起到控制弹簧振动和提高行驶平稳性的作用。
减震器的选用需要根据车辆的重量和行驶条件来确定。
一般而言,重负荷的车辆需要选择刚度较高的减震器,而轻负荷的车辆可以选择较为柔软的减震器。
常见的减震器有液压减震器、气压减震器和双作用减震器等。
在实际应用中,需要根据车辆的需求和预算来选择合适的减震器。
4.悬挂系统调校在汽车钢板弹簧悬架的设计中,调校是一个关键的环节。
通过调整弹簧刚度、减震器阻尼、弹簧预紧力等参数,可以实现悬挂系统的理想性能。
悬挂系统的调校需要根据车辆的用途和乘客的需求来进行,例如,运载车辆和越野车辆需要更硬的悬挂系统来增加稳定性和通过性,而乘用车和豪华车则需要更柔软的悬挂系统来提高乘坐舒适性。
在进行悬挂系统的调校时,需要进行一系列的试验和数据分析,以确定最佳的参数组合。
物理试验和计算机仿真是常用的手段。
通过调整参数和验证,最终确定悬挂系统的设计。
总之,汽车钢板弹簧悬架设计需要考虑弹簧选用、弹簧布局、减震器选用和悬挂系统调校等方面。
通过合理的设计和调校,可以实现符合车辆需求和乘客舒适性要求的悬挂系统。
微型汽车后钢板弹簧悬架设计方案
![微型汽车后钢板弹簧悬架设计方案](https://img.taocdn.com/s3/m/cd98dbe4a1c7aa00b42acb16.png)
目录1 引言11.1研究现状和发展趋势:11.2 悬架系统的重要性21.3悬架的组成和设计理论意义22 汽车悬架系统的作用、组成与分类3 2.1 汽车悬架的作用32.2 悬架的组成32.2.1弹性元件42.2.2减振器42.2.3 导向机构42.3 悬架的分类52.3.1 非独立悬架52.3.2 独立悬架52.4 钢板弹簧72.4.1 钢板弹簧的基本结构和作用原理72.4.2弹性元件种类及其特点93 110微型汽车后钢板弹簧悬架系统104 后悬挂系统钢板弹簧设计114.1 钢板弹簧主要参数的确定114.2 钢板弹簧叶片断面尺寸的选择164.3 钢板弹簧各片长度的确定174.4 钢板弹簧刚度的验算194.4.1 弹簧刚度计算194.5 钢板弹簧总成在自由状态下的弧高和曲率半径计算20 4.5.1钢板弹簧总成在自由状态下的弧高204.5.2 钢板弹簧总成在自由状态下的曲率半径214.6 钢板弹簧各片预应力的确定214.6.1 簧预应力确定224.7钢板弹簧各叶片在自由状态下的曲率半径和弧高的计算224.8 钢板弹簧总成弧高的核算244.8.1 簧总成弧高核算254.9钢板弹簧各片的应力验算265 结论28参考文献29致谢301 引言1.1研究现状和发展趋势:自从汽车发明以来,工程师们就一直在研究如何将汽车的悬架系统设计得更好。
最初的汽车悬架系统是使用马车的弹性钢板,效果当然不会很好。
1908年螺旋弹簧开始用于轿车。
到了三四十年代,独立悬架开始出现,并得到很大发展。
减振器也由早期的摩擦式发展为液力式。
这些改进无疑提高了悬架的性能,但无论怎样改良,此时的悬架仍然属于被动式悬架,仍然在很多方面有很大局限性。
自五六十年代起产生了主动悬架的概念,它能够根据悬架质量的加速度,利用电控液压部件主动地控制汽车的振动。
在这方面的研究,各大汽车制造公司均不遗余力。
典型的例子,早期有雪铁龙公司在1955年发展的一种液压-空气悬架系统,可以使汽车具有较好的行驶性能和舒适性,但是它的制造工序太复杂,最终难以普及[12]。
悬架系统设计之钢板弹簧设计
![悬架系统设计之钢板弹簧设计](https://img.taocdn.com/s3/m/b0cceb3ea32d7375a41780f0.png)
DFA1064DH02-501悬架系统设2、后主板簧计算3、后副板簧计算前板簧参数计算1、各片长度计算代号公式全长(cm)各片长度之差(cm)△L(L-S)/n17.2第一片L1130第二片L2130第三片L3L-△L112.80第四片L4L-2△L95.60第五片L5L-3△L78.40第六片L6L-4△L61.2第七片L7L-5△L44第八片L8L-6△L26.82、总成自由弧高确定夹紧满载弧高(mm)H夹c016σ夹c H夹c-511△f10用U形螺栓夹紧在车桥H夹u H夹c+θ/c+△f107.873637上的无载荷弧高总成自由弧高确定(mm)σ夹U H夹u-5102.873637总成自由弧高(mm)H0H夹u+△H123.873637△H 16σ0H 0-5118.873637自由曲率半径(cm)R 0R 0*θ=L/21755R 0(1-COS θ)=H 0217.952423L 1300H0129θ19.99995前轴的动负荷(N)(0.8×u×G 整车质量+L 轴距×G 前轴静负荷/h 重心高度)/(L 轴距/h 重心高度-0.2u)28654.98084前板簧单边动负荷(轴荷-非簧载)/213077.49042动绕度(cm)f13.4257267最大应力(N/cm2)(f 动绕度+f 满载绕度)×σ比74119.65246图纸标注弧高和刚度值装车夹紧状态无载荷总成弧高σ夹U102.873637装车夹紧状态载荷为满载总成弧高σ夹满载σ夹U -Q 满载/C 刚度-△f11装车夹紧状态载荷为满载总成刚度C 7.97974.06p1Q×0.75582.5p2Q×1.310367.5验证负荷的确定(n)P 验σmax×C/σ比17487.80005后板簧各参数计算1、各片长度计算刚性曲线上两点负荷确定(N)代号公式全长(cm)各片长度之差(cm)△L(L-S)/n13.33333333第一片L1135第二片L2135第三片L3L-△L121.67第四片L4L-2△L108.33第五片L5L-3△L95.00第六片L6L-4△L81.66666667第七片L7L-5△L68.33333333第八片L8L-6△L55第九片L9L-7△L41.66666667 2、总成自由弧高确定载荷分配:副簧接触前7037.5主簧载荷(n)载荷分配:副簧接触后3462.5主副簧共同产生载荷(n)载荷分配:满载时副簧载荷(n)夹紧满载弧高(mm)H夹c035σ夹c H夹c-530△f12用U形螺栓夹紧在车桥H夹u H夹c+θ/c+△f106.9725978上的无载荷弧高总成自由弧高确定(mm)σ夹U H夹u-5101.9725978总成自由弧高(mm)H0H夹u+△H122.9725978△H 16σ0H 0-5117.9725978自由曲率半径(cm)R 0R 0*θ=L/22194R 0(1-COS θ)=H 0217.952423L 1300H0129θ19.99995后轴的动负荷(N)G 后轴静负荷×L 轴距/(L 轴距+/c12*h 重心高度)19528.98551后主副板簧单边动负荷(N)(轴荷-非簧载)/28014.492754动绕度(cm)f3.166821953最大应力(f 动绕度+f 满载绕度)×σ比73606.8837图纸标注弧高和刚度值装车夹紧状态无载荷总成弧高σ夹U101.9725978装车夹紧状态载荷为满载总成弧高σ夹8.7σ夹U -Q 满载/C 刚度-△f30装车夹紧状态载荷为满载总成刚度C 8.71452.09p1Q×0.76095.987388p2Q×1.311321.11944验证负荷的确定(n)P 验σmax×C/σ比24354.89912故考虑将支架上移6mm 车架的孔位坐标由151改为145车架的孔位坐标由109改为103刚性曲线上两点负荷确定(N)由作图法知道满载情况副簧的弧高为29.5后副簧各参数计算1、各片长度计算231.25代号公式全长(cm)各片长度之差(cm)△L(L-S)/n19.75第一片L194第二片L294第三片L3L-△L74.25第四片L4L-2△L54.50第五片L5L-3△L34.75 2、总成自由弧高确定夹紧满载弧高(mm)H夹c031σ夹c H夹c-031△f8用U形螺栓夹紧在车桥H夹u H夹c+θ/c+△f40.15上的无载荷弧高总成自由弧高确定(mm)σ夹U H夹u-535.1507929总成自由弧高(mm)H0H夹u+△H54.15△H14σ0H054.15自由曲率半径(cm)R0R0*θ=L/22294R0(1-COSθ)=H0217.952423展开长度(mm)L 940H0129θ19.99995后轴的动负荷(N)G 后轴静负荷×L 轴距/(L 轴距+/c12*h 重心高度)#VALUE!后主副板簧单边动负荷(轴荷-非簧载)/2#VALUE!动绕度(cm)f动绕度#VALUE!最大应力(f 动绕度+f 满载绕度)×σ比87118.04043图纸标注弧高和刚度值装车夹紧状态无载荷总成弧高σ夹U 35.1507929装车夹紧状态载荷为满载总成弧高σ夹1.8σ夹U -Q 满载/C 刚度-△f31装车夹紧状态载荷为满载总成刚度C 1.551556.71p1Q×0.71254.012612p2Q×1.32328.880564验证负荷的确定(n)P 验σmax×C/σ比14422.01372整车姿态车架平面角度为:前轮中心到车架平面距离(mm):304前后轮中心到车架平面距离(mm):3347车架上平面角度为0.746981186后桥输入轴上翘角度3.08刚性曲线上两点负荷确定(N)前动绕度69后动绕度80架系统设计0.001791.446588半长(cm)装配预应力(MPa)各单片自由总成时半径(mm)各单片的自由曲率半径Rk(mm)8.6σ0k R0K=R0+a 1/R k=σ0k/(E×a k)+1/R0K65-100-16017552230.532654 65-601763.002022.945555 56.401771.001771 47.81517791723.142307 39.23516017871660.814794 30.66017951587.328392 223518031674.626229 13.41518111753.147413355.00531.00减振动器变化长度339.004902921BC-010328.005382865.50设计模型有6.90许用90000--1000004.44半长(cm)装配预应力(MPa)各单片自由总成时半径(mm)各单片的自由曲率半径Rk(mm)6.666666667σ0k R0K=R0+a 1/R k=σ0k/(E×a k)+1/R0K67.5-120-180********.48293767.5-602203.002569.778189 60.83333333022122212 54.166666671022212168.98282247.52518022302103.379335 40.833333334522392019.309347 34.166666676022481962.21681827.54022572056.521872 20.833333331022662211.879295设计模型有8.00许用90000--100000半长(cm)装配预应力(MPa)各单片自由总成时半径(mm)各单片的自由曲率半径Rk(mm)9.875σ0k R0K=R0+a 1/R k=σ0k/(E×a k)+1/R0K47-80-12022943049.337448 47-402302.002628.70801537.1256023101945.95988527.254023182060.17255317.3752012023262188.578715作图法得知设计模型有5.19许用90000--100000各单片的中间修正h自由曲率半径Rk(mm)θ=R0(1-COSθ)=H0COSθ0.2914102152234.53265494.208636920.95783966990.208640.321313642026.945555103.73629270.948821372109.73630.31846414589.05043660.9497174270.27740018865.87458910.9617706620.23602872646.04726080.9722742950.19277674529.403612240.9814760370.131********.4302140.9913830240.07643396 5.118582660.997080347各单片的中间自由曲率半径修正弧高Rk(mm)θ=R0(1-COSθ)=H0COSθ0.220193693069.98293774.124240390.97585516291.624240.262574.27818988.296463190.965700497115.09650.2883.124514650.9624211050.2567.285241670.9689784350.2353.406382440.9746092480.2041.144939710.9796242510.1729.670897450.9848788890.1318.3592450.9910726720.099.8040386350.995567553修正修正θ=第一第二θ=R0(1-COSθ)=H K COSθ第一第二cosθ=h0.1541318430.1803670536.149332450.9881451850.98377849.466620.1787950570.20352203341.905025950.9840586990.97936154.254480.19077988335.306234050.9818566490.132********.995592320.9912650070.079389422 6.8933343880.996850315。
为0微型汽车设计后钢板弹簧悬架
![为0微型汽车设计后钢板弹簧悬架](https://img.taocdn.com/s3/m/4eaff8fc970590c69ec3d5bbfd0a79563c1ed492.png)
为0微型汽车设计后钢板弹簧悬架设计思路:1.背景介绍:110微型汽车是一种小型城市代步车,为了提高驾驶舒适性和操控性能,需要设计一种悬架系统来减震和支撑车身。
由于110微型汽车的重量相对较轻,我们选择使用后钢板弹簧悬架来实现这一目标。
2.后钢板弹簧悬架的工作原理:后钢板弹簧悬架是一种由钢板制成的长方形形状的负弯度弹簧,其通过弯曲变形来吸收和释放悬架系统的能量。
当车轮经过不平的路面时,弹簧会被压缩,吸收冲击力;当车轮经过光滑的路面时,弹簧会释放储存的能量,提供支撑力。
3.材料选择:为了保证悬架系统的强度和耐用性,我们选择使用高强度钢板来制作弹簧。
高强度钢板具有较高的弯曲强度和韧性,能够承受大量的变形而不产生塑性失效。
4.弹簧设计:根据110微型汽车的重量和悬架系统的需要,我们需要设计合适的弹簧刚度和减震效果。
弹簧刚度越大,悬架系统对路面不平度的响应就越硬,悬架系统的减震效果就越差;弹簧刚度越小,悬架系统对路面的响应就越软,悬架系统的减震效果就越好。
5.弹簧安装方式:为了实现相对简单的安装和调整,我们决定将弹簧安装在车轮旁边的悬挂臂上。
这种安装方式能够尽可能减小振动的传递和噪音的产生。
6.悬架系统的优化:为了进一步提高悬架系统的性能,我们需要进行一系列优化设计,例如调整弹簧的预压力和减震阻尼器的参数,以达到最佳的驾驶舒适性和操控性能。
以上是关于为110微型汽车设计后钢板弹簧悬架的设计思路,接下来我们将详细介绍各个方面的设计要点。
一、钢板弹簧的设计钢板弹簧的设计需要考虑弹簧的刚度、材料选择和几何形状等因素。
1.弹簧刚度:弹簧的刚度决定了悬架系统对路面不平度的响应。
在设计过程中,我们需要根据车辆的重量和悬架系统的需要来确定合适的弹簧刚度。
刚度可以通过调整弹簧的材料厚度和长度来实现。
2.材料选择:为了保证悬架系统的强度和耐用性,我们选择使用高强度钢板来制作弹簧。
高强度钢板具有较高的弯曲强度和韧性,能够承受大量的变形而不产生塑性失效。
110 微型汽车设计后钢板弹簧悬架钢板弹簧设计
![110 微型汽车设计后钢板弹簧悬架钢板弹簧设计](https://img.taocdn.com/s3/m/41d0461602020740bf1e9b0c.png)
为110 微型汽车设计后钢板弹簧悬架。
已知参数:总重:Ga=13100N( 驾驶室内两人)自重:Go=6950N( 驾驶室内两人)空车:前轴载荷=4250N后轴载荷=2700N满载:前轴载荷=5750N后轴载荷=7350N非簧载质量=690N (指后悬架)钢板弹簧长度L=(1000~1100)mm骑马螺栓中心距S= 70mm满载时偏频n= ( 1.5~1.7 )H叶片端部形状:压延要求:∙确定钢板弹簧叶片断面尺寸,片数;∙确定钢板弹簧各片长度(按1:5 的比例作图);∙计算钢板弹簧总成刚度;∙计算钢板弹簧各片应力;注意:①叶片断面尺寸按型材规格选取(参看“汽车标准资料手册”中册P39,表5—36),本题拟在以下几种规格内选取:= 6 65,7 65,8 656 63,7 63,8 636 70,7 70,8 70②挠度系数可按下式计算:式中:n’—主动片数n—总片数设计要求:1 )要求在CAD 环境下进行钢板弹簧各片长度的确定。
2 )要求对计算结果进行分析说明。
60Si2Mn E=2.06*105N/mm2满载偏频n2=1.6Hz钢板弹簧长度L=1050mm许用弯曲应力【σw】=500MPa无效长度系数k=0.5一.宽度b和片厚h1.J0=[(L-ks)3cδ]/(48E)(1)c=F w/f cF w2=(G2-G u2)/2=(7350-690)/2=3330NF c2=(5/n2)2=(5/1.6)2=97.66mmc=3330/97.66=34.10N/mm(2)δ=1.5/[1.04(1+0.5*0/8)]=1.5*1.04=1.56与主片等长的片数n’=0 总片数n=8J0=[(1050-0.5*70)3*34.10*1.56]/(48*2.06*106)=5625.60N/mm22.W0=F w(L-ks)/4[σw]=3330*(1050-0.5*70)/(4*500)=1689.9753.h p=2J0/W0=6.66mm4.宽度b的值在(6~10)h p中选取,取b=9h p=59.94mm5.片厚h的值为1.1h p,h=7.33mm6.选取国产型材h*b=8*65二.钢板弹簧长度Σh i3=8*63=1728由作图法得到8片钢板弹簧的长度序号单边L/2 取整圆整双边L使用matlab,计算程序为:l=[97 160 220 280 342 405 465 525]; %各片弹簧长度a=[1:8];b=[1:8];c=[1:8];e=[1:8];yd=[1:8];yg=[1:8];%yd为端接触应力,yg为固定端应力a(1)=(3-l(1)/l(2))/(2*l(1)/l(2));b(1)=-2;c(1)=0;e(1)=-a(1)/b(1);for i=2:7a(i)=(3-l(i)/l(i+1))/(2*l(i)/l(i+1));b(i)=-(2+(1-l(i-1)/l(i))*(1-l(i-1)/l(i))*(1-l(i-1)/l(i)));c(i)=(3-l(i-1)/l(i))*(l(i-1)/l(i))*(l(i-1)/l(i))/2;e(i)=a(i)/(-b(i)-c(i)*e(i-1));endE=2.06*10*10*10*10*10; %弹性模量J=65*8*8*8/12;p=12*E*J/(2*l(8)*l(8)*l(8)+(l(8)-l(7))*(l(8)-l(7))*(l(8)-l(7))-e(7)*( 3*l(8)*l(7)*l(7)-l(7)*l(7)*l(7))); %刚度w=65*8*8/6;f(8)=(7350-690)/4;for i=1:7f(8-i)=f(9-i)*e(8-1);endfor i=2:8yd(i)=(f(i)*l(i)-f(i-1)*l(i-1))/w;yg(i)=f(i)*(l(i)-l(i-1))/w;endyd(1)=f(1)*l(1)/w;yg(1)=0;最终计算结果。
汽车钢板弹簧悬架设计
![汽车钢板弹簧悬架设计](https://img.taocdn.com/s3/m/e8734d4ef18583d0496459a1.png)
汽车钢板弹簧悬架设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】汽车钢板弹簧悬架设计(1)、钢板弹簧种类汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦还起系统阻尼作用。
由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹簧在汽车上得到广泛应用。
目前汽车使用的钢板弹簧常见的有以下几种。
①通多片钢板弹簧,如图1-a所示,这种弹簧主要用在载货汽车和大型客车上,弹簧弹性特性如图2-a所不,呈线性特性。
图1 图2②少片变截面钢板弹簧,如图1-b所不,为减少弹簧质量,弹簧厚度沿长度方向制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a。
这种弹簧主要用于轻型货车及大、中型载货汽车前悬架。
③两级变刚度复式钢板弹簧,如图1-c所示,这种弹簧主要用于大、中型载货汽车后悬架。
弹性特性如图2-b所示,为两级变刚度特性,开始时仅主簧起作用,当载荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。
④渐变刚度钢板弹簧,如图1-d所示,这种弹簧多用于轻型载货汽车与厢式客车后悬架。
副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特性,如图2-c所示。
多片钢板弹簧钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。
并要求弹簧尺寸规格满足弹簧的强度要求。
钢板弹簧设计的已知参数1)弹簧负荷通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量,得到在每副弹簧上的承载质量。
一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。
如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。
2)弹簧伸直长度根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。
在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。
钢板弹簧悬架系统设计规范--完整版
![钢板弹簧悬架系统设计规范--完整版](https://img.taocdn.com/s3/m/8efdcaa589eb172dec63b73c.png)
钢板弹簧悬架系统设计规范1 范围本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。
2 规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本规范。
QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件QCn 29035-1991 汽车钢板弹簧技术条件QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法3 符号、代号、术语及其定义GB 3730.1-2001 汽车和挂车类型的术语和定义GB/T 3730.2-1996 道路车辆质量词汇和代码GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件GB/T 12549-2013 汽车操纵稳定性术语及其定义GB 7258-2017 机动车运行安全技术条件GB 13094-2017 客车结构安全要求QC/T 480-1999 汽车操纵稳定性指标限值与评价方法QC/T 474-2011 客车平顺性评价指标及限值GB/T 12428-2005 客车装载质量计算方法GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值GB/T 918.1-1989 道路车辆分类与代码机动车JTT 325-2013 营运客车类型划分及等级评定凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。
4 悬架系统设计对整车性能的影响悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。
钢板弹簧平衡悬架的设计计算程序化
![钢板弹簧平衡悬架的设计计算程序化](https://img.taocdn.com/s3/m/4ccda127482fb4daa58d4b9e.png)
式中,[ p] - 缸内最大容许压力, 取 3~4 MPa; λ- 缸筒直径
与连杆直径比, 双筒减振器 λ=0.4 ̄0.5, 单筒减振器 λ=
0.3 ̄0.35; 根 据 减 振 器 缸 径 系 列 , 从 中 选 取 缸 径 D。 国 标
( JB1459- 85) 中确定的工作缸直径 系 列 为 20、30、40、50、
+
n2Bh3p2 12
总截面系数:
W0 =
n1Bh2p1 6
+
n2 Bh3p2 6
2.3 钢板弹簧总成在自由状态下的弧高及曲率半径的计算
钢板弹簧在自由状态下的总成弧高 H0=fc+fa+Δ+Δf 式 中 , Δ- 弹 簧 在 预 压 缩 时 产 生 的 塑 性 变 形 , 一 般 取 8~
13mm; Δ=( 0.055 ̄0.075)( fc+fd) ; Δf- U 型螺栓夹紧后弧高
12
10 9 8 7 6
543
( a) 1.上推力杆 2.中间轴 3.上推力杆座 4.车桥 5.板簧支座 6.前下推力杆 7.平衡轴 8.钢板弹簧总成 9.后下推力杆 10.下推力杆座
1 23 4 5 6
计公式进行计算、选择、匹配。其设计计算流程见图 2。
设计方案 基本参数 选择挠度
主要参数与尺寸
簧载质量 板簧长度 系统偏频
变
化
,
Δf
=
s 2L2
(
(
3L- s)( fc+fa+Δ) ) 。
则
H0 =(
f c+f a+Δ)(
1+ s(
3L- s) 2L2
)
钢
板
弹
簧
总
成
在
自
由
状
钢板弹簧悬架系统设计规范--完整版
![钢板弹簧悬架系统设计规范--完整版](https://img.taocdn.com/s3/m/2bed9d59763231126edb1171.png)
1 范围本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。
2 规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本规范。
QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件QCn 29035-1991 汽车钢板弹簧技术条件QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法3 符号、代号、术语及其定义GB 3730.1-2001 汽车和挂车类型的术语和定义GB/T 3730.2-1996 道路车辆质量词汇和代码GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件GB/T 12549-2013 汽车操纵稳定性术语及其定义GB 7258-2017 机动车运行安全技术条件GB 13094-2017 客车结构安全要求QC/T 480-1999 汽车操纵稳定性指标限值与评价方法QC/T 474-2011 客车平顺性评价指标及限值GB/T 12428-2005 客车装载质量计算方法GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值GB/T 918.1-1989 道路车辆分类与代码机动车JTT 325-2013 营运客车类型划分及等级评定凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。
4 悬架系统设计对整车性能的影响悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。
汽车后悬架系统钢板弹簧的设计毕业设计
![汽车后悬架系统钢板弹簧的设计毕业设计](https://img.taocdn.com/s3/m/4d908e99e53a580216fcfea3.png)
目录第一章引言1.1 汽车工业的发展1.2 汽车的构造第二章悬架系统介绍2.1 汽车悬架系统的作用2.2 汽车悬架系统的组成2.3 汽车悬架系统的分类2.4 该项研究的目的与意义………………………………………………………2.5 国内外研究现状、发展动态…………………………………………………..2.6钢板弹簧2.6.1 钢板弹簧的基本结构和作用原理2.6.2 钢板弹簧的布置方案和材料选择第三章汽车后悬架系统钢板弹簧的设计计算3.1 设计给定参数3.2 钢板弹簧主要参数的确定3.2.1 前后悬架静挠度和动挠度的选择3.2.2 钢板弹簧满载弧高的选择3.2.3 钢板弹簧长度的确定3.2.4 悬架主、副钢板弹簧的刚度分配3.2.5 钢板弹簧所需的总惯性矩的计算3.2.6 根据强度要求计算钢板弹簧总截面系数3.2.7 钢板弹簧平均厚度的计算3.2.8 验算在最大动行程时的最大应力3.2.9 钢板弹簧叶片断面形状及尺寸的选择3.3 钢板弹簧的设计及校核3.3.1 钢板弹簧各片长度的确定3.3.2 钢板弹簧刚度的验算3.4 钢板弹簧总成在自由状态下的弧高和曲率半径计算3.4.1 钢板弹簧总成在自由状态下的弧高3.4.2 钢板弹簧总成在自由状态下的曲率半径3.4.3 钢板弹簧叶片在自由状态下曲率半径的计算3.4.4 钢板弹簧各叶片在自由状态下的曲率半径和弧高的计算3.4.5 钢板弹簧总成弧高的核算3.5 叶片端部形状的选择3.6 钢板弹簧两端与车架的连接3.7 钢板弹簧弹簧销和卷耳的设计3.7.1 弹簧销的设计3.7.2 卷耳尺寸的确定第四章结论参考文献致谢第一章引言1.1 汽车工业的发展几千年来人们一直生活在马车时代。
马拖着车厢在乡村田埂上颠簸行驶,在城市的大街小巷中踢踏的慢跑。
人们的生活节奏缓慢,既沉重又舒展。
18世纪,瓦特打破了这种平静,蒸汽机的发明掀起了工业革命的浪潮。
随后,法国人尼克.卡歌楼特将蒸汽机装在马车上,第一辆“动力车”诞生了。
01钢板弹簧悬架设计规范
![01钢板弹簧悬架设计规范](https://img.taocdn.com/s3/m/83a7fc640622192e453610661ed9ad51f01d54a2.png)
01钢板弹簧悬架设计规范钢板弹簧悬架是一种常见的悬架系统,其设计需要遵循一定的规范和原则,以确保悬架系统的安全可靠性和性能。
以下是钢板弹簧悬架设计的一些规范和要点:1.选择合适的弹簧材料:钢板弹簧通常由高碳钢或合金钢制成。
弹簧材料的选择应考虑到悬架系统的工作条件,例如车辆类型、负荷要求和预计的工作寿命。
2.确定合适的弹簧载荷:弹簧的载荷决定了悬架系统的刚度和荷载能力。
根据车辆的类型和应用,需要计算并确定合适的弹簧载荷,以满足悬架系统的性能需求。
3.弹簧设计参数:弹簧设计参数包括弹簧线圈直径、线圈数、线径、自由长度和工作长度等。
这些参数的选择应根据悬架系统的要求、弹簧载荷和弹簧材料的特性来确定。
4.弹簧尺寸的计算:弹簧尺寸的计算需要考虑弹簧的工作负荷、变形和应力等因素。
通过计算这些参数,可以确定合适的弹簧尺寸,以满足悬架系统的性能要求。
5.弹簧末端设计:弹簧的末端设计决定了其与车辆其他部件的连接方式。
末端设计应考虑到弹簧的载荷传递和安装方式,确保弹簧在工作过程中的稳定性和可靠性。
6.弹簧预紧:弹簧在悬架系统中需要一定的预紧来保证其工作正常。
预紧的选择应根据悬架系统的工作条件、载荷要求和弹簧的特性来确定。
7.弹簧疲劳寿命评估:弹簧在长期使用过程中会产生疲劳,需要对其进行疲劳寿命评估。
通过使用合适的方法和标准,可以评估弹簧的疲劳寿命,以确保悬架系统的稳定性和安全性。
8.弹簧生产和质量控制:钢板弹簧的生产过程需要严格控制和检测,以确保其尺寸和性能的一致性。
在生产过程中,需要采用适当的工艺和设备来制造弹簧,并进行质量检查和测试,以保证其质量符合设计要求。
总之,钢板弹簧悬架设计的规范和原则涵盖了弹簧材料的选择、载荷计算、尺寸设计、末端设计、预紧、疲劳寿命评估和质量控制等方面。
设计者需要综合考虑悬架系统的需求和要求,制定合适的设计方案,并进行必要的验证和测试,以确保悬架系统在实际工作中的可靠性和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业课程设计说明书题目:商用汽车后悬架设计学院机械与汽车学院专业班级 10车辆工程一班学生姓名学生学号 ************指导教师提交日期 2013 年 7 月 12 日一.设计任务:商用汽车后悬架设计二.基本参数:协助同组总体设计同学完成车辆性能计算后确定额定装载质量5000KG 最大总质量8700KG轴荷分配空载前:后52:48满载前:后32:68满载校核后前:后33::67质心位置:高度:空载793mm满载1070mm至前轴距离:空载2040mm满载2890mm三.设计内容主要进行悬架设计,设计的内容包括:1.查阅资料、调查研究、制定设计原则2.根据给定的设计参数(发动机最大力矩,驱动轮类型与规格,汽车总质量和使用工况,前后轴荷,前后簧上质量,轴距,制动时前轴轴荷转移系数,驱动时后轴轴荷转移系数),选择悬架的布置方案及零部件方案,设计出一套完整的后悬架,设计过程中要进行必要的计算。
3.悬架结构设计和主要技术参数的确定(1)后悬架主要性能参数的确定(2)钢板弹簧主要参数的确定(3)钢板弹簧刚度与强度验算(4)减振器主要参数的确定4.绘制钢板弹簧总成装配图及主要零部件的零件图5.负责整车质心高度和轴荷的计算和校核。
*6.计算20m/s车速下,B级路面下整车平顺性(参见<汽车理论>P278 题6.5之第1问)。
四.设计要求1.钢板弹簧总成的装配图,1号图纸一张。
装配图要求表达清楚各部件之间的装配关系,标注出总体尺寸,配合关系及其它需要标注的尺寸,在技术要求部分应写出总成的调整方法和装配要求。
2.主要零部件的零件图,3号图纸4张。
要求零件形状表达清楚、尺寸标注完整,有必要的尺寸公差和形位公差。
在技术要求应标明对零件毛胚的要求,材料的热处理方法、标明处理方法及其它特殊要求。
3.编写设计说明书。
五.设计进度与时间安排本课程设计为2周1.明确任务,分析有关原始资料,复习有关讲课内容及熟悉参考资料0.5周。
2.设计计算0.5周3.绘图0.5周4.编写说明书、答辩0.5周六、主要参考文献1.成大先机械设计手册(第三版)2.汽车工程手册机械工业出版社3.陈家瑞汽车构造(下册)人民交通出版社4.王望予汽车设计机械工业出版社5.余志生汽车理论机械工业出版社七.注意事项(1)为保证设计进度及质量,设计方案的确定、设计计算的结果等必须取得指导教师的认可,尤其在绘制总成装配图前,设计方案应由指导教师审阅。
图面要清晰干净;尺寸标注正确。
(2)编写设计说明书时,必须条理清楚,语言通达,图表、公式及其标注要清晰明确,对重点部分,应有分析论证,要能反应出学生独立工作和解决问题的能力。
(3)独立完成图纸的设计和设计说明书的编写,若发现抄袭或雷同按不及格处理。
八.成绩评定出勤情况(20%)设计方案与性能计算(40%)图纸质量(20%)说明书质量(20%)注意:此任务书要妥善保管,最后要装订在设计说明书的第一页。
目录一、悬架的静挠度 (6)二、悬架的动挠度 (7)三、悬架的弹性特性 (7)四、弹性元件的设计 (8)4.1 钢板弹簧的布置方案选择 (8)4.2 钢板弹簧主要参数的确定 (8)4.3 钢板弹簧刚度的验算 (13)4.4 钢板弹簧总成在自由状态下的弧高及曲率半径计算 (15)4.5 钢板弹簧总成弧高的核算 (18)五、钢板弹簧强度验算 (18)六、钢板弹簧主片的强度的核算 (19)七、钢板弹簧弹簧销的强度的核算 (19)八、减振器的设计计算 (20)九*、计算20m/s车速下,B级路面下整车平顺性 (23)十、附录计算程序 (27)十一、参考文献 (30)设计的主要数据载质量:5000kg 整备量:3700kg空车时:前轴负荷:18855N 后轴负荷:17405N 满载时:前轴负荷: 28136N 后轴负荷: 57124N 尺 寸: 轴 距: 4250mm一、悬架的静挠度悬架的静扰度 是指汽车满载静止时悬架上的载荷Fw 与此时悬架刚度c 之比,即c F f w c /=货车的悬架与其簧上质量组成的振动系统的固有频率,是影响汽车行驶平顺性的主要参数之一。
因汽车的质量分配系数近似等于1,因此货车车轴上方车身两点的振动不存在联系。
货车的车身的固有频率n,可用下式来表示:n=π2//m c式中,c 为悬架的刚度(N/m ),m 为悬架的簧上质量(kg ) 又静挠度可表示为:c mg f c /=g :重力加速度(9.8N/kg ),代入上式得到:n=15.42/c fn: hzc f : mm分析上式可知:悬架的静挠度直接影响车身的振动频率,因此欲保证汽车有良好的行驶平顺性,就必须正确选择悬架的静挠度。
又因为不同的汽车对平顺性的要求不相同,货车的后悬架要求在1.70~2.17hz 之间,因为货车主要以载货为主,所以选取频率为:1.9hz. 由 n=15.42/c f 得, c f =65.8mm ,取c f =66mm二、 悬架的动挠度悬架的动挠度是指从满载静平衡位置开始悬架压缩到结构容许的最大变形时,车轮中心相对车架的垂直位移。
通常货车的动挠度的选择范围在6~9cm.。
本设计选择:df =80mm三、 悬架的弹性特性悬架的弹性特性有线性弹性特性和非线性弹性特性两种。
由于货车在空载和满载时簧上质量变化大,为了减少振动频率和车身高度的变化,因此选用刚度可变的非线性悬架。
n=1.9hz , m=2637kg,代入公式:(满载时的簧上质量m=25843/9.8=2637kg ) n= 2//m c可得C=375.4N/mm四、弹性元件的设计4.1 钢板弹簧的布置方案选择布置形式为对称纵置式钢板弹簧4.2 钢板弹簧主要参数的确定已知满载静止时负荷2G =5829kg 。
簧下部分荷重kg G Z 5552=,由此可计算出单个钢板弹簧的载荷:N g G G F Z W 25843222=-=由前面选定的参数知:(动尧度) mm 80=d f4.2.1满载弧高 :满载弧高a f 是指钢板弹簧装到车轴上,汽车满载时钢板弹簧主片上表面与两端连线间的高度差。
常取a f =10~20mm.在此取:mm f a 15=4.2.2钢板弹簧长度L 的确定:(1) 选择原则:钢板弹簧长度是弹簧伸直后两卷耳中心之间的距离。
轿车L=(0.40~0.55)轴距;货车前悬架:L=(0.26~0.35)轴距,后悬架:L=(0.35~0.45)轴距。
(2) 钢板弹簧长度的初步选定:根据经验L = 0.35⨯轴距,并结合国内外货车资料,初步选定主簧主片的长度为1490m m =m L ,4.2.3钢板弹簧断面尺寸的确定:(1) 钢板弹簧断面宽度b 的确定:有关钢板弹簧的刚度,强度可按等截面的简支梁计算,引入挠度增大系数δ加以修正。
因此,可根据修正后的简支梁公式计算钢板弹簧所需的总惯性距0J 。
对于对称式钢板弹簧 []E c kS L J 48/)(30δ-= 式中: S ——U 形螺栓中心距(mm )k ——U 形螺栓夹紧(刚性夹紧,k 取0.5); c ——钢板弹簧垂直刚度(N/mm ),c=c W f F /; δ——为挠度增大系数。
挠度增大系数δ的确定:先确定与主片等长的重叠片数1n ,再估计一个总片数0n ,求得01/n n =η,然后δ=1.5/[])5.01(04.1η+,初定δ。
对于弹簧:L=1490mm k=0.5 S=200mm1n =20n =14142=η δ=1.5/[])5.01(04.1η+=1.5/⎥⎦⎤⎢⎣⎡⨯+⨯)1425.01(04.1=1.35E=2.1510⨯N/4mm计算主簧总截面系数0W :0W [][]W W kS L F σ4/)(-≥式中[]w σ为许用弯曲应力。
[]w σ的选取:后主簧为450~550N/2mm ,后副簧为220~250 N/2mm 。
w F =m F =28225NL=1490mm k=0.5 S=200mm[]w σ=500 N/2mm .再计算主簧平均厚度:[]caw p Ef kS L W J h 6)(/2200σδ-== =15.6mm 有了p h 以后,再选钢板弹簧的片宽b 。
推荐片宽和片厚的比值在6~10范围内选取。
b =102mm通过查手册可得钢板截面尺寸b 和h 符合国产型材规格尺寸。
(3)钢板断截面形状的选择: 本设计选取矩形截面。
(4) 钢板弹簧片数的选择:片数n 少些有利于制造和装配,并可以降低片与片之间的干摩擦,改善汽车的行驶平顺性。
但片数少了将使钢板弹簧与等强度梁的差别增大,材料的利用率变坏。
多片钢板弹簧一般片数在6~14片之间选取,重型货车可达20片。
用变截面少片弹簧时,片数在1~4选取。
根据货车的载荷并结合国内外资料初步选取本货车弹簧的片数为14片,4.2.4 钢板弹簧各片长度的确定先将各片的厚度i h 的立方值3i h 按同一比例尺沿纵坐标绘制在图上,再沿横坐标量出主片长度的一半L/2和U 型螺栓中心距的一半s/2,得到A,B 两点,连接A ,B 两点就得到三角形的钢板弹簧展开图。
AB 线与各片上侧边的交点即为各片的长度。
如果存在与主片等长的重叠片,就从B 点到最后一个重叠片的上侧边断点连一直线,此直线与各片上侧边的交点即为各片长度。
各片实,际长度尺寸需经圆整后确定。
由图2确定主簧各片长度:图4-1 确定主簧各片长度图表4-1钢板弹簧各片长度序号 1 2 3 4 5 6 7 长度(mm)1490 1399 1306 1214 1121 1029 937 序号8 9 10 11 12 13 14 长度(mm)845 753 660 569 476 384 2924.3 钢板弹簧刚度的验算在此之前,有关挠度增大系数δ,总惯性矩0J ,片长和叶片端部的形状都不够准确,所以有必要验算刚度。
用共同曲率法计算刚度,刚度的验算公式为:C=⎥⎦⎤⎢⎣⎡-∑=++n i K K k Y Y a E 1131)(/6α其中,)(111++-=k k l l a ;∑==ki i K J Y 1/1 ;∑+=+=111/1k i i K J Y ;式中,α为经验修正系数,取0.90~0.94,E 为材料弹性模量;,1l 1+k l 为主片和第(k+1)片的一般长度。
公式中主片的一半1l ,如果用中心螺栓到卷耳中心间的距离代入,求的刚度值为钢板弹簧总成自由刚度j c ;如果用有效长度,即)5.0(1'1kS l l -=代入上式,求得的刚度值为钢板弹簧总成的夹紧刚度z c 。
'1l =1490/2-0.5*0.5*200=695mm(1) 主簧刚度验算表4-2 )(111++-=k k l l a由公式∑==ki i K J Y 1/1(mm -4),得:Y 1=1.18×10-4Y 2=5.88×10-5 Y 3=3.92×10-5 Y 4=2.94×10-5Y 5=2.35×10-5Y 6=1.96×10-5Y 7=1.68×10-5Y 8=1.47×10-5Y 9=1.31×10-5Y 10=1.18×10-5Y 11=1.07×10-5 Y 12=0.98×10-5Y 13=0.9×10-5Y 14=0.85×10-5表4-3 1+-K K Y Y)(131++-K K k Y Y a 、)('131++-K K k Y Y a 列表如下, (mm -1)表4-4 )(131++-K K k Y Y a 、)('131++-K K k Y Y a将上述数据代入公式,得总成自由刚度jm C :431N/mm =jm C将上述数据代入公式有效长度,即ks l l 5.01'1-=,代入到公式所求得的是钢板弹簧总成的夹紧刚度zm C394N/mm =zm C 与设计值相差不大,基本满足主簧刚度要求。